
Chapter 1: Introduction

Ajay Kshemkalyani and Mukesh Singhal

Distributed Computing: Principles, Algorithms, and Systems

Cambridge University Press

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 1 / 36

Distributed Computing: Principles, Algorithms, and Systems

Definition

Autonomous processors communicating over a communication network

Some characteristics
I No common physical clock
I No shared memory
I Geographical seperation
I Autonomy and heterogeneity

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 2 / 36

Distributed Computing: Principles, Algorithms, and Systems

Distributed System Model

M memory bank(s)

P

P
P P

P

PP

M
M M

MM

M M

Communication network

(WAN/ LAN)

P processor(s)

Figure 1.1: A distributed system connects processors by a communication network.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 3 / 36

Distributed Computing: Principles, Algorithms, and Systems

Relation between Software Components

protocols

Operating

system

Distributed software

N
et

w
o
rk

 p
ro

to
co

l
st

ac
k

Transport layer

Data link layer

Application layer

(middleware libraries)

Network layer

Distributed application Extent of

distributed

Figure 1.2: Interaction of the software components at each process.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 4 / 36

Distributed Computing: Principles, Algorithms, and Systems

Motivation for Distributed System

Inherently distributed computation

Resource sharing

Access to remote resources

Increased performance/cost ratio

Reliability
I availability, integrity, fault-tolerance

Scalability

Modularity and incremental expandability

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 5 / 36

Distributed Computing: Principles, Algorithms, and Systems

Parallel Systems

Multiprocessor systems (direct access to shared memory, UMA model)
I Interconnection network - bus, multi-stage sweitch
I E.g., Omega, Butterfly, Clos, Shuffle-exchange networks
I Interconnection generation function, routing function

Multicomputer parallel systems (no direct access to shared memory, NUMA
model)

I bus, ring, mesh (w w/o wraparound), hypercube topologies
I E.g., NYU Ultracomputer, CM* Conneciton Machine, IBM Blue gene

Array processors (colocated, tightly coupled, common system clock)
I Niche market, e.g., DSP applications

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 6 / 36

Distributed Computing: Principles, Algorithms, and Systems

UMA vs. NUMA Models

M memory

MP P P

PPP M

M M

MM

M M M M

PP P P

Interconnection network Interconnection network

(a) (b)

P processor

Figure 1.3: Two standard architectures for parallel systems. (a) Uniform memory
access (UMA) multiprocessor system. (b) Non-uniform memory access (NUMA)
multiprocessor. In both architectures, the processors may locally cache data from
memory.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 7 / 36

Distributed Computing: Principles, Algorithms, and Systems

Omega, Butterfly Interconnects

3−stage Butterfly network

101

110

111

100

111
110

100

011
010

000

001

P0

P1

P2

P3

P4

P6

P7

101P5

000

001

M0

M1

010

011

100

101

110

111

M2

M3

M4

M5

M6

M7

000

001

010

011

M0

M1

M2

M3

M4

M5

M6

M7

110

111

011
010

000
001

100

101

P0

P1

P2

P3

P4

P5

P6

P7

(a) 3−stage Omega network (n=8, M=4) (b) (n=8, M=4)

Figure 1.4: Interconnection networks for shared memory multiprocessor systems.
(a) Omega network (b) Butterfly network.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 8 / 36

Distributed Computing: Principles, Algorithms, and Systems

Omega Network

n processors, n memory banks

log n stages: with n/2 switches of size 2x2 in each stage

Interconnection function: Output i of a stage connected to input j of next
stage:

j =

{
2i for 0 ≤ i ≤ n/2− 1
2i + 1− n for n/2 ≤ i ≤ n − 1

Routing function: in any stage s at any switch:
to route to dest. j ,
if s + 1th MSB of j = 0 then route on upper wire
else [s + 1th MSB of j = 1] then route on lower wire

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 9 / 36

Distributed Computing: Principles, Algorithms, and Systems

Interconnection Topologies for Multiprocesors

1101

01100100

0000

0001

0010

0111

0011

0101

(b)(a)
processor + memory

1100

1000

1110

1010

1111

1011
1001

Figure 1.5: (a) 2-D Mesh with wraparound (a.k.a. torus) (b) 3-D hypercube

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 10 / 36

Distributed Computing: Principles, Algorithms, and Systems

Flynn’s Taxonomy

(c) MISD

D D D

I I I

I II I

II

C C C C

P P P P P

D D

P

C C

I instruction stream

D

P

Control Unit

Processing Unit

data stream

(a) SIMD (b) MIMD

Figure 1.6: SIMD, MISD, and MIMD modes.

SISD: Single Instruction Stream Single Data Stream (traditional)

SIMD: Single Instruction Stream Multiple Data Stream
I scientific applicaitons, applications on large arrays
I vector processors, systolic arrays, Pentium/SSE, DSP chips

MISD: Multiple Instruciton Stream Single Data Stream
I E.g., visualization

MIMD: Multiple Instruction Stream Multiple Data Stream
I distributed systems, vast majority of parallel systems

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 11 / 36

Distributed Computing: Principles, Algorithms, and Systems

Terminology

Coupling
I Interdependency/binding among modules, whether hardware or software (e.g.,

OS, middleware)

Parallelism: T (1)/T (n).
I Function of program and system

Concurrency of a program
I Measures productive CPU time vs. waiting for synchronization operations

Granularity of a program
I Amt. of computation vs. amt. of communication
I Fine-grained program suited for tightly-coupled system

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 12 / 36

Distributed Computing: Principles, Algorithms, and Systems

Message-passing vs. Shared Memory

Emulating MP over SM:
I Partition shared address space
I Send/Receive emulated by writing/reading from special mailbox per pair of

processes

Emulating SM over MP:
I Model each shared object as a process
I Write to shared object emulated by sending message to owner process for the

object
I Read from shared object emulated by sending query to owner of shared object

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 13 / 36

Distributed Computing: Principles, Algorithms, and Systems

Classification of Primitives (1)

Synchronous (send/receive)
I Handshake between sender and receiver
I Send completes when Receive completes
I Receive completes when data copied into buffer

Asynchronous (send)
I Control returns to process when data copied out of user-specified buffer

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 14 / 36

Distributed Computing: Principles, Algorithms, and Systems

Classification of Primitives (2)

Blocking (send/receive)
I Control returns to invoking process after processing of primitive (whether sync

or async) completes

Nonblocking (send/receive)
I Control returns to process immediately after invocation
I Send: even before data copied out of user buffer
I Receive: even before data may have arrived from sender

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 15 / 36

Distributed Computing: Principles, Algorithms, and Systems

Non-blocking Primitive

Send(X, destination, handlek) //handlek is a return parameter
...
...
Wait(handle1, handle2, . . . , handlek , . . . , handlem) //Wait always blocks

Figure 1.7: A nonblocking send primitive. When the Wait call returns, at least
one of its parameters is posted.

Return parameter returns a system-generated handle
I Use later to check for status of completion of call
I Keep checking (loop or periodically) if handle has been posted
I Issue Wait(handle1, handle2, . . .) call with list of handles
I Wait call blocks until one of the stipulated handles is posted

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 16 / 36

Distributed Computing: Principles, Algorithms, and Systems

Blocking/nonblocking; Synchronous/asynchronous;
send/receive primities

S

Send

The completion of the previously initiated nonblocking operation

duration in which the process issuing send or receive primitive is blocked
 primitive issued

 primitive issuedReceive
Send

(c) blocking async. Send (d) nonblocking async. Send

S

W

R_C

P, S_C

R_CP,

(b) nonblocking sync. Send, nonblocking Receive (a) blocking sync. Send, blocking Receive

P,
S_C

P
R R_C

S_C
processing for completesReceive

Process may issue to check completion of nonblocking operationWait

duration to copy data from or to user buffer

processing for completes

S S_Cprocess i

buffer_i

kernel_i

process j

buffer_j

kernel_j

S W W

W WRR

process i

buffer_i

kernel_i

S S_C
WW

Figure 1.8:Illustration of 4 send and 2 receive primitives

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 17 / 36

Distributed Computing: Principles, Algorithms, and Systems

Asynchronous Executions; Mesage-passing System

internal event send event receive event

P

P

P

P

0

1

2

3

m4

m1 m7

m3 m5

m6m2

Figure 1.9: Asynchronous execution in a message-passing system

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 18 / 36

Distributed Computing: Principles, Algorithms, and Systems

Synchronous Executions: Message-passing System

round 3

P

P

P

P

3

2

0

1

round 1 round 2

Figure 1.10: Synchronous execution in a message-passing system
In any round/step/phase: (send | internal)∗(receive | internal)∗

(1) Sync Execution(int k, n) //k rounds, n processes.
(2) for r = 1 to k do
(3) proc i sends msg to (i + 1) mod n and (i − 1) mod n;
(4) each proc i receives msg from (i + 1) mod n and (i − 1) mod n;
(5) compute app-specific function on received values.

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 19 / 36

Distributed Computing: Principles, Algorithms, and Systems

Synchronous vs. Asynchronous Executions (1)

Sync vs async processors; Sync vs async primitives

Sync vs async executions

Async execution
I No processor synchrony, no bound on drift rate of clocks
I Message delays finite but unbounded
I No bound on time for a step at a process

Sync execution
I Processors are synchronized; clock drift rate bounded
I Message delivery occurs in one logical step/round
I Known upper bound on time to execute a step at a process

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 20 / 36

Distributed Computing: Principles, Algorithms, and Systems

Synchronous vs. Asynchronous Executions (2)

Difficult to build a truly synchronous system; can simulate this abstraction

Virtual synchrony:
I async execution, processes synchronize as per application requirement;
I execute in rounds/steps

Emulations:
I Async program on sync system: trivial (A is special case of S)
I Sync program on async system: tool called synchronizer

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 21 / 36

Distributed Computing: Principles, Algorithms, and Systems

System Emulations

S−>A

Asynchronous
message−passing (AMP)

Synchronous

shared memory (ASM)
Asynchronous Synchronous

shared memory (SSM)

message−passing (SMP)

SM−>MPMP−>SMSM−>MPMP−>SM

A−>S

S−>A

A−>S

Figure 1.11: Sync ↔ async, and shared memory ↔ msg-passing emulations

Assumption: failure-free system

System A emulated by system B:
I If not solvable in B, not solvable in A
I If solvable in A, solvable in B

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 22 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: System Perspective (1)

Communication mechanisms: E.g., Remote Procedure Call (RPC), remote
object invocation (ROI), message-oriented vs. stream-oriented
communication

Processes: Code migration, process/thread management at clients and
servers, design of software and mobile agents

Naming: Easy to use identifiers needed to locate resources and processes
transparently and scalably

Synchronization

Data storage and access
I Schemes for data storage, search, and lookup should be fast and scalable

across network
I Revisit file system design

Consistency and replication
I Replication for fast access, scalability, avoid bottlenecks
I Require consistency management among replicas

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 23 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: System Perspective (2)

Fault-tolerance: correct and efficient operation despite link, node, process
failures

Distributed systems security
I Secure channels, access control, key management (key generation and key

distribution), authorization, secure group management

Scalability and modularity of algorithms, data, services

Some experimental systems: Globe, Globus, Grid

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 24 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: System Perspective (3)

API for communications, services: ease of use

Transparency: hiding implementation policies from user
I Access: hide differences in data rep across systems, provide uniform operations

to access resources
I Location: locations of resources are transparent
I Migration: relocate resources without renaming
I Relocation: relocate resources as they are being accessed
I Replication: hide replication from the users
I Concurrency: mask the use of shared resources
I Failure: reliable and fault-tolerant operation

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 25 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: Algorithm/Design (1)

Useful execution models and frameworks: to reason with and design correct
distributed programs

I Interleaving model
I Partial order model
I Input/Output automata
I Temporal Logic of Actions

Dynamic distributed graph algorithms and routing algorithms
I System topology: distributed graph, with only local neighborhood knowledge
I Graph algorithms: building blocks for group communication, data

dissemination, object location
I Algorithms need to deal with dynamically changing graphs
I Algorithm efficiency: also impacts resource consumption, latency, traffic,

congestion

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 26 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: Algorithm/Design (2)

Time and global state
I 3D space, 1D time
I Physical time (clock) accuracy
I Logical time captures inter-process dependencies and tracks relative time

progression
I Global state observation: inherent distributed nature of system
I Concurrency measures: concurrency depends on program logic, execution

speeds within logical threads, communication speeds

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 27 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: Algorithm/Design (3)

Synchronization/coordination mechanisms
I Physical clock synchronization: hardware drift needs correction
I Leader election: select a distinguished process, due to inherent symmetry
I Mutual exclusion: coordinate access to critical resources
I Distributed deadlock detection and resolution: need to observe global state;

avoid duplicate detection, unnecessary aborts
I Termination detection: global state of quiescence; no CPU processing and no

in-transit messages
I Garbage collection: Reclaim objects no longer pointed to by any process

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 28 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: Algorithm/Design (4)

Group communication, multicast, and ordered message delivery
I Group: processes sharing a context, collaborating
I Multiple joins, leaves, fails
I Concurrent sends: semantics of delivery order

Monitoring distributed events and predicates
I Predicate: condition on global system state
I Debugging, environmental sensing, industrial process control, analyzing event

streams

Distributed program design and verification tools

Debugging distributed programs

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 29 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: Algorithm/Design (5)

Data replication, consistency models, and caching
I Fast, scalable access;
I coordinate replica updates;
I optimize replica placement

World Wide Web design: caching, searching, scheduling
I Global scale distributed system; end-users
I Read-intensive; prefetching over caching
I Object search and navigation are resource-intensive
I User-perceived latency

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 30 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: Algorithm/Design (6)

Distributed shared memory abstraction
I Wait-free algorithm design: process completes execution, irrespective of

actions of other processes, i.e., n − 1 fault-resilience
I Mutual exclusion

F Bakery algorithm, semaphores, based on atomic hardware primitives, fast
algorithms when contention-free access

I Register constructions
F Revisit assumptions about memory access
F What behavior under concurrent unrestricted access to memory?

Foundation for future architectures, decoupled with technology (semiconductor,
biocomputing, quantum . . .)

I Consistency models:
F coherence versus access cost trade-off
F Weaker models than strict consistency of uniprocessors

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 31 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: Algorithm/Design (7)

Reliable and fault-tolerant distributed systems
I Consensus algorithms: processes reach agreement in spite of faults (under

various fault models)
I Replication and replica management
I Voting and quorum systems
I Distributed databases, commit: ACID properties
I Self-stabilizing systems: ”illegal” system state changes to ”legal” state;

requires built-in redundancy
I Checkpointing and recovery algorithms: roll back and restart from earlier

”saved” state
I Failure detectors:

F Difficult to distinguish a ”slow” process/message from a failed process/ never
sent message

F algorithms that ”suspect” a process as having failed and converge on a
determination of its up/down status

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 32 / 36

Distributed Computing: Principles, Algorithms, and Systems

Challenges: Algorithm/Design (8)

Load balancing: to reduce latency, increase throughput, dynamically. E.g.,
server farms

I Computation migration: relocate processes to redistribute workload
I Data migration: move data, based on access patterns
I Distributed scheduling: across processors

Real-time scheduling: difficult without global view, network delays make task
harder

Performance modeling and analysis: Network latency to access resources
must be reduced

I Metrics: theoretical measures for algorithms, practical measures for systems
I Measurement methodologies and tools

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 33 / 36

Distributed Computing: Principles, Algorithms, and Systems

Applications and Emerging Challenges (1)

Mobile systems
I Wireless communication: unit disk model; broadcast medium (MAC), power

management etc.
I CS perspective: routing, location management, channel allocation, localization

and position estimation, mobility management
I Base station model (cellular model)
I Ad-hoc network model (rich in distributed graph theory problems)

Sensor networks: Processor with electro-mechanical interface

Ubiquitous or pervasive computing
I Processors embedded in and seamlessly pervading environment
I Wireless sensor and actuator mechanisms; self-organizing; network-centric,

resource-constrained
I E.g., intelligent home, smart workplace

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 34 / 36

Distributed Computing: Principles, Algorithms, and Systems

Applications and Emerging Challenges (2)

Peer-to-peer computing
I No hierarchy; symmetric role; self-organizing; efficient object storage and

lookup;scalable; dynamic reconfig

Publish/subscribe, content distribution
I Filtering information to extract that of interest

Distributed agents
I Processes that move and cooperate to perform specific tasks; coordination,

controlling mobility, software design and interfaces

Distributed data mining
I Extract patterns/trends of interest
I Data not available in a single repository

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 35 / 36

Distributed Computing: Principles, Algorithms, and Systems

Applications and Emerging Challenges (3)

Grid computing
I Grid of shared computing resources; use idle CPU cycles
I Issues: scheduling, QOS guarantees, security of machines and jobs

Security
I Confidentiality, authentication, availability in a distributed setting
I Manage wireless, peer-to-peer, grid environments

F Issues: e.g., Lack of trust, broadcast media, resource-constrained, lack of
structure

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 36 / 36

	Distributed Computing: Principles, Algorithms, and Systems

