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ABSTRACT
We introduce a classifier based on the L∞ norm. This clas-
sifier, called CHIRP, is an iterative sequence of three stages
(projecting, binning, and covering) that are designed to deal
with the curse of dimensionality, computational complexity,
and nonlinear separability. CHIRP is not a hybrid or modifi-
cation of existing classifiers; it employs a new covering algo-
rithm. The accuracy of CHIRP on widely-used benchmark
datasets exceeds the accuracy of competitors. Its computa-
tional complexity is sub-linear in number of instances and
number of variables and subquadratic in number of classes.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
Supervised Classification, Random Projections

1. INTRODUCTION
Supervised classifiers face some serious obstacles. First,

there is the curse of dimensionality: nearest neighbors in
high-dimensional spaces diverge exponentially with dimen-
sion. A second problem is computational complexity: polynomial-
time algorithms are infeasible in high-dimensional spaces. A
third problem is separability: for some point sets in a vector
space (e.g., a 2D disk surrounded by a ring) there exists no
homeomorphism that will allow separation of regions using
hyperplanes in the codomain.

There have been numerous approaches to overcoming these
problems, such as hybrid classifiers [15, 39] or reduction of
dimensionality through principal components, k-means clus-
tering [13], or random projections [42].

∗Supported by NSF/DHS grant DMS-FODAVA-0808860.
†Systat Software Inc. and Department of Computer Science,
University of Illinois at Chicago

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

Our algorithm is an integrated solution that addresses
all of these problems. CHIRP is a classifier that was de-
signed to address the curse of dimensionality and exponen-
tial complexity by using projection, binning, and covering
in a sequential framework. For class-labeled points in high-
dimensional space, CHIRP employs computationally-efficient
methods to construct 2D projections and sets of rectangular
regions on those projections that contain points from only
one class. CHIRP organizes these sets of projections and
regions into a decision list for scoring new data points.

CHIRP is a nonparametric, ensemble classifier that does
not need to be customized for each data set, making it ideal
for handling diverse data sets without prior knowledge of
their structure. Its average prediction accuracy over a wide
range of data sets exceeds that of competitive classifiers,
especially ones that have sensitive parameters like kernel
types, bandwidths, pruning criteria, etc.

CHIRP is based on a visual analytics framework [6] us-
ing what we call Composite Hypercube Description Regions
(CHDRs) that can be used to define local and large-scale
structures.

1.1 Composite Hypercube Description Regions
(CHDRs)

While the union of open spherical balls is used to define a
basis for the L2 Euclidean metric topology, we can alterna-
tively use balls based on other Lp metrics. For CHIRP, we
employ the L∞ or sup metric:

||x||∞ = sup(|x1|, |x2|, . . . |xn|)

when we search for neighbors. In this search, we are looking
for all neighbors of a point at the center of a hypercube
of fixed size in a vector space. Because we are concerned
with finite-dimensional vector spaces in practice, we will use
max() instead of sup() from now on.

Definition 1. A hypercube description region (HDR) is the
set of points less than a fixed distance from a single point
(called the center) using the L∞ norm. A weighted hyper-
cube description region is an HDR that uses the positively
weighted L∞ norm:

||x||∞ = max(w1|x1|, w2|x2|, . . . wn|xn|).

We will assume the term HDR refers to this more general
case. Our use of weights implies that different points in a
high-dimensional space can have different weights defining
their hypercubes.



Definition 2. A composite hypercube description region
(CHDR) is the set of points inside the union of zero or more
hypercube description regions.

The CHDR is the structure we use to define a region con-
taining points belonging to a single class or to no class.
CHDRs are defined for any number of dimensions in a finite-
dimensional vector space. For scalability, we have limited
them to two dimensions. The VisClassifier[6] algorithm as-
sembled a set of 2D projections and used CHDRs to cap-
ture human visual interactions in order to classify a high-
dimensional dataset. Following those promising results, we
have subsequently removed humans from the loop and we
grow CHDRs using an iterated covering algorithm. Figure 1
shows an example of a CHDR covering a 2D projection of
the Orange10 dataset used in our tests later in this article.
The CHDR represented by the blue region of the figure is a
composition of rectangles extending out to the edges of the
frame.

Figure 1: A CHDR covering class instances at the
periphery of a projected random spherical distribu-
tion. Data are the Orange10 dataset from [19]. The
data have been binned into a 24×24 grid with the size
of each dot proportional to the count of instances in
each bin. Yellow is used to represent the currently
selected class; gray represents all other classes. All-
yellow dots represent bins containing only current
class instances. All-gray dots represent bins contain-
ing only other-class instances. Gray dots with yellow
centers and yellow dots with gray centers represent
mixed-class bins. The CHDR (a union of rectan-
gles) is colored blue; it covers bins such that the
odds of covering current class instances vs. all other
instances are maximized.

1.2 CHIRP Constructs a List of CHDRs
Each CHDR constructed by CHIRP is based on a different

random 2D projection. The algorithm is a one-against-all
classifier [12]. For each class Ck in a training set, we (a)
compute a 2D projection, (b) bin the projected data values
in a 2D rectangular segmentation, and (c) cover bins con-
taining mostly instances of Ck with a CHDR. We iterate
over classes until we are unable to find bins pure enough to
classify remaining instances in the training set.

The result of this process is a list of CHDRs that can be
used to score new data points. A point is assigned to the
first CHDR in the list that contains it. If no CHDR contains

the point, it is assigned to the closest CHDR in the list using
smallest point-to-rectangle L∞ distance.

CHIRP is an ensemble classifier. We run it m times and
score a testing instance based on simple-majority, equally-
weighted vote. In this paper, we use m = 7. Increasing
m improves accuracy (with diminishing gains), but at the
expense of time.

Although CHIRP employs some well-known ideas, the
combination of them described in this paper results in a
classifier that is novel and coherent. We will first discuss re-
lated work, then present the algorithm, and finally present
performance comparisons between CHIRP and competitors.
We will argue, in conclusion, that the success of CHIRP is
due to the statistical properties of its components and the
way they are combined.

2. RELATED WORK
Perhaps the most widespread use of rectangular descrip-

tion regions is in recursive partitioning trees [10, 30]. These
methods partition a space into nested rectangular regions
that are relatively homogeneous over the values of a pre-
dicted variable. Our approach differs from these models,
however, because it is not restricted to a partitioning. Our
description regions need not be disjoint or exhaustive.

Several teams have developed projection-pursuit classi-
fiers [25, 14, 21]. These efforts exploit the flexibility of affine
projections but have failed to ameliorate the computational
complexity of projection pursuit.

Researchers have used hyperboxes for classification through
neural networks [34], mixed integer programming [41], set
covering [28], and decision lists [35, 4]. These approaches
can be slow to converge on larger datasets. Most impor-
tantly, the hyperbox researchers restrict their method to 2D
axis-parallel (pairs of features) projections, so their utility
is limited.

Finally, various researchers have used compositions of rect-
angles (unions and products) to characterize the results of
unsupervised classification [5, 3, 11, 16, 17, 29]. The pri-
mary focus of these researchers has been to develop rapid
scoring methods that can be implemented inside a database
through the use of rectangles. We will discuss some of this
work in more detail as we describe the CHIRP algorithm in
the next sections.

3. CHIRP TRAINING
The CHIRP training algorithm consists of three stages –

projecting, binning, and covering. We will describe these
stages in detail in this section. First, however, we will sum-
marize preliminary data processing steps similar to those
employed in other classifiers.

3.1 Preliminary Processing (Transforming and
Normalizing)

We begin by reading n rows and p columns of a training
dataset X. We code numerical values as double precision
numbers and string values as integers. We assume numeri-
cal values are derived from continuous variables and string
values from categorical variables, although numerals can be
treated as strings if so designated. We use the terms feature
and variable interchangeably to mean a mapping of a set of
objects to a set of values.

We next transform extremely skewed variables. We com-



pute standardized skewness and kurtosis on each raw vari-
able and sort the standardized values. We then sequentially
test each element in these lists by adjusting the 99th percent
critical value drawn from the standard normal distribution
in order to control the false discovery rate [8]. If a standard-
ized skewness or kurtosis value exceeds this adjusted critical
value, we apply our transformation.

Our transformation is a folded square root:

t(x) = sgn(x)sqrt(abs(x))

This flexible transformation accommodates instances such
as non-negative, positively-skewed data based on log-normal,
Poisson, gamma, or exponential processes (counts, incomes,
etc.), as well as long-tailed data from double-exponential,
Cauchy, and similar distributions.

Our goal in transforming is to improve our chances of dis-
covering class separation in relatively dense regions. This is
especially important because we will use binning (a form of
segmentation) to compress our data. Without transforma-
tion, highly-skewed densities might concentrate in only one
or two bins. The logic behind this is similar to the ratio-
nale for using linearizing transformations in support vector
machines.

After transforming, we normalize the data by rescaling
each variable (feature) to the unit interval. The next three
subsections describe the three stages that comprise the core
of the CHIRP algorithm. We iterate these three stages cycli-
cally over classes until we are unable to classify remaining
training data. Each iteration is a one-against-all classifica-
tion step involving the current class vs. other classes.

3.2 Projecting
We will be binning 2D projections of variables in the hope

of locating dense and well-separated class distributions. To
do this, we generate a candidate list of 1D projections, pick
the best of these based on a separation measure for the cur-
rent class, and pair the best to make a set of 2D projections.

Before projecting, however, we need to scale categorical
variables in order to project them into the same subspace
with continuous variables. To scale categorical variables,
we use a strategy derived from the latent class model [24].
For a given categorical variable, we count the unclassified
instances of the current class in each category. We divide
this count by the total count of unclassified instances in each
category. Finally, we replace integer category values with
the corresponding proportions based on these two counts.

Next, we generate a set of 1D projections using three-
valued vectors with elements

uj ∈ {−1, 0, 1}, j = 1, . . . , p.

Of the p projection weights, r are zero and the remainder
are split evenly between -1 and 1.

Choosing r depends on p. When p is small (p ≤ 50), we
apply random projections with zero and nonzero weights.
Otherwise, we apply random projections after constraining
p − 50 weights to be zero. Our choice of 50 is guided by
results in [20] and [27].

3.2.1 Small p.
If p is small, we choose r = p/4, r = p/2, or r = 3p/4.

We decide among the three alternatives by generating three
random projections (using these r values) and choosing the
one with the largest value of a separation statistic S. For

a projection, our separation statistic is the distance of the
current-class projected mean x̄c from the closest other-class
projected mean x̄k:

S = min
k "=c

(dx̄c,x̄k)

3.2.2 Large p.
If p is large, we set p−50 weights to zero before doing our

random projections on the remaining features the same way
we do for small p. In this case, we need to determine which
features are constrained to have zero weights. To decide, we
compute the class-separation statistic S on each variable.
We sort all features on this statistic and we constrain the
p − 50 features with the smallest class-separation statistics
to have zero weights. This process is a form of feature selec-
tion, but unlike other applications that use feature selection
to pre-process large datasets, we employ it inside our itera-
tions. Different features are likely to be selected on different
iterations because class means change as points are removed
from the training set.

Unit-weighting our projections is a form of regularization
[19, 38]. Regularized estimators increase bias in order to
reduce prediction error. We discuss this aspect further in
the Appendix.

3.3 Binning
The next step in the process is to pair our best 1D pro-

jections and bin currently unclassified instances into a bin
matrix for each pair. We base the number of bins for each
2D projection on a formula in [37]. Given n instances, we
compute the marginal number of bins b using

b = 2 log2(n)

This formula produces a few more bins than optimal sta-
tistical estimates for binning normal and mildly skewed dis-
tributions [32, 44]. Traditional methods assume a homoge-
neous distribution, however, which is clearly not the case in
classification.

Next, we rank our b× b 2D bin matrices on a purity mea-
sure. For a given target class Ck, our purity measure is

Pk =
bX

i=1

bX

j=1

ni,jIi,j(Ck)

where

Ii,j(Ck) =


1 ni,j = ni,j,k

0 otherwise

In other words, we sum the counts across all bins whose
total counts of points falling in them (ni,j) are due only
to class Ck counts (ni,j,k). We want our purity measure
to count only pure bins, because our fitting method will
be especially greedy. The more pure bins we can eliminate
early in the process, the better chance we have of seeing
well-separated other classes later.

To recapitulate our current status: we have generated a
small number of 1D random projections sorted on our sep-
aration measure S and we have paired them to make a set
of 2D projections. We then have chosen the best of these
2D projections based on our bin purity measure P . We are
now working with the upper tail of the extreme-value distri-
bution of binned, unit-weighted random projections ordered
on a bin purity measure. We now will cover these binned



Figure 2: Growing a Hypercube Description Region
(HDR) on a binned 2D projection. Each point is
located at the centroid of the instances in each cell.
Hollow symbols represent bins containing only in-
stances of the current class. Solid symbols repre-
sent bins containing at least one instance of another
class.

projections with rectangles and pick the cover that most
improves our training-set classification.

3.4 Covering
The last stage in each iteration involves covering pure bins

in order to define a classification region for a given class Ck.
Our cover is a CHDR, which is a list of HDRs. Each CHDR
is uniquely associated with a class label.

3.4.1 Growing a CHDR
We grow a CHDR on a given 2D bin matrix with a recur-

sive algorithm. Figure 2 shows how this process works. For
a given pure bin element bi,j , we grow an HDR covering the
bin and its pure neighbors by expanding upward (b.,j+1),
rightward (bi+1,.), downward (b.,j−1), and leftward (bi−1,.)
in a spiral path. In other words, we sequentially expand each
side of the current rectangle by one bin-row or bin-column
whose length is equal to the length of that side. We cease
expanding in any of the four directions when the odds ratio
of current-class vs. other-class instances inside the covering
rectangle begins to decrease. This strategy tends to result
in squarish rectangles that cover pure or empty bins, similar
to an approach in [3].

We grow an HDR for each of the bins in the 2D bin ma-
trix. For each HDR we record the number of instances of
the current class that we have covered. We pick the HDR
that results in the largest current-class count. Finally, if the
current-class count in the HDR exceeds 10, we add the HDR
to the current CHDR list for that 2D projection. This 10
is not a magic number. It is based on a rule-of-thumb for a
slippage test [40].

Once we compute an HDR, we mark bins that it covers.
Then we iterate this procedure over the 2D bin matrix start-
ing with uncovered bins until we can find no HDRs that meet
Tukey’s criterion. The resulting set of HDRs is a CHDR for
a 2D bin matrix.

3.5 Iterating
We iterate through classes in cyclical order. For each iter-

ation, we pick a new target class and repeat our three stages
(projecting, binning, covering). This means recalculating all
the statistics within these stages. Fortunately, these are
one-pass calculations, so the iterations are fairly rapid. We
terminate iterations when no CHDR can be constructed ac-
cording to our rules.

4. CHIRP SCORING
To score a new instance, we transform and rescale a new

point. Then we pass through the list of CHDRs. For each
CHDR, we project the point using the stored projections
from the training data. Then we pass through the list of
rectangles for that CHDR. The first rectangle to enclose our
projected testing point determines the classification.

If no enclosing rectangle is encountered by the end of
the list, we assign the point to the nearest rectangle in the
CHDR list. This computation involves finding the shortest
L∞ distance between a point and a rectangle. Because the
perimeter of a CHDR is a zero level set for a naive density
estimator based on the union of rectangular polygons [33],
this point-to-rectangle distance is asymptotically a nearest-
neighbor statistic.

This scoring algorithm is based on a decision list [31]. Un-
like trees, decision lists do not require traversal of the entire
depth in order to score new instances (unless, of course, a
cover is not encountered).

5. PERFORMANCE
In this section we will discuss two different aspects of

CHIRP performance: accuracy and efficiency. We conducted
an experiment to evaluate CHIRP against a comprehensive
set of competitive classifiers. We first summarize the ex-
perimental design and then present results for accuracy and
efficiency.

5.1 Datasets
We tested CHIRP and other classifiers on 20 datasets from

the UCI Machine Learning Repository [7], [19], and other
sources. Table 1 summarizes prominent aspects of these
datasets.

5.2 Challenges
There are three reasonable questions for proponents of

particular classifiers who conduct evaluation experiments:
1) Have they “cherry-picked” their datasets to make their
classifiers look effective? 2) Have they included a sufficient
number of datasets to provide reasonable statistical power
for their conclusions? and 3) Have they tested their clas-
sifiers against a sufficient number of competitors to insure
their claims are generalizable?

In response to the first question, we selected these par-
ticular datasets for their structural variety; each represents
a different challenge for classifiers. We tried not to bias
the results by picking two or more datasets with a simi-
lar structure. These datasets include examples of missing
values (Horse), mixed categorical and continuous variables
(Adult), mixed binary variables (Cover), small n (number
of instances), large n, small p (number of variables), large
p, (n & p) (Cancer), small g (number of groups), large g,
relatively small training set (Poker, Segment) and disparate
within-and-between-groups data densities (discrete, contin-
uous, mixed, convex, non-convex (Orange10). Almost all
the test datasets are real, and each has been widely tested
on numerous classifiers.

In response to the second question, we included 20 datasets.
This number enabled relatively narrow confidence intervals
on our error results. The median width of our confidence in-
tervals for standardized errors was .6. We should mention,
in addition, that the distributions of the standardized errors
within classifiers are relatively symmetrical, so our use of the
t-distribution to construct confidence intervals is justified..

In response to the third question, we added CHIRP to



Table 1: Characteristics of Datasets
Training Testing Attributes Groups Categorical Vars Continuous Vars

Abalone 2,088 2,089 8 3 No Yes
Adult 32,561 16,281 14 2 Yes Yes
Cancer 144 54 16,063 14 No Yes
Cover 11,340 569,672 54 7 Yes Yes
Credit 345 345 14 2 No Yes
Horse 300 68 22 2 Yes Yes
Madelon 2,000 600 500 2 No Yes
Optdigits 3,823 1,797 64 10 Yes Yes
Orange10 5,000 50,000 10 2 No Yes
Page Blocks 4,000 1,473 10 5 No No
Pendigits 7,494 3,498 16 10 No Yes
Poker 25,010 1,000,000 10 10 No Yes
Satellite 4,435 2,000 36 6 No Yes
Segment 210 2,100 19 7 No Yes
Shuttle 43,500 14,500 9 7 No Yes
Spect 80 187 22 2 Yes No
Swiss Roll 1,000 1,000 3 2 No Yes
Vehicle 679 167 18 4 No Yes
Vowel 528 462 10 11 No Yes
Waveform 300 500 21 3 No Yes

the Weka data mining workbench [45]. Then we tested ev-
ery classifier in Weka Version 3.6.1, omitting classifiers that
could not deal with all 20 datasets (because they were spe-
cialized or were not scalable to the larger datasets). This left
a total of 50 classifiers. We included hybrid and meta clas-
sifiers as well, even though these are not direct competitors
because they do not rest on a single geometric model. Tests
were run on a 2.5 GHz Intel Core 2 Duo Macintosh Power-
book with Macintosh OS X Version 10.5.7 and Java Version
1.5.0 running in a 2GB partition. The full experiment took
almost three weeks of continuous CPU time. To the best of
our knowledge, this is one of the most comprehensive experi-
mental evaluations of classifiers since the Statlog Project [23,
36, 1]. We also examined published error rates for non-Weka
classifiers on these datasets and found almost all of them to
lie in the range of our findings (except for specialized classi-
fiers such as [26], which can perform extraordinarily well on
specific types of datasets).

5.3 Accuracy
We computed a variance components analysis on the error

rates for every classifier across datasets. Dataset and Clas-
sifier were treated as random factors. The effects of both
factors were highly significant (p < .001). Consequently, we
standardized the error statistics within dataset for our final
analysis.

Figure 3 summarizes the error performance for all classi-
fiers. (Tables of these data are available on the senior au-
thor’s website.) CHIRP has the lowest standardized error of
all classifiers and a relatively small variance. CHIRP is not
only extraordinarily accurate but also unusually consistent
across a wide range of data scenarios.

Figure 4 shows the performance of all the classifiers on
these datasets. CHIRP is highlighted in red. No other fam-
ily of classifiers (SVMs, Trees, ...) had the lowest or near-
lowest error on as many datasets as did CHIRP.

5.4 Efficiency
CHIRP makes one pass through n rows of the training

Figure 3: Average standardized error rates and as-
sociated 95% confidence intervals for CHIRP and
Weka Version 3.6.1 classifiers. Default parameter
values were used for all classifiers.

data to compute data limits and basic statistics. For each of
the g classes, it makes an additional pass through the data
to construct 25 2D bin matrices. CHIRP sorts this bin-
matrix list and picks the top 5 candidate 2D bin matrices.
It iterates through this process t times, adding a CHDR
to the decision list at each step. Thus, we should expect



Figure 4: Errors for CHIRP (in red) and the other
classifiers (in blue) on 20 test datasets.

CHIRP to be O(npgt) in time. To test this expectation, we
did a simulation.

We generated Gaussians for n = {500, 5000, 50000} and
p = {20, 40, 60, 80, 100}, and g = {2, 4, 6, 8, 10}. In each of
the 75 datasets, the first g Gaussians had unit variance with
centroids located at the corners of a (g − 1)-simplex with
edges of length 7. Values for the remaining p − g variates
were N(0, I). We ran CHIRP once on each dataset.

The times are fit well (R = .962, with well-behaved resid-
uals) with the simple linearized model:

E[log(t)] = −10.34 + 0.94 log(n) + 1.66 log(g) + 0.68 log(p)

Our empirical results indicate that CHIRP is sublinear in n
and p and subquadratic in g.

Figure 5 shows the training times for CHIRP and the other
classifiers. Not surprisingly, some of the worst performing
classifiers in Figure 3 are the fastest to train. The converse
is not always true, however. The Multilayer Perceptron clas-
sifier was the least efficient to train, yet its performance was
in the middle of the pack. CHIRP’s closest rival in per-
formance, Logistic Model Trees, was significantly slower in
training.

CHIRP is slower to train than many of the other classifiers
in part because it is an ensemble classifier. In a parallel com-
puting environment, each thread would run concurrently, so
this would not be an issue. The longest training time (rules-
DTNB on Madelon) was 38 hours. The longest training time
for CHIRP was 2.6 hours on Poker Hand. The longest time
for an SVM was 15 hours (SMOPuk on Adult).

Figure 6 shows the testing times per instance for CHIRP
and the other classifiers. In contrast to its training per-
formance, CHIRP falls in the fastest group of classifiers,

Figure 5: Mean training times and associated 95%
confidence intervals for CHIRP and Weka Version
3.6.1 classifiers.

with performance that is not significantly worse than deci-
sion trees (although its standard error is larger). Interest-
ingly, the support vector machines are generally the slowest
in testing; the SVM with the lowest overall error (SMOPuk)
is among the slowest performers in a testing environment.

Again, scoring could be speeded up for CHIRP by paral-
lelizing the voting. The longest scoring time for an instance
was 4 minutes (lazyKStar on Satellite). The longest scoring
time for CHIRP was 2 seconds (on Satellite). The longest
scoring time for an SVM was 22 seconds (SMOPuk on Satel-
lite). These longer times are problematic, because scoring
times of more than a few seconds would be impractical for
online applications. By contrast, CHIRP is a good candidate
for online classification in a time-critical environment.

6. DISCUSSION
Our experiment provides clear evidence that CHIRP out-

performs competitive classifiers across a wide range of datasets.
We intend to pursue the question of why this is true in fur-
ther research, although we designed each stage using well-
established findings from the statistical and machine-learning
literature. What is unique about CHIRP is how these com-
ponents are assembled. We need to investigate theoretically
how these components interact. We also need to investigate
whether extending projections to 3D can improve perfor-
mance without sacrificing scalability.

We do have several preliminary answers to the question of
why CHIRP works so well, however. First, CHIRP handles
nonconvex, discrete and disjoint densities by covering in-
stead of partitioning. We suspect (but have not yet proven)
that covering requires fewer rectangles than partitioning in



Figure 6: Mean testing times per instance and as-
sociated 95% confidence intervals for CHIRP and
Weka Version 3.6.1 classifiers.

the case of certain topologies (such as the Orange10 or Wave-
form datasets). Second, its categorical scaling algorithm
allows us to combine discrete and continuous densities to
search for homogeneous joint regions. Third, CHIRP is an
ensemble classifier. Its use of random projections naturally
lends itself to a voting architecture. Fourth, CHIRP uses
affine instead of axis-parallel projections; other set-covering
classifiers do not employ this technique. Fifth, its two fitness
measures used for ranking projections (the class separation
measure S and the bin purity measure P ) target different
aspects of densities. The S measure values projections with
large margins; the P measure values projections with com-
pact subsets. “Good” projections missed by one are likely to
be found by the other. Finally, CHIRP embeds its projec-
tions and covers inside its iterations; we have, for the first
time, used projections and covers recursively. This architec-
ture contributes to the ability of CHIRP to peel away sets
of exterior points that obscure other sets in the core of a
density. This peeling is adaptive; CHIRP responds to the
topology of the conditional density as it shrinks in size and
changes shape on each iteration.

CHIRP can have difficulty with certain higher-dimensional
densities as its covers are confined to 2D projections. Its
ability to peel off subsections of higher-dimensional den-
sities mitigates against this weakness, but there are some
configurations it cannot exploit. Like all classifiers, CHIRP
cannot outperform everyone on every dataset. Our future
direction is to leverage the 2D aspect that motivated this
approach to develop a new visualization to explore the “in-
teresting” separating projections used by the classifier. With
the strength and flexibility of CHIRP experimentally shown

here, we can now use its framework to get a visual under-
standing of the class-separating relationships in the data and
the inner workings of the classifier.

7. CONCLUSION
CHIRP is a relatively efficient classifier with average accu-

racy superior to other classifiers commonly associated with
good performance on benchmark datasets. Its virtues are:

• Categorical variables expend only one degree-of-freedom.
We scale categorical variables on each iteration, so
there is no dummy-coding to inflate dimensionality.

• The performance is linear in complexity on n or p. It is
subquadratic on g (the number of classes), but solution
times are practical for up to a hundred classes.

• CHIRP does not depend on sensitive adjustable pa-
rameters (convergence criteria, kernel types, bandwidths,
pruning schedules, etc.). We tested this assertion by
assessing its performance over a wide range of parame-
ter settings. Most importantly, none of the potentially
settable CHIRP parameters was adjusted to optimize
performance on a specific dataset in our training or
testing.

• CHIRP had the lowest average standardized testing
error rate and achieved the lowest error rate on more
datasets than did any other classifier. Clearly, these
datasets were not selected to favor CHIRP; we in-
cluded well-known datasets designed to present clas-
sifiers with the broadest variety of challenges.

• CHIRP is readily parallelizable at the random projec-
tion stage and/or voting stage.

• CHIRP is tiny. Its JAR file is under 50K in size. The
algorithm iterates over three simple steps.

• CHIRP is a novel algorithm; it is not a hybrid clas-
sifier. This fact would tend to support the idea that
CHIRP can contribute relatively independent classifi-
cation information to the results of other classifiers.

Given these distinctive features and its fundamental differ-
ences from other classifiers, CHIRP is uniquely suited for
applications where there is limited a priori knowledge of
the structure of the dataset.
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APPENDIX
Suppose there are two normal populations with respective
p×1 mean vectors µ1 and µ2 and common p×p covariance
matrix Σ. Without loss of generality, we will assume that
µ1 = −µ2. The two-group Linear Discriminant Analysis
(LDA) classification algorithm assigns a new point x to the
group with the smaller Mahalanobis distance

(x − µi)
TΣ−1(x − µi), i = 1, . . . , 2

Equivalently, if the Fisher linear discriminant function

δF (x) = Σ−1(µ1 − µ2)T x

is negative, we assign x to the first group, otherwise to the
second.

Because we do not usually know µ1 or µ2 or Σ, we cus-
tomarily estimate them via maximum likelihood on n obser-
vations of sample data and employ the discriminant function

dF (x) = bΣ−1(µ̂1 − µ̂2)T x

for our classification rule.
When p > n, the maximum likelihood estimate of Σ can-

not be computed because the conventional matrix estima-
tor is singular. Classical remedies for computing the linear
discriminant function in these cases include using a Moore-
Penrose inverse or selecting a subset of the p variables (fea-
tures) to get our estimate.

Alternatively, we can assume Σ = σ2I. In this case, the
estimated discriminant function passes through µ̂1 and µ̂2

and the decision rule based on the linear discriminant func-
tion is equivalent to a Naive Bayes rule. Bickel and Levina
[9] prove that the Naive Bayes classification rule substan-
tially outperforms the Fisher linear discriminant rule under
broad conditions when the number of variables grows faster
than the number of observations. This gives us some confi-
dence that we do not substantially increase prediction error
by ignoring covariance structure when searching for maxi-
mum separation of means in higher-dimensional spaces.

Suppose we now replace the discriminant function coeffi-
cients with unit weights

dU (x) = uT x,

where ui ∈ {−1, 0, 1}. Suppose also that we choose unit
weights that produce the greatest spread between sample
means on the dU (x) discriminant function. The number of
possible weights we must consider before making this choice
is 1

2 (3p−1). (The 1
2 is due to the symmetry of dU (x) around

zero).
The following lemma gives us the upper bound of the angle

between the optimal unit-weight vector dU (x) and the Fisher
discriminant vector dF (x).

Lemma 1. Let U be the set of all non-null p × 1 vectors
u, where ui ∈ {−1, 0, 1}. Let x be a p× 1 vector in Rp. Let
ux be the element of U that is closest in angle to x. Then
for any x, the maximum possible angle between ux and x is

θmax = arccos

„
1/

q
p2 − 2

Pp
m=1

√
m
√

m − 1

«

For p = 50, for example, using dU (x) instead of dF (x) will
shrink the values of µ̂1 and µ̂2 projected on dF (x) toward
zero by a factor of approximately .3. The gains from this
type of shrinkage are discussed in [43, 19, 38, 18] and else-
where. It belongs to a class of regularization methods that,
relative to maximum likelihood estimators like dF (x), are
more resistant to outliers and have lower prediction error in
new samples.

In practice, we cannot expect to find the projection dU (x)
with the greatest separation of means because it is imprac-
tical to search over 1

2 (3p − 1) weight vectors for large p. We
can get close, however, by taking advantage of the Johnson-
Lindenstrauss Theorem [22]. This theorem states that if a
metric on X results from an embedding of X into a Eu-
clidean space, then X can be embedded in Rk with distor-
tion less than 1 + ε, where k = O(ε2log|X|). Remarkably,
this embedding is achieved by projecting onto a random k-
dimensional subspace. Because our discriminant rule de-
pends on a similarity transformation of Euclidean distances,
we can logarithmically reduce the complexity of the problem
through random projections.

Johnson-Lindenstrauss was originally proven for Gaussian
weights, but Achlioptas [2] showed that unit-weighted pro-
jections do not jeopardize accuracy in approximating dis-
tances. Furthermore, Hastie et al. [27] showed that unit
random weights for most purposes can be made very sparse
with the following probabilities:

uj =

8
><

>:

1 with probability 1
2
√

p

0 with probability 1 − 1√
p

−1 with probability 1
2
√

p

In sum, we get lower prediction-error, robustness, scala-
bility, and better approximation to the maximum-separation
vector by using random unit weights in CHIRP. Further-
more, by constructing 2D projections from these random
1D projections and using (possibly) non-convex set covers
on them, we substantially outperform LDA and other clas-
sifiers when the normality assumption is not plausible.


