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Introduction

The concept of causality between events is fundamental to the design and
analysis of parallel and distributed computing and operating systems.

Usually causality is tracked using physical time.

In distributed systems, it is not possible to have a global physical time.

As asynchronous distributed computations make progress in spurts, the
logical time is sufficient to capture the fundamental monotonicity property
associated with causality in distributed systems.
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Introduction

This chapter discusses three ways to implement logical time - scalar time,
vector time, and matrix time.

Causality among events in a distributed system is a powerful concept in
reasoning, analyzing, and drawing inferences about a computation.

The knowledge of the causal precedence relation among the events of
processes helps solve a variety of problems in distributed systems, such as
distributed algorithms design, tracking of dependent events, knowledge about
the progress of a computation, and concurrency measures.
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A Framework for a System of Logical Clocks

Definition

A system of logical clocks consists of a time domain T and a logical clock C .
Elements of T form a partially ordered set over a relation <.

Relation < is called the happened before or causal precedence. Intuitively,
this relation is analogous to the earlier than relation provided by the physical
time.

The logical clock C is a function that maps an event e in a distributed
system to an element in the time domain T , denoted as C(e) and called the
timestamp of e, and is defined as follows:

C : H 7→ T

such that the following property is satisfied:

for two events ei and ej , ei → ej =⇒ C(ei ) < C(ej).
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A Framework for a System of Logical Clocks

This monotonicity property is called the clock consistency condition.

When T and C satisfy the following condition,

for two events ei and ej , ei → ej ⇔ C(ei ) < C(ej)

the system of clocks is said to be strongly consistent.

Implementing Logical Clocks

Implementation of logical clocks requires addressing two issues: data
structures local to every process to represent logical time and a protocol to
update the data structures to ensure the consistency condition.

Each process pi maintains data structures that allow it the following two
capabilities:

◮ A local logical clock, denoted by lci , that helps process pi measure its own
progress.
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Implementing Logical Clocks

◮ A logical global clock, denoted by gci , that is a representation of process pi ’s
local view of the logical global time. Typically, lci is a part of gci .

The protocol ensures that a process’s logical clock, and thus its view of the global
time, is managed consistently. The protocol consists of the following two rules:

R1: This rule governs how the local logical clock is updated by a process
when it executes an event.

R2: This rule governs how a process updates its global logical clock to
update its view of the global time and global progress.

Systems of logical clocks differ in their representation of logical time and also
in the protocol to update the logical clocks.
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Scalar Time

Proposed by Lamport in 1978 as an attempt to totally order events in a
distributed system.

Time domain is the set of non-negative integers.

The logical local clock of a process pi and its local view of the global time
are squashed into one integer variable Ci .

Rules R1 and R2 to update the clocks are as follows:

R1: Before executing an event (send, receive, or internal), process pi executes
the following:

Ci := Ci + d (d > 0)

In general, every time R1 is executed, d can have a different value; however,
typically d is kept at 1.
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Scalar Time

R2: Each message piggybacks the clock value of its sender at sending time.
When a process pi receives a message with timestamp Cmsg , it executes the
following actions:

◮ Ci := max(Ci , Cmsg )
◮ Execute R1.
◮ Deliver the message.

Figure 3.1 shows evolution of scalar time.
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Scalar Time
Evolution of scalar time:
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Figure 3.1: The space-time diagram of a distributed execution.
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Basic Properties

Consistency Property

Scalar clocks satisfy the monotonicity and hence the consistency property:

for two events ei and ej , ei → ej =⇒ C(ei ) < C(ej).

Total Ordering

Scalar clocks can be used to totally order events in a distributed system.

The main problem in totally ordering events is that two or more events at
different processes may have identical timestamp.

For example in Figure 3.1, the third event of process P1 and the second event
of process P2 have identical scalar timestamp.
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Total Ordering

A tie-breaking mechanism is needed to order such events. A tie is broken as
follows:

Process identifiers are linearly ordered and tie among events with identical
scalar timestamp is broken on the basis of their process identifiers.

The lower the process identifier in the ranking, the higher the priority.

The timestamp of an event is denoted by a tuple (t, i) where t is its time of
occurrence and i is the identity of the process where it occurred.

The total order relation ≺ on two events x and y with timestamps (h,i) and
(k,j), respectively, is defined as follows:

x ≺ y ⇔ (h < k or (h = k and i < j))
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Properties. . .

Event counting

If the increment value d is always 1, the scalar time has the following
interesting property: if event e has a timestamp h, then h-1 represents the
minimum logical duration, counted in units of events, required before
producing the event e;

We call it the height of the event e.

In other words, h-1 events have been produced sequentially before the event e
regardless of the processes that produced these events.

For example, in Figure 3.1, five events precede event b on the longest causal
path ending at b.
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Properties. . .

No Strong Consistency

The system of scalar clocks is not strongly consistent; that is, for two events
ei and ej , C(ei ) < C(ej) 6=⇒ ei → ej .

For example, in Figure 3.1, the third event of process P1 has smaller scalar
timestamp than the third event of process P2.However, the former did not
happen before the latter.

The reason that scalar clocks are not strongly consistent is that the logical
local clock and logical global clock of a process are squashed into one,
resulting in the loss causal dependency information among events at different
processes.

For example, in Figure 3.1, when process P2 receives the first message from
process P1, it updates its clock to 3, forgetting that the timestamp of the
latest event at P1 on which it depends is 2.
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Vector Time

The system of vector clocks was developed independently by Fidge, Mattern
and Schmuck.

In the system of vector clocks, the time domain is represented by a set of
n-dimensional non-negative integer vectors.

Each process pi maintains a vector vti [1..n], where vti [i ] is the local logical
clock of pi and describes the logical time progress at process pi .

vti [j ] represents process pi ’s latest knowledge of process pj local time.

If vti [j ]=x , then process pi knows that local time at process pj has
progressed till x .

The entire vector vti constitutes pi ’s view of the global logical time and is
used to timestamp events.
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Vector Time

Process pi uses the following two rules R1 and R2 to update its clock:

R1: Before executing an event, process pi updates its local logical time as
follows:

vti [i ] := vti [i ] + d (d > 0)

R2: Each message m is piggybacked with the vector clock vt of the sender
process at sending time. On the receipt of such a message (m,vt), process pi

executes the following sequence of actions:
◮ Update its global logical time as follows:

1 ≤ k ≤ n : vti [k] := max(vti [k], vt[k])

◮ Execute R1.
◮ Deliver the message m.
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Vector Time

The timestamp of an event is the value of the vector clock of its process
when the event is executed.

Figure 3.2 shows an example of vector clocks progress with the increment
value d=1.

Initially, a vector clock is [0, 0, 0, ...., 0].
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Vector Time
An Example of Vector Clocks
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Figure 3.2: Evolution of vector time.
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Vector Time
Comparing Vector Timestamps

The following relations are defined to compare two vector timestamps, vh
and vk :

vh = vk ⇔ ∀x : vh[x ] = vk [x ]

vh ≤ vk ⇔ ∀x : vh[x ] ≤ vk [x ]

vh < vk ⇔ vh ≤ vk and ∃x : vh[x ] < vk [x ]

vh ‖ vk ⇔ ¬(vh < vk) ∧ ¬(vk < vh)

If the process at which an event occurred is known, the test to compare two
timestamps can be simplified as follows: If events x and y respectively
occurred at processes pi and pj and are assigned timestamps vh and vk,
respectively, then

x → y ⇔ vh[i ] ≤ vk [i ]

x ‖ y ⇔ vh[i ] > vk [i ] ∧ vh[j ] < vk [j ]
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Vector Time
Properties of Vectot Time

Isomorphism

If events in a distributed system are timestamped using a system of vector
clocks, we have the following property.
If two events x and y have timestamps vh and vk, respectively, then

x → y ⇔ vh < vk

x ‖ y ⇔ vh ‖ vk .

Thus, there is an isomorphism between the set of partially ordered events
produced by a distributed computation and their vector timestamps.
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Vector Time

Strong Consistency

The system of vector clocks is strongly consistent; thus, by examining the
vector timestamp of two events, we can determine if the events are causally
related.

However, Charron-Bost showed that the dimension of vector clocks cannot be
less than n, the total number of processes in the distributed computation, for
this property to hold.

Event Counting

If d=1 (in rule R1), then the i th component of vector clock at process pi ,
vti [i ], denotes the number of events that have occurred at pi until that
instant.

So, if an event e has timestamp vh, vh[j ] denotes the number of events
executed by process pj that causally precede e. Clearly,

∑
vh[j ] − 1

represents the total number of events that causally precede e in the
distributed computation.
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Efficient Implementations of Vector Clocks

If the number of processes in a distributed computation is large, then vector
clocks will require piggybacking of huge amount of information in messages.

The message overhead grows linearly with the number of processors in the
system and when there are thousands of processors in the system, the
message size becomes huge even if there are only a few events occurring in
few processors.

We discuss an efficient way to maintain vector clocks.

Charron-Bost showed that if vector clocks have to satisfy the strong
consistency property, then in general vector timestamps must be at least of
size n, the total number of processes.

However, optimizations are possible and next, and we discuss a technique to
implement vector clocks efficiently.
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Singhal-Kshemkalyani’s Differential Technique

Singhal-Kshemkalyani’s differential technique is based on the observation that
between successive message sends to the same process, only a few entries of
the vector clock at the sender process are likely to change.

When a process pi sends a message to a process pj , it piggybacks only those
entries of its vector clock that differ since the last message sent to pj .

If entries i1, i2, . . . , in1 of the vector clock at pi have changed to
v1, v2, . . . , vn1 , respectively, since the last message sent to pj , then process pi

piggybacks a compressed timestamp of the form:

{(i1, v1), (i2, v2), . . . , (in1 , vn1)}

to the next message to pj .
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Singhal-Kshemkalyani’s Differential Technique

When pj receives this message, it updates its vector clock as follows:

vti [ik ] = max(vti [ik ], vk) for k = 1, 2, . . . , n1.

Thus this technique cuts down the message size, communication bandwidth
and buffer (to store messages) requirements.

In the worst of case, every element of the vector clock has been updated at
pi since the last message to process pj , and the next message from pi to pj

will need to carry the entire vector timestamp of size n.

However, on the average the size of the timestamp on a message will be less
than n.
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Singhal-Kshemkalyani’s Differential Technique

Implementation of this technique requires each process to remember the
vector timestamp in the message last sent to every other process.

Direct implementation of this will result in O(n2) storage overhead at each
process.

Singhal and Kshemkalyani developed a clever technique that cuts down this
storage overhead at each process to O(n). The technique works in the
following manner:

Process pi maintains the following two additional vectors:
◮ LSi [1..n] (‘Last Sent’):

LSi [j] indicates the value of vti [i] when process pi last sent a message to
process pj .

◮ LUi [1..n] (‘Last Update’):
LUi [j] indicates the value of vti [i] when process pi last updated the entry vti [j].

Clearly, LUi [i ] = vti [i ] at all times and LUi [j ] needs to be updated only when
the receipt of a message causes pi to update entry vti [j ]. Also, LSi [j ] needs
to be updated only when pi sends a message to pj .
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Singhal-Kshemkalyani’s Differential Technique

Since the last communication from pi to pj , only those elements of vector
clock vti [k ] have changed for which LSi [j ] < LUi [k ] holds.

Hence, only these elements need to be sent in a message from pi to pj .
When pi sends a message to pj , it sends only a set of tuples

{(x , vti [x ])|LSi [j ] < LUi [x ]}

as the vector timestamp to pj , instead of sending a vector of n entries in a
message.

Thus the entire vector of size n is not sent along with a message. Instead,
only the elements in the vector clock that have changed since the last
message send to that process are sent in the format
{(p1, latest value), (p2, latest value), . . .}, where pi indicates that the pi th
component of the vector clock has changed.

This technique requires that the communication channels follow FIFO
discipline for message delivery.
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Singhal-Kshemkalyani’s Differential Technique

This method is illustrated in Figure 3.3. For instance, the second message
from p3 to p2 (which contains a timestamp {(3, 2)}) informs p2 that the third
component of the vector clock has been modified and the new value is 2.

This is because the process p3 (indicated by the third component of the
vector) has advanced its clock value from 1 to 2 since the last message sent
to p2.

This technique substantially reduces the cost of maintaining vector clocks in
large systems, especially if the process interactions exhibit temporal or spatial
localities.
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Singhal-Kshemkalyani’s Differential Technique
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Figure 3.3: Vector clocks progress in Singhal-Kshemkalyani technique.
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Matrix Time

In a system of matrix clocks, the time is represented by a set of n × n matrices of
non-negative integers.
A process pi maintains a matrix mti [1..n, 1..n] where,

mti [i , i ] denotes the local logical clock of pi and tracks the progress of the
computation at process pi .

mti [i , j ] denotes the latest knowledge that process pi has about the local
logical clock, mtj [j , j ], of process pj .

mti [j , k ] represents the knowledge that process pi has about the latest
knowledge that pj has about the local logical clock, mtk [k , k ], of pk .

The entire matrix mti denotes pi ’s local view of the global logical time.
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Matrix Time

Process pi uses the following rules R1 and R2 to update its clock:

R1 : Before executing an event, process pi updates its local logical time as
follows:

mti [i , i ] := mti [i , i ] + d (d > 0)

R2: Each message m is piggybacked with matrix time mt. When pi receives
such a message (m,mt) from a process pj , pi executes the following sequence
of actions:

◮ Update its global logical time as follows:

(a) 1 ≤ k ≤ n : mti [i , k] := max(mti [i , k], mt[j , k])

(That is, update its row mti [i , ∗] with the pj ’s row in the received timestamp,
mt.)

(b) 1 ≤ k , l ≤ n : mti [k , l] := max(mti [k , l], mt[k , l])

◮ Execute R1.
◮ Deliver message m.
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Matrix Time

Figure 3.4 gives an example to illustrate how matrix clocks progress in a
distributed computation. We assume d=1.

Let us consider the following events: e which is the xi -th event at process pi ,
e1
k and e2

k which are the x1
k -th and x2

k -th event at process pk , and e1
j and e2

j

which are the x1
j -th and x2

j -th events at pj .

Let mte denote the matrix timestamp associated with event e. Due to
message m4, e2

k is the last event of pk that causally precedes e, therefore, we
have mte [i , k ]=mte [k , k ]=x2

k .

Likewise, mte [i , j ]=mte[j , j ]=x2
j . The last event of pk known by pj , to the

knowledge of pi when it executed event e, is e1
k ; therefore, mte [j , k ]=x1

k .
Likewise, we have mte [k , j ]=x1

j .
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Matrix Time
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Figure 3.4: Evolution of matrix time.
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Matrix Time

Basic Properties

Vector mti [i , .] contains all the properties of vector clocks.

In addition, matrix clocks have the following property:
mink(mti [k , l ]) ≥ t ⇒ process pi knows that every other process pk knows
that pl ’s local time has progressed till t.

◮ If this is true, it is clear that process pi knows that all other processes know
that pl will never send information with a local time ≤ t.

◮ In many applications, this implies that processes will no longer require from pl

certain information and can use this fact to discard obsolete information.

If d is always 1 in the rule R1, then mti [k , l ] denotes the number of events
occurred at pl and known by pk as far as pi ’s knowledge is concerned.
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Virtual Time

Virtual time system is a paradigm for organizing and synchronizing
distributed systems.

This section a provides description of virtual time and its implementation
using the Time Warp mechanism.

The implementation of virtual time using Time Warp mechanism works on
the basis of an optimistic assumption.

Time Warp relies on the general lookahead-rollback mechanism where each
process executes without regard to other processes having synchronization
conflicts.
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Virtual Time

If a conflict is discovered, the offending processes are rolled back to the time
just before the conflict and executed forward along the revised path.

Detection of conflicts and rollbacks are transparent to users.

The implementation of Virtual Time using Time Warp mechanism makes the
following optimistic assumption: synchronization conflicts and thus rollbacks
generally occurs rarely.

next, we discuss in detail Virtual Time and how Time Warp mechanism is
used to implement it.
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Virtual Time Definition

“Virtual time is a global, one dimensional, temporal coordinate system on a
distributed computation to measure the computational progress and to define
synchronization.”

A virtual time system is a distributed system executing in coordination with
an imaginary virtual clock that uses virtual time.

Virtual times are real values that are totally ordered by the less than relation,
“<”.

Virtual time is implemented a collection of several loosely synchronized local
virtual clocks.

These local virtual clocks move forward to higher virtual times; however,
occasionaly they move backwards.
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Virtual Time Definition

Processes run concurrently and communicate with each other by exchanging
messages.

Every message is characterized by four values:
a) Name of the sender
b) Virtual send time
c) Name of the receiver
d) Virtual receive time

Virtual send time is the virtual time at the sender when the message is sent,
whereas virtual receive time specifies the virtual time when the message must
be received (and processed) by the receiver.
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Virtual Time Definition

A problem arises when a message arrives at process late, that is, the virtual
receive time of the message is less than the local virtual time at the receiver
process when the message arrives.

Virtual time systems are subject to two semantic rules similar to Lamport’s
clock conditions:

◮ Rule 1: Virtual send time of each message < virtual receive time of that
message.

◮ Rule 2: Virtual time of each event in a process < Virtual time of next event in
that process.

The above two rules imply that a process sends all messages in increasing
order of virtual send time and a process receives (and processes) all messages
in the increasing order of virtual receive time.
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Virtual Time Definition

Causality of events is an important concept in distributed systems and is also
a major constraint in the implementation of virtual time.

It is important an event that causes another should be completely executed
before the caused event can be processed.

The constraint in the implementation of virtual time can be stated as follows:
“If an event A causes event B, then the execution of A and B must be
scheduled in real time so that A is completed before B starts”.

A. Kshemkalyani and M. Singhal (Distributed Computing) Logical Time CUP 2008 38 / 67



Distributed Computing: Principles, Algorithms, and Systems

Virtual Time Definition

If event A has an earlier virtual time than event B, we need execute A before
B provided there is no causal chain from A to B.

Better performance can be achieved by scheduling A concurrently with B or
scheduling A after B.

If A and B have exactly the same virtual time coordinate, then there is no
restriction on the order of their scheduling.

If A and B are distinct events, they will have different virtual space
coordinates (since they occur at different processes) and neither will be a
cause for the other.

To sum it up, events with virtual time < ‘t’ complete before the starting of
events at time ‘t’ and events with virtual time > ‘t’ will start only after
events at time ‘t’ are complete.
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Virtual Time Definition

Characteristics of Virtual Time

1 Virtual time systems are not all isomorphic; it may be either discrete or
continuous.

2 Virtual time may be only partially ordered.

3 Virtual time may be related to real time or may be independent of it.

4 Virtual time systems may be visible to programmers and manipulated
explicitly as values, or hidden and manipulated implicitly according to some
system-defined discipline

5 Virtual times associated with events may be explicitly calculated by user
programs or they may be assigned by fixed rules.
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Comparison with Lamport’s Logical Clocks

In Lamport’s logical clock, an artificial clock is created one for each process
with unique labels from a totally ordered set in a manner consistent with
partial order.

In virtual time, the reverse of the above is done by assuming that every event
is labeled with a clock value from a totally ordered virtual time scale
satisfying Lamport’s clock conditions.

Thus the Time Warp mechanism is an inverse of Lamport’s scheme.

In Lamport’s scheme, all clocks are conservatively maintained so that they
never violate causality.

A process advances its clock as soon as it learns of new causal dependency.
In the virtual time, clocks are optimisticaly advanced and corrective actions
are taken whenever a violation is detected.

Lamport’s initial idea brought about the concept of virtual time but the
model failed to preserve causal independence.
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Virtual Time Definition

Time Warp Mechanism

In the implementation of virtual time using Time Warp mechanism, virtual
receive time of message is considered as its timestamp.

The necessary and sufficient conditions for the correct implementation of
virtual time are that each process must handle incoming messages in
timestamp order.

This is highly undesirable and restrictive because process speeds and message
delays are likely to highly variable.

It natural for some processes to get ahead in virtual time of other processes.
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Virtual Time Definition

Time Warp Mechanism

It is impossible for a process on the basis of local information alone to block
and wait for the message with the next timestamp.

It is always possible that a message with earlier timestamp arrives later.

So, when a process executes a message, it is very difficult for it determine
whether a message with an earlier timestamp will arrive later.

This is the central problem in virtual time that is solved by the Time Warp
mechanism.

The Time warp mechanism assumes that message communication is reliable,
nad messages may not be delivered in FIFO order.
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Virtual Time Definition

Time Warp Mechanism

Time Warp mechanism consists of two major parts: local control mechanism
and global control mechanism.

The local control mechanism insures that events are executed and messages
are processed in the correct order.

The global control mechanism takes care of global issues such as global
progress, termination detection, I/O error handling, flow control, etc.
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The Local Control Mechanism

There is no global virtual clock variable in this implementation; each process
has a local virtual clock variable.

The local virtual clock of a process doesn’t change during an event at that
process but it changes only between events.

On the processing of next message from the input queue, the process
increases its local clock to the timestamp of the message.

At any instant, the value of virtual time may differ for each process but the
value is transparent to other processes in the system.
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The Local Control Mechanism

When a message is sent, the virtual send time is copied from the sender’s
virtual clock while the name of the receiver and virtual receive time are
assigned based on application specific context.

All arriving messages at a process are stored in an input queue in the
increasing order of timestamps (receive times).

Processes will receive late messages due to factors such as different
computation rates of processes and network delays.

The semantics of virtual time demands that incoming messages be received
by each process strictly in the timestamp order.
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The Local Control Mechanism

This is accomplished as follows:
“On the reception of a late message, the receiver rolls back to an earlier
virtual time, cancelling all intermediate side effects and then executes forward
again by executing the late message in the proper sequence.”

If all the messages in the input queue of a process are processed, the state of
the process is said to terminate and its clock is set to + inf.

However, the process is not destroyed as a late message may arrive resulting
it to rollback and execute again.

Thus, each process is doing a constant “lookahead”, processing future
messages from its input queue.
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The Local Control Mechanism

Over a length computation, each process may roll back several times while
generally progressing forward with rollback completely transparent to other
processes in the system.

Rollback in a distributed system is complicated: A process that wants to
rollback might have sent many messages to other processes, which in turn
might have sent many messages to other processes, and so on, leading to
deep side effects.

For rollback, messages must be effectively “unsent” and their side effects
should be undone. This is achieved efficiently by using antimessages.
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The Local Control Mechanism

Antimessages and the Rollback Mechanism
Runtime representation of a process is composed of the following:

Process name: Virtual spaces coordinate which is unique in the system.

Local virtual clock: Virtual time coordinate

State: Data space of the process including execution stack, program counter
and its own variables

State queue: Contains saved copies of process’s recent states as roll back
with Time warp mechanism requires the state of the process being saved.

Input queue: Contains all recently arrived messages in order of virtual
receive time. Processed messages from the input queue are not deleted as
they are saved in the output queue with a negative sign (antimessage) to
facilitate future roll backs.

Output queue: Contains negative copies of messages the process has
recently sent in virtual send time order. They are needed in case of a rollback.

For every message, there exists an antimessage that is the same in content but
opposite in sign.
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Antimessages and the Rollback Mechanism

Whenever a process sends a message, a copy of the message is transmitted to
receiver’s input queue and a negative copy (antimessage) is retained in the
sender’s output queue for use in sender rollback.

Whenever a message and its antimessage appear in the same queue no
matter in which order they arrived, they immediately annihilate each other
resulting in shortening of the queue by one message.

When a message arrives at the input queue of a process with timestamp
greater than virtual clock time of its destination process, it is simply
enqueued.

When the destination process’ virtual time is greater than the virtual time of
message received, the process must do a rollback.
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Antimessages and the Rollback Mechanism
Rollback Mechanism

Search the ”State queue” for the last saved state with timestamp that is less
than the timestamp of the message received and restore it.

Make the timestamp of the received message as the value of the local virtual
clock and discard from the state queue all states saved after this time. Then
the resume execution forward from this point.

Now all the messages that are sent between the current state and earlier
state must be “unsent”. This is taken care of by executing a simple rule:

“To unsend a message, simply transmit its antimessage.”

This results in antimessages following the positive ones to the destination. A
negative message causes a rollback at its destination if it’s virtual receive
time is less than the receiver’s virtual time.
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Antimessages and the Rollback Mechanism

Depending on the timing, there are several possibilities at the receiver’s end:

First, the original (positive) message has arrived but not yet been processed
at the receiver.

In this case, the negative message causes no rollback, however, it annihilates
with the positive message leaving the receiver with no record of that message.

Second, the original positive message has already been partially or completely
processed by the receiver.

In this case, the negative message causes the receiver to roll back to a virtual
time when the positive message was received.

It will also annihilate the positive message leaving the receiver with no record
that the message existed. When the receiver executes again, the execution
will assume that these message never existed.

A rolled back process may send antimessages to other processes.
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Antimessages and the Rollback Mechanism

A negative message can also arrive at the destination before the positive one.
In this case, it is enqueued and will be annihilated when positive message
arrives.

If it is negative message’s turn to be executed at a processs’ input queqe, the
receiver may take any action like a no-op.

Any action taken will eventually be rolled back when the corresponding
positive message arrives.

An optimization would be to skip the antimessage from the input queue and
treat it as a no-op, and when the corresponding positive message arrives, it
will annihilate the negative message, and inhibit any rollback.
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Antimessages and the Rollback Mechanism

The antimessage protocol has several advantages:

It is extremely robust and works under all possible circumstances.

It is free from deadlocks as there is no blocking.

It is also free from domino effects.

In the worst case, all processes in system roll back to same virtual time as
original one did and then proceed forward again.
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Physical Clock Synchronization: NTP

Motivation

In centralized systems, there is only single clock. A process gets the time by
simply issuing a system call to the kernel.

In distributed systems, there is no global clock or common memory. Each
processor has its own internal clock and its own notion of time.

These clocks can easily drift seconds per day, accumulating significant errors
over time.

Also, because different clocks tick at different rates, they may not remain
always synchronized although they might be synchronized when they start.

This clearly poses serious problems to applications that depend on a
synchronized notion of time.
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Physical Clock Synchronization: NTP

Motivation

For most applications and algorithms that run in a distributed system, we
need to know time in one or more of the following contexts:

◮ The time of the day at which an event happened on a specific machine in the
network.

◮ The time interval between two events that happened on different machines in
the network.

◮ The relative ordering of events that happened on different machines in the
network.

Unless the clocks in each machine have a common notion of time, time-based
queries cannot be answered.

Clock synchronization has a significant effect on many problems like secure
systems, fault diagnosis and recovery, scheduled operations, database
systems, and real-world clock values.
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Physical Clock Synchronization: NTP

Clock synchronization is the process of ensuring that physically distributed
processors have a common notion of time.

Due to different clocks rates, the clocks at various sites may diverge with
time and periodically a clock synchronization must be performed to correct
this clock skew in distributed systems.

Clocks are synchronized to an accurate real-time standard like UTC
(Universal Coordinated Time).

Clocks that must not only be synchronized with each other but also have to
adhere to physical time are termed physical clocks.
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Physical Clock Synchronization: NTP

Definitions and Terminology
Let Ca and Cb be any two clocks.

Time: The time of a clock in a machine p is given by the function Cp(t),
where Cp(t) = t for a perfect clock.

Frequency: Frequency is the rate at which a clock progresses. The
frequency at time t of clock Ca is C

′

a(t).

Offset: Clock offset is the difference between the time reported by a clock
and the real time. The offset of the clock Ca is given by Ca(t) − t. The
offset of clock Ca relative to Cb at time t ≥ 0 is given by Ca(t) − Cb(t).

Skew: The skew of a clock is the difference in the frequencies of the clock
and the perfect clock. The skew of a clock Ca relative to clock Cb at time t
is (C ′

a(t) − C ′

b(t)). If the skew is bounded by ρ, then as per Equation (1),
clock values are allowed to diverge at a rate in the range of 1 − ρ to 1 + ρ.

Drift (rate): The drift of clock Ca is the second derivative of the clock value
with respect to time, namely, C ′′

a (t). The drift of clock Ca relative to clock
Cb at time t is C ′′

a (t) − C ′′

b (t).
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Physical Clock Synchronization: NTP

Clock Inaccuracies

Physical clocks are synchronized to an accurate real-time standard like UTC
(Universal Coordinated Time).

However, due to the clock inaccuracy discussed above, a timer (clock) is said
to be working within its specification if (where constant ρ is the maximum
skew rate specified by the manufacturer.)

1 − ρ ≤
dC

dt
≤ 1 + ρ (1)

Figure 3.5 illustrates the behavior of fast, slow, and perfect clocks with
respect to UTC.

A. Kshemkalyani and M. Singhal (Distributed Computing) Logical Time CUP 2008 59 / 67



Distributed Computing: Principles, Algorithms, and Systems

Physical Clock Synchronization: NTP
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Figure 3.5: The behavior of fast, slow, and perfect clocks with respect to UTC.

A. Kshemkalyani and M. Singhal (Distributed Computing) Logical Time CUP 2008 60 / 67



Distributed Computing: Principles, Algorithms, and Systems

Physical Clock Synchronization: NTP

Offset delay estimation method

The Network Time Protocol (NTP) which is widely used for clock
synchronization on the Internet uses the The Offset Delay Estimation
method.

The design of NTP involves a hierarchical tree of time servers.
◮ The primary server at the root synchronizes with the UTC.
◮ The next level contains secondary servers, which act as a backup to the

primary server.
◮ At the lowest level is the synchronization subnet which has the clients.
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Physical Clock Synchronization: NTP

Clock offset and delay estimation:
In practice, a source node cannot accurately estimate the local time on the target
node due to varying message or network delays between the nodes.

This protocol employs a common practice of performing several trials and
chooses the trial with the minimum delay.

Figure 3.6 shows how NTP timestamps are numbered and exchanged
between peers A and B.

Let T1, T2, T3, T4 be the values of the four most recent timestamps as shown.

Assume clocks A and B are stable and running at the same speed.
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Figure 3.6: Offset and delay estimation.
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Let a = T1 − T3 and b = T2 − T4.

If the network delay difference from A to B and from B to A, called
differential delay, is small, the clock offset θ and roundtrip delay δ of B
relative to A at time T4 are approximately given by the following.

θ =
a + b

2
, δ = a − b (2)

Each NTP message includes the latest three timestamps T1, T2 and T3,
while T4 is determined upon arrival.

Thus, both peers A and B can independently calculate delay and offset using
a single bidirectional message stream as shown in Figure 3.7.
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Figure 3.7: Timing diagram for the two servers.
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The Network Time Protocol synchronization

protocol.

A pair of servers in symmetric mode exchange pairs of timing messages.

A store of data is then built up about the relationship between the two
servers (pairs of offset and delay).
Specifically, assume that each peer maintains pairs (Oi ,Di ), where
Oi - measure of offset (θ)
Di - transmission delay of two messages (δ).

The offset corresponding to the minimum delay is chosen.
Specifically, the delay and offset are calculated as follows. Assume that
message m takes time t to transfer and m′ takes t ′ to transfer.

(Continued on the next slide . . . .)
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The Network Time Protocol synchronization

protocol.

The offset between A’s clock and B’s clock is O. If A’s local clock time is
A(t) and B’s local clock time is B(t), we have

A(t) = B(t) + O (3)

Then,
Ti−2 = Ti−3 + t + O (4)

Ti = Ti−1 − O + t ′ (5)

Assuming t = t ′, the offset Oi can be estimated as:

Oi = (Ti−2 − Ti−3 + Ti−1 − Ti)/2 (6)

The round-trip delay is estimated as:

Di = (Ti − Ti−3) − (Ti−1 − Ti−2) (7)

The eight most recent pairs of (Oi , Di ) are retained.

The value of Oi that corresponds to minimum Di is chosen to estimate O.
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