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Characteristics

P2P network: application-level organization of the network to flexibly share
resources

All nodes are equal; communication directly between peers (no client-server)

Allow location of arbitrary objects; no DNS servers required

Large combined storage, CPU power, other resources, without scalability
costs

Dynamic insertion and deletion of nodes, as well as of resources, at low cost

Features Performance

self-organizing large combined storage, CPU power, and resources
distributed control fast search for machines and data objects
role symmetry for nodes scalable
anonymity efficient management of churn
naming mechanism selection of geographically close servers
security, authentication, trust redundancy in storage and paths

Table: Desirable characteristics and performance features of P2P systems.
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Napster

Central server maintains a table with the following information of each registered
client: (i) the client’s address (IP) and port, and offered bandwidth, and (ii)
information about the files that the client can allow to share.

A client connects to a meta-server that assigns a lightly-loaded server.

The client connects to the assigned server and forwards its query and identity.

The server responds to the client with information about the users connected
to it and the files they are sharing.

On receiving the response from the server, the client chooses one of the users
from whom to download a desired file. The address to enable the P2P
connection between the client and the selected user is provided by the server
to the client.

Users are generally anonymous to each other. The directory serves to provide the
mapping from a particular host that contains the required content, to the IP
address needed to download from it.
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Structured and Unstructured Overlays

Search for data and placement of data depends on P2P overlay (which can
be thought of as being below the application level overlay)

Search is data-centric, not host-centric

Structured P2P overlays:
I E.g., hypercube, mesh, de Bruijn graphs
I rigid organizational principles for object storage and object search

Unstructured P2P overlays:
I Loose guidelines for object search and storage
I Search mechanisms are ad-hoc, variants of flooding and random walk

Object storage and search strategies are intricately linked to the overlay
structure as well as to the data organization mechanisms.
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Data indexing

Data identified by indexing, which allows physical data independence from apps.

Centralized indexing, e.g., versions of Napster, DNS

Distributed indexing. Indexes to data scattered across peers. Access data
through mechanisms such as Distributed Hash Tables (DHT). These differ in
hash mapping, search algorithms, diameter for lookup, fault tolerance, churn
resilience.

Local indexing. Each peer indexes only the local objects. Remote objects
need to be searched for. Typical DHT uses flat key space. Used commonly in
unstructured overlays (E.g., Gnutella) along with flooding search or random
walk search.

Another classification

Semantic indexing - human readable, e.g., filename, keyword, database key.
Supports keyword searches, range searches, approximate searches.

Semantic-free indexing. Not human readable. Corresponds to index obtained
by use of hash function.
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Simple Distributed Hash Table scheme

Common key (identifier)

(address) space value space
Object/ fileNative node identifier

space

Mappings from node address space and object space in a simple DHT.

Highly deterministic placement of files/data allows fast lookup.

But file insertions/deletions under churn incurs some cost.

Attribute search, range search, keyword search etc. not possible.

A. Kshemkalyani and M. Singhal (Distributed Computing: Principles, Algorithms, and Systems)Peer-to-peer Computing and Overlay Graphs CUP 2008 6 / 55



Distributed Computing: Principles, Algorithms, and Systems

Structured vs. unstructured overlays

Structured Overlays:

structure =⇒ placement of
files is highly deterministic, file
insertions and deletions have
some overhead

Fast lookup

Hash mapping based on a
single characteristic (e.g., file
name)

Range queries, keyword
queries, attribute queries
difficult to support

Unstructured Overlays:

No structure for overlay =⇒ no structure for
data/file placement

Node join/departures are easy; local overlay
simply adjusted

Only local indexing used

File search entails high message overhead
and high delays

Complex, keyword, range, attribute queries
supported

Some overlay topologies naturally emerge:

I Power Law Random Graph (PLRG)
where node degrees follow a power law.
Here, if the nodes are ranked in terms
of degree, then the i th node has c/iα

neighbors, where c is a constant.
I simple random graph: nodes typically

have a uniform degree
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Unstructured Overlays: Properties

Semantic indexing possible =⇒ keyword, range, attribute-based queries

Easily accommodate high churn

Efficient when data is replicated in network

Good if user satisfied with ”best-effort” search

Network is not so large as to cause high delays in search

Gnutella features

A joiner connects to some standard nodes from Gnutella directory

Ping used to discover other hosts; allows new host to announce itself

Pong in response to Ping ; Pong contains IP, port #, max data size for
download

Query msgs used for flooding search; contains required parameters

QueryHit are responses. If data is found, this message contains the IP, port
#, file size, download rate, etc. Path used is reverse path of Query .
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Search in Unstructured Overlays

Consider a system with n nodes and m objects. Let qi be the popularity of object i , as
measured by the fraction of all queries that are queries for object i . All objects may be
equally popular, or more realistically, a Zipf-like power law distribution of popularity
exists. Thus,

m∑
i=1

qi = 1 (1)

Uniform: qi = 1/m; Zipf-like: qi ∝ i−α (2)

Let ri be the number of replicas of object i , and let pi be the fraction of all objects that
are replicas of i . Three static replication strategies are: uniform, proportional, and square
root. Thus,

m∑
i=1

ri = R; pi = ri/R (3)

Uniform: ri = R/m; Proportional: ri ∝ qi ; Square-root: ri ∝
√

qi

(4)

Under uniform replication, all objects have an equal number of replicas; hence the

performance for all query rates is the same. With a uniform query rate, proportional and

square-root replication schemes reduce to the uniform replication scheme.
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Search in Unstructured Overlays

For an object search, some of the metrics of efficiency:

probability of success of finding the queried object.

delay or the number of hops in finding an object.

the number of messages processed by each node in a search.

node coverage, the fraction of (distinct) nodes visited

message duplication, which is (#messages - #nodes visited)/#messages

maximum number of messages at a node

recall, the number of objects found satisfying the desired search criteria. This
metric is useful for keyword, inexact, and range queries.

message efficiency, which is the recall per message used

Guided versus Unguided Search. In unguided or blind search, there is no history of

earlier searches. In guided search, nodes store some history of past searches to aid future

searches. Various mechanisms for caching hints are used. We focus on unguided searches

in the context of unstructured overlays.

A. Kshemkalyani and M. Singhal (Distributed Computing: Principles, Algorithms, and Systems)Peer-to-peer Computing and Overlay Graphs CUP 2008 10 / 55



Distributed Computing: Principles, Algorithms, and Systems

Search in Unstructured Overlays: Flooding and Random
Walk

Flooding: with checking, with TTL or hop count, expanding ring strategy

Random Walk: k random walkers, with checking

Relationships of interest
I The success rate as a function of the number of message hops, or TTL.
I The number of messages as a function of the number of message hops, or

TTL.
I The above metrics as the replication ratio and the replication strategy changes.
I The node coverage, recall, and message efficiency, as a function of the number

of hops, or TTL; and of various replication ratios and replication strategies.

Overall, k-random walk outperforms flooding

A. Kshemkalyani and M. Singhal (Distributed Computing: Principles, Algorithms, and Systems)Peer-to-peer Computing and Overlay Graphs CUP 2008 11 / 55



Distributed Computing: Principles, Algorithms, and Systems

Replication Strategies

n number of nodes in the system
m number of objects in the system
qi normalized query rate, where

∑m
i=1 qi = 1

ri number of replicas of object i
ρ capacity (measured as number of objects) per node
R nρ =

∑m
i=1 ri , the total capacity in the system

pi ri/R, the population fraction of object i replicas
Ai Average search size for i
A Average search size for the system

Table: Parameters to study replication.

ri A Ai = n/ri ui = Rqi/ri

Uniform constant, R/m m/ρ m/ρ qi m

Proportional qi R m/ρ 1/(ρqi ) 1

Square-root R
√

qi/
∑

j

√
qj (

∑
i

√
qi )

2/ρ
∑

j
√

qj/
√

qi

ρ

√
qi

∑
j

√
qj

Table: Comparison of Uniform, Proportional, and Square-root replication.

How are the replication strategies implemented?
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Chord

Node address as well as object value is
mapped to a logical identifier in a
common flat key space using a
consistent hash function.

When a node joins or leaves the
network of n nodes, only 1/n keys have
to moved.

Two steps involved.

I Map the object value to its key
I Map the key to the node in the

native address space using lookup

Common address space is a m-bit
identifier (2m addresses), and this space
is arranged on a logical ring mod(2m).

A key k gets assigned to the first node
such that the node identifier equals or
is greater than the key identifier k in
the logical space address.

lookup(K8)

K87

N5

N18

N23

N28 K28

K8 K15

K121

N99

N104

N115

N119

N73

K53

N63
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Chord: Simple Lookup

Each node tracks its successor
on the ring.

A query for key x is forwarded on
the ring until it reaches the first
node whose identifier y ≥ key
x mod(2m).

The result, which includes the IP
address of the node with key y ,
is returned to the querying node
along the reverse of the path
that was followed by the query.

This mechanism requires O(1)
local space but O(n) hops.

(variables)
integer: successor ←− initial value;

(1) i .Locate Successor(key), where key 6= i :

(1a) if key ∈ (i , successor ] then
(1b) return(successor)
(1c) else return successor .Locate Successor(key).

lookup(K8)

K87

N5

N18

N23

N28 K28

K8 K15

K121

N99

N104

N115

N119

N73

K53

N63
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Chord: Scalable Lookup

Each node i maintains a routing table, called the finger table, with O(log n) entries,
such that the xth entry (1 ≤ x ≤ m) is the node identifier of the node
succ(i + 2x−1).

This is denoted by i .finger [x ] = succ(i + 2x−1). This is the first node whose key is
greater than the key of node i by at least 2x−1 mod 2m.

Complexity: O(log n) message hops at the cost of O(log n) space in the local
routing tables

Each finger table entry contains the IP address and port number in addition to the
node identifier

Due to the log structure of the finger table, there is more info about nodes closer
by than about nodes further away.

Consider a query on key key at node i ,
I if key lies between i and its successor, the key would reside at the successor

and its address is returned.
I If key lies beyond the successor, then node i searches through the m entries in

its finger table to identify the node j such that j most immediately precedes
key , among all the entries in the finger table.

I As j is the closest known node that precedes key , j is most likely to have the
most information on locating key , i.e., locating the immediate successor node
to which key has been mapped.
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Chord: Scalable Lookup Code

(variables)
integer: successor ←− initial value;
integer: predecessor ←− initial value;
array of integer finger [1 . . . log n];

(1) i .Locate Successor(key), where key 6= i :

(1a) if key ∈ (i , successor ] then
(1b) return(successor)
(1c) else
(1d) j ←− Closest Preceding Node(key);
(1e) return j .Locate Successor(key).

(2) i .Closest Preceding Node(key), where key 6= i :

(2a) for count = m down to 1 do
(2b) if finger [count] ∈ (i , key ] then
(2c) break();
(2d) return(finger [count]).
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Chord: Scalable Lookup Example

finger table

N5

N18

N23

N28

K8

N99

N104

N115
N119

N73
N6399+64 N63

lookup(K8)

28+1

28+2

28+4

28+8

28+16

28+32

28+64

N63

N63

N63

N63

N63

N63

N99

99+32

99+16

99+8

99+4

99+2

99+1

N5

N115

N115

N104

N104

N104

5+1

5+2

5+4

5+8

5+16

5+32

5+64

N18

N18

N18

N18

N23

N63

N73

finger table

finger table

for N99

for N28

for N5
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Chord: Managing Churn
(variables)
integer: successor ←− initial value;
integer: predecessor ←− initial value;
array of integer finger [1 . . . log m];
integer: next finger ←− 1;

(1) i.Create New Ring():

(1a) predecessor ←−⊥;
(1b) successor ←− i .

(2) i.Join Ring(j), where j is any node on the ring to be joined:

(2a) predecessor ←−⊥;
(2b) successor ←− j.Locate Successor(i).

(3) i.Stabilize(): // executed periodically to verify and inform successor

(3a) x ←− successor.predecessor ;
(3b) if x ∈ (i, successor) then
(3c) successor ←− x ;
(3d) successor.Notify(i).

(4) i.Notify(j): // j believes it is predecessor of i

(4a) if predecessor =⊥ or j ∈ (predecessor, i)) then
(4b) transfer keys in the range (predecessor, j] to j ;
(4c) predecessor ←− j .

(5) i.Fix Fingers(): // executed periodically to update the finger table

(5a) next finger ←− next finger + 1;
(5b) if next finger > m then
(5c) next finger ←− 1;

(5d) finger [next finger ] ←− Locate Successor(i + 2next finger−1).

(6) i.Check Predecessor(): // executed periodically to verify whether predecessor still exists

(6a) if predecessor has failed then
(6b) predecessor ←−⊥.
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Chord: Integrating a Node in the Ring

predecessor

predecessor=

k

predecessor=

k

predecessor=

successor=predecessor=

successor=

k k

predecessor=

k

successor=i successor=i

i

j

j

i i

j

i

j

predecessor=i

predecessor=ipredecessor=i

successor=j successor=j

successor=j successor=j

successor=jsuccessor=j predecessor=k
T

T

T

after i executes Stabilize() and (b)
j executes Notify(i)

triggers step (d)

(d) after i executes Notify(k)

(a) after i executes Join_Ring(.)

(c) after k executes Stabilize(), that  

successor

Node i integrates into the ring, where j > i > k , as per the steps shown.
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Chord

How are node departures handled? or node failures?

For a Chord network with n nodes, each node is responsible for at most
(1 + ε)K/n keys, with “high probability”, where K is the total number of
keys. Using consistent hashing, ε can be shown to be bounded by O(log n).

The search for a successor in Locate Successor in a Chord network with n
nodes requires time complexity O(log n) with high probability.

The size of the finger table is log(n) ≤ m.

The average lookup time is 1/2 log(n).

Details of Complexity derivations: refer text.
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Content Addressable Network (CAN)

An indexing mechanism that maps objects to locations in CAN

object-location in P2P networks, large-scale storage management, wide-area
name resolution services that decouple name resolution and the naming
scheme

Efficient, scalable addition of and location of objects using
location-independent names or keys.

3 basic operations: insertion, search, deletion of (key , value) pairs

d-dimensional logical Cartesian space organized as a d-torus logical topology,
i.e.. d-dimensional mesh with wraparound.

Space partitioned dynamically among nodes, i.e., node i has space r(i).

For object v , its key r(v) is mapped to a point ~p in the space. (v , key(v))
tuple stored at node which is the present owner containing the point ~p.
Analogously to retrieve object v .
3 components of CAN

I Set up CAN virtual coordinate space, partition among nodes
I Routing in virtual coordinate space to locate the node that is assigned the

region corresponding to ~p
I Maintain the CAN in spite of node departures and failures.
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CAN Initialization

1 Each CAN has a unique DNS name that maps to the IP address of a few bootstrap nodes.
Bootstrap node: tracks a partial list of the nodes that it believes are currently in the CAN.

2 A joiner node queries a bootstrap node via a DNS lookup. Bootstrap node replies with the
IP addresses of some randomly chosen nodes that it believes are in the CAN.

3 The joiner chooses a random point ~p in the coordinate space. The joiner sends a request
to one of the nodes in the CAN, of which it learnt in Step 2, asking to be assigned a region
containing ~p. The recipient of the request routes the request to the owner old owner(~p) of
the region containing ~p, using CAN routing algorithm.

4 The old owner(~p) node splits its region in half and assigns one half to the joiner. The
region splitting is done using an a priori ordering of all the dimensions. This also helps to
methodically merge regions, if necessary. The (k, v) tuples for which the key k now maps
to the zone to be transferred to the joiner, are also transferred to the joiner.

5 The joiner learns the IP addresses of its neighbours from old owner(~p). The neighbors are
old owner(~p) and a subset of the neighbours of old owner(~p). old owner(~p) also updates
its set of neighbours. The new joiner as well as old owner(~p) inform their neighbours of the
changes to the space allocation, In fact, each node has to send an immediate update of its
assigned region, followed by periodic HEARTBEAT refresh messages, to all its neighbours.

When a node joins a CAN, only the neighbouring nodes in the coordinate space are required to

participate. The overhead is thus of the order of the number of neighbours, which is O(d) and

independent of n.
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CAN Routing

Straight-line path routing in Euclidean
space

Each node’s routing table maintains list
of neighbor nodes and their IP
addresses virtual Euclidean coordinate
regions.

To locate value v , its key k(v) is
mapped to a point ~p. Knowing the
neighbours’ region coordinates, each
node follows simple greedy routing by
forwarding the message to that
neighbour having coordinates that are
closest to the destination.

argmink∈Neighbours [min |~x − ~k|]

Avg # neighbours of a node is O(d)

Average path length d/4 · n1/d .

Advantages over Chord:

Each node has about same # neighbors and
same amt. of state info, independent of n =⇒
scalability

Multiple paths in CAN provide fault-tolerance

Avg path length n1/d , not log n

[[50,100],[50,100]]

(100,100)(0,100)

(0,0) (100,0)

1 2

3 4 5

[[75,100],
[25,50]]

6

[[75,100],
[0,25]]

7

[[50,75],
[0,50]]

[[0,25],
[50,100]]

[[25,50],

[50,100]]

[[0,50],[0,50]]

Two-dimensional CAN space. Seven regions are shown.

The dashed arrows show the routing from node 2 to the

coordinate ~p shown by the shaded circle.
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CAN Maintainence

Voluntary departure: Hand over region and (key , value) tuples to a neighbor.

Neighbor choice: formation of a convex region after merger of regions

Otherwise, neighbor with smallest volume. However, regions are not merged and neighbor
handles both regions until background reassignment protocol is run.

Node failure detected when periodic HEARTBEAT message not received by neighbors.
They then run a TAKEOVER protocol to decide which neighbor will own dead node’s
region. This protocol favors region with smallest volume.

Despite TAKEOVER protocol, the (key , value) tuples remain lost until background region
reassignment protocol is run.

Background reassignment protocol: for 1-1 load balancing, restore 1-1 node to region
assignment, and prevent fragmentation.

root

1

2

5

3

4

6

7

1

2 3 4

6

7

5

(entire coordinate space)

If node 2 fails, its region is assigned to node 3. If node 7 fails, regions 5 and 6 get merged and

assigned to node 5 whereas node 6 is assigned the region of the failed node 7.
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CAN Maintainence
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CAN Optimizations
Improve per-hop latency, path length, fault tolerance, availability, and load
balancing. These techniques typically demonstrate a trade-off.

Multiple dimensions. As the path length is O(d · n1/d ), increasing the number of
dimensions decreases the path length and increases routing fault tolerance at the
expense of larger state space per node.

Multiple realities or coordinate spaces. The same node will store different (k, v)
tuples belonging to the region assigned to it in each reality, and will also have a
different neighbour set. The data contents (k, v) get replicated, leading to higher
availability. Furthermore, the multiple copies of each (k, v) tuple offer a choice.
Routing fault tolerance also improves.

Use delay metric instead of Cartesian metric for routing

Overloading coordinate regions by having multiple nodes assigned to each region.
Path length and latency can reduce, fault tolerance improves, per-hop latency
decreases.

Use multiple hash functions. Equivalent to using multiple realities.

Topologically sensitive overlay. This can greatly reduce per-hop latency.

CAN Complexity: O(d) for a joiner. O(d/4 · log(n)) for routing. Node departure
O(d2).
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Tapestry

Nodes and objects are assigned IDs from common space via a distributed
hashing.

Hashed node ids are termed VIDs or vid . Hashed object identifiers are termed
GUIDs or OG .

ID space typically has m = 160 bits, and is expressed in hexadecimal.

If a node v exists such that vid = OG exists, then that v become the root. If
such a v does not exist, then another unique node sharing the largest
common prefix with OG is chosen to be the surrogate root.

The object OG is stored at the root, or the root has a direct pointer to the
object.

To access object O, reach the root (real or surrogate) using prefix routing

Prefix routing to select the next hop is done by increasing the prefix match of
the next hop’s VID with the destination OGR

. Thus, a message destined for
OGR

= 62C35 could be routed along nodes with VIDs 6****, then 62***,
then 62C**, then 62C3*, and then to 62C35.
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Tapestry - Routing Table

Let M = 2m. The routing table at node vid contains b · logb M entries, organized in
logbM levels i = 1 . . . logbM. Each entry is of the form 〈wid , IP address〉.
Each entry denotes some “neighbour” node VIDs with a (i − 1)-digit prefix match
with vid – thus, the entry’s wid matches vid in the (i − 1)-digit prefix. Further, in
level i , for each digit j in the chosen base (e.g., 0, 1, . . .E ,F when b = 16), there is
an entry for which the i th digit position is j .

For each forward pointer, there is a backward pointer.

7B28

7C25

7C27

7C21

7C2B

4

4

1

12
2

2

3

3

3

1

4

0672

9833

AA21

7114

7DD0

7C4A

7C13

7CFF

Some example links at node with identifier ”7C25”. Three links each of levels 1
through 4 are labeled.
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Tapestry: Routing

The j th entry in level i may not exist because no node meets the criterion.
This is a hole in the routing table.

Surrogate routing can be used to route around holes. If the j th entry in level i
should be chosen but is missing, route to the next non-empty entry in level i ,
using wraparound if needed. All the levels from 1 to logb 2m need to be
considered in routing, thus requiring logb 2m hops.

4

62C35
62C11

62409

6C144

62C3A

FAB11 64000

62C3A

62C24

62655

62C31

62C01

62CFF 62C79

62CAB

6200665011

2

2

1

3

4

2

3

4

3

4

5

5
5

44

An example of routing from FAB11 to 62C35. The numbers on the arrows show the level of the

routing table used. The dashed arrows show some unused links.
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Tapestry: Routing Algorithm

Surrogate routing leads to a unique root.

For each vid , the routing algorithm identifies a unique spanning tree rooted at vid .

(variables)
array of array of integer Table[1 . . . logb 2m, 1 . . . b]; // routing table

(1) NEXT HOP(i ,OG = d1 ◦ d2 . . . ◦ dlogbM ) executed at node vid to route to OG :

// i is (1 + length of longest common prefix), also level of the table
(1a) while Table[i , di ] =⊥ do // dj is ith digit of destination
(1b) di ←− (di + 1) mod b;
(1c) if Table[i , di ] = v then // node v also acts as next hop (special case)
(1d) return NEXT HOP(i + 1,OG ) // locally examine next digit of destination
(1e) else return(Table[i , di ]). // node Table[i , di ] is next hop

The logic for determining the next hop at a node with node identifier v , 1 ≤ v ≤ n, based on the

i th digit of OG .

A. Kshemkalyani and M. Singhal (Distributed Computing: Principles, Algorithms, and Systems)Peer-to-peer Computing and Overlay Graphs CUP 2008 29 / 55



Distributed Computing: Principles, Algorithms, and Systems

Tapestry: Object Publication and Object Search

The unique spanning tree used to route to vid is used to publish and locate
an object whose unique root identifier OGR

is vid .

A server S that stores object O having GUID OG and root OGR
periodically

publishes the object by routing a publish message from S towards OGR
.

At each hop and including the root node OGR
, the publish message creates a

pointer to the object

This is the directory info and is maintained in soft-state.

To search for an object O with GUID OG , a client sends a query destined for
the root OGR

.
I Along the logb 2m hops, if a node finds a pointer to the object residing on

server S , the node redirects the query directly to S .
I Otherwise, it forwards the query towards the root OGR which is guaranteed to

have the pointer for the location mapping.

A query gets redirected directly to the object as soon as the query path
overlaps the publish path towards the same root.
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Tapestry: Object Publication and Search

72E34

object pointer

72EA1

72EA8

72F11

7FAB1

70666

72E33

720B4 729CC

7D4FF75BB1

17202C2B40

094ED

server server

BCF35

publish path routing pointer

25011 1F329

7826C

An example showing publishing of object with identifier 72EA1 at two replicas 1F329 and C2B40.

A query for the object from 094ED will find the object pointer at 7FAB1. A query from 7826C

will find the object pointer at 72F11. A query from BCF35 will find the object pointer at 729CC.

A. Kshemkalyani and M. Singhal (Distributed Computing: Principles, Algorithms, and Systems)Peer-to-peer Computing and Overlay Graphs CUP 2008 31 / 55



Distributed Computing: Principles, Algorithms, and Systems

Tapestry: Node Insertions

For any node Y on the path between a publisher of object O and the root
GOR

, node Y should have a pointer to O.

Nodes which have a hole in their routing table should be notified if the
insertion of node X can fill that hole.

If X becomes the new root of existing objects, references to those objects
should now lead to X .

The routing table for node X must be constructed.

The nodes near X should include X in their routing tables to perform more
efficient routing.

Refer to book for details of the insertion algorithm that maintains the above
properties.
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Tapestry: Node Deletions and Failures

Node deletion

Node A informs the nodes to which it has (routing) backpointers. It also
provides them with replacement entries for each level from its routing table.
This is to prevent holes in their routing tables. (The notified neighbours can
periodically run the nearest neighbour algorithm to fine-tune their tables.)

The servers to which A has object pointers are also notified. The notified
servers send object republish messages.

During the above steps, node A routes messages to objects rooted at itself to
their new roots. On completion of the above steps, node A informs the nodes
reachable via its backpointers and forward pointers that it is leaving, and
then leaves.

Node failures: Repair the object location pointers, routing tables and mesh, using
the redundancy in the Tapestry routing network. Refer to the book for the
algorithms
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Tapestry: Complexity

A search for an object expected to take (logb2m) hops. However, the routing
tables are optimized to identify nearest neighbour hops (as per the space
metric). Thus, the latency for each hop is expected to be small, compared to
that for CAN and Chord protocols.

The size of the routing table at each node is c · b · logb2m, where c is the
constant that limits the size of the neighbour set that is maintained for
fault-tolerance.

The larger the Tapestry network, the more efficient is the performance. Hence,
better if different applications share the same overlay.
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Fairness in P2P systems

Selfish behavior, free-riding, leaching degrades P2P performance. Need incentives
and punishments to control selfish behavior.

Prisoners’ Dilemma
Two suspects, A and B, are arrested by the police. There is not enough evidence
for a conviction. The police separate the two prisoners, and separately, offer each
the same deal: if the prisoner testifies against (betrays) the other prisoner and the
other prisoner remains silent, the betrayer gets freed and the silent accomplice get
a 10 year sentence. If both testify against the other (betray), they each receive a
2 year sentence. If both remain silent, the police can only sentence both to a
small 6-month term on a minor offense.

Rational selfish behavior: both betray the other - is not Pareto optimal (does not
ensure max good for all). Both staying silent is Pareto-optimal but that is not
rational. In the iterative version, memory of past moves can be used, in this case,
Pareto-optimal solution is reachable.
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Tit-for-tat in BitTorrent

Tit-for-tat strategy: first step, you cooperate; in subsequent steps, reciprocate the
action done by the other in the previous step.

The BitTorrent P2P system has adopted the tit-for-tat strategy in deciding
whether to allow a download of a file in solving the leaching problem.

cooperation is analogous to allowing others to upload local files,

betrayal is analogous to not allowing others to upload.

chocking refers to the refusal to allow uploads.

As the interactions in a P2P system are long-lived, as opposed to a one-time
decision to cooperate or not, optimistic unchocking is periodically done to
unchoke peers that have been chocked. This optimistic action roughly
corresponds to the re-initiation of the game with the previously chocked peer after
some time epoch has elapsed.
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Trust/ reputation in P2P Systems

Incentive-based economic mechanisms to ensure maximum cooperation
inherently depend on the notion of trust.

P2P environment where the peer population is highly transient, there is also
a need to have trust in the quality of data being downloaded.

This requirements have lead to the area of trust and trust management in
P2P systems.

As no node has a complete view in the P2P system, it may have to contact
other nodes to evaluate the trust in particular offerers.

These communication protocol messages for trust management may be
susceptible to various forms of malicious attack (such as man-in-the-middle
attacks and Sybil attacks), thereby requiring strong security guarantees.

The many challenges to tracking trust in a distributed setting include:
I quantifying trust and using different metrics for trust,
I how to maintain trust about other peers in the face of collusion,
I how to minimize the cost of the trust management protocols.
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Unifying P2P Protocols

Let the k entries in a routing table at a node with identifier id be the tuples
〈Sid,i , Jid,i 〉, for 1 ≤ i ≤ k. If |dest − id | ∈ the range Sid,i then route to
R(id + Jid,i ), where R(x) is the node responsible for key R(x).

Protocol Chord CAN Tapestry

Routing table size k = O(log2n) k = O(d) k = O(logbn)

Worst case distance O(log2n) O(n1/d ) O((b − 1) · logbn)

n, common name space 2k xd bx

Si [2i−1, 2i ) [x i−1, x i ) [j · bx−lvl+1, (j + 1) · bx−lvl+1)

Ji 2i−1 kx i−1 suffix(J(lvl−1)·b+j , x − lvl + 1)

Table: Comparison of representative P2P overlays. d is the number of dimensions in
CAN. b is the base in Tapestry.
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Asymptotic Tradeoffs between Router Table Size and
Network Diameter

size

Worst

case

distance

maintain full state

asymptotic tradeoff curve

Chord, Tapestry

maintain no state

CAN

O(n     )−dO(log  n)

n

log  n

<= d

0

O(1) O(n)

Routing table
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Characterizing Complex Networks
Characterize how large networks grow in a distributed (uncontrolled) manner

WWW, INTNET, AS, SOC, PHON, ACT, AUTH, CITE, WORDOCC, WORDSYN,
POWER, PROT, SUBSTRATE

Identify organizational principles that are encoded in subtle ways.

The Erdos-Renyi (ER) random graph model - n nodes with a link between each pair
with probability p is too naive. Three other interesting ideas:

Small world model: Even in very large networks, the path length between any
pair of nodes is relatively small. This principle was popularized by sociologist
Stanley Milgram by the “six degrees of separation” uncovered between any two
people.

Social networks have cliques, characterized by clustering coefficients. For
example, consider node i having ki out-edges. Let li be the actual number of edges
among the ki neighbors. Then i ’s clustering coefficient is Ci = 2li/(ki (ki − 1)). The
network clustering coefficient is the average of such Ci s. (The clustering coefficient
of the ER model is p)

Let P(k) be the probability that a randomly selected node has k incident edges. In
many networks, P(k) ∼ k−γ , i.e., P(k) is distributed with a power-law tail. Such
networks that are free of any characteristic scale, i.e., whose degree characterization
is independent of n, are called scale-free networks. In a random graph, the
degree distribution is Poisson-distributed Thus, random graphs are not scale-free.
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Some Basic Laws
Consider popularity of web sites as example.

PowerLaw : P[X = x ] ∼ x−a. the number of occurrences of events that equal x is
an inverse power of x . In the web example, this corresponds to the number of sites
which have exactly x visitors. In the log-log plot, the slope is a.

Pareto Law: P[X ≥ x ] ∼ x−b = x−(a−1). The number of occurrences larger than x
is an inverse power of x . In the web example, the graph corresponds to the number
of sites which have at least x visitors. The CDF can be obtained by integrating the
PDF. The exponents a and b of the Pareto (CDF) and Power Laws (PDF) are
related as b + 1 = a. In the log-log plot, the slope is b = a− 1.

Zipf’s Law: n ∼ r−c . This law states the count n (i.e., the number) of the
occurrences of an event, as a function of the event’s rank r . It says that the count
of the rth largest occurrence is an inverse power of the rank r . In the web example,
this corresponds to the number of visits to the rth most popular site. In the log-log
plot, the slope is c, which can be seen to be 1

b
= 1

a−1
.

(i.t.o. > y visitors)

# sites# sites

LOG

# visitors# visitors

# visitors

LOG LOG LOG

LOGLOG

rank of site# visitors

slope a slope b = a−1 slope c = 1/b

(b) Power Law (c) Pareto law(a) Power law
     (linear scale)       (log−log scale)      (log−log scale)       (log−log scale)

(d) Zipf’s Law

> x visitors)
P(site has

PDF PDF CDF PDF
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Review of Basic Laws (contd.)

The Pareto Law (CDF) and Power law (PDF) are related.

Zipf Law n ∼ r−c , stating “the r -ranked object has n = r c occurrences, can
be equivalently expressed as: “r objects (X-axis) have n = r−c (Y-axis) of
more occurrences”. This becomes Pareto Law’s CDF after transposing the X
and Y axes, i.e., by restating as: “the number of occurrences larger than
n = r−c (Y-axis) is r (X-axis)”.

From Zipf’s Law, n = r−c , hence, r = n−
1
c . Hence, the Pareto exponent b is

1
c . As b = (a− 1), where a is the Power Law exponent, we see that
a = 1 + 1

c . Hence, the Zipf distribution also satisfies a Power Law PDF.

(i.t.o. > y visitors)

# sites# sites

LOG

# visitors# visitors

# visitors

LOG LOG LOG

LOGLOG

rank of site# visitors

slope a slope b = a−1 slope c = 1/b

(b) Power Law (c) Pareto law(a) Power law
     (linear scale)       (log−log scale)      (log−log scale)       (log−log scale)

(d) Zipf’s Law

> x visitors)
P(site has

PDF PDF CDF PDF
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Properties of the Internet

Rank exponent/ Zipf’s law: The nodes in the Internet graph are ranked in decreasing order of
their degree. When the degree di is plotted as a fn of the rank ri on a log-log
scale, the graph is like Figure (d). The slope is termed the rank exponent R,
and di ∝ rRi . If the minimum degree dn = m is known, then m = dn = CnR,

implying that the proportionality constant C is m/nR.

Degree exponent/ PDF and CDF: Let the CDF fd of the node degree d be the fraction of nodes
with degree greater than d . Then fd ∝ dD, where D is the degree exponent
that is the slope of the log-log plot of fd as a fn of d .

Analogously, let the PDF be gd . Then gd ∝ dD
′
, where D′ is the degree

exponent that is the slope of the log-log plot of gd as a function of d .

Empirically, D′ ∼ D + 1, as theoretically predicted. Further, R ∼ 1
D , also as

theoretically predicted.

Eigen exponent E: For the adjacency matrix A of a graph, its eigenvalue λ is the solution to
AX = λX , where X is a vector of real numbers. The eigenvalues are related to
the graph’s number of edges, number of connected components, the number of
spanning trees, the diameter, and other topological properties. Let the various
eigenvalues be λi , where i is the order and between 1 and n. Then the graph of
λi as a fn of i is a straight line, with a slope of E, the eigen-exponent. Thus,
λi ∝ iE . When the eigenvalues and the degree are sorted in descending order,
it is found that λi =

√
di , implying that E = D

2
.

Further properties of the Internet are given in the book.
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Classification of Scale-free Networks

Many scale-free networks have degree between 2 and 3.

“betweenness centrality” metric

For any graph, let its geodesics, i.e., set of shortest paths, between any pair of
nodes i and j be denoted S(i , j). Let Sk (i , j) be a subset of S(i , j) such that all
the geodesics in Sk (i , j) pass through node k . The betweenness centrality BC of

node k, bk , is
∑

i 6=j gk (i , j) =
∑

i 6=j
|Sk (i,j)|
|S(i,j)| . The bk denotes the importance of

node k in shortest-path connections between all pairs of nodes in the network.

The metric BC follows the power law PBC (g) ∼ g−β , where β is the
BC-exponent. Unlike the degree exponent which varies across different network
types, the BC-exponent has been empirically found to take on values of only 2 or
2.2 for these network types.
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Error and Attack Tolerance

Two types of small-world networks: exponential
(EX) and scale-free (SF)

In EX models, (such as ER and
Waltz-Strogatz), P(k) reaches a max then
exponentially decreases. In SF, P(k)
decreases as per Power Law P(k) ∼ k−γ .

In EX, nodes with a high degree are almost
impossible. In SF, nodes with high degree
are statistically significant.

In EX, all nodes have about the same
number of links. In SF, some nodes have
many links while the majority have few
links.

Errors simulated by removing nodes
randomly. Attacks simulated by removing
nodes with highest degrees. The relative
impact of errors and attacks on the
network diameter is shown.

network

scale−free (under errors)

scale−free (under attack)

0

f, the fraction of nodes removed

0.05 0.1

exponential (attack & errors)

diameter
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Impact on Network Partitioning: EX Networks

The impact of removal of nodes on partitioning is measured using two metrics:
Smax , the ratio of the size of the largest cluster to the system size, and Sothers , the
average size of all clusters except the largest.

f > f 

1

2

S
  

  
  

  
a

n
d

 S
m

a
x

o
th

er
s

0.50

S
others

Smax

under attack and

under attack and
under errors

under errors

fthreshold

f. the fraction of nodes removed

partitions at
very low f

partitions at
f
threshold

partitions at

Fig 18.13. Impact on cluster size of exponential networks, from Albert, Jeong, and

Barabasi. (a) Graphical trend. (b) Pictorial cluster sizes for low f , i.e., f � fthreshold . (c)

Pictorial cluster sizes for f ∼ fthreshold . (d) Pictorial cluster sizes for f > fthreshold . The

pictorial trend in (b)-(d) is also exhibited by scale-free networks under attack, but for a

lower value of fthreshold .

A. Kshemkalyani and M. Singhal (Distributed Computing: Principles, Algorithms, and Systems)Peer-to-peer Computing and Overlay Graphs CUP 2008 46 / 55



Distributed Computing: Principles, Algorithms, and Systems

Impact of Network Partitioning: SF Networks

(higher f)

1

2

S
  

  
  

  
a

n
d

 S
m

a
x

o
th

er
s

0
fthreshold

f. the fraction of nodes removed

0.4

S
max

under attack

S
max

under errors

othersS under errors

under attackothersS

partitions partitionspartitions

(very low f)
under errors under errors under errors

(moderate f)

Impact on cluster size of scale-free networks, from Albert, Jeong, and Barabasi. The

pictorial impact of attacks on cluster sizes are similar to those in Fig 18.13. (a)

Graphical trend. (b) Pictorial cluster sizes for low f under failure. (c) Pictorial cluster

sizes for moderate f under failure. (d) Pictorial cluster sizes for high f under failure.
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Generalized Random Graph Networks

Random graphs are not scale-free (node deg distribution does not follow
Power Law).

The generalized random graph uses the degree distribution as an input (i.e.,
requires the degree distribution to follow a power law), but is random in all
other respects.

These semi-random graphs have a random distribution of edges, similar to
ER model.

Clustering coefficient tends to 0 as n increases.
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Small World Networks

Real-world networks are small worlds, having small diameter, like random graphs,
but they have relatively large clustering coefficients that tend to be independent
of the network size.
Ordered lattices have clustering coefficients independent of the network size.
Figure(a) shows a 1-D lattice in which each node is connected to k = 4 closest

nodes. The clustering coefficient C = 3(k−2)
4(k−1) .

(a) (b) (c)
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Small Worlds Networks: Watts-Strogatz model

(a) (b) (c)

The Watts-Strogatz random rewiring procedure. (a) Regular. (b) Small-world. (c)

Random. The rewiring shown maintains the degree of each node. The Watts-Strogatz

model is the first model for small world graphs with high clustering coefficients with low

path lengths.

1 Define a ring lattice with n nodes and each node connected to k closest
neighbours (k/2 on either side). Let n� k � ln(n)� 1.

2 Rewire each edge randomly with probability p. When p = 0, there is a
perfect structure, as in Figure(b). When p = 1, complete randomness, as in
Figure(c).
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Small World Networks (2)

A characteristic of small-world graphs is the small average path length. When p is
small, len scales linearly with n but when p is large, len scales logarithmically.
Through analytical arguments and simulations, the characteristic path length
tends to vary as:

len(n, p) ∼ n1/d

k
f (pkn) (5)

where the function f behaves as follows.

f (u) =

{
constant if u � 1
ln(u)

u if u � 1
(6)

The variable u ∝ pknd has the intuitive interpretation that it depends on the
average number of random links that provide “jumps” across the graph, and f (u)
is the average factor by which the distance between a pair of nodes gets reduced
by the “jumps”.
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Scale-free Networks

Semi-random graphs that are constrained to obey a power law for the degree
distributions and constrained to have large clustering coefficients yield scale-free
networks, but do not shed any insight into the mechanisms that give birth to
scale-free networks.
Initially, there are m0 isolated nodes. At each sequential step, perform one of the following
operations.

Growth: Add a new node with m edges (m ≤ m0), that link the new node to m
nodes already in the system.

Preferential Attachment: The probability
∏

that the new node will be connected to
node i depends on the degree ki such that

∏
(ki ) = ki∑

j (kj )

The simple Barabasi-Albert model has a degree distribution having a power law
(degree 3) that is independent of m.
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Evolving Networks

For a flexible, universal model, need to incorporate

Preferential attachment: Model the fact that a new node attaches to an
isolated node.

Growth: # edges increases faster than the # nodes

Local events: Model microscopic (local) changes to topology, like node
addition or deletion, edge addition and deletion

Growth constraints: Model bounded capacity for #edges or lifetime of nodes.
Thus model bounded capacity and aging.

Competition: A node may attract or inherit more edges at cost of other nodes

Induced preferential attachment: Local mechanisms, such as copying (web
sites) or tracing selected walks (in citation networks) induce preferential
attachment.
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Extended Barabasi-Albert Model

Initially, there are m0 isolated nodes. At each sequential step, perform one of the following
operations.

With probability p, add m, where m ≤ m0, new edges. For each new edge, one end is
randomly selected, the other end with probability∏

(ki ) =
ki + 1∑
j (kj + 1)

(7)

With probability q, rewire m edges. To rewire an edge, randomly select node i , delete
some edge (i ,w), add edge (i , x) to node x that is chosen with
probability

∏
(kx ) as per Equation 7.

With probability 1− p − q, insert a new node. Add m new edges to the new node,
such that with probability

∏
(ki ), an edge connects to a node i already

present before this step.

A. Kshemkalyani and M. Singhal (Distributed Computing: Principles, Algorithms, and Systems)Peer-to-peer Computing and Overlay Graphs CUP 2008 54 / 55



Distributed Computing: Principles, Algorithms, and Systems

Extended Barabasi-Albert Model

q < qmax : The degree distribution is a
power law.

q > qmax : P(k) can be shown to behave
like an exponential distribution.
The model now behaves like
the ER and WS models.

This is similar to the behaviour seen in real
networks – some networks show a power law
while others show an exponential tail – and a
single model can capture both behaviors by
tuning the parameter q.
The scale-free regime and the exponential
regime are marked. The boundary between the
two regimes depends on the value of m and has
slope −m/(1 + 2m). The area enclosed by thick
lines shows the scale-free regime; the dashed line
is its boundary when m→∞ and the dotted
line is its boundary when m→ 0.

E

SF

q

0

p0 1.0

1.0

Phase
diagram for the Extended Barabasi-Albert
model. SF denotes the scale-free regime, which
is enclosed by the thick border. E denotes the
exponential regime which exists in the remainder
of the lower diagonal region of the graph. The
plain line shows the boundary for m = 1, having
a Y-axis intercept at 0.67.
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