
Chapter 11: Global Predicate Detection

Ajay Kshemkalyani and Mukesh Singhal

Distributed Computing: Principles, Algorithms, and Systems

Cambridge University Press

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 1 / 26

Distributed Computing: Principles, Algorithms, and Systems

Introduction and Uses of Predicate Detection

Industrial process control, distributed debugging, computer-aided verification,
sensor networks

E.g., ψ defined as xi + yj + zk < 100

Different from global snapshots: global snapshot gives one of the values that
could have existed during the execution

Stable predicate: remains true once it becomes true, i.e., φ =⇒ φ
I predicate φ at a cut C is stable if:

(C |= φ) =⇒ (∀C ′ |C ⊆ C ′,C ′ |= φ)

I E.g., deadlock, termination of execution are stable properties

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 2 / 26

Distributed Computing: Principles, Algorithms, and Systems

Stable Properties

Deadlock: Given a Wait-For Graph G = (V ,E), a deadlock is a subgraph
G ′ = (V ′,E ′) such that V ′ ⊆ V and E ′ ⊆ E and for each i in V ′, i remains
blocked unless it receives a reply from some process(es) in V ′.

I (local condition:) each deadlocked process is locally blocked, and
I (global condition:) the deadlocked process will not receive a reply from some

process(es) in V ′.

Termination of execution: Model active and passive states, and state
transitions between them. Then execution is terminated if:

I (local condition:) each process is in passive state, and
I (global condition:) there is no message in transit between any pair of

processes.

Repeated global snapshots is not practical!

Utilize a 2-phased approach of observing potentially inconsistent global states.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 3 / 26

Distributed Computing: Principles, Algorithms, and Systems

Stable Properties

Deadlock: Given a Wait-For Graph G = (V ,E), a deadlock is a subgraph
G ′ = (V ′,E ′) such that V ′ ⊆ V and E ′ ⊆ E and for each i in V ′, i remains
blocked unless it receives a reply from some process(es) in V ′.

I (local condition:) each deadlocked process is locally blocked, and
I (global condition:) the deadlocked process will not receive a reply from some

process(es) in V ′.

Termination of execution: Model active and passive states, and state
transitions between them. Then execution is terminated if:

I (local condition:) each process is in passive state, and
I (global condition:) there is no message in transit between any pair of

processes.

Repeated global snapshots is not practical!

Utilize a 2-phased approach of observing potentially inconsistent global states.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 3 / 26

Distributed Computing: Principles, Algorithms, and Systems

Stable Properties

Deadlock: Given a Wait-For Graph G = (V ,E), a deadlock is a subgraph
G ′ = (V ′,E ′) such that V ′ ⊆ V and E ′ ⊆ E and for each i in V ′, i remains
blocked unless it receives a reply from some process(es) in V ′.

I (local condition:) each deadlocked process is locally blocked, and
I (global condition:) the deadlocked process will not receive a reply from some

process(es) in V ′.

Termination of execution: Model active and passive states, and state
transitions between them. Then execution is terminated if:

I (local condition:) each process is in passive state, and
I (global condition:) there is no message in transit between any pair of

processes.

Repeated global snapshots is not practical!

Utilize a 2-phased approach of observing potentially inconsistent global states.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 3 / 26

Distributed Computing: Principles, Algorithms, and Systems

Two-phase Observation of Global States

In each state observation, all local variables
used to define the local conditions, as well
as the global conditions, are observed.

Two potentially inconsistent global states

are recorded consecutively, such that the

second recording is initiated after the first

recording has completed. Stable property

true if:

I The variables on which the local
conditions as well as the global
conditions are defined have not
changed in the two observations,
as well as between the two
observations.

Recording 2 snapshots serially via
ring/tree/flat-tree based algorithms (Chap
8).

event at which local variables are sampled

P

P

P

P

2

1

n−1

n

phase 2phase 1

time

Figure 11.1: Two-phase detection of a stable
property.
None of the variables changes between the two
observations
⇒ after the termination of the first observation
and before the start of the second observation,
there is an instant when the variables still have
the same value.

⇒ the stable property will necessarily be true.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 4 / 26

Distributed Computing: Principles, Algorithms, and Systems

Unstable Predicates: Challenges in Detection

Challenges:

unpredictable propagation times, unpredictable process scheduling ⇒
I multiple executions pass through different global states;
I predicate may be true in some executions and false in others

No global time ⇒
I monitor finds predicate true in a state but predicate may never have been true

(at any instant)
I even a true predicate may be undetected due to intermittent monitoring

Observations:

examine all states in an execution ⇒ define predicate on observation of entire
execution

Multiple observations of same program may pass thru’ different global states;
predicate may be true in some observations but not others ⇒ define
predicate on all the observations of the distributed program

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 5 / 26

Distributed Computing: Principles, Algorithms, and Systems

Modalities on Predicates

Possibly(φ): There exists a consistent
observation of the execution such that predicate
φ holds in a global state of the observation.

Definitely(φ): For every consistent observation
of the execution, there exists a global state of it
in which predicate φ holds.

(0, 0), e1
2 , (0, 1), e1

1 , (1, 1), e2
2 , (1, 2), e2

1 , (2, 2), e3
2 , (2, 3),

e4
2 , (2, 4), e3

1 , (3, 4), e4
1 , (4, 4), e5

2 , (4, 5), e5
1 ,

(5, 5), e6
1 , (6, 5), e6

2 , (6, 6), e7
2 , (6, 7)

(a)

1

2

2

local
var.

var.
local

time

e e e e e e

e e e ee ee
2 2 2 2 2 2

2

3 5 6 7

1 1 1 1 1 1

1 3 4 5 6

4

a = 3 a = 8 a = 0

b = −3b = 2 b = 5 b = 7

1

2
p

p

Definitely(a + b = 10)

Possibly(a + b = 5)

(b)

0,0

0,1

0,2

1,2

2,2

2,0

1,0

1,1

2,1

6,2

5,2

4,2

3,2

2,5

2,4

2,3

3,3

4,4

5,5

6,6

3,5

4,56,3

5,3

4,3

6,4

5,4

3,4

6,5 5,6

5,7

6,7final state

initial state

a+b = 10

a+b = 5

a+b = 5
a+b = 5

a+b = 10
P

2
P
1

Complexity: O(mn), where
there are m events at each of
the n processes.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 6 / 26

Distributed Computing: Principles, Algorithms, and Systems

Centralized Algorithm for Relational Predicates

Assume state lattice is available.

Global state GS = {sk1
1 , sk2

2 , . . . , skn
n } is

abbreviated GSk1,k2,...kn .

Level of a global state 〈ski
i (∀i)〉 is

∑i=n
i=1 ki .

Possibly(φ): examine the state lattice
level-by-level, from the initial state at level
0 up to the final state. If φ is true,
return(1).

Definitely(φ): Sufficient but not necessary
that all states at some level satisfy φ.

(b)

state lattice labelled using event numbers

1,1

2,2

4,2

3,2

3,4

4,6

5,2

2,3

5,5

6,5 7,4

0,0initial

p1p2

state in which predicate is true

state reachable without predicate being true

levels

15

14

13

12

11

10

7

8

9

6

5

4

3

2

1

0

Example execution and the corresponding state lattice.

The states belonging to Reach Nextφ (line (2d)) at any level are

either marked by shaded circles or clear circles.

The states belonging to Reach Nextφ (line (2f)) at any level are

marked by clear circles.

In line (2b), when lvl = 11, Reachφ becomes ∅ and the algorithm

exits from the loop.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 7 / 26

Distributed Computing: Principles, Algorithms, and Systems

Detecting Relational Predicates, on-line, centralized

(variables)
set of global states Reachφ,Reach Nextφ ←− {GC 0,0,...0}
int lvl ←− 0

(1) Possibly(φ)

(1a) while (no state in Reachφ satisfies φ) do
(1b) if (Reachφ = {final state}) then return false;
(1c) lvl ←− lvl + 1;
(1d) Reachφ ←− {states at level lvl };
(1e) return true.

(2) Definitely(φ)

(2a) remove from Reachφ those states that satisfy φ
(2b) lvl ←− lvl + 1;
(2c) while (Reachφ 6= ∅) do
(2d) Reach Nextφ ←− {states of level lvl reachable from a state in Reachφ};
(2e) remove from Reach Nextφ all the states satisfying φ;
(2f) if Reach Nextφ = {final state} then return false;
(2g) lvl ←− lvl + 1;
(2h) Reachφ ←− Reach Nextφ;
(2i) return true.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 8 / 26

Distributed Computing: Principles, Algorithms, and Systems

Centralized Algorithm for Relational Predicates (contd.)

Definitely(φ):

Replacing line (1a) by: “(some state in Reachφ satisfies ¬φ)” will not work!

The algorithm examines the state lattice level-by-level:
1 Tracks states at each level in which φ is not true
2 The tracked states at a level have to be reachable from states at previous level

satisfying (1) and this property (2) recursively.

Reach Nextφ at level lvl contains the set of states at level lvl that are
reachable from the initial state without passing through any state satisfying
φ.

return(1) if Reach Next(φ) becomes ∅, else return(0).

In example, at lvl = 11, Reach Next(φ) becomes empty and Definitely(φ) is
detected.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 9 / 26

Distributed Computing: Principles, Algorithms, and Systems

Constructing the State Lattice

To assemble global state GS = {sk1
1 , s

k2
2 , . . . , skn

n }, i.e., GSk1,k2,...kn , from the corresponding local states,
how long does a local state need to be kept in its queue?

The earliest global state GS
k1,k2,...kn
min containing s

ki
i is identified as follows. The j th component of

VC(s
ki
i) is the local value of Pj in its local snapshot state s

kj
j .

(∀j) VC(s
kj
j)[j] = VC(s

ki
i)[j] (1)

Thus, the lowest level of the state lattice, in which local state s
ki
i (k th local state of Pi) participates, is

the sum of the components of VC(s
ki
i).

The latest global state GS
k1,k2,...kn
max containing s

ki
i is identified as follows. The i th component of

VC(s
kj
j) should be the largest possible value but cannot exceed or equal VC(s

ki
i)[i] for consistency of s

ki
i

and s
kj
j . VC(s

ki
i) is identified as per Equation 2; note that the condition on VC(s

kj +1

j)[i] is applicable if

s
kj
j is not the last state at Pj .

(∀j) VC(s
kj
j)[i] < VC(s

ki
i)[i] ≤ VC(s

kj +1

j)[i] (2)

Hence, the highest level of the state lattice, in which local state s
ki
i participates, is

∑n
j=1 VC(s

kj
j)[j].

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 10 / 26

Distributed Computing: Principles, Algorithms, and Systems

Constructing State Lattice using Queues for Intervals

Z1
n

P
1

P
2

P

Q
1

Q
2

Q
n

Z1

X1 X2

Y1 Y2 Y3 Y4

X1X2

Y4 Y3 Y2 Y1

Fig 11.4: Queues Q1 . . .Qn for each of the n processes

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 11 / 26

Distributed Computing: Principles, Algorithms, and Systems

Conjunctive Predicates

φ can be expressed as the conjunction ∧i∈Nφi ,
where φi is local to process i .

If φ is false in any cut C , then there is at least
one process i such that the local state of i in cut
C will never form part of any other cut C ′ such
that φ is true in C ′.

If φ is false in some cut C , we can advance the
local state of at least one process to the next
event, and then evaluate the predicate in the
resulting cut

This gives a O(mn) time algorithm, where m is
the number of events at any process.

In example, Possibly(a = 3 ∧ b = 2) and
Definitely(a = 3 ∧ b = 7) and true.

(a)

1

2

2

local
var.

var.
local

time

e e e e e e

e e e ee ee
2 2 2 2 2 2

2

3 5 6 7

1 1 1 1 1 1

1 3 4 5 6

4

a = 3 a = 8 a = 0

b = −3b = 2 b = 5 b = 7

1

2
p

p

(b)

0,0

0,1

0,2

1,2

2,2

2,0

1,0

1,1

2,1

6,2

5,2

4,2

3,2

2,5

2,4

2,3

3,3

4,4

5,5

6,6

3,5

4,56,3

5,3

4,3

6,4

5,4

3,4

6,5 5,6

5,7

6,7final state

initial state

a+b = 10

a+b = 5

a+b = 5
a+b = 5

a+b = 10
P

2
P
1

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 12 / 26

Distributed Computing: Principles, Algorithms, and Systems

Detecting Conjunctive Predicates

Global state-based approach: O(mn) time

Interval-based approach: interval X represents duration in which φi true at i .
Standard min and max semantics

P

P
0

P
1

2 Fig 11.5

Optimization: If no send or receive between start of interval and the end of next interval

at that process, the intervals have exact same relation w.r.t. other intervals at other

processes.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 13 / 26

Distributed Computing: Principles, Algorithms, and Systems

Detecting Conjunctive Predicates, over Multiple Processes

For two processes:

Definitely(φ) : min(X) ≺ max(Y)
∧

min(Y) ≺ max(X)

Possibly(φ) : max(X) ≺ min(Y)
∨

max(Y) ≺ min(X)

For multiple processes:

Definitely(φ) :
∧

i,j∈N Definitely(φi

∧
φj)

Possibly(φ) :
∧

i,j∈N Possibly(φi

∧
φj)

(b) Possibly(phi)

max(X)

max(Y)min(Y)

min(X) min(X) max(X)

min(Y) max(Y)

X

Y Y

X

(a) Definitely(phi) Fig 11.6

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 14 / 26

Distributed Computing: Principles, Algorithms, and Systems

Centralized Algorithm for Possbly/Definitely

queue of Log : Q1,Q2, . . .Qn ←−⊥
set of int: updatedQueues, newUpdatedQueues ←− {}

On receiving interval from process Pz at P0:
(1) Enqueue the interval onto queue Qz

(2) if (number of intervals on Qz is 1) then
(3) updatedQueues ←− {z}
(4) while (updatedQueues is not empty)
(5) newUpdatedQueues ←− {}
(6) for each i ∈ updatedQueues
(7) if (Qi is non-empty) then
(8) X ←− head of Qi

(9) for j = 1 to n
(10) if (Qj is non-empty) then
(11) Y ←− head of Qj

(12) if (min(X) 6≺ max(Y)) then // Definitely
(13) newUpdatedQueues ←− {j} ∪ newUpdatedQueues
(14) if (min(Y) 6≺ max(X)) then // Definitely
(15) newUpdatedQueues ←− {i} ∪ newUpdatedQueues
(12’) if (max(X) ≺ min(Y)) then // Possibly
(13’) newUpdatedQueues ←− {i} ∪ newUpdatedQueues
(14’) if (max(Y) ≺ min(X)) then // Possibly
(15’) newUpdatedQueues ←− {j} ∪ newUpdatedQueues
(16) Delete heads of all Qk where k ∈ newUpdatedQueues
(17) updatedQueues ←− newUpdatedQueues
(18) if (all queues are non-empty) then
(19) solution found. Heads of queues identify intervals that form the solution.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 15 / 26

Distributed Computing: Principles, Algorithms, and Systems

Centralized Algorithm for Possbly/Definitely : Complexity

Lines (12)-(15) for Definitely ; lines (12’)-(15’) for Possibly

sets updatedQueues and newupdatedQueues (temp)

For each comparison, if desired modality is not satisfied, at least one of the two
intervals gets deleted, by first being placed in newUpdatedQueues

If every queue is non-empty and the queue-heads cannot be pruned, then the queue
heads form a solution

Termination: if a solution exists, detected in lines (18)-(19).

Complexity at P0 (ito n, p, M – # msgs sent in execution):

I Message complexity: min(pn, 4M) control messages, each of size 2n
I Space complexity: min(pn, 4M) · 2n
I Time complexity: When an interval is compared with others, O(n) steps.

Hence, O(n ·min(pn, 4M)).

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 16 / 26

Distributed Computing: Principles, Algorithms, and Systems

State-based Algorithm for Possibly(φ) (conjunctive φ)

Possibly(φ) iff consistent global state where
(mutually concurrent) ∀i ,∀j , si 6≺ sj ∧ sj 6≺ si

Whenever φi becomes true, Pi sends vector timestmp to P0

ith row of GS matrix tracks Pi ’s tmstp;

Valid [i] indicates whether that local state of Pi can be part of the solution

if Valid [i] is false, then new state from Pi is considered

(b)

GS[k,k]

GS[j,k]GS[j,j]

GS[k,j]

j

k

(a)

Fig 11.7: (a) Pj ’s old state is invalid. (b) Pk ’s old state is invalid.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 17 / 26

Distributed Computing: Principles, Algorithms, and Systems

State-based Algorithm for Possibly(φ) (conjunctive φ)

integer: GS[1 . . . n, 1 . . . n]; //ith row tracks vector time of Pi

boolean: Valid [1 . . . n]; //Valid [j] = 0 implies Pj state GS[j , ·] to be advanced
queue of array of integer: Q1,Q2, . . .Qn ←−⊥; //Qi stores timestamp info from Pi

(1) while (∃j |Valid [j] = 0) do //Pj ’s state GS[j , ·] is not consistent with others
(2) if (Qj =⊥ and Pj has terminated) then
(3) return(0);
(4) else
(5) await Qj becomes non-empty;
(6) GS[j , 1 . . . n]←− head(Qj); //Consider next state of Pj for consistency
(7) dequeue(head(Qj));
(8) Valid [j]←− 1;
(9) for k = 1 to n do //Check Pj ’s state w.r.t. Pk ’s state (for every Pk)
(10) if k 6= j and Valid [k] = 1 then
(11) if GS[j , j] ≤ GS[k, j] then //Pj ’s state is inconsistent with Pk ’s state
(12) Valid [j]←− 0; //next state of Pj needs to be considered
(13) else if GS[k, k] ≤ GS[j , k] then //Pk ’s state inconsistent with Pj ’s state
(14) Valid [k]←− 0; //next state of Pk needs to be considered
(15) return(1).

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 18 / 26

Distributed Computing: Principles, Algorithms, and Systems

State-based Algorithm for Possibly(φ) (conjunctive φ)

Let m be # local states at any process; let M be # messages sent in the
execution

Termination: when Valid [j] = 1 for all j

Time complexity: O(n2m)

Space complexity: O(n2m)

Message complexity: 2M control messages, each of size n

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 19 / 26

Distributed Computing: Principles, Algorithms, and Systems

Distributed state-based algorithm for Possibly(φ)
(conjunctive φ)

Token.GS [1..n] gives the timestamp of the latest cut under consideration as a
candidate solution.

Token.Valid [1..n]. Token.Valid [i] = 0 implies all Pi local states up to
Token.GS [i] cannot be part of the solution. So from Qi , consider the earliest
local state such that local timestamp is greater than Token.GS [i].

Token.GS [i], .Valid [i] entries are set accordingly.

Consistency checks made between head(Qi)[j] and Token.GS [j] (for all j), to
determine whether the various Token.Valid entries should be 1 or 0.

Token passed to any process for which Token.Valid = 0.

Token.GS[j]

(a) (b)

j

i

head(Q_i)[j]

head(Q_i) head(Q_i)

head(Q_i)[j]

Token.GS[j]

Pi tests whether Pj ’s candidate local state

Token.GS[j] is consistent with head(Qi)[i], which is assigned to Token.GS[i]. The two possibilities are

illustrated. (a) Not consistent. (b) Consistent.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 20 / 26

Distributed Computing: Principles, Algorithms, and Systems

Distributed State-based Algorithm for Possibly(φ)

struct token {
integer: GS[1 . . . n]; //Earliest possible global state as a candidate solution
boolean: Valid [1 . . . n]; }Token; //Valid [j] = 0 indicates Pj ’s state GS[j] is invalid

queue of array of integer: Qi ←−⊥

Initialization. Token is at a randomly chosen process.

On receiving Token at Pi

(1) while (Token.Valid [i] = 0) do // Token.GS[i] is the latest state of Pi known to be inconsistent
(2) await (Qi to be nonempty); //with other candidate local state of Pj , for some j
(3) if ((head(Qi))[i] > Token.GS[i]) then
(4) Token.GS[i]←− (head(Qi))[i]; // earliest possible state of Pi that can be part of solution
(5) Token.Valid [i]←− 1; //is written to Token and its validity is set.
(6) else dequeue head(Qi);
(7) for j = 1 to n (j 6= i) do // for each other process Pj : based on Pi ’s local state, determine whether
(8) if j 6= i and (head(Qi))[j] ≥ Token.GS[j] then // Pj ’s candidate local state (in Token)
(9) Token.GS[j]←− (head(Qi))[j]; // is consistent. If not, Pj needs to consider a
(10) Token.Valid [j]←− 0; // later candidate state with a timestamp > head((Qi)[j]
(11) dequeue head(Qi);
(12) if for some k, Token.Valid [k] = 0 then
(13) send Token to Pk ;
(14) else return(1).

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 21 / 26

Distributed Computing: Principles, Algorithms, and Systems

Distributed State-based Algorithm for Possibly(φ):
Complexity

Termination: algorithm finds a solution when Token.Valid [j] is 1, for all j
(line (14)). If a solution is not found, the code hangs in line (2). The code
can be modified to terminate unsuccessfully in line (2) by modeling an
explicit ‘process terminated’ state.

Time complexity: O(mn2) across all processes

Space complexity: O(mn2) across all processes

Message complexity: Token makes O(mn) hops; token size is 2n integers

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 22 / 26

Distributed Computing: Principles, Algorithms, and Systems

Distributed Interval-based Algorithm for Definitely(φ)

Define Ii ↪→ Ij as: min(Ii) ≺ max(Ij).
Problem Statement. In a distributed execution, identify a set of intervals I
containing one interval from each process, such that (i) the local predicate φi is
true in Ii ∈ I, and (ii) for each pair of processes Pi and Pj , Definitely(φi,j) holds,
i.e., Ii ↪→ Ij and Ij ↪→ Ii .

type Log
start: array[1n] of integer;
end: array[1n] of integer;

type Q: queue of Log ;

When an interval begins:
Logi .start ←− Vi .
When an interval ends:
Logi .end ←− Vi

if (a receive event has occurred since the last time a Log was queued on Qi) then
Enqueue Logi on to the local queue Qi .

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 23 / 26

Distributed Computing: Principles, Algorithms, and Systems

Distributed Interval-based Algorithm for Definitely(φ)

type REQUEST //used by Pi to send a request to each Pj

start : integer; //contains Logi .start[i] for the interval at the queue head of Pi

end : integer; //contains Logi .end [j] for the interval at the queue head of Pi , when sending to Pj

type REPLY //used to send a response to a received request
updated: set of integer; //contains the indices of the updated queues

type TOKEN //used to transfer control between two processes
updatedQueues: set of integer; //contains the index of all the updated queues

Token-holder Pi sends REQ msg containing Logi .start[i] and Logi .end [j] pertaining
to its interval Xi , to Pj (all other processes Pj)

Each Pj then checks if its interval Yj satisfies the Definitely condition.

If not, one or both intervals are deleted. This is conveyed to Pi using REPLY
messages.

If T .updatedQueues is empty, intervals at each queue head form solution

Otherwise, token is forwarded to some process whose id is in T .updatedQueues

If a solution exists, it is detected; if a solution is detected, it is correct.

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 24 / 26

Distributed Computing: Principles, Algorithms, and Systems

Distributed Interval-based Algorithm for Definitely(φ)

(1) Process Pi initializes local state

(1a) Qi is empty.
(2) Token initialization
(2a) A randomly elected process Pi holds the token T .
(2b) T.updatedQueues ←− {1, 2, . . . , n}.
(3) RcvToken : When Pi receives a token T

(3a) Remove index i from T.updatedQueues
(3b) wait until (Qi is nonempty)
(3c) REQ.start ←− Logi .start[i], where Logi is the log at head of Qi
(3d) for j = 1 to n
(3e) REQ.end ←− Logi .end [j]
(3f) Send the request REQ to process Pj
(3g) wait until (REPj is received from each process Pj)

(3h) for j = 1 to n
(3i) T.updatedQueues ←− T.updatedQueues ∪ REPj .updated

(3j) if (T.updatedQueues is empty) then
(3k) Solution detected. Heads of the queues identify intervals that form the solution.
(3l) else
(3m) if (i ∈ T.updatedQueues) then
(3n) dequeue the head from Qi
(3o) Send token to Pk where k is randomly selected from the set T.updatedQueues.
(4) RcvReq : When a REQ from Pi is received by Pj

(4a) wait until (Qj is nonempty)

(4b) REP.updated ←− φ
(4c) Y ←− head of local queue Qj

(4d) V
−
i

(X)[i]←− REQ.start and V +
i

(X)[j]←− REQ.end

(4e) Determine X ↪→ Y and Y ↪→ X
(4f) if (Y 6↪→ X) then REP.updated ←− REP.updated ∪ {i}
(4g) if (X 6↪→ Y) then
(4h) REP.updated ←− REP.updated ∪ {j}
(4i) Dequeue Y from local queue Qj
(4j) Send reply REP to Pi .

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 25 / 26

Distributed Computing: Principles, Algorithms, and Systems

Distributed Interval-based Algorithm for Definitely(φ):
Complexity

p: max no. of intervals at any process;
m: max no. of messages sent per process

Space complexity: Worst case across all processes is O(min(n2p, n2m)). This
is also worst case space at any process. Total # Logs across all processes is
min(2n2p, 2n2m).

Time complexity: Worst case across all processes is O(min(pn2,mn2)).
Worst case at a process is O(min(pn,mn2))

Message complexity: Total # Logs across all processes is O(min(np,mn)).
This is the worst case number of messages. Worst case message space
overhead is O(n min(np,mn)).

A. Kshemkalyani and M. Singhal (Distributed Computing) Global Predicate Detection CUP 2008 26 / 26

	Distributed Computing: Principles, Algorithms, and Systems

