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Topology Abstraction and Overlays

System: undirected (weighted) graph (N, L), where n = |N|, l = |L|
Physical topology

I Nodes: network nodes, routers, all end hosts (whether participating or not)
I Edges: all LAN, WAN links, direct edges between end hosts
I E.g., Fig. 5.1(a) topology + all routers and links in WANs

Logical topology (application context)
I Nodes: end hosts where application executes
I Edges: logical channels among these nodes

All-to-all fully connected (e.g., Fig 5.1(b))
or any subgraph thereof, e.g., neighborhood view, (Fig 5.1(a)) - partial
system view, needs multi-hop paths, easy to maintain

Superimposed topology (a.k.a. topology overlay):
I superimposed on logical topology
I Goal: efficient information gathering, distribution, or search (as in P2P

overlays)
I e.g., ring, tree, mesh, hypercube
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Topology Abstractions

participating process(or)

WAN

WAN

WANWAN

WAN or other network
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Figure 5.1: Example topology views at different levels of abstraction
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Classifications and Basic Concepts (1)

Application execution vs. control algorithm execution, each with own events
I Control algorithm:

F for monitoring and auxiliary functions, e.g., creating a ST, MIS, CDS, reaching
consensus, global state detection (deadlock, termination etc.), checkpointing

F superimposed on application execution, but does not interfere
F its send, receive, internal events are transparent to application execution
F a.k.a. protocol

Centralized and distributed algorithms
I Centralized: asymmetric roles; client-server configuration; processing and

bandwidth bottleneck; point of failure
I Distributed: more balanced roles of nodes, difficult to design perfectly

distributed algorithms (e.g., snapshot algorithms, tree-based algorithms)

Symmetric and asymmetric algorithms
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Classifications and Basic Concepts (2)

Anonymous algorithm: process ids or processor ids are not used to make any
execution (run-time) decisions

I Structurally elegant but hard to design, or impossible, e.g., anonymous leader
election is impossible

Uniform algorithm: Cannot use n, the number of processes, as a parameter in
the code

I Allows scalability; process leave/join is easy and only neighbors need to be
aware of logical topology changes

Adaptive algorithm: Let k (≤ n) be the number of processes participating in
the context of a problem X when X is being executed. Complexity should be
expressible as a function of k , not n.

I E.g., mutual exclusion: critical section contention overhead expressible in
terms of number of processes contending at this time (k)
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Classifications and Basic Concepts (3)

Deterministic vs. nondeterministic executions
I Nondeterministic execution: contains at least 1 nondeterministic receive;

deterministic execution has no nondeterministic receive
F Nondeterministic receive: can receive a message from any source
F Deterministic receive: source is specified

Difficult to reason with
I Asynchronous system: re-execution of deterministic program will produce same

partial order on events ((used in debugging, unstable predicate detection etc.)
I Asynchronous system: re-execution of nondeterministic program may produce

different partial order (unbounded delivery times and unpredictable congestion,
variable local CPU scheduling delays)
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Classification and Basic Concepts (4)

Execution inhibition (a.k.a. freezing)
I Protocols that require suspension of normal execution until some stipulated

operations occur are inhibitory
I Concept: Different from blocking vs. nonblocking primitives
I Analyze inhibitory impact of control algo on underlying execution
I Classification 1:

F Non-inhibitory protocol: no event is disabled in any execution
F Locally inhibitory protocol: in any execution, any delayed event is a locally

delayed event, i.e., inhibition under local control, not dependent on any receive
event

F Globally inhibitory: in some execution, some delayed event is not locally delayed

I Classification 2: send inhibitory/ receive inhibitory/ internal event inhibitory
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Classifications and Basic Concepts (5)

Synchronous vs. asynchronous systems
I Synchronous:

F upper bound on message delay
F known bounded drift rate of clock wrt. real time
F known upper bound for process to execute a logical step

I Asynchronous: above criteria not satisfied
spectrum of models in which some combo of criteria satisfied

Algorithm to solve a problem depends greatly on this model
Distributed systems inherently asynchronous

On-line vs. off-line (control) algorithms
I On-line: Executes as data is being generated

Clear advantages for debugging, scheduling, etc.
I Off-line: Requires all (trace) data before execution begins
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Classification and Basic Concepts (6)

Wait-free algorithms (for synchronization operations)
I resilient to n − 1 process failures, i.e., ops of any process must complete in

bounded number of steps, irrespective of other processes
I very robust, but expensive
I possible to design for mutual exclusion
I may not always be possible to design, e.g., producer-consumer problem

Communication channels
I point-to-point: FIFO, non-FIFO

At application layer, FIFO usually provided by network stack
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Classifications and Basic Concepts (7)

Process failures (sync + async systems) in order of increasing severity
I Fail-stop: Properly functioning process stops execution. Other processes learn

about the failed process (thru some mechanism)
I Crash: Properly functioning process stops execution. Other processes do not

learn about the failed process
I Receive omission: Properly functioning process fails by receiving only some of

the messages that have been sent to it, or by crashing.
I Send omission: Properly functioning process fails by sending only some of the

messages it is supposed to send, or by crashing. Incomparable with receive
omission model.

I General omission: Send omission + receive omission
I Byzantine (or malicious) failure, with authentication: Process may (mis)

behave anyhow, including sending fake messages.
Authentication facility =⇒ If a faulty process claims to have received a
message from a correct process, that is verifiable.

I Byzantine (or malicious) failure, no authentication

The non-malicious failure models are ”benign”
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Classifications and Basic Concepts (8)

Process failures (contd.) → Timing failures (sync systems):
I General omission failures, or clocks violating specified drift rates, or process

violating bounds on time to execute a step
I More severe than general omission failures

Failure models influence design of algorithms

Link failures
I Crash failure: Properly functioning link stops carrying messages
I Omission failure: Link carries only some of the messages sent on it, not others
I Byzantine failure: Link exhibits arbitrary behavior, including creating fake

messages and altering messages sent on it

Link failures → Timing failures (sync systems): messages delivered
faster/slower than specified behavior
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Complexity Measures and Metrics

Each metric specified using lower bound (Ω), upper bound (O), exact bound
(θ)

Metrics
I Space complexity per node
I System-wide space complexity (6= n · space complexity per node). E.g., worst

case may never occur at all nodes simultaneously!
I Time complexity per node
I System-wide time complexity. Do nodes execute fully concurrently?
I Message complexity

F Number of messages (affects space complexity of message ovhd)
F Size of messages (affects space complexity of message ovhd + time component

via increased transmission time)
F Message time complexity: depends on number of messages, size of messages,

concurrency in sending and receiving messages

I : Other metrics: # send and # receive events; # multicasts, and how
implemented?

I (Shared memory systems): size of shared memory; # synchronization
operations
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Program Structure

Communicating Sequential Processes (CSP) like:

∗ [ G1 −→ CL1 ||G2 −→ CL2 || · · · ||Gk −→ CLk ]

The repetitive command “*” denotes an infinite loop.

Inside it, the alternative command ‘||” is over guarded commands.
Specifies execution of exactly one of its constituent guarded commands.

Guarded command syntax: “G −→ CL”
guard G is boolean expression,
CL is list of commands to be executed if G is true.
Guard may check for message arrival from another process.

Alternative command fails if all the guards fail; if > 1 guard is true, one is
nondeterministically chosen for execution.

Gm −→ CLm: CLm and Gm atomically executed.
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Basic Distributed Graph Algorithms: Listing

Sync 1-initiator ST (flooding)

Async 1-initiator ST (flooding)

Async conc-initiator ST (flooding)

Async DFS ST

Broadcast & convergecast on tree

Sync 1-source shortest path

Distance Vector Routing

Async 1-source shortest path

All sources shortest path:
Floyd-Warshall

Sync, async constrained flooding

MST, sync

MST, async

Synchronizers: simple, α, β, γ

MIS, async, randomized

CDS

Compact routing tables

Leader election: LCR algorithm

Dynamic object replication
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Sync 1-initiator ST (flooding)

(local variables)
int visited, depth ←− 0
int parent ←−⊥
set of int Neighbors ←− set of neighbors
(message types)
QUERY

(1) if i = root then
(2) visited ←− 1;
(3) depth ←− 0;
(4) send QUERY to Neighbors;
(5) for round = 1 to diameter do
(6) if visited = 0 then
(7) if any QUERY messages arrive then
(8) parent ←− randomly select a node from which QUERY was received;
(9) visited ←− 1;
(10) depth ←− round ;
(11) send QUERY to Neighbors \ {senders of QUERYs received in this round};
(12) delete any QUERY messages that arrived in this round.
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Synchronous 1-init Spanning Tree: Example

QUERY

B CA

E DF

(1)

(2)

(2)

(2)(1)

(3)

(3)

(3)

(3)

Figure 5.2: Tree in boldface; round numbers of QUERY are labeled

Designated root. Node A in example.

Each node identifies parent

How to identify child nodes?
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Synchronous 1-init Spanning Tree: Complexity

Termination: after diameter rounds.
How can a process terminate after setting its parent?

Complexity:

Local space: O(degree)

Global space: O(
∑

local space)

Local time: O(degree + diameter)

Message time complexity: d rounds or message hops

Message complexity: ≥ 1,≤ 2 messages/edge. Thus, [l , 2l ]

Spanning tree: analogous to breadth-first search
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Asynchronous 1-init Spanning Tree: Code

(local variables)
int parent ←−⊥
set of int Children, Unrelated ←− ∅
set of int Neighbors ←− set of neighbors
(message types)
QUERY, ACCEPT, REJECT

(1) When the predesignated root node wants to initiate the algorithm:
(1a) if (i = root and parent =⊥) then
(1b) send QUERY to all neighbors;
(1c) parent ←− i .

(2) When QUERY arrives from j :
(2a) if parent =⊥ then
(2b) parent ←− j ;
(2c) send ACCEPT to j ;
(2d) send QUERY to all neighbors except j ;
(2e) if (Children ∪ Unrelated) = (Neighbors \ {parent}) then
(2f) terminate.
(2g) else send REJECT to j .

(3) When ACCEPT arrives from j :
(3a) Children ←− Children ∪ {j};
(3b) if (Children ∪ Unrelated) = (Neighbors \ {parent}) then
(3c) terminate.

(4) When REJECT arrives from j :
(4a) Unrelated ←− Unrelated ∪ {j};
(4b) if (Children ∪ Unrelated) = (Neighbors \ {parent}) then
(4c) terminate.
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Async 1-init Spanning Tree: Operation

root initiates flooding of QUERY to identify tree edges

parent: 1st node from which QUERY received
I ACCEPT (+ rsp) sent in response; QUERY sent to other nbhs
I Termination: when ACCEPT or REJECT (- rsp) received from non-parent

nbhs. Why?

QUERY from non-parent replied to by REJECT

Necessary to track neighbors? to determine children and when to terminate?

Why is REJECT message type required?

Can use of REJECT messages be eliminated? How? What impact?
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Asynchronous 1-init Spanning Tree: Complexity

Local termination: after receiving ACCEPT or REJECT from non-parent nbhs.
Complexity:

Local space: O(degree)

Global space: O(
∑

local space)

Local time: O(degree)

Message complexity: ≥ 2,≤ 4 messages/edge. Thus, [2l , 4l ]

Message time complexity: d + 1 message hops.

Spanning tree: no claim can be made. Worst case height n − 1
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Asynchronous 1-init Spanning Tree: Example

(5)

B CA

E DF

(1)

(1)

QUERY

(3)

(2)

(4)

(3)

Figure 5.3: Tree in boldface; Number indicates approximate order in which
QUERY get sent

Designated root. Node A in example.

tree edges: QUERY + ACCEPT msgs

cross-edges and back-edges: 2(QUERY + REJECT) msgs
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Asynchronous Spanning Tree: Concurrent Initiators

G

A

C

D

B

E F

JIH

Figure 5.4: Concurrent initiators A,G,J
No pre-designated root:

Option 1: Merge partial STs. Difficult
based on local knowledge, can lead to
cycles

Option 2: Allow one ST computation
instance to proceed; supress others.

I Used by algorithm; selects root
with higher process id to continue

I 3 cases: newroot < = > myroot

Algorithm:

A node may spontaneously initiate
algorithm and become ”root”.

Each ”root” initiates variant of 1-init
algorithm; lower priorities suppressed at
intermediate nodes

Termination: Only root detects
termination. Needs to send extra
messages to inform others.

Time complexity: O(l)

Message complexity: O(nl)
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Asynchronous Spanning Tree: Code (1/2)

(local variables)
int parent,myroot ←−⊥
set of int Children,Unrelated ←− ∅
set of int Neighbors ←− set of neighbors
(message types)
QUERY, ACCEPT, REJECT

(1) When the node wants to initiate the algorithm as a root:
(1a) if (parent =⊥) then
(1b) send QUERY(i) to all neighbors;
(1c) parent,myroot ←− i .

(2) When QUERY(newroot) arrives from j :
(2a) if myroot < newroot then // discard earlier partial execution due to its lower priority
(2b) parent ←− j ; myroot ←− newroot; Children,Unrelated ←− ∅;
(2c) send QUERY(newroot) to all neighbors except j ;
(2d) if Neighbors = {j} then
(2e) send ACCEPT(myroot) to j ; terminate. // leaf node
(2f) else send REJECT(newroot) to j . // if newroot = myroot then parent is already identified.

// if newroot < myroot ignore the QUERY. j will update its root when it receives QUERY(myroot).
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Asynchronous Spanning Tree: Code (2/2)

(3) When ACCEPT(newroot) arrives from j :
(3a) if newroot = myroot then
(3b) Children ←− Children ∪ {j};
(3c) if (Children ∪ Unrelated) = (Neighbors \ {parent}) then
(3d) if i = myroot then
(3e) terminate.
(3f) else send ACCEPT(myroot) to parent.

//if newroot < myroot then ignore the message. newroot > myroot will never occur.

(4) When REJECT(newroot) arrives from j :
(4a) if newroot = myroot then
(4b) Unrelated ←− Unrelated ∪ {j};
(4c) if (Children ∪ Unrelated) = (Neighbors \ {parent}) then
(4d) if i = myroot then
(4e) terminate.
(4f) else send ACCEPT(myroot) to parent.

//if newroot < myroot then ignore the message. newroot > myroot will never occur.
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Asynchronous DFS Spanning Tree

Handle concurrent initiators just as for the non-DFS algorithm, just examined

When QUERY, ACCEPT, or REJECT arrives: actions depend on whether
myroot < = newroot

Termination: only successful root detects termination. Informs others using
ST edges.

Time complexity: O(l)

Message complexity: O(nl)
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Asynchronous DFS Spanning Tree: Code
(local variables)
int parent,myroot ←−⊥
set of int Children ←− ∅
set of int Neighbors, Unknown ←− set of neighbors
(message types)
QUERY, ACCEPT, REJECT

(1) When the node wants to initiate the algorithm as a root:
(1a) if (parent =⊥) then
(1b) send QUERY(i) to i (itself).

(2) When QUERY(newroot) arrives from j :
(2a) if myroot < newroot then
(2b) parent ←− j ; myroot ←− newroot; Unknown ←− set of neighbours;
(2c) Unknown ← Unknown \ {j};
(2d) if Unknown 6= ∅ then
(2e) delete some x from Unknown;
(2f) send QUERY(myroot) to x ;
(2g) else send ACCEPT(myroot) to j ;
(2h) else if myroot = newroot then
(2i) send REJECT to j . // if newroot < myroot ignore the query.

// j will update its root to a higher root identifier when it receives its QUERY.

(3) When ACCEPT(newroot) or REJECT(newroot) arrives from j :
(3a) if newroot = myroot then
(3b) if ACCEPT message arrived then
(3c) Children ←− Children ∪ {j};
(3d) if Unknown = ∅ then
(3e) if parent 6= i then
(3f) send ACCEPT(myroot) to parent;
(3g) else set i as the root; terminate.
(3h) else
(3i) delete some x from Unknown;
(3j) send QUERY(myroot) to x .

// if newroot < myroot ignore the query. Since sending QUERY to j , i has updated its myroot.
// j will update its myroot to a higher root identifier when it receives a QUERY initiated by it. newroot > myroot will never occur.
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Broadcast and Convergecast on a Tree (1)
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Figure 5.5: Tree structure for broadcast and convergecast
Question:

how to perform BC and CC on a ring? on a mesh?

Costs?
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Broadcast and Convergecast on a Tree (2)

Broadcast: distribute information

BC1. Root sends info to be broadcast to all its children. Terminate.

BC2. When a (nonroot) node receives info from its parent, it copies it
and forwards it to its children. Terminate.

Convergecast: collect info at root, to compute a global function

CVC1. Leaf node sends its report to its parent. Terminate.

CVC2. At a non-leaf node that is not the root: When a report is received
from all the child nodes, the collective report is sent to the parent.
Terminate.

CVC3. At root: When a report is received from all the child nodes, the
global function is evaluated using the reports. Terminate.

Uses: compute min,max, leader election, compute global state functions
Time complexity: O(h); Message complexity: n − 1 messages for BC or CC
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Single Source Shortest Path: Sync Bellman-Ford

Weighted graph, no cycles with negative weight

No node has global view; only local topology

Assumption: node knows n; needed for termination

After k rounds: length at any node has length of shortest path having k hops

After k rounds: length of all nodes up to k hops away in final MST has
stabilized

Termination: n − 1 rounds

Time Complexity: n − 1 rounds

Message complexity: (n − 1) · l messages
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Sync Distributed Bellman-Ford: Code

(local variables)
int length ←− ∞
int parent ←−⊥
set of int Neighbors ←− set of neighbors
set of int {weighti,j ,weightj,i | j ∈ Neighbors} ←− the known values of the weights of incident links

(message types)
UPDATE

(1) if i = i0 then length ←− 0;
(2) for round = 1 to n − 1 do
(3) send UPDATE(i, length) to all neighbors;
(4) await UPDATE(j, lengthj ) from each j ∈ Neighbors;
(5) for each j ∈ Neighbors do
(6) if (length > (lengthj + weightj,i ) then
(7) length ←− lengthj + weightj,i ; parent ←− j .
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Distance Vector Routing

Used in Internet routing (popular upto to mid-1980s), having dynamically
changing graph, where link weights model delay/ load

Variant of sync Bellman-Ford; outer for loop is infinite

Track shortest path to every destination

length replaced by LENGTH[1..n]; parent replaced by PARENT [1..n]

kth component denotes best-known length to LENGTH[k]

In each iteration
I apply triangle inequality for each destination independently
I Triangle inequality: (LENGTH[k] > (LENGTHj [k] + weightj,i )
I Node i estimates weightij using RTT or queuing delay to neighbor j
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Single Source Shortest Path: Async Bellman-Ford

Weighted graph, no cycles with negative weight

No node has global view; only local topology

exponential Ω(cn) number of messages and exponential Ω(cn · d) time
complexity in the worst case, where c is some constant

If all links have equal weight, the algorithm computes the minimum-hop
path; the minimum-hop routing tables to all destinations are computed using
O(n2 · l) messages
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Async Distributed Bellman-Ford: Code

(local variables)
int length ←− ∞
set of int Neighbors ←− set of neighbors
set of int {weighti,j ,weightj,i | j ∈ Neighbors} ←− the known values of the weights of incident links

(message types)
UPDATE

(1) if i = i0 then
(1a) length ←− 0;
(1b) send UPDATE(i0, 0) to all neighbours; terminate.

(2) When UPDATE(i0, lengthj ) arrives from j :
(2a) if (length > (lengthj + weightj,i )) then
(2b) length ←− lengthj + weightj,i ; parent ←− j ;
(2c) send UPDATE(i0, length) to all neighbors;
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All-All Shortest Paths: Floyd-Warshall

LENGTH[s,pivot]

passes through nodes in passes through nodes in
{1,2,...,pivot−1} {1,2,...,pivot−1}

s

pivot

{1,2,...,pivot−1}
passes through nodes in

(a) (b)

s

t

VIA(s,t)

VIA(VIA(s,t), t)

t

LENGTH[s,t]

LENGTH[pivot,t]

Figure 5.6: (a) Triangle inequality for Floyd-Warshall algorithm. (b) VIA
relationships along a branch of the sink tree for a given (s, t) pair
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All-All Shortest Paths: Floyd-Warshall

After pivot iterations of the outer loop,

Invariant

“LENGTH[i , j ] is the shortest path going through intermediate nodes from the set
{i , . . . , pivot}. VIA[i , j ] is the corresponding first hop.”

(1) for pivot = 1 to n do
(2) for s = 1 to n do
(3) for t = 1 to n do
(4) if LENGTH[s, pivot] + LENGTH[pivot, t] < LENGTH[s, t] then
(5) LENGTH[s, t]←− LENGTH[s, pivot] + LENGTH[pivot, t];
(6) VIA[s, t]←− VIA[s, pivot].

Complexity (centralized): O(n3)
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Distributed Floyd-Warshall (1)

Row i of LENGTH[1..n, 1..n], VIA[1..n, 1..n] stored at i , which is responsible
for updating the rows. (So, i acts as source.)

Corresponding to centralized algorithm, line (4):
I How does node i access remote datum LENGTH[pivot, t] in each iteration

pivot?
F Distributed (dynamic) sink tree: In any iteration pivot, all nodes

s | LENGTH[s, t] 6=∞ are on a s ink tree, with sink at t
I How to synchronize execution of outer loop iteration at different nodes?

(otherwise, algorithm goes wrong).
F Simulate ”synchronizer”: e.g., use receive to get data LENGTH[pivot, ∗] from

parent on sink tree
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Distributed Floyd-Warshall: Data structures

(local variables)
array of int LEN[1..n] // LEN[j] is the length of the shortest known path from i to node j .

// LEN[j] = weightij for neighbor j , 0 for j = i , ∞ otherwise
array of int PARENT [1..n] // PARENT [j] is the parent of node i (myself) on the sink tree rooted at j .

// PARENT [j] = j for neighbor j , ⊥ otherwise
set of int Neighbours ←− set of neighbors
int pivot, nbh ←− 0

(message types)

IN TREE(pivot), NOT IN TREE(pivot), PIV LEN(pivot,PIVOT ROW [1..n])

// PIVOT ROW [k] is LEN[k] of node pivot, which is LEN[pivot, k] in the central algorithm

// the PIV LEN message is used to convey PIVOT ROW .
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Distributed Floyd-Warshall: Code

(1) for pivot = 1 to n do
(2) for each neighbour nbh ∈ Neighbours do
(3) if PARENT [pivot] = nbh then
(4) send IN TREE(pivot) to nbh;
(5) else send NOT IN TREE(pivot) to nbh;
(6) await IN TREE or NOT IN TREE message from each neighour;
(7) if LEN[pivot] 6=∞ then
(8) if pivot 6= i then
(9) receive PIV LEN(pivot,PIVOT ROW [1..n]) from PARENT [pivot];
(10) for each neighbour nbh ∈ Neighbours do
(11) if IN TREE message was received from nbh then
(12) if pivot = i then
(13) send PIV LEN(pivot, LEN[1..n]) to nbh;
(14) else send PIV LEN(pivot,PIVOT ROW [1..n]) to nbh;
(15) for t = 1 to n do
(16) if LEN[pivot] + PIVOT ROW [t] < LEN[t] then
(17) LEN[t]←− LEN[pivot] + PIVOT ROW [t];
(18) PARENT [t]←− PARENT [pivot].
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Distributed Floyd-Warshall: Dynamic Sink Tree
Rename LENGTH[i , j ], VIA[i , j ] as LEN[j ], PARENT [j ] in distributed algorithm
=⇒ LENGTH[i , pivot] is LEN[pivot]
At any node i , in iteration pivot:

iff LEN[pivot] 6=∞ at node i , then pivot distributes LEN[∗] to all nodes
(including i) in sink tree of pivot
Parent-child edges in sink tree need to be IDed. How?

1 A node sends IN TREE to PARENT [pivot]; NOT IN TREE to other neighbors
2 Receive IN TREE from k =⇒ k is a child in sink tree of pivot

Await IN TREE or NOT IN TREE from each neighbor.
This send-receive is synchronization!

pivot broadcasts LEN[∗] down its sink tree.
This send-receive is synchronization!

Now, all nodes execute triangle inequality in pseudo lock-step

Time Complexity: O(n2) execution/node, + time for n broadcasts
Message complexity: n iterations;

2 IN TREE or NOT IN TREE msgs of size O(1) per edge: O(l) msgs

≤ n − 1 PIV LEN msgs of size O(n): O(n) msgs

Total O(n(l + n)) messages; Total O(nl + n3) message space
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Distributed Floyd-Warshall: Sink Tree

NOT_IN_TREE(pivot)

B

C

A
i

NOT_IN_TREE(pivot)

NOT_IN_TREE(pivot) NOT_IN_TREE(pivot)

IN_TREE(pivot)

IN_TREE(pivot)

Figure 5.7: Identifying parent-child nodes in sink tree
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Constrained Flooding (no ST)

FIFO channels; duplicates depected using seq. nos.

Asynchronous flooding:
I used by Link State Routing in IPv4
I Complexity: 2l messages worst case; Time: d sequential hops

Synchronous flooding (to learn one datum from each processor):
I STATEVEC [k] is estimate of k’s datum
I Message complexity: 2ld messages, each of size n
I Time complexity: d rounds
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Async Constrained Flooding (no ST)

(local variables)

array of int SEQNO[1..n]←− 0
set of int Neighbors ←− set of neighbors
(message types)
UPDATE

(1) To send a message M:
(1a) if i = root then
(1b) SEQNO[i ]←− SEQNO[i ] + 1;
(1c) send UPDATE(M, i, SEQNO[i ]) to each j ∈ Neighbors.

(2) When UPDATE(M, j, seqnoj ) arrives from k:
(2a) if SEQNO[j] < seqnoj then
(2b) Process the message M;
(2c) SEQNO[j]←− seqnoj ;
(2d) send UPDATE(M, j, seqnoj ) to Neighbors/{k}
(2e) else discard the message.
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Sync Constrained Flooding (no ST)

Algorithm learns all nodes identifiers
(local variables)

array of int STATEVEC [1..n]←− 0
set of int Neighbors ←− set of neighbors
(message types)
UPDATE

(1) STATEVEC [i ] ←− local value;
(2) for round = 1 to diameter d do
(3) send UPDATE(STATEVEC [1..n]) to each j ∈ Neighbors;
(4) for count = 1 to |Neighbors| do
(5) await UPDATE(SV [1..n]) from some j ∈ Neighbors;
(6) STATEVEC [1..n] ←− max(STATEVEC [1..n], SV [1..n]).
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Minimum Spanning Tree (MST): Overview

Assume undirected weighted graph. If weights are not unique, assume some
tie-breaker such as nodeIDs are used to impose a total order on edge weights.

Review defns: forest, spanning forest, spanning tree, MST

Kruskal’s MST:
I Assume forest of graph components
I maintain sorted list of edges
I In each of n − 1 iterations, identify minimum weight edge that connects two

different components
I Include the edge in MST
I O(l log l)

Prim’s MST:
I Begin with a single node component
I In each of n − 1 iterations, select the minimum weight edge incident on the

component. Component expands using this selected edge.
I O(n2) (or O(n log n) using Fibonacci heaps in dense graphs)
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GHS Synchronous MST Algorithm: Overview

Gallagher-Humblet-Spira distributed MST uses Kruskal’s strategy. Begin with
forest of graph components.

MWOE (minimum weight outgoing edge): ”outgoing” is logical, i.e.,
indicates direction of expansion of component

Spanning trees of connected components combine with the MWOEs to still
retain the spanning tree property in combined component

Concurrently combine MWOEs:
I after k iterations, ≤ n

2k components =⇒ at most log n iterations

Each component has a leader node in an iteration

Each iteration within a component has 5 steps, triggered by leader
I broadcast-convergecast phase: leader identifies MWOE
I broadcast phase: (potential) leader for next iteration identified
I broadcast phase: among merging components, 1 leader is selected; it identifies

itself to all in the new component
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Minimum Weight Outgoing Edge: Example

C

(a) (b)

C

A
B B

A

Figure 5.8: Merging of MWOE components. (a) Cycle len = 2 possible. (b) Cycle
len > 2 not possible.

Observation 5.1

For any spanning forest {(Ni , Li ) | i = 1 . . . k} of graph G , consider any
component (Nj , Lj). Denote by λj , the edge having the smallest weight among
those that are incident on only one node in Nj . Then an MST for G that includes
all the edges in each Li in the spanning forest, must also include edge λi .
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MST Example

(MWOE)

tree edge out−edge

cross edge root of component

16

43

8854

27

44 87

341413

112

16

21

11

Figure 5.9: Phases within an iteration in a component.
(a) Root broadcasts SEARCH MWOE; (b) Convergecast REPLY MWOE occurs.
(c) Root broadcasts ADD MWOE; (d) If the MWOE is also chosen as the MWOE
by the component at the other end of the MWOE, the incident process with the
higher ID is the leader for the next iteration; and broadcasts NEW LEADER.
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Sync GHS: Message Types

(message types:)

SEARCH MWOE(leader) // broadcast by current leader on tree edges

EXAMINE(leader) // sent on non-tree edges after receiving SEARCH MWOE

REPLY MWOES(local ID, remote ID) // details of potential MWOEs are convergecast to leader

ADD MWOE(local ID, remote ID) // sent by leader to add MWOE and identify new leader

NEW LEADER(leader) // broadcast by new leader after merging components
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Sync GHS: Code

leader = i ;
for round = 1 to log(n) do // each merger in each iteration involves at least two components

1 if leader = i then
broadcast SEARCH MWOE(leader) along marked edges of tree.

2 On receiving a SEARCH MWOE(leader) message that was broadcast on marked edges:

1 Each process i (including leader) sends an EXAMINE message along unmarked (i.e., non-tree) edges to determine if
the other end of the edge is in the same component (i.e., whether its leader is the same).

2 From among all incident edges at i , for which the other end belongs to a different component, process i picks its

incident MWOE(localID,remoteID).

3 The leaf nodes in the MST within the component initiate the convergecast using REPLY MWOEs, informing their parent of
their MWOE(localID,remoteID). All the nodes participate in this convergecast.

4 if leader = i then
await convergecast replies along marked edges.
Select the minimum MWOE(localID,remoteID) from all the replies.
broadcast ADD MWOE(localID,remoteID) along marked edges of tree.
// To ask process localID to mark the (localID, remoteID) edge,
// i.e., include it in MST of component.

5 if an MWOE edge gets marked by both the components on which it is incident then

1 Define new leader as the process with the larger ID on which that MWOE is incident (i.e., process whose ID is
max(localID, remoteID)).

2 new leader identifies itself as the leader for the next round.

3 new leader broadcasts NEW LEADER in the newly formed component along the marked edges announcing itself as

the leader for the next round.
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GHS: Complexity

log n rounds (synchronous)

Time complexity: O(n log n)

Message complexity:
I In each iteration, O(n) msgs along tree edges (steps 1,3,4,5)
I In each iteration, l EXAMINE msgs to determine MWOEs

Hence, O((n + l) · log n) messages

Correctness requires synchronous operation
I In step (2), EXAMINE used to determine if unmarked neighbor belongs to

same component. If nodes of an unmarked edge are in different levels,
problem!

I Consider EXAMINE sent on edge (j , k), belonging to same component. But k
may not have learnt it belongs to new component and new leader ID; and
replies +ve

I Can lead to cycles.
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MST (asynchronous)

Synchronous GHS simulated using extra msgs/steps.
I New leader does BC/CC on marked edges of new component.

F In Step (2), recipient of EXAMINE can delay response if in old round
F n · log n extra messages overall

I On involvement in a new round, inform each neighbor
F Send EXAMINE when all nbhs along unmarked edges in same round
F l · log n extra messages overall

Engineer!! asynchronous GHS:
I msg O(n log n + l) time: O(n log n (l + d))
I Challenges

F determine levels of adjacent nodes
F repeated combining with singleton components =⇒ log n becomes n
F If components at different levels, coordinate search for MWOEs, merging
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Synchronizers

Definition

Class of transformation algorithms that allow a synchronous program (designed for
a synchronous system) to run on asynchronous systems.

Assumption: failure-free system

Designing tailor-made async algo from scratch may be more efficient than
using synchronizer

Process safety

Process i is safe in round r if all messages sent by i have been received.

Implementation key: signal to each process when it is safe to go to next round,
i.e., when all msgs to be received have arrived
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Synchronizers: Notation

Ma = Ms + (Minit + rounds ·Mround) (1)

Ta = Ts + Tinit + rounds · Tround (2)

Ms : # messages in the synchronous algorithm.

rounds: # rounds in the synchronous algorithm.

Ts : time for the synchronous algorithm.
Assuming one unit (message hop) per round, this equals rounds.

Mround : # messages needed to simulate a round,

Tround : # sequential message hops to simulate a round.

Minit , Tinit : # messages, # sequential message hops to initialize async
system.
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Synchronizers: Complexity

Simple synchronizer α synchronizer β synchronizer γ synchronizer

Minit 0 0 O(n · log(n) + |L|) O(kn2)
Tinit d 0 O(n) n · log(n)/log(k)

Mround 2|L| O(|L|) O(n) O(Lc ) (≤ O(kn))
Tround 1 O(1) O(n) O(hc ) (≤ O(log(n)/log(k)))

The message and time complexities for synchronizers.
hc is the greatest height of a tree among all the clusters.
Lc is the number of tree edges and designated edges in the clustering scheme for the γ
synchronizer.

d is the graph diameter.
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Simple Synchronizer

A process sends each neighbor 1 message/round
Combine messages or send dummy message

On receiving a msg from each neighbor, go to next round.

Neighbors Pi ,Pj may be only one round apart

Pi in roundi can receive msg from only roundi or roundi + 1 of neighbor.

Initialization:
I Any process may start round x .
I In d time units, all processes would be in round x .
I Tinit = d ,Minit = 0.

Complexity: Mround = 2|L|,Tround = 1.
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α Synchronizer

Pi in round r moves to r + 1 if all neighbors are safe for round r .

When neighbor Pj receives ack for each message it sent, it informs Pi (and
its other neighbors) that it is safe.

(b)

A

C

D

A C

D

E E

B B

execution message acknowledgement "safe"

1 21

1

2
2

2 1 3

3

3

3 3

3

3

3

(a)

Figure 5.10: Example. (a) Execution msgs (1) and acks (2). (b) “I am safe” msgs (3).
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α Synchronizer: Complexity

Complexity:
I l ′ msgs ⇒ l ′ acks; transport layer acks ⇒free!
I 2|L| messages/round to inform neighbors of safety.

Mround = O(|L|).Tround = O(1).

Initialization: None. Any process may spontaneously wake up.
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β Synchronizer

Initialization: rooted spanning tree, O(n log n + |L|) messages, O(n) time.
Operation:

Safe nodes initiate convergecast (CvgC)

intermediate nodes propagate CvgC when their subtree is safe.

When root becomes safe and receives CvgC from all children, initiates tree
broadcast to inform all to move to next round.

Complexity: l ′ acks for free, due to transport layer.

Mround = 2(n − 1)

Tround = 2 log n average; 2n worst case
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γ Synchronizer: Clusters

Set of clusters; each cluster has a spanning tree

Intra-cluster: β synchronizer over tree edges

Inter-cluster: α synchronizer over designated inter-cluster edges. (For 2
neighboring clusters, 1 inter-cluster edge is designated.)

D

tree edge
designated (inter−cluster) edge

root

B CA

F E

Figure 5.11: Cluster organization. Only tree edges and inter-cluster designated edges are shown.
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γ Synchronizer: Operation and Complexity

Within cluster, β synchronizer executed

Once cluster is stabilized, α synchronizer over inter-cluster edges

To convey stabilization of inter-cluster α synchronizer, within a cluster, CvgC
and BC phases over tree

This CvgC initiated by leaf nodes once neighboring clusters are stabilized.

Mround = O(Lc),Tround = O(hc).
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γ Synchronizer: Code
(message types)
Subtree safe // β synchronizer phase’s convergecast within cluster
This cluster safe // β synchronizer phase’s broadcast within cluster
My cluster safe // embedded inter-cluster α synchronizer’s messages across cluster boundaries
Neighboring cluster safe // Convergecast following inter-cluster α synchronizer phase
Next round // Broadcast following inter-cluster α synchronizer phase

for each round do

1 (β synchronizer phase:) This phase aims to detect when all the nodes within a cluster are safe, and inform all the nodes in

that cluster.

1 Using the spanning tree, leaves initiate the convergecast of the ‘Subtree safe’ message towards the root of the cluster.

2 After the convergecast completes, the root initiates a broadcast of ‘This cluster safe’ on the spanning tree within the
cluster.

3 (Embedded α synchronizer:)

1 During this broadcast in the tree, as the nodes get engaged, the nodes also send ‘My cluster safe’ messages
on any incident designated inter-cluster edges.

2 Each node also awaits ‘My cluster safe’ messages along any such incident designated edges.

2 (Convergecast and broadcast phase:) This phase aims to detect when all neighboring clusters are safe, and to inform every

node within this cluster.

1 (Convergecast:)

1 After the broadcast of the earlier phase (1.2) completes, the leaves initiate a convergecast using
‘Neighboring cluster safe’ messages once they receive any expected ‘My cluster safe’ messages (step (1.3))
on all the designated incident edges.

2 An intermediate node propagates the convergecast once it receives the ‘Neighboring cluster safe’ message

from all its children, and also any expected ‘My cluster safe’ message (as per step (1.3)) along designated

edges incident on it.

2 (Broadcast:) Once the convergecast completes at the root of the cluster, a ‘Next round’ message is broadcast in the

cluster’s tree to inform all the tree nodes to move to the next round.
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Maximal Independent Set: Definition

For a graph (N, L), an independent set of nodes N ′, where N ′ ⊂ N, is such
that for each i and j in N ′, (i , j) 6∈ L.

An independent set N ′ is a maximal independent set if no strict superset of
N ′ is an independent set.

A graph may have multiple MIS; perhaps of varying sizes.
The largest sized independent set is the maximum independent set.

Application: wireless broadcast - allocation of frequency bands (mutex)

NP-complete
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Luby’s Randomized Algorithm, Async System

Iteratively:

Nodes pick random nos, exchange with nbhs

Lowest number in neighborhood wins (selected in MIS)

If neighbor is selected, I am eliminated (⇒ safety)

Only neighbors of selected nodes are eliminated (⇒ correctness)

Complexity:

In each iteration, ≥ 1 selected, ≥ 1 eliminated ⇒ ≤ n/2 iterations.

Expected # iterations O(log , n) due to randomized nature.
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Luby’s Maximal Independent Set: Code
(variables)
set of integer Neighbours // set of neighbours
real randomi // random number from a sufficiently large range
boolean selectedi // becomes true when Pi is included in the MIS
boolean eliminatedi // becomes true when Pi is eliminated from the candidate set
(message types)
RANDOM(real random) // a random number is sent
SELECTED(integer pid , boolean indicator) // whether sender was selected in MIS
ELIMINATED(integer pid , boolean indicator) // whether sender was removed from candidates

(1a) repeat
(1b) if Neighbours = ∅ then
(1c) selectedi ←− true; exit();
(1d) randomi ←− a random number;
(1e) send RANDOM(randomi ) to each neighbour;
(1f) await RANDOM(randomj ) from each neighbour j ∈ Neighbours;

(1g) if randomi < randomj (∀j ∈ Neighbours) then

(1h) send SELECTED(i, true) to each j ∈ Neighbours;
(1i) selectedi ←− true; exit(); // in MIS
(1j) else
(1k) send SELECTED(i, false) to each j ∈ Neighbours;
(1l) await SELECTED(j, ?) from each j ∈ Neighbours;
(1m) if SELECTED(j, true) arrived from some j ∈ Neighbours then
(1n) for each j ∈ Neighbours from which SELECTED(?, false) arrived do
(1o) send SELECTED(i, true) to j ;
(1p) eliminatedi ←− true; exit(); // not in MIS
(1q) else
(1r) send ELIMINATED(i, false) to each j ∈ Neighbours;
(1s) await ELIMINATED(j, ?) from each j ∈ Neighbours;
(1t) for all j ∈ Neighbours do
(1u) if ELIMINATED(j, true) arrived then
(1v) Neighbours ←− Neighbours \ {j};
(1w) forever.
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Maximal Independent Set: Example

(a)
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Figure 5.12: (a) Winners and losers in round 1. (b) Winners up to round 1, losers in round 2.

Third round: I is winner. MIS={C ,E ,G , I ,K}.
Note: {A,C ,G , J} is a smaller MIS.
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Connected Dominating Set (CDS)

A dominating set of graph (N, L) is a set N ′ ⊆ N | each node in N \ N ′ has
an edge to some node in N ′.

A connected dominating set (CDS) of (N, L) is a dominating set N ′ such
that the subgraph induced by the nodes in N ′ is connected.

NP-Complete
I Finding the minimum connected dominating set (MCDS)
I Determining if there exists a dominating set of size k < |N|

Poly-time heuristics: measure using approximation factor, stretch factor
I Create ST; delete edges to leaves
I Create MIS; add edges to create CDS

Application: backbone for broadcasts
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Compact Routing Tables (1)

Avoid tables of size n - large size, more
processing time

Hierarchical routing - hierarchical
clustered network, e.g., IPv4

Tree labeling schemes

I Logical tree topology for routing
I Node labels | dests reachable via

link labeled by contiguous
addresses [x , y ]

I Small tables but traffic imbalance

7−7
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5 7

2−7

1−1

4−7

1−3 5−7
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6−44−2

3−3 5−5
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Figure 5.13: Tree label based routing tables.

Tree edges labels in rectangles. Non-tree edges

in dashed lines.
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Compact Routing Tables (2)

Interval routing:

I Node labeling: B is a 1:1 mapping on N.
I Edge labeling: I labels each edge in L by some subset of node labels B(N) |

for any node x
F all destinations are covered (∪y∈NeighboursI(x , y) ∪ B(x) = N) and
F there is no duplication of coverage (I(x ,w) ∩ I(x , y) = ∅ for

w , y ∈ Neighbours).

I For any s, t, there exists a path 〈s = x0, x1 . . . xk−1, xk = t〉 where
B(t) ∈ I(xi−1, xi ) for each i ∈ [1, k].

I Interval labeling possible for every graph!
I No guarantee on path lengths; not robust to topology changes.

Prefix routing: Node, channel labels from same domain, view as strings

I To route: use channel whose label is longest prefix of dest.
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Compact Routing Tables (3)

Stretch factor of a routing scheme r

maxi,j∈N{ distancer (i,j)
distanceopt(i,j)}.

Designing compact routing schemes:

rich in graph algorithmic problems

Identify and prove bounds on efficiency of routes

Different specialized topologies (e.g., grid, ring, tree) offer scope for easier
results
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Leader Election

Defn: All processes agree on a common distinguished process (leader)

Distributed algorithms not completely symmetrical; need a initiator, finisher
process; e.g., MST for BC and CvgC to compute global function

LeLang Chang Roberts (LCR) algorithm
I Asynchronous unidirectional ring
I All processes have unique IDs
I Processes circulate their IDs; highest ID wins
I Despite obvious optimizations, msg complexity n · (n − 1)/2; time complexity

O(n).

Cannot exist deterministic leader election algorithm for anonymous rings

Algorithms may be uniform
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Leader Election - LCR algorithm: Code

(variables)
boolean participate ← false // becomes true when Pi is included in the MIS
(message types)
PROBE integer // contains a node identifier
SELECTED integer // announcing the result

(1) When a process wakes up to participate in leader election:
(1a) send PROBE(i) to right neighbor;
(1b) participate ←− true.

(2) When a PROBE(k) message arrives from the left neighbor Pj :
(2a) if participate = false then execute step (1) first.
(2b) if i > k then
(2c) discard the probe;
(2d) else if i < k then
(2e) forward PROBE(k) to right neighbor;
(2f) else if i = k then
(2g) declare i is the leader;
(2h) circulate SELECTED(i) to right neighbor;

(3) When a SELECTED(x) message arrives from left neighbor:
(3a) if x 6= i then
(3b) note x as the leader and forward message to right neighbor;
(3c) else do not forward the SELECTED message.
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Leader Election: Hirschberg-Sinclair Algorithm

Binary search in both directions on ring; token-based

In each round k , each active process does:
I Token circulated to 2k nghbrs on both sides
I Pi is a leader after round k iff i is the highest ID among 2k nghbrs in both

directions
⇒ After round k, any pair of leaders are at least 2k apart

⇒ # leaders diminishes logarithmically as n/2k

I Only winner (leader) after a round proceeds to next round.

In each round, max n msgs sent using supression as in LCR

log n rounds

Message complexity: O(n · log n) (formulate exact expression)!

Time complexity: O(n).
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Object Replication Problems

Weighted graph (N, L), k users at Nk ⊆ N nodes, r replicas of a object at
Nr ⊆ N.

What is the optimal placement of the replicas if k > r and accesses are
read-only?

I Evaluate all choices for Nr to identify min(
∑

i∈Nk ,ri∈Nr
disti,ri ), where disti,ri is

the cost from node i to ri , the replica nearest to i .

If Read accesses from each user in Nk have a certain frequency (or weight),
the minimization function changes.

Address BW of each edge.

Assume user access is a Read with prob. x , and an Update with prob. 1− x .
Update requires all replicas to be updated.

I What is the optimal placement of the replicas if k > r?
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Adaptive Data Replication: Problem Formulation

Network (V ,E ). Assume single replicated object.

Replication scheme: subset R of V | each node in R has a replica.

ri , wi : rates of reads and writes issued by i

cr (i), cw (i): cost of a read and write issued by i .

R: set of all possible replication schemes.

Goal: minimize cost of the replication scheme:

min
R∈R

[
∑
i∈V

ri · cr (i) +
∑
i∈V

wi · cw (i)]

Arbitrary graph: cost is NP-Complete

Hence, assume tree overlay

Assume one copy serializability, implemented by Read-One-Write-All (ROWA)
policy.

A. Kshemkalyani and M. Singhal (Distributed Computing) Terminology and Basic Algorithms CUP 2008 74 / 79



Distributed Computing: Principles, Algorithms, and Systems

Adaptive Data Replication over Tree Overlay

All communication, set R on tree T overlay

R: amoeba-like subgraph, moves to center-of-gravity of activity
I Expands when Read cost is higher
I Shrinks when Write cost is higher
I Equilibrium-state R is optimal; converges in d + 1 steps once Read-Write

pattern stabilizes
I Dynamic activity: algorithm re-executed in epochs

Read: From closest replica, along T . Use parent pointers.

Write: To closest replica, along T . Then propagate in R.
Use R − neighbor , set of neighbors in R.

Implementation: (i) in R? (ii) R − neighbor , (iii) parent.
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Adaptive Data Replication: Convergence (1)

R−fringe

A B
C

D
E

R R−fringe

R−neighbour

R−neighbour
and

Figure 5.14: Nodes in ellipse belong to R.

C is R-fringe

A, E are R-fringe and R-neighbour

D is R-neighbour

R-neighbour: i ∈ R; and has at least one
neighbour j 6∈ R.

R-fringe: i ∈ R; and has only one
neighbour j ∈ R.
Thus, i is a leaf in the
subgraph of T induced by R
and j is parent of i .

singleton: |R| =1 and i ∈ R.
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Adaptive Data Replication: Tests

Tests at end of each epoch.

Expansion test: R-neighbour node i includes
neighbor j in R if r > w .

Contraction test: R-fringe node i excludes
itself from R if w > r .
Before exiting, seek
permission from j to avoid
R = ∅.

Switch test: Singleton node i transfers its
replica to j if r + w being
forwarded by j is greater
than r + w that node i
receives from all other
nodes.

j

(a) (b) (c)

r

w r

w r+w

r+wij ij
i

Figure 5.15: (a) Expansion test. (b) Contraction

test. (c) Switch test.

R-neighbour may also be R-fringe or

singleton. In either case, the expansion test

executed first; if it fails, contraction test or

switch test is executed.

A. Kshemkalyani and M. Singhal (Distributed Computing) Terminology and Basic Algorithms CUP 2008 77 / 79



Distributed Computing: Principles, Algorithms, and Systems

Adaptive Data Replication: Code (1)
(variables)
array of integer Neighbours[1 . . . bi ]; // bi neighbours in tree T topology
array of integer Read Received [1 . . . |bi |]; // jth element gives # reads from Neighbours[j]
array of integer Write Received [1 . . . |bi |]; // jth element gives # writes from Neighbours[j]
integer writei , readi ; // # writes and # reads issued locally
boolean success;

(1) Pi determines which tests to execute at the end of each epoch:

(1a) if i is R-neighbour and R-fringe then
(1b) if expansion test fails then
(1c) reduction test

(1d) else if i is R-neighbour and singleton then
(1e) if expansion test fails then
(1f) switch test

(1g) else if i is R-neighbour and not R-fringe and not singleton then
(1h) expansion test

(1i) else if i is R − neighbour and R-fringe then
(1j) contraction test.

(2) Pi executes expansion test:
(2a) for j from 1 to bi do
(2b) if Neighbours[j] not in R then
(2c) if Read Received [j] > (writei +

∑
k=1...bi ,k 6=j Write Received [k]) then

(2d) send a copy of the object to Neighbours[j]; success ←− 1;
(2e) return(success).
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Adaptive Data Replication: Code (2)

(variables)
array of integer Neighbours[1 . . . bi ]; // bi neighbours in tree T topology
array of integer Read Received [1 . . . |bi |]; // jth element gives # reads from Neighbours[j]
array of integer Write Received [1 . . . |bi |]; // jth element gives # writes from Neighbours[j]
integer writei , readi ; // # writes and # reads issued locally
boolean success;

(3) Pi executes contraction test:
(3a) let Neighbours[j] be the only neighbour in R;
(3b) if Write Received [j] > (readi +

∑
k=1...bi ,k 6=j Read Received [k]) then

(3c) seek permission from Neighbours[j] to exit from R;
(3d) if permission received then
(3e) success ←− 1; inform all neighbours;
(3f) return(success).

(4) Pi executes switch test:
(4a) for j from 1 to bi do
(4b) if (Read Received [j] + Write Received [j]) >

[
∑

k=1...bi ,k 6=j (Read Received [k] + Write Received [k]) + readi + writei ] then

(4c) transfer object copy to Neighbours[j]; success ←− 1; inform all neighbours;
(4d) return(success).

A. Kshemkalyani and M. Singhal (Distributed Computing) Terminology and Basic Algorithms CUP 2008 79 / 79


	Distributed Computing: Principles, Algorithms, and Systems

