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Definition

Autonomous processors communicating over a communication network

Some characteristics
I No common physical clock
I No shared memory
I Geographical seperation
I Autonomy and heterogeneity
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Distributed System Model
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Figure 1.1: A distributed system connects processors by a communication network.
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Relation between Software Components
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Figure 1.2: Interaction of the software components at each process.
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Motivation for Distributed System

Inherently distributed computation

Resource sharing

Access to remote resources

Increased performance/cost ratio

Reliability
I availability, integrity, fault-tolerance

Scalability

Modularity and incremental expandability
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Parallel Systems

Multiprocessor systems (direct access to shared memory, UMA model)
I Interconnection network - bus, multi-stage sweitch
I E.g., Omega, Butterfly, Clos, Shuffle-exchange networks
I Interconnection generation function, routing function

Multicomputer parallel systems (no direct access to shared memory, NUMA
model)

I bus, ring, mesh (w w/o wraparound), hypercube topologies
I E.g., NYU Ultracomputer, CM* Conneciton Machine, IBM Blue gene

Array processors (colocated, tightly coupled, common system clock)
I Niche market, e.g., DSP applications
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UMA vs. NUMA Models
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Figure 1.3: Two standard architectures for parallel systems. (a) Uniform memory
access (UMA) multiprocessor system. (b) Non-uniform memory access (NUMA)
multiprocessor. In both architectures, the processors may locally cache data from
memory.
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Omega, Butterfly Interconnects

3−stage Butterfly network
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(a) 3−stage Omega network (n=8, M=4) (b) (n=8, M=4)

Figure 1.4: Interconnection networks for shared memory multiprocessor systems.
(a) Omega network (b) Butterfly network.
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Omega Network

n processors, n memory banks

log n stages: with n/2 switches of size 2x2 in each stage

Interconnection function: Output i of a stage connected to input j of next
stage:

j =

{
2i for 0 ≤ i ≤ n/2− 1
2i + 1− n for n/2 ≤ i ≤ n − 1

Routing function: in any stage s at any switch:
to route to dest. j ,
if s + 1th MSB of j = 0 then route on upper wire
else [s + 1th MSB of j = 1] then route on lower wire
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Interconnection Topologies for Multiprocesors

1101

01100100

0000

0001

0010

0111

0011

0101

(b)(a)
processor + memory

1100

1000

1110

1010

1111

1011
1001

Figure 1.5: (a) 2-D Mesh with wraparound (a.k.a. torus) (b) 3-D hypercube
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Flynn’s Taxonomy
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Figure 1.6: SIMD, MISD, and MIMD modes.

SISD: Single Instruction Stream Single Data Stream (traditional)

SIMD: Single Instruction Stream Multiple Data Stream
I scientific applicaitons, applications on large arrays
I vector processors, systolic arrays, Pentium/SSE, DSP chips

MISD: Multiple Instruciton Stream Single Data Stream
I E.g., visualization

MIMD: Multiple Instruction Stream Multiple Data Stream
I distributed systems, vast majority of parallel systems
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Terminology

Coupling
I Interdependency/binding among modules, whether hardware or software (e.g.,

OS, middleware)

Parallelism: T (1)/T (n).
I Function of program and system

Concurrency of a program
I Measures productive CPU time vs. waiting for synchronization operations

Granularity of a program
I Amt. of computation vs. amt. of communication
I Fine-grained program suited for tightly-coupled system
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Message-passing vs. Shared Memory

Emulating MP over SM:
I Partition shared address space
I Send/Receive emulated by writing/reading from special mailbox per pair of

processes

Emulating SM over MP:
I Model each shared object as a process
I Write to shared object emulated by sending message to owner process for the

object
I Read from shared object emulated by sending query to owner of shared object
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Classification of Primitives (1)

Synchronous (send/receive)
I Handshake between sender and receiver
I Send completes when Receive completes
I Receive completes when data copied into buffer

Asynchronous (send)
I Control returns to process when data copied out of user-specified buffer
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Classification of Primitives (2)

Blocking (send/receive)
I Control returns to invoking process after processing of primitive (whether sync

or async) completes

Nonblocking (send/receive)
I Control returns to process immediately after invocation
I Send: even before data copied out of user buffer
I Receive: even before data may have arrived from sender
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Non-blocking Primitive

Send(X, destination, handlek) //handlek is a return parameter
...
...
Wait(handle1, handle2, . . . , handlek , . . . , handlem) //Wait always blocks

Figure 1.7: A nonblocking send primitive. When the Wait call returns, at least
one of its parameters is posted.

Return parameter returns a system-generated handle
I Use later to check for status of completion of call
I Keep checking (loop or periodically) if handle has been posted
I Issue Wait(handle1, handle2, . . .) call with list of handles
I Wait call blocks until one of the stipulated handles is posted
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Blocking/nonblocking; Synchronous/asynchronous;
send/receive primities
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Figure 1.8:Illustration of 4 send and 2 receive primitives
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Asynchronous Executions; Mesage-passing System
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Figure 1.9: Asynchronous execution in a message-passing system

A. Kshemkalyani and M. Singhal (Distributed Computing) Introduction CUP 2008 18 / 36



Distributed Computing: Principles, Algorithms, and Systems

Synchronous Executions: Message-passing System
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Figure 1.10: Synchronous execution in a message-passing system
In any round/step/phase: (send | internal)∗(receive | internal)∗

(1) Sync Execution(int k, n) //k rounds, n processes.
(2) for r = 1 to k do
(3) proc i sends msg to (i + 1) mod n and (i − 1) mod n;
(4) each proc i receives msg from (i + 1) mod n and (i − 1) mod n;
(5) compute app-specific function on received values.
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Synchronous vs. Asynchronous Executions (1)

Sync vs async processors; Sync vs async primitives

Sync vs async executions

Async execution
I No processor synchrony, no bound on drift rate of clocks
I Message delays finite but unbounded
I No bound on time for a step at a process

Sync execution
I Processors are synchronized; clock drift rate bounded
I Message delivery occurs in one logical step/round
I Known upper bound on time to execute a step at a process
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Synchronous vs. Asynchronous Executions (2)

Difficult to build a truly synchronous system; can simulate this abstraction

Virtual synchrony:
I async execution, processes synchronize as per application requirement;
I execute in rounds/steps

Emulations:
I Async program on sync system: trivial (A is special case of S)
I Sync program on async system: tool called synchronizer
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System Emulations
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Figure 1.11: Sync ↔ async, and shared memory ↔ msg-passing emulations

Assumption: failure-free system

System A emulated by system B:
I If not solvable in B, not solvable in A
I If solvable in A, solvable in B
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Challenges: System Perspective (1)

Communication mechanisms: E.g., Remote Procedure Call (RPC), remote
object invocation (ROI), message-oriented vs. stream-oriented
communication

Processes: Code migration, process/thread management at clients and
servers, design of software and mobile agents

Naming: Easy to use identifiers needed to locate resources and processes
transparently and scalably

Synchronization

Data storage and access
I Schemes for data storage, search, and lookup should be fast and scalable

across network
I Revisit file system design

Consistency and replication
I Replication for fast access, scalability, avoid bottlenecks
I Require consistency management among replicas
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Challenges: System Perspective (2)

Fault-tolerance: correct and efficient operation despite link, node, process
failures

Distributed systems security
I Secure channels, access control, key management (key generation and key

distribution), authorization, secure group management

Scalability and modularity of algorithms, data, services

Some experimental systems: Globe, Globus, Grid
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Challenges: System Perspective (3)

API for communications, services: ease of use

Transparency: hiding implementation policies from user
I Access: hide differences in data rep across systems, provide uniform operations

to access resources
I Location: locations of resources are transparent
I Migration: relocate resources without renaming
I Relocation: relocate resources as they are being accessed
I Replication: hide replication from the users
I Concurrency: mask the use of shared resources
I Failure: reliable and fault-tolerant operation
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Challenges: Algorithm/Design (1)

Useful execution models and frameworks: to reason with and design correct
distributed programs

I Interleaving model
I Partial order model
I Input/Output automata
I Temporal Logic of Actions

Dynamic distributed graph algorithms and routing algorithms
I System topology: distributed graph, with only local neighborhood knowledge
I Graph algorithms: building blocks for group communication, data

dissemination, object location
I Algorithms need to deal with dynamically changing graphs
I Algorithm efficiency: also impacts resource consumption, latency, traffic,

congestion
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Challenges: Algorithm/Design (2)

Time and global state
I 3D space, 1D time
I Physical time (clock) accuracy
I Logical time captures inter-process dependencies and tracks relative time

progression
I Global state observation: inherent distributed nature of system
I Concurrency measures: concurrency depends on program logic, execution

speeds within logical threads, communication speeds
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Challenges: Algorithm/Design (3)

Synchronization/coordination mechanisms
I Physical clock synchronization: hardware drift needs correction
I Leader election: select a distinguished process, due to inherent symmetry
I Mutual exclusion: coordinate access to critical resources
I Distributed deadlock detection and resolution: need to observe global state;

avoid duplicate detection, unnecessary aborts
I Termination detection: global state of quiescence; no CPU processing and no

in-transit messages
I Garbage collection: Reclaim objects no longer pointed to by any process
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Challenges: Algorithm/Design (4)

Group communication, multicast, and ordered message delivery
I Group: processes sharing a context, collaborating
I Multiple joins, leaves, fails
I Concurrent sends: semantics of delivery order

Monitoring distributed events and predicates
I Predicate: condition on global system state
I Debugging, environmental sensing, industrial process control, analyzing event

streams

Distributed program design and verification tools

Debugging distributed programs
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Challenges: Algorithm/Design (5)

Data replication, consistency models, and caching
I Fast, scalable access;
I coordinate replica updates;
I optimize replica placement

World Wide Web design: caching, searching, scheduling
I Global scale distributed system; end-users
I Read-intensive; prefetching over caching
I Object search and navigation are resource-intensive
I User-perceived latency
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Challenges: Algorithm/Design (6)

Distributed shared memory abstraction
I Wait-free algorithm design: process completes execution, irrespective of

actions of other processes, i.e., n − 1 fault-resilience
I Mutual exclusion

F Bakery algorithm, semaphores, based on atomic hardware primitives, fast
algorithms when contention-free access

I Register constructions
F Revisit assumptions about memory access
F What behavior under concurrent unrestricted access to memory?

Foundation for future architectures, decoupled with technology (semiconductor,
biocomputing, quantum . . .)

I Consistency models:
F coherence versus access cost trade-off
F Weaker models than strict consistency of uniprocessors
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Challenges: Algorithm/Design (7)

Reliable and fault-tolerant distributed systems
I Consensus algorithms: processes reach agreement in spite of faults (under

various fault models)
I Replication and replica management
I Voting and quorum systems
I Distributed databases, commit: ACID properties
I Self-stabilizing systems: ”illegal” system state changes to ”legal” state;

requires built-in redundancy
I Checkpointing and recovery algorithms: roll back and restart from earlier

”saved” state
I Failure detectors:

F Difficult to distinguish a ”slow” process/message from a failed process/ never
sent message

F algorithms that ”suspect” a process as having failed and converge on a
determination of its up/down status
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Challenges: Algorithm/Design (8)

Load balancing: to reduce latency, increase throughput, dynamically. E.g.,
server farms

I Computation migration: relocate processes to redistribute workload
I Data migration: move data, based on access patterns
I Distributed scheduling: across processors

Real-time scheduling: difficult without global view, network delays make task
harder

Performance modeling and analysis: Network latency to access resources
must be reduced

I Metrics: theoretical measures for algorithms, practical measures for systems
I Measurement methodologies and tools
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Applications and Emerging Challenges (1)

Mobile systems
I Wireless communication: unit disk model; broadcast medium (MAC), power

management etc.
I CS perspective: routing, location management, channel allocation, localization

and position estimation, mobility management
I Base station model (cellular model)
I Ad-hoc network model (rich in distributed graph theory problems)

Sensor networks: Processor with electro-mechanical interface

Ubiquitous or pervasive computing
I Processors embedded in and seamlessly pervading environment
I Wireless sensor and actuator mechanisms; self-organizing; network-centric,

resource-constrained
I E.g., intelligent home, smart workplace
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Applications and Emerging Challenges (2)

Peer-to-peer computing
I No hierarchy; symmetric role; self-organizing; efficient object storage and

lookup;scalable; dynamic reconfig

Publish/subscribe, content distribution
I Filtering information to extract that of interest

Distributed agents
I Processes that move and cooperate to perform specific tasks; coordination,

controlling mobility, software design and interfaces

Distributed data mining
I Extract patterns/trends of interest
I Data not available in a single repository
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Applications and Emerging Challenges (3)

Grid computing
I Grid of shared computing resources; use idle CPU cycles
I Issues: scheduling, QOS guarantees, security of machines and jobs

Security
I Confidentiality, authentication, availability in a distributed setting
I Manage wireless, peer-to-peer, grid environments

F Issues: e.g., Lack of trust, broadcast media, resource-constrained, lack of
structure
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