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Introduction

A distributed system is susceptible to a variety of security threats.

A principal can impersonate other principal and authentication becomes an
important requirement.

Authentication is a process by which one principal verifies the identity of
other principal.

In one-way authentication, only one principal verifies the identity of the other
principal.

In mutual authentication, both communicating principals verify each other’s
identity.
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Background and definitions

Authentication is a process of verifying that the principal’s identity is as
claimed.

Authentication is based on the possession of some secret information, like
password, known only to the entities participating in the authentication.

When an entity wants to authenticate another entity, the former will verify if
the latter possesses the knowledge of the secret.
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A simple classification of authentication protocols

Classified based on the cryptographic technique used.

There are two basic types of cryptographic techniques: symmetric (”private
key”) and asymmetric (”public key”).

Symmetric cryptography uses a single private key to both encrypt and
decrypt data. (Let {X}k denote the encryption of X using a symmetric key k
and {Y }k−1 denote the decryption of Y using a symmetric key k.)

Asymmetric cryptography, also called Public-key cryptography, uses a secret
key (private key) that must be kept from unauthorized users and a public key
that is made public. (For a principal x, Kx and K−1

x denote its public and
private keys, respectively.)

Data encrypted with the public key can be decrypted only by the
corresponding private key, and data signed with the private key can only be
verified with the corresponding public key.
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Authentication protocols with symmetric cryptosystem

In a symmetric cryptosystem, authentication protocols can be designed using
to the following principle:

“If a principal can correctly encrypt a message using a key that the
verifier believes is known only to a principal with the claimed identity
(outside of the verifier), this act constitutes sufficient proof of
identity.”
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Basic Protocol

Shown in Table below, where a principal P is authenticating itself to principal
Q. (‘k’ denotes a secret key that is shared between only P and Q.)

P : Create a message m = ”I am P.”
: Compute m′ ={m, Q}k

P→Q : m, m′

Q : verify {m, Q}k = m′

: if equal then accept; otherwise the authentication fails

Table: Basic Protocol

The principal P encrypts a message m identity of Q using the symmetric key
k and sends to Q.

Principal Q encrypts the plaintext message and its identity to get the
encrypted message.

If it is equal to the encrypted message sent by P, then Q has authenticated P,
else, the authentication fails.
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Weaknesses

A major weakness of the protocol is its vulnerability to replays. An adversary
could masquerade as P by recording the message m, m’ and later replaying it
to Q.

Since both plaintext message m and its encrypted version m’ are sent
together by P to Q, this method is vulnerable to known plaintext attacks.
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Modified protocol with nonce

To prevent replay attacks, we modify the protocol by adding a
challenge-and-response step using nonce.

A nonce ensures that old communications cannot be reused in replay attacks.

P→Q : ”I am P.”
Q : generate nonce n

Q→P : n
P : compute m′ ={P, Q, n}k

P→Q : m′

Q : verify {P, Q, n}k = m′

: if equal then accept; otherwise the authentication fails

Table: Challenge-and-response protocol using a nonce

Replay is foiled by the freshness of nonce n and because n is drawn from a
large space.
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Weaknesses

This protocol has scalability problem because each principal must store the
secret key for every other principal it would ever want to authenticate .

Also vulnerable to known plaintext attacks.
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Wide-mouth frog protocol

Principal A authenticates itself to principal B using a server S as follows:

A→S : A, {TA, KAB , B}KAS

S→B : {TS , KAB , A}KBS

A sends to S its identity and a packet encrypted with the key, KAS , it shares
with S. The packet contains the current timestamp, A’s desired
communication partner, and a randomly generated key KAB , for
communication between A and B.

S decrypts the packet to obtain KAB and then forwards this key to B in an
encrypted packet that also contains the current timestamp and A’s identity.

B decrypts this message with the key it shares with S and retrieves the
identity of the other party and the key, KAB .

Weaknesses: A global clock is required and the protocol will fail if the server
S is compromised.
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A protocol based on an authentication server

Uses a centralized authentication server S that shares a secret key KXS with
every principal X in the system .

P→Q : ”I am P.”
Q : generate nonce n

Q→P : n
P : compute x = {P, Q, n}KPS

P→Q : x
Q : compute y = {P, Q, x}KQS

Q→A : y
A : recover P, Q, x from y by decrypting y with KQS

: recover P,Q, n from y by decrypting x with KPS

: compute m = {P, Q, n}KQS

A→Q : m
Q : independently compute {P, Q, n}KQS

and verify {P, Q, n} KQS
= m

: if equal, then accept; otherwise, the authentication fails

Table: A protocol using an authentication server
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A protocol based on an authentication server

The principal P sends its identity to Q. Q generates a nonce and sends this
nonce to P.

P then encrypts P, Q, n with the key KPS and sends this encrypted value x to
Q.

Q then encrypts P, Q, x with KQS and sends this encrypted value y to
authentication server S.

Since S knows both the secret keys, it decrypts y with KQS , recovers x ,
decrypts x with KPS and recovers P, Q, n.

Server S then encrypts P, Q, n with key KQS and sends the encrypted value
m to Q.

Q then computes P, Q, nK QS and verifies if this value is equal to the value
received from S.

If both values are equal, then authentication succeeds, else it fails.
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One-time password scheme

In the One-Time Password scheme, a password can only be used once.

The system generates a list of passwords and secretly communicates this list
to the client and the server.

The client uses the passwords in the list to log on to a server.

The server always expects the next password in the list at the next logon.

Therefore, even if a password is disclosed, the possibility of replay attacks is
eliminated because a password is used only once.

Protocol consist of two stages:

Registration stage: where the client registers with the server and gets a list of
passwords.

Login and authentication stage: where the server authenticates the client.
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Registration

Every client shares a pre-shared secret key, represented as SEED with the
server.

The server generates a session key (SK) with the help of a random number D
and a timestamp T, i.e., SK = D||T.

The server computes and sends SEED ⊕ SK to the client.

When the client receives SEED ⊕ SK, it computes the value of SK as follows:

SK = SEED ⊕ (SEED ⊕ SK)

The client then generates an initial key IK with the help of a randomly
generated secret key K,

IK = K ⊕ SEED

The client then decides the number of times (N) it wants to login to the
server and sends the generated initial key (IK) to the server.

The client performs IK ⊕ SK and N ⊕ SK and sends these values to the
server.

A. Kshemkalyani and M. Singhal (Distributed Computing) Authentication in Distributed System CUP 2008 14 / 54



Distributed Computing: Principles, Algorithms, and Systems

Registration
When the server receives IK ⊕ SK and N ⊕ SK, it retrieves IK and N from
the received values and computes

p0 = HN(IK) for the user where H is a Hash Function

and performs p0 = p0 ⊕ SK and stores p0 and N in its database.

It also computes p1 and p2 as follows:

p1 = HN−1 (IK) and
p2 = HN−2 (IK)

The server then sends p0 ⊕ SK, p1⊕ SK and p2⊕ SK to the client

On receiving p0 ⊕ SK, p1⊕ SK and p2⊕ SK from the server, the client
performs the XOR operation on SK and p0 ⊕ SK, p1⊕ SK and p2⊕ SK
separately, to obtain p0,

p1and p2,
respectively.

The client hashes IK for N times and then compares it with p0. If both values
are equal, the client is sure of the authenticity of the server and that it is not
communicating with an intruder.

It then saves the values of p0, p1, p2 and N for future communication with
the server.
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Login and authentication

Authentication requires the following steps:

If the client is logging in for the tth time, the server generates a new session
key (SK)

SK = D||T where T is the timestamp and D is a random number.

The server also computes pt−1 = H C+1(IK) where C=N-t. It then performs
pt−1 ⊕ SK and SK ⊕ SEED (SEED is stored in the database) and sends
these values to the client.

On the receipt of the values from the server, the client computes SK as
follows:

SK = pt−1 ⊕ (pt−1⊕ SK)

Then the Client checks the timestamp T of the session key SK. If the
timestamp is valid, the client computes SEED = SK ⊕ (SK ⊕ SEED) and
checks the value of SEED with the one saved to make sure of the server’s
identity. If they match, the server’s authenticity is verified.
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Login and authentication

The client proves its identity to the server as follows: It sends SK ⊕ pt to the
server. The client uses the pt saved in the previous login in this EX-OR
operation.

Server calculates pt from SK ⊕ pt received from the client as follows:

pt = SK ⊕ (SK ⊕ pt )

From the received pt value, it calculates pt−1= H (pt) and compares it with
pt−1 obtained in the Step 1. If both match, the identity of the client is
verified.

Finally, the server updates N with C, where C=N-t and computes pt+1 using
p0 and sends pt+1 ⊕ SK to the client.

The client computes value of pt+1 as pt+1=SK ⊕ (SK ⊕ pt+1) and stores it
for its next login.
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Strength and weaknesses

Since session key SK is obtained by using the timestamp, replay of previous
session does not work and thus the scheme is robust against replay attacks.

The use of hash function makes the Dictionary attacks impossible.

One-time passwords that are not time-synchronized are vulnerable to
phishing. Phishing usually occurs when a fraudster sends an email that
contains a link to a fraudulent website where the users are asked to provide
personal account information.

A. Kshemkalyani and M. Singhal (Distributed Computing) Authentication in Distributed System CUP 2008 18 / 54



Distributed Computing: Principles, Algorithms, and Systems

Otway-Rees protocol

A server-based protocol that provides authenticated key transport without
requiring timestamps.

KAB is a session key that the sever S generates for users A and B to share.

NA and NB are nonces chosen by A and B, respectively.

M is a nonce chosen by A which serves as a transaction identifier.

S shares symmetric keys KAS and KBS with A, B, respectively.

The protocol is shown in the following table.

(1) A →B : M, A, B, (NA, M, A, B)KAS

(2) B →S : M, A, B, (NA, M, A, B)KAS
, (NB , M, A, B)KBS

(3) S →B : (NA, KAB)KAS
, (NB , KAB)KBS

(4) B →A : M, (NA, KAB)KAS

Table: Otway Rees protocol
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Weaknesses

A malicious intruder can arrange for A and B to end up with different keys as
follows:

◮ A and B execute the first three messages; at this point, B has received the key
KAB .

◮ The intruder intercepts the fourth message.
◮ He/She replays step (2), which results in S generating a new key K′

AB and
sending it to B in step (3).

◮ The intruder intercepts this message, too, but sends to A the part of it that B
would have sent to A.

◮ So A has finally received the expected fourth message, but with K′
AB instead

of KAB .

Another problem is that although the server tells B that A used a nonce, B
doesn’t know if this was a replay of an old message.
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Kerberos authentication service

Authentication in Kerberos is based on the use of a symmetric cryptosystem
together with trusted third-party authentication servers.

The basic components include authentication servers (Kerberos servers) and
ticket-granting servers (TGSs).

Initial Registration

Every Client/user registers with the Kerberos server by providing its user id,
U and a password, passwordu.

The Kerberos server computes a key ku = f(passwordu) using a one-way
function f and stores this key in a database.

ku is a secret key that depends on the password of the user and is shared by
client U and Kerberos server only.
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The authentication protocol

Authentication in Kerberos proceeds in three steps:

Initial Authentication at Login: Kerberos Server authenticates user login at a
host and installs a ticket for the ticket granting server, TGS, at the login host.

Obtain a ticket for the server: Using the ticket for the ticket granting server,
the client requests the ticket granting server, TGS, for a ticket for the server.

Requesting Service from the server: The client uses the server ticket obtained
from the TGS to request services from the server.
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Initial Authentication at Login

Initial Authentication at Login uses Kerberos server and is shown in the
following Table. Let U be a user who is attempting to log in a host H.

1) U→ H : U
2) H→Kerberos : U, TGS

3) Kerberos : retrieve kU and kTGS from database
: generate new session key k
: create a ticket-granting ticket
: tickTGS = {U, TGS, k, T, L}KTGS

4) Kerberos →H : {TGS, k, T, L, tickTGS }kU

5) H→ U : “Password?”
6) U→ H : password

7) H : compute k′
U

= f(password)
: recover k, tickTGS by decrypting
: {TGS, k, T, L, tickTGS }kU

with k’U
: if decryption fails, abort login, otherwise, retain
: tickTGS and k.
: erase password from the memory

Table: Initial Authentication at Login
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Obtain a ticket for the server

The client executes steps shown in the folloing table to request a ticket for
the server from TGS.

The client sends the ticket tickTGS to TGS, requesting it a ticket for the
server S. (T1 and T2 are timestamps).

1) C → TGS : S, tickTGS , {C, T1}k

2) TGS : recover k from tickTGS by decrypting with kTGS ,
recover T1 from {C, T1}k by decrypting with k
check timelines of T1 with respect to local clock
generate new session key k.
Create server ticket tickS = {C, S, k, T, L}kS

3) TGS→ C : {S, k, T, L, tickS}k

4) C : recover k, tickS by decrypting the message with k

Table: Obtain a ticket for the server
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Requesting service from the server

Client C sends the ticket and the authenticator to server.

The server decrypts the tickS and recovers k.

It then uses k to decrypt the authenticator {C, T2}k′ and checks if the
timestamp is current and the client identifier matches with that in the tickS

before granting service to the client.

If mutual authentication is required, the server returns an authenticator.

1) C→S : tickS , {C, T2}k′

2) S : recover k from tickS by decrypting it with kS

recover T2 from {C, T2}k by decrypting with k
check timeliness of T2 with respect to the local clock

3) S→C : {T2 + 1}k

Table: Requesting service from the server
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Protocols based on asymmetric cryptosystems

In an asymmetric cryptosystem, let kp denote the public key and k−1
p denote

the private key of a principal P.

Only P can generate {m}k
−1
p

for any message m by signing it using k−1
p .

The signed message {m}k
−1
p

can be verified by any principal with the

knowledge of kp

Authentication protocols can be constructed using the following design
principle:

“If a principal can correctly sign a message using the private key of the
claimed identity, this act constitutes a sufficient proof of the identity.”
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The basic protocol

A basic protocol is as follows:

P→Q : “I am P.”
Q : generate nonce n

Q→P : n
P : compute m = {P, Q, n}k

−1
p

P→Q : m
Q : verify (P, Q, n) = {m}kp

: if equal, then accept; otherwise, the authentication fails

Table: A Basic protocol
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A modified protocol with a certification authority

The basic protocol can be modified as shown in the following table:

P→Q : “I am P.”
Q : generate nonce n

Q→P : n
P : compute m = {P, Q, n}k

−1
p

P→Q : m
Q→CA : “I need P’s public key.”

CA : retrieve public key kPof P from key Database
Create certificate c = {P, kP}k

−1
CA

CA→Q : P, c
Q : recover P, kP from c by decrypting with kCA

verify (P, Q, n) = {m}kP

: if equal, then accept; otherwise, the authentication fails

Table: A modified protocol with a certification authority, CA
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A modified protocol with a certification authority

A certification authority CA is involved in the authentication process.

When Q receives a message encrypted with P’s private key from P, it
requests the authentication server for P’s public key.

CA retrieves public key of P from the key database and provides Q with a
certificate for P’s public key.

The certificate, {P, kP}k
−1
CA

contains P’s identity and its public key, encrypted

with the private key of the certification authority.

Q retrieves the public key of P by decrypting the certificate with the public
key of CA.

Then it decrypts the message m, it received from P using the public key kP

and checks if {m}kP
equals {P, Q, n}.

If both are equal, authentication succeeds, else it fails.
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Needham and Schroeder protocol

The Needham-Schroeder protocol uses a trusted key server that issues
certificates containing the public key of a user.

The protocol is described in the following table:

1. A→ S : A, B
2. S→ A : {Kb, B}K

−1
s

3. A→ B : {Na, A}Kb

4. B→ S : B, A
5. S→ B : {Ka, A}K

−1
s

6. B→ A : {Na, Nb}Ka

7. A→ B : {Nb}Kb

Table: Needham-Schroeder protocol
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Needham and Schroeder protocol

In step 1, A sends a message to the server S, requesting B’s public key.

S responds by returning B’s public key Kb along with B’s identity encrypted
using S’s secret key.

A then seeks to establish a connection with B by selecting a nonce Na, and
sending it along with its identity to B encrypted using B’s public key.

When B receives this message, it decrypts the message to obtain the nonce
Na and to learn that user A is trying to communicate with it. It then requests
the public key of A from server S which the server sends to B in message 5.

B then returns nonce Na, along with a new nonce Nb, to A, encrypted with
A’s public key .

When A receives this message, it decrypts it with its private key and is
assured that it is talking to B, since only B could have decrypted message in
step 3 to obtain Na.

A then returns nonce Nb to B, encrypted with B’s key. When B receives this
message, it is assured that it is talking to A, since only A could have
decrypted message in step 6 to obtain Nb.
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Weaknesses

This protocol provides no guarantee that the public keys obtained are current
and not replays of old, possibly compromised keys.

This problem can be overcome in various ways.
◮ First method is that the server S includes timestamps in messages 2 and 5;

however, this requires synchronized clocks at processes.
◮ Another method is that A sends a nonce in message 1 and S returns the same

nonce in message 2.

The protocol is vulnerable to impersonation attacks (described next).
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An impersonation attack on the protocol

An impersonation attack is shown in the following Table:

1.3 A→ I : {Na, A}Ki

2.3 I(A) → B : {Na, A}Kb

2.6 B→ I(A) : {Na, Nb}Ka

1.6 I→ A : {Na, Nb}Ka

1.7 A→ I : {Nb}Ki

2.7 I(A) → B : {Nb}Kb

Table: An Impersonation attack on Needham-Schroeder Protocol
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An impersonation attack on the protocol

In step 1.3, A starts to establish a session with I, sending it a nonce Na.

In step 2.3, the intruder impersonates A to try to establish a false session
with B sending it the nonce Na obtained in the previous message from A.

B responds in step 2.6 by selecting a new nonce Nb and returning it, along
with Na to A. The intruder intercepts this message, but cannot decrypt it
because it is encrypted with A’s public key.

The intruder uses A as an oracle, by forwarding the message to A in step 1.6;
note that this message is of the form expected by A in run 1 of the protocol.
A decrypts the message to obtain Nb and returns this to I in step 1.7.

I decrypts this message to obtain Nb and returns it to B in step 2.7, thus
completing run 2 of the protocol. After B receives the message in step 2.7, B
is led to believe that A has correctly established a session with it.
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A solution to the attack

The main cause of this attack is that step 6 does not contain the identity of
the responder.

If we include the responder’s identity in step 6 of the protocol then the
intruder I can not successfully replay this message in step 1.6 because A is
expecting a message containing I’s identity.
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SSL protocol

SSL, Secure Sockets Layer, protocol developed by Netscape and is the
standard Internet protocol for secure communications.

SSL typically is used between server and client to secure the connection.

SSL protocol allows client/server applications to communicate so that
eavesdropping, tampering, and message forgery are prevented.

One advantage of SSL is that it is application protocol independent.
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SSL protocol

The SSL protocol provides the following features:

• End point authentication: The server is the “real” party that a client wants
to talk to, not someone faking the identity.

• Message integrity: If the data exchanged with the server has been
modified along the way, it can be easily detected.

• Confidentiality: Data is encrypted. A hacker cannot read your
information by simply looking at the packets on
the network.
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SSL record protocol

The record protocol fragments the data into manageable blocks, optionally
compresses the data, applies MAC, encrypts adds a header and transmits the
resulting unit into a TCP segment.

Received data are decrypted, verified, decompressed and reassembled and
then delivered into high level users.
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SSL handshake protocol

The SSL Handshake Protocol allows the server and client to authenticate
each other and to negotiate an encryption algorithm and cryptographic keys
before the application protocol transmits data.
The following steps are involved in the SSL handshake:

The SSL client sends a ”client hello” message that lists cryptographic
information such as the SSL version and, in the client’s order of preference,
the CipherSuites supported by the client. The message also contains a
random byte string.

The SSL server responds with a ”server hello” message that contains the
CipherSuite chosen by the server from the list provided by the SSL client, the
session ID and another random byte string. The SSL server also sends its
digital certificate. If the server requires a digital certificate for client
authentication, the server sends a ”client certificate request”.
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SSL handshake protocol

The SSL client verifies the digital signature on the SSL server’s digital
certificate and checks that the CipherSuite chosen by the server is acceptable.

The SSL client, usind all data generated in the handshake so far, creates a
premaster secret for the session that enables both the client and the server to
compute the secret key to be used for encrypting subsequent message data.

If the SSL server sent a ”client certificate request”, the SSL client sends
another signed piece of data which is unique to this handshake and known
only to the client and server, along with the encrypted premaster secret and
the client’s digital certificate, or a ”no digital certificate alert”.

The SSL server verifies the signature on the client certificate.

The SSL client sends the SSL server a ”finished” message, which is encrypted
with the secret key, indicating that the client part of the handshake is
complete.
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SSL handshake protocol

The SSL server sends the SSL client a ”finished” message, which is encrypted
with the secret key, indicating that the server part of the handshake is
complete.

The SSL server and SSL client can now exchange messages that are
encrypted with the shared symmetric secret key.

During both client and server authentication, there is a step that requires
data to be encrypted with one of the keys in an asymmetric key pair and is
decrypted with the other key of the pair.

For server authentication, the client uses the server’s public key to encrypt
the data that is used to compute the secret key. The server can generate the
secret key only if it can decrypt that data with the correct private key.
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How SSL provides authentication

For client authentication, the server uses the public key in the client
certificate to decrypt the data the client sends during step 5 of the handshake.

The exchange of finished messages confirms that authentication is complete.

If any of the authentication steps fails, the handshake fails and the session
terminates.

The exchange of digital certificates during the SSL handshake is a part of the
authentication process. (CA X issues the certificate to the SSL client, and
CA Y issues the certificate to the SSL server.)
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Password-based authentication

The use of passwords is very popular to achieve authentication because of
low cost and convenience.

However, people tend to pick a password that is convenient, i.e., short and
easy to remember. (Vulnerable to a password-guessing attack.)

Off-line dictionary attack: an adversary builds a database of possible
passwords, called a dictionary. The adversary picks a password from the
dictionary and checks if it works. This may amount to generating a response
to a challenge or decrypting a message using the password or a function of
the password.After every failed attempt, the adversary picks a different
password from the dictionary and repeats the process.

Preventing Off-line Dictionary Attacks:
By producing a cryptographically strong shared secret key, called the session
key. This session key can be used by both entities to encrypt subsequest
messages for a seceret session.
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Encrypted key exchange (EKE) protocol
Bellovin and Merritt developed a password-based encrypted key exchange
(EKE) protocol using a combination of symmetric and asymmetric
cryptography.

1 A : (EA, DA), Kpwd=f(pwd). {* f is a function. *}
2 A → B : A, {Kpwd}EA

.
3 B : Compute EA = {{EA}Kpwd

}
K

−1
pwd

and generate a random secret key KAB .

4 B → A : {{KAB}EA
}{Kpwd}.

5 A : KAB = {{{{KAB}EA
}{Kpwd}}K

−1
pwd

}DA
. Generate a unique challenge CA.

6 A → B : {CA}KAB
.

7 B : Compute CA = {{CA}KAB
}

K
−1
AB

and generate a unique challenge CB .

8 B → A : {CA, CB}KAB
.

9 A : Decrypt message sent by B to obtain CA and CB .
Compare the former with his own challenge. If they match,
go to the next step, else abort.

10 A → B : {CB}KAB
.

Figure: Encrypted Key Exchange Protocol
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Encrypted key exchange (EKE) protocol

Step 1: A generates a public/private key pair (EA, DA) and derives a secret
key Kpwd from his password pwd .

Step 2: A encrypts his public key EA with Kpwd and sends it to B.

Steps 3 and 4: B decrypts the message and uses EA together with Kpwd to
encrypt a session key KAB and sends it to A.

Steps 5 and 6: A uses this session key to encrypt a unique challenge CA and
sends the encrypted challenge to B.

Step 7: B decrypts the message to obtain the challenge and generates a
unique challenge CB .

Step 8: B encrypts {CA, CB} with the session key KAB and sends it to A.
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Encrypted key exchange (EKE) protocol

Step 9: A decrypts this message to obtain CA and CB and compares the
former with the challenge it had sent to B. If they match, B is authenticated.

Step 10: A encrypts B’s challenge CB with the session key KAB and sends it
to B. When B receives this message, it decrypts the message to obtain CB

and uses it to authenticate A.

The resulting session key is stronger than the shared password and can be
used to encrypt sensitive data.

A Drawback: The EKE protocol suffers from the plain-text equivalence (the
user and the host have access to the same secret password or hash of the
password).
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Secure remote password (SRP) protocol

Wu combined the technique of zero-knowledge proof with asymmetric key
exchange protocols to develop a verifier-based protocol, called secure remote
password (SRP) protocol.

SRP protocol eliminates plain-text equivalence.

All computations in SRP are carried out on the finite field Fn, where n is a
large prime. Let g be a generator of Fn.

Let A be a user and B be a server. Before initiating the SRP protocol, A and
B do the following:

1 A and B agree on the underlying field.
2 A picks a password pwd , a random salt s and computes the verifier v = g x ,

where x = H(s, pwd) is the long-term private-key and H is a cryptographic
hash function.

3 B stores the verifier v and the salt s.
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Secure remote password (SRP) protocol

The protocol is shown in the following table:

1 A → B : A.
2 B → A : s.
3 A : x = H(s, pwd);KA = ga.
4 A → B : KA.
5 B : KB = v + gb .
6 B → A : KB , r .
7 A : S = (KB − g x )a+rx and B : S = (KAv r )b.
8 A, B : KAB = H(S).
9 A → B : CA = H(KA, KB , KAB).
10 B verifies CA and computes CB = H(KA, CA, KAB).
11 B → A : CB .
12 A verifies CB . Accept if verification passes; abort otherwise.

Figure: Secure remote password (SRP) protocol
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Secure remote password (SRP) protocol

Step 1: A sends its username “A” to server B.

Step 2: B looks-up A’s verifier v and salt s and sends A his salt.

Steps 3 and 4: A computes its long-term private-key x = H(s, pwd),
generates an ephemeral public-key KA = g a where a is randomly chosen from
the interval 1 < a < n and sends KA to B.

Steps 5 and 6: B computes ephemeral public-key KB = v + gb where b is
randomly chosen from the interval 1 < a < n and sends KB and a random
number r to A.

Step 7: A computes S = (KB − g x)a+rx = g ab+brx and B computes
S = (KAv r )b = g ab+brx .

Step 8: Both A and B use a cryptographically strong hash function to
compute a session key KAB = H(S).
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Secure remote password (SRP) protocol

Step 9: A computes CA = H(KA, KB , KAB) and sends it to B as an evidence
that it has the session key. CA also serves as a challenge.

Step 10: B computes CA itself and matches it with A’s message. B also
computes CB = H(KA, CA, KAB).

Step 11: B sends CB to A as an evidence that it has the same session key as
A.

Step 12: A verifies CB , accepts if the verification passes and aborts otherwise.

None of the protocol are messages encrypted in the SRP protocol. Since
neither the user nor the server has access to the same secret password or
hash of the password, SRP eliminates plain-text equivalence.
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Authentication protocol failures

Realistic authentication protocols are notoriously difficult to design due the
following main reasons:

First, most realistic cryptosystems satisfy algebraic additional identities which
may generate undesirable effects when combined with a protocol logic.

Second, even after assuming that the underlying cryptosystem is perfect,
unexpected interactions among the protocol steps can lead to subtle logical
flaws.

Third, assumptions regarding the environment and the capabilities of an
adversary are not well defined.
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Authentication protocol failures

We illustrate the difficulty by showing an authentication protocol with a
subtle weakness.

Consider the following authentication protocol: (kp and kq are symmetric
keys shared between P and A, and Q and A, respectively, where A is an
authentication server. k is a session key.)

1) P → A : P, Q, np

2) A → P : {np, Q, k , {k, P}kQ
}kp

3) P → Q : {k, P}kQ

4) Q → P : {nQ}K

5) P → Q : {nQ+1}K
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Authentication protocol failures

Message {k, P}kQ
in step (3) can only be decrypted by Q and hence can only

be understood by Q.

Step (4) reflects Q’s knowledge of k, while step (5) assures Q of P’s
knowledge of k; hence the authentication handshake is based entirely on the
knowledge of k.

The subtle weakness in the protocol arises from the fact that the message {k,
P}kQ

sent in step (3) contains no information for Q to verify its freshness.
This is the first message sent to Q about P’s intention to establish a secure
connection.

An adversary who has compromised an old session key k′ can impersonate P
by replaying the recorded message {k′, P}kQ

in step (3) and subsequently
executing the steps (4) and (5) using k′.
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Authentication protocol failures

Remedies:

To avoid protocol failures, formal methods may be employed in the design
and verification of authentication protocols.

A formal design method should embody the basic design principles.

For example, informal reasoning such as “If you believe that only you and
Bob know k , then you should believe any message you receive encrypted with
k was originally sent by Bob.” should be formalized by a verification method.
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