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Outline and Notations

Outline
I Message orders: non-FIFO, FIFO, causal order, synchronous order
I Group communication with multicast: causal order, total order
I Expected behaviour semantics when failures occur
I Multicasts: application layer on overlays; also at network layer

Notations
I Network (N, L); event set (E ,≺)
I message mi : send and receive events s i and r i

I send and receive events: s and r .
I M, send(M), and receive(M)
I Corresponding events: a ∼ b denotes a and b occur at the same process
I send-receive pairs T = {(s, r) ∈ Ei × Ej | s corresponds to r}
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Asynchronous and FIFO Executions
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Figure 6.1: (a) A-execution that is FIFO (b) A-execution that is not FIFO
Asynchronous executions

A-execution: (E ,≺) for which the causality
relation is a partial order.

no causality cycles

on any logical link, not necessarily FIFO
delivery, e.g., network layer IPv4
connectionless service

All physical links obey FIFO

FIFO executions

an A-execution in which:
for all (s, r) and (s′, r ′) ∈ T ,
(s ∼ s′ and r ∼ r ′ and s ≺ s′) =⇒ r ≺ r ′

Logical link inherently non-FIFO

Can assume connection-oriented service at
transport layer, e.g., TCP

To implement FIFO over non-FIFO link:
use 〈 seq num, conn id 〉 per message.
Receiver uses buffer to order messages.
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Causal Order: Definition

Causal order (CO)

A CO execution is an A-execution in which, for all (s, r) and (s ′, r ′) ∈ T ,
(r ∼ r ′ and s ≺ s ′) =⇒ r ≺ r ′

If send events s and s ′ are related by causality ordering (not physical time
ordering), their corresponding receive events r and r ′ occur in the same order
at all common dests.

If s and s ′ are not related by causality, then CO is vacuously satisfied.
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Figure 6.2: (a) Violates CO as s1 ≺ s3; r3 ≺ r1 (b) Satisfies CO. (c) Satisfies CO. No send

events related by causality. (d) Satisfies CO.
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Causal Order: Definition from Implementation Perspective

CO alternate definition

If send(m1) ≺ send(m2) then for each common destination d of messages m1 and
m2, deliverd(m1) ≺ deliverd(m2) must be satisfied.

Message arrival vs. delivery:
I message m that arrives in OS buffer at Pi may have to be delayed until the

messages that were sent to Pi causally before m was sent (the “overtaken”
messages) have arrived!

I The event of an application processing an arrived message is referred to as a
delivery event (instead of as a receive event).

no message overtaken by a chain of messages between the same (sender,
receiver) pair. In Fig. 6.1(a), m1 overtaken by chain 〈m2, m3〉.
CO degenerates to FIFO when m1, m2 sent by same process

Uses: updates to shared data, implementing distributed shared memory, fair
resource allocation; collaborative applications, event notification systems,
distributed virtual environments
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Causal Order: Other Characterizations (1)

Message Order (MO)

A-execution in which, for all (s, r) and (s ′, r ′) ∈ T , s ≺ s ′ =⇒ ¬(r ′ ≺ r)

Fig 6.2(a): s1 ≺ s3 but ¬(r3 ≺ r1) is false ⇒ MO not satisfied

m cannot be overtaken by a chain
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Figure 6.2: (a) Violates CO as s1 ≺ s3; r3 ≺ r1 (b) Satisfies CO. (c) Satisfies CO. No send

events related by causality. (d) Satisfies CO.
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Causal Order: Other Characterizations (2)

1s

sr r

r

(a) (b) (c) (d)

s r r

r

ss s

s

s s

s

s

s

r

r

r

r

r
m

m
m

m

m
m

m

m

m

m

m

P
1

P
2

P
3 1 2

3

13

3

2

2

1

3 1 3 113r

3
3 31 1 13

33

2

2

2

2

2 2

2

2

m2

1 1

Figure 6.2: (a) Violates CO as s1 ≺ s3; r3 ≺ r1 (b) Satisfies CO. (c) Satisfies CO. No send

events related by causality. (d) Satisfies CO.

Empty-Interval (EI) property

(E ,≺) is an EI execution if for each (s, r) ∈ T , the open interval set
{x ∈ E | s ≺ x ≺ r} in the partial order is empty.

Fig 6.2(b). Consider M2. No event x such that s2 ≺ x ≺ r2. Holds for all messages ⇒ EI

For EI 〈s, r〉, there exists some linear extension 1 < | such the corresp. interval
{x ∈ E | s < x < r} is also empty.

An empty 〈s, r〉 interval in a linear extension implies s, r may be arbitrarily close; shown by
vertical arrow in a timing diagram.

An execution E is CO iff for each M, there exists some space-time diagram in which that
message can be drawn as a vertical arrow.

1A linear extension of a partial order (E ,≺) is any total order (E , <)| each ordering relation
of the partial order is preserved.
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Causal Order: Other Characterizations (3)

CO 6=⇒ all messages can be drawn as vertical arrows in the same space-time
diagram (otherwise all 〈s, r〉 intervals empty in the same linear extension;
synchronous execution).

Common Past and Future

An execution (E ,≺) is CO iff for each pair (s, r) ∈ T and each event e ∈ E ,

Weak common past: e ≺ r =⇒ ¬(s ≺ e)

Weak common future: s ≺ e =⇒ ¬(e ≺ r)

If the past of both s and r are identical (analogously for the future), viz.,
e ≺ r =⇒ e ≺ s and s ≺ e =⇒ r ≺ e, we get a subclass of CO executions,
called synchronous executions.
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Synchronous Executions (SYNC)
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Figure 6.3: (a) Execution in an async system (b) Equivalent sync execution.

Handshake between sender and receiver

Instantaneous communication ⇒ modified definition of causality, where s, r
are atomic and simultaneous, neither preceding the other.
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Synchronous Executions: Definition

Causality in a synchronous execution.
The synchronous causality relation � on E is the smallest transitive relation that
satisfies the following.

S1. If x occurs before y at the same process, then x � y

S2. If (s, r) ∈ T , then for all x ∈ E , [(x � s ⇐⇒ x � r) and
(s � x ⇐⇒ r � x)]

S3. If x � y and y � z , then x � z

Synchronous execution (or S-execution).

An execution (E ,�) for which the causality relation � is a partial order.

Timestamping a synchronous execution.

An execution (E ,≺) is synchronous iff there exists a mapping from E to T (scalar
timestamps) |

for any message M, T (s(M)) = T (r(M))

for each process Pi , if ei ≺ e′i then T (ei ) < T (e′i )

For any ei , ej that are not the send event and the receive event of the same
message, ei ≺ ej =⇒ T (ei ) < T (ej).

Communication using synchronous send and receive primitives
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Asynchronous Execution with Synchronous Communication

Will a program written for an asynchronous system (A-execution) run correctly if
run with synchronous primitives?

Process i Process j

... ...
Send(j) Send(i)
Receive(j) Receive(i)
... ...

Figure 6.4: A-execution deadlocks when using synchronous primitives.

An A-execution that is realizable under synchronous communication is a realizable
with synchronous communication (RSC) execution.
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Figure 6.5: Illustration of non-RSC A-executions.
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RSC Executions

Non-separated linear extension of (E ,≺)

A linear extension of (E ,≺) such that for each pair (s, r) ∈ T , the interval { x ∈
E | s ≺ x ≺ r } is empty.

Exercise: Identify a non-separated and a separated linear extension in Figs 6.2(d)
and 6.3(b)

RSC execution

An A-execution (E ,≺) is an RSC execution iff there exists a non-separated linear
extension of the partial order (E ,≺).

Checking for all linear extensions has exponential cost!

Practical test using the crown characterization
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Crown: Definition

Crown

Let E be an execution. A crown of size k in E is a sequence 〈 (s i ,r i ), i ∈ { 0, . . ., k-1 }
〉 of pairs of corresponding send and receive events such that:
s0 ≺ r 1, s1 ≺ r 2, . . . . . . sk−2 ≺ r k−1, sk−1 ≺ r 0.
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Figure 6.5: Illustration of non-RSC A-executions and crowns.
Fig 6.5(a): crown is 〈(s1, r1), (s2, r2)〉 as we have s1 ≺ r2 and s2 ≺ r1

Fig 6.5(b) (b) crown is 〈(s1, r1), (s2, r2)〉 as we have s1 ≺ r2 and s2 ≺ r1

Fig 6.5(c): crown is 〈(s1, r1), (s3, r3), (s2, r2)〉 as we have s1 ≺ r3 and s3 ≺ r2 and s2 ≺ r1

Fig 6.2(a): crown is 〈(s1, r1), (s2, r2), (s3, r3)〉 as we have s1 ≺ r2 and s2 ≺ r3 and s3 ≺ r1.
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Crown: Characterization of RSC Executions
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Figure 6.5: Illustration of non-RSC A-executions and crowns.
Fig 6.5(a): crown is 〈(s1, r1), (s2, r2)〉 as we have s1 ≺ r2 and s2 ≺ r1

Fig 6.5(b) (b) crown is 〈(s1, r1), (s2, r2)〉 as we have s1 ≺ r2 and s2 ≺ r1

Fig 6.5(c): crown is 〈(s1, r1), (s3, r3), (s2, r2)〉 as we have s1 ≺ r3 and s3 ≺ r2 and s2 ≺ r1

Fig 6.2(a): crown is 〈(s1, r1), (s2, r2), (s3, r3)〉 as we have s1 ≺ r2 and s2 ≺ r3 and s3 ≺ r1.

Some observations

In a crown, s i and r i+1 may or may not be on same process

Non-CO execution must have a crown

CO executions (that are not synchronous) have a crown (see Fig 6.2(b))

Cyclic dependencies of crown ⇒ cannot schedule messages serially ⇒ not RSC
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Crown Test for RSC executions
1 Define the ↪→: T × T relation on messages in the execution (E ,≺) as follows. Let

↪→ ([s, r ], [s′, r ′]) iff s ≺ r ′. Observe that the condition s ≺ r ′ (which has the form used
in the definition of a crown) is implied by all the four conditions: (i) s ≺ s′, or (ii)
s ≺ r ′, or (iii) r ≺ s′, and (iv) r ≺ r ′.

2 Now define a directed graph G↪→ = (T , ↪→), where the vertex set is the set of messages
T and the edge set is defined by ↪→.

Observe that ↪→: T × T is a partial order iff G↪→ has no cycle, i.e., there must not be a
cycle with respect to ↪→ on the set of corresponding (s, r) events.

3 Observe from the defn. of a crown that G↪→ has a directed cycle iff (E ,≺) has a crown.

Crown criterion
An A-computation is RSC, i.e., it can be realized on a system with synchronous communication,
iff it contains no crown.

Crown test complexity: O(|E |) (actually, # communication events)

Timestamps for a RSC execution
Execution (E ,≺) is RSC iff there exists a mapping from E to T (scalar timestamps) such that

for any message M, T (s(M)) = T (r(M))

for each (a, b) in (E × E) \ T , a ≺ b =⇒ T (a) < T (b)
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Hierarchy of Message Ordering Paradigms

(a) 

SYNC

CO

FIFO

A

A

FIFO

CO

SYNC

(b)

Figure 6.7: Hierarchy of message ordering paradigms. (a) Venn diagram (b) Example

executions.

An A-execution is RSC iff A is an S-execution.

RSC ⊂ CO ⊂ FIFO ⊂ A.

More restrictions on the possible message orderings in the smaller classes.
The degree of concurrency is most in A, least in SYNC.

A program using synchronous communication easiest to develop and verify. A
program using non-FIFO communication, resulting in an A-execution, hardest
to design and verify.
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Simulations: Async Programs on Sync Systems

RSC execution: schedule events as per a
non-separated linear extension

adjacent (s, r) events sequentially

partial order of original A-execution
unchanged

If A-execution is not RSC:

partial order has to be changed; or

model each Ci,j by control process Pi,j

and use sync communication (see Fig
6.8)

m’

P

P
i

P
j

i,j

j,i
P

m

m

m’

Figure 6.8: Modeling channels as processes to

simulate an execution using asynchronous

primitives on an synchronous system.

Enables decoupling of sender from
receiver.

This implementation is expensive.
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Simulations: Synch Programs on Async Systems

Schedule msgs in the order in which they appear in S-program

partial order of S-execution unchanged

Communication on async system with async primitives

When sync send is scheduled:
I wait for ack before completion
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Sync Program Order on Async Systems
Deterministic program: repeated runs produce same partial order

Deterministic receive ⇒ deterministic execution ⇒ (E ,≺) is fixed

Nondeterminism (besides due to unpredictable message delays):

Receive call does not specify sender

Multiple sends and receives enabled at a process; can be executed in
interchangeable order

∗[G1 −→ CL1 || G2 −→ CL2 || · · · || Gk −→ CLk ]

Deadlock example of Fig 6.4

If event order at a process is permuted, no deadlock!

How to schedule (nondeterministic) sync communication calls over async system?

Match send or receive with corresponding event

Binary rendezvous (implementation using tokens)

Token for each enabled interaction

Schedule online, atomically, in a distributed manner

Crown-free scheduling (safety); also progress to be guaranteed

Fairness and efficiency in scheduling
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Bagrodia’s Algorithm for Binary Rendezvous (1)

Assumptions

Receives are always enabled

Send, once enabled, remains enabled

To break deadlock, PIDs used to introduce asymmetry

Each process schedules one send at a time

Message types: M, ack(M), request(M), permission(M)
Process blocks when it knows it can successfully synchronize the current message

P
M ack(M)

permission(M)

Mrequest(M)

(b)(a) 

higher

priority

lower

priority j
P

i

Fig 6.: Rules to prevent message cyles. (a) High priority process blocks. (b) Low
priority process does not block.
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Bagrodia’s Algorithm for Binary Rendezvous: Code
(message types)
M, ack(M), request(M), permission(M)

1 Pi wants to execute SEND(M) to a lower priority process Pj :

Pi executes send(M) and blocks until it receives ack(M) from Pj . The send event SEND(M) now completes.

Any M’ message (from a higher priority processes) and request(M’) request for synchronization (from a lower priority processes) received
during the blocking period are queued.

2 Pi wants to execute SEND(M) to a higher priority process Pj :

1 Pi seeks permission from Pj by executing send(request(M)).

// to avoid deadlock in which cyclically blocked processes queue messages.

2 While Pi is waiting for permission, it remains unblocked.

1 If a message M′ arrives from a higher priority process Pk , Pi accepts M′ by scheduling a RECEIVE(M’) event and then
executes send(ack(M’)) to Pk .

2 If a request(M’) arrives from a lower priority process Pk , Pi executes send(permission(M’)) to Pk and blocks waiting for

the message M′ . When M′ arrives, the RECEIVE(M’) event is executed.

3 When the permission(M) arrives, Pi knows partner Pj is synchronized and Pi executes send(M). The SEND(M) now completes.

3 Request(M) arrival at Pi from a lower priority process Pj :

At the time a request(M) is processed by Pi , process Pi executes send(permission(M)) to Pj and blocks waiting for the message M. When

M arrives, the RECEIVE(M) event is executed and the process unblocks.

4 Message M arrival at Pi from a higher priority process Pj :

At the time a message M is processed by Pi , process Pi executes RECEIVE(M) (which is assumed to be always enabled) and then
send(ack(M)) to Pj .

5 Processing when Pi is unblocked:
When Pi is unblocked, it dequeues the next (if any) message from the queue and processes it as a message arrival (as per Rules 3 or 4).
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Bagrodia’s Algorithm for Binary Rendezvous (2)

Higher prio Pi blocks on lower prio Pj to avoid cyclic wait (whether or not it is the

intended sender or receiver of msg being scheduled)

Before sending M to Pi , Pj requests permission in a nonblocking manner.
While waiting:

I M ′ arrives from another higher prio process. ack(M ′) is returned
I request(M ′) arrives from lower prio process. Pj returns permission(M ′) and

blocks until M ′ arrives.

Note: receive(M ′) gets permuted with the send(M) event

blocking period

P
i

P
j

k
P

(highest priority)

(lowest priority)

(a) (b)

M, sent to lower

      priority process

request(M)

ack(M)

permission(M)

M, sent to higher

      priority process

Figure 6.10: Scheduling messages with sync communication.
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Group Communication

Unicast vs. multicast vs. broadcast

Network layer or hardware-assist multicast cannot easily provide:
I Application-specific semantics on message delivery order
I Adapt groups to dynamic membership
I Multicast to arbitrary process set at each send
I Provide multiple fault-tolerance semantics

Closed group (source part of group) vs. open group

# groups can be O(2n)

(a)

P1 P2

P

P

1R1 R2 R3

R3

2

R1

R2
m m

m1m1

m2m2

(c)(b)

Figure 6.11: (a) Updates to 3 replicas. (b) Causal order (CO) and total order violated. (c)
Causal order violated.

If m did not exist, (b,c) would not violate CO.
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Raynal-Schiper-Toueg (RST) Algorithm

(local variables)
array of int SENT [1 . . . n, 1 . . . n]
array of int DELIV [1 . . . n] // DELIV [k] = # messages sent by k that are delivered locally

(1) send event, where Pi wants to send message M to Pj :
(1a) send (M, SENT ) to Pj ;
(1b) SENT [i, j]←− SENT [i, j] + 1.

(2) message arrival, when (M, ST ) arrives at Pi from Pj :
(2a) deliver M to Pi when for each process x ,
(2b) DELIV [x] ≥ ST [x, i ];
(2c) ∀x, y , SENT [x, y ]←− max(SENT [x, y ], ST [x, y ]);
(2d) DELIV [j]←− DELIV [j] + 1.

How does algorithm simplify if all msgs are broadcast?

Assumptions/Correctness

FIFO channels.

Safety: Step (2a,b).

Liveness: assuming no failures, finite
propagation times

Complexity

n2 ints/ process

n2 ints/ msg

Time per send and rcv event: n2

A. Kshemkalyani and M. Singhal (Distributed Computing) Message Ordering and Group Commnication CUP 2008 24 / 52



Distributed Computing: Principles, Algorithms, and Systems

Optimal KS Algorithm for CO: Principles
Mi,a: ath multicast message sent by Pi

Delivery Condition for correctness:

Msg M∗ that carries information “d ∈ M.Dests”, where message M was sent to d in the
causal past of Send(M∗), is not delivered to d if M has not yet been delivered to d .

Necessary and Sufficient Conditions for Optimality:

For how long should the information “d ∈ Mi,a.Dests” be stored in the log at a
process, and piggybacked on messages?

as long as and only as long as

I (Propagation Constraint I:) it is not known that the message Mi,a is delivered
to d , and

I (Propagation Constraint II:) it is not known that a message has been sent to d
in the causal future of Send(Mi,a), and hence it is not guaranteed using a
reasoning based on transitivity that the message Mi,a will be delivered to d in
CO.

⇒ if either (I) or (II) is false, “d ∈ M.Dests” must not be stored or propagated,
even to remember that (I) or (II) has been falsified.
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Optimal KS Algorithm for CO: Principles
e7

i

d

e8

e6e4

e3

e2

e5
e‘

e‘‘

e

border of causal future of corresponding event

event at which message is sent to d, and there is no such

info "d is a dest. of M" must exist for correctness

info "d is a dest. of M" must not exist for optimality

message sent to d

event on any causal path between event e and this event

Deliver(M)

M

e1

“d ∈ Mi,a.Dests” must be available in the

causal future of event ei,a, but

not in the causal future of
Deliverd(Mi,a), and

not in the causal future of ek,c , where
d ∈ Mk,c .Dests and there is no other
message sent causally between Mi,a and
Mk,c to the same destination d .

In the causal future of Deliverd(Mi,a),
and Send(Mk,c), the information is
redundant; elsewhere, it is necessary.

Information about what messages have
been delivered (or are guaranteed to be
delivered without violating CO) is
necessary for the Delivery Condition.

I For optimality, this cannot be
stored. Algorithm infers this using
set-operation logic.
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Optimal KS Algorithm for CO: Principles

e7

i

d

e8

e6e4

e3

e2

e5
e‘

e‘‘

e

border of causal future of corresponding event

event at which message is sent to d, and there is no such

info "d is a dest. of M" must exist for correctness

info "d is a dest. of M" must not exist for optimality

message sent to d

event on any causal path between event e and this event

Deliver(M)

M

e1

“d ∈ M.Dests”
must exist at e1 and e2 because (I) and
(II) are true.
must not exist at e3 because (I) is false
must not exist at e4, e5, e6 because (II) is
false
must not exist at e7, e8 because (I) and
(II) are false

Info about messages (i) not known to be
delivered and (ii) not guaranteed to be
delivered in CO, is explicitly tracked using
(source, ts, dest).

Must be deleted as soon as either (i) or (ii)
becomes false.

Info about messages already delivered and

messages guaranteed to be delivered in CO

is implicitly tracked without storing or

propagating it:

I derived from the explicit
information.

I used for determining when (i) or
(ii) becomes false for the explicit
information being
stored/piggybacked.
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Optimal KS Algorithm for CO: Code (1)

(local variables)
clockj ←− 0; // local counter clock at node j

SRj [1...n]←− 0; // SRj [i ] is the timestamp of last msg. from i delivered to j

LOGj = {(i, clocki , Dests)} ←− {∀i, (i, 0, ∅)};

// Each entry denotes a message sent in the causal past, by i at clocki . Dests is the set of remaining destinations
// for which it is not known that Mi,clocki

(i) has been delivered, or (ii) is guaranteed to be delivered in CO.

SND: j sends a message M to Dests:

1 clockj ←− clockj + 1;

2 for all d ∈ M.Dests do:
OM ←− LOGj ; // OM denotes OMj,clockj
for all o ∈ OM , modify o.Dests as follows:

if d 6∈ o.Dests then o.Dests ←− (o.Dests \ M.Dests);
if d ∈ o.Dests then o.Dests ←− (o.Dests \ M.Dests)

⋃
{d};

// Do not propagate information about indirect dependencies that are
// guaranteed to be transitively satisfied when dependencies of M are satisfied.

for all os,t ∈ OM do

if os,t .Dests = ∅
∧

(∃o′
s,t′ ∈ OM | t < t′) then OM ←− OM \ {os,t};

// do not propagate older entries for which Dests field is ∅
send (j, clockj , M, Dests, OM ) to d ;

3 for all l ∈ LOGj do l.Dests ←− l.Dests \ Dests;

// Do not store information about indirect dependencies that are guaranteed
// to be transitively satisfied when dependencies of M are satisfied.

Execute PURGE NULL ENTRIES(LOGj ); // purge l ∈ LOGj if l.Dests = ∅

4 LOGj ←− LOGj
⋃
{(j, clockj , Dests)}.
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Optimal KS Algorithm for CO: Code (2)
RCV: j receives a message (k, tk , M, Dests, OM ) from k:

1 // Delivery Condition; ensure that messages sent causally before M are delivered.
for all om,tm ∈ OM do

if j ∈ om.tm .Dests wait until tm ≤ SRj [m];

2 Deliver M; SRj [k] ←− tk ;

3 OM ←− {(k, tk , Dests)}
⋃

OM ;
for all om,tm ∈ OM do om,tm .Dests ←− om,tm .Dests \ {j};

// delete the now redundant dependency of message represented by om,tm sent to j

4 // Merge OM and LOGj by eliminating all redundant entries.

// Implicitly track “already delivered” & “guaranteed to be delivered in CO” messages.
for all om,t ∈ OM and ls,t′ ∈ LOGj such that s = m do

if t < t′
∧

ls,t 6∈ LOGj then mark om,t ;

// ls,t had been deleted or never inserted, as ls,t .Dests = ∅ in the causal past

if t′ < t
∧

om,t′ 6∈ OM then mark ls,t′ ;
// o

m,t′ 6∈ OM because l
s,t′ had become ∅ at another process in the causal past

Delete all marked elements in OM and LOGj ; // delete entries about redundant information

for all ls,t′ ∈ LOGj and om,t ∈ OM , such that s = m
∧

t′ = t do

ls,t′ .Dests ←− ls,t′ .Dests
⋂

om,t .Dests; // delete destinations for which Delivery

// Condition is satisfied or guaranteed to be satisfied as per om,t
Delete om,t from OM ; // information has been incorporated in ls,t′

LOGj ←− LOGj
⋃

OM ; // merge nonredundant information of OM into LOGj

5 PURGE NULL ENTRIES(LOGj ). // Purge older entries l for which l.Dests = ∅

PURGE NULL ENTRIES(Logj ): // Purge older entries l for which l.Dests = ∅ is implicitly inferred

for all ls,t ∈ Logj do

if ls,t .Dests = ∅
∧

(∃l′
s,t′ ∈ Logj | t < t′) then Logj ←− Logj \ {ls,t}.
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Optimal KS Algorithm for CO: Information Pruning

Explicit tracking of (s, ts, dest) per multicast in Log and OM

Implicit tracking of msgs that are (i) delivered, or (ii) guaranteed to be
delivered in CO:

I (Type 1:) ∃d ∈ Mi,a.Dests | d 6∈ li,a.Dests
∨

d 6∈ oi,a.Dests
F When li,a.Dests = ∅ or oi,a.Dests = ∅?
F Entries of the form li,ak

for k = 1, 2, . . . will accumulate
F Implemented in Step (2d)

I (Type 2:) if a1 < a2 and li,a2 ∈ LOGj , then li,a1 ∈ LOGj . (Likewise for
messages)

F entries of the form li,a1
.Dests = ∅ can be inferred by their absence, and should

not be stored
F Implemented in Step (2d) and PURGE NULL ENTRIES
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Optimal KS Algorithm for CO: Example
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Figure 6.13: Tracking of information about M5,1.Dests
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Total Message Order

Total order
For each pair of processes Pi and Pj and for
each pair of messages Mx and My that are
delivered to both the processes, Pi is
delivered Mx before My if and only if Pj is
delivered Mx before My .

Same order seen by all

Solves coherence problem

(a)

P1 P2

P

P

1R1 R2 R3

R3

2

R1

R2
m m

m1m1

m2m2

(c)(b)

Fig 6.11: (a) Updates to 3 replicas. (b) Total

order violated. (c) Total order not violated.

Centralized algorithm

(1) When Pi wants to multicast M to group G :

(1a) send M(i, G) to coordinator.

(2) When M(i, G) arrives from Pi at coordinator:

(2a) send M(i, G) to members of G .

(3) When M(i, G) arrives at Pj from coordinator:

(3a) deliver M(i, G) to application.

Time Complexity: 2 hops/ transmission

Message complexity: n
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Total Message Order: 3-phase Algorithm Code
record Q entry

M: int; // the application message
tag : int; // unique message identifier
sender id : int; // sender of the message
timestamp: int; // tentative timestamp assigned to message
deliverable: boolean; // whether message is ready for delivery

(local variables)
queue of Q entry: temp Q, delivery Q
int: clock // Used as a variant of Lamport’s scalar clock
int: priority // Used to track the highest proposed timestamp
(message types)
REVISE TS(M, i, tag, ts) // Phase 1 message sent by Pi , with initial timestamp ts
PROPOSED TS(j, i, tag, ts) // Phase 2 message sent by Pj , with revised timestamp, to Pi
FINAL TS(i, tag, ts) // Phase 3 message sent by Pi , with final timestamp

(1) When process Pi wants to multicast a message M with a tag tag :

(1a) clock = clock + 1;
(1b) send REVISE TS(M, i, tag, clock) to all processes;
(1c) temp ts = 0;
(1d) await PROPOSED TS(j, i, tag, tsj ) from each process Pj ;

(1e) ∀j ∈ N, do temp ts = max(temp ts, tsj );

(1f) send FINAL TS(i, tag, temp ts) to all processes;
(1g) clock = max(clock, temp ts).
(2) When REVISE TS(M, j, tag, clk) arrives from Pj :

(2a) priority = max(priority + 1, clk);
(2b) insert (M, tag, j, priority, undeliverable) in temp Q; // at end of queue
(2c) send PROPOSED TS(i, j, tag, priority) to Pj .

(3) When FINAL TS(j, tag, clk) arrives from Pj :

(3a) Identify entry Q entry(tag) in temp Q, corresponding to tag ;
(3b) mark qtag as deliverable;
(3c) Update Q entry.timestamp to clk and re-sort temp Q based on the timestamp field;
(3d) if head(temp Q) = Q entry(tag) then
(3e) move Q entry(tag) from temp Q to delivery Q;
(3f) while head(temp Q) is deliverable do
(3g) move head(temp Q) from temp Q to delivery Q.
(4) When Pi removes a message (M, tag, j, ts, deliverable) from head(delivery Qi ):

(4a) clock = max(clock, ts) + 1.
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Total Order: Distributed Algorithm: Example and
Complexity

REVISE_TS

A B

C D

7

7

7
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9

9

9

9

temp_Q delivery_Qtemp_Q

(9,u)(10,u)(7,u)(9,u)

delivery_Q

PROPOSED_TS

(a)

max(9,9)=9
A B

C D

9

temp_Q delivery_Qtemp_Q delivery_Q

10

10
9

(9,u)(10,d) (10,u) (9,d)

max(7,10)=10

FINAL_TS

(b) 

Figure 6.14: (a) A snapshot for PROPOSED TS and REVISE TS messages. The dashed lines show the

further execution after the snapshot. (b) The FINAL TS messages.

Complexity:

Three phases

3(n − 1) messages for n − 1 dests

Delay: 3 message hops

Also implements causal order
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A Nomenclature for Multicast

4 classes of source-dest relns for open groups:

SSSG: Single source and single dest group

MSSG: Multiple sources and single dest
group

SSMG: Single source and multiple, possibly
overlapping, groups

MSMG: Multiple sources and multiple,
possibly overlapping, groups

(d) Multiple Sources Multiple Groups

(a) Single Source Single Group (c) Single Source Multiple Groups

(b) Multiple Sources Single Group

Fig 6.15 : Four classes of source-dest relationships for
open-group multicasts. For closed-group multicasts, the
sender needs to be part of the recipient group.

SSSG, SSMG: easy to implement
MSSG: easy. E.g., Centralized algorithm

MSMG: Semi-centralized propagation tree approach
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Propagation Trees for Multicast: Definitions

set of groups G = {G1 . . . Gg}
set of meta-groups MG = {MG1, . . . MGh} with the following properties.

I Each process belongs to a single meta-group, and has the exact same group
membership as every other process in that meta-group.

I No other process outside that meta-group has that exact group membership.

MSMG to groups → MSSG to meta-groups

A distinguished node in each meta-group acts as its manager.

For each user group Gi , one of its meta-groups is chosen to be its primary
meta-group (PM), denoted PM(Gi ).

All meta-groups are organized in a propagation forest/tree satisfying:
I For user group Gi , PM(Gi ) is at the lowest possible level (i.e., farthest from

root) of the tree such that all meta-groups whose destinations contain any
nodes of Gi belong to subtree rooted at PM(Gi ).

Propagation tree is not unique!
I Exercise: How to construct propagation tree?
I Metagroup with members from more user groups as root ⇒ low tree height
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Propagation Trees for Multicast: Properties

1 The primary meta-group PM(G ) is the ancestor of all the other meta-groups
of G in the propagation tree.

2 PM(G ) is uniquely defined.

3 For any meta-group MG, there is a unique path to it from the PM of any of
the user groups of which the meta-group MG is a subset.

4 Any PM(G1) and PM(G2) lie on the same branch of a tree or are in disjoint
trees. In the latter case, their groups membership sets are disjoint.

Key idea: Multicasts to Gi are sent first to the meta-group PM(Gi ) as only the
subtree rooted at PM(Gi ) can contain the nodes in Gi . The message is then
propagated down the subtree rooted at PM(Gi ).

MG1 subsumes MG2 if MG1 is a subset of each user group G of which MG2

is a subset.

MG1 is joint with MG2 if neither subsumes the other and there is some group
G such that MG1, MG2 ⊂ G .
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Propagation Trees for Multicast: Example

D
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A B C AB AC BC BCD

BD CD D DE
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F

PM(C) PM(D)

PM(E)

PM(F)

(a) (b)

PM(A),PM(B),

A

E

F

C

B

Fig 6.16: Example illustrating a propagation tree. Meta-groups in boldface. (a) Groups A, B, C , D, E and F ,
and their meta-groups. (b) A propagation tree, with the primary meta-groups labeled.

〈ABC〉, 〈AB〉, 〈AC〉, and 〈A〉 are meta-groups of user group 〈A〉.
〈ABC〉 is PM(A), PM(B), PM(C). 〈B, C , D〉 is PM(D). 〈D, E〉 is PM(E). 〈E , F〉 is PM(F ).

〈ABC〉 is joint with 〈CD〉. Neither subsumes the other and both are a subset of C .

Meta-group 〈ABC〉 is the primary meta-group PM(A), PM(B), PM(C). Meta-group 〈BCD〉 is the
primary meta-group PM(D). A multicast to D is sent to 〈BCD〉.
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Propagation Trees for Multicast: Logic

Each process knows the propagation tree

Each meta-group has a distinguished process (manager)

SVi [k] at each Pi : # msgs multicast by Pi that will traverse PM(Gk).
Piggybacked on each multicast by Pi .

RVmanager(PM(Gz ))[k]: # msgs sent by Pk received by PM(Gz)

At manager(PM(Gz)): process M from Pi if SVi [z ] = RVmanager(PM(Gz ))[i ];
else buffer M until condition becomes true

At manager of non-primary meta-group: msg order already determined, as it
never receives msg directly from sender of multicast. Forward (2d-2g).

Correctness for Total Order: Consider MG1, MG2 ⊂ Gx , Gy

⇒ PM(Gx), PM(Gy ) both subsume MG1, MG2 and lie on the same branch of
the propagation tree to either MG1 or MG2

order seen by the ”lower-in-the-tree” primary meta-group (+ FIFO) =
order seen by processes in meta-groups subsumed by it
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Propagation Trees for Multicast (CO and TO): Code

(local variables)
array of integers: SV [1 . . . h]; //kept by each process. h is #(primary meta-groups), h ≤ |G|
array of integers: RV [1 . . . n]; //kept by each primary meta-group manager. n is #(processes)
set of integers: PM set; //set of primary meta-groups through which message must traverse

(1) When process Pi wants to multicast message M to group G :

(1a) send M(i, G , SVi ) to manager of PM(G), primary meta-group of G ;
(1b) PM set ←− { primary meta-groups through which M must traverse };
(1c) for all PMx ∈ PM set do
(1d) SVi [x]←− SVi [x] + 1.

(2) When Pi , the manager of a meta-group MG receives M(k, G , SVk ) from Pj :

// Note: Pi may not be a manager of any meta-group
(2a) if MG is a primary meta-group then
(2b) buffer the message until (SVk [i ] = RVi [k]);
(2c) RVi [k]←− RVi [k] + 1;
(2d) for each child meta-group that is subsumed by MG do
(2e) send M(k, G , SVk ) to the manager of that child meta-group;
(2f) if there are no child meta-groups then
(2g) send M(k, G , SVk ) to each process in this meta-group.
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Propagation Trees for Multicast: Correctness for CO
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Fig 6.17: The four cases for the correctness of causal

ordering. The sequence numbers indicate the order in

which the msgs are sent.

M and M′ multicast to G and G ′, resp.
Consider G ∩ G ′

Senders of M, M′ are different.
Pi in G receives M, then sends M′.

⇒ ∀MGq ∈ G ∩ G ′, PM(G), PM(G ′) are both

ancestors of metagroup of Pi

I (a) PM(G ′) processes M before M′

I (b) PM(G) processes M before M′

FIFO ⇒ CO guaranteed for all in G ∩ G ′

Pi sends M to G , then sends M′ to G ′.

Test in lines (2a)-(2c) ⇒
I PM(G ′) will not process M′ before M

I PM(G) will not process M′ before M

FIFO ⇒ CO guaranteed for all in G ∩ G ′
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Classification of Application-Level Multicast Algorithms

Destinations

privilege rotates

Senders

Destinations

Senders

rotates
token

Sequencers

Senders

Destinations

Fixed sequencer

Senders

Destinations

(d) Destination agreement

(a) Privilege−based (b) Moving sequencer

(c) Fixed sequencer

Communication-history based: RST, KS,
Lamport, NewTop

Privilege-based: Token-holder multicasts
I processes deliver msgs in order of seq no.
I Typically closed groups, and CO & TO.

I E.g., Totem, On-demand.

Moving sequencer: E.g., Chang-Maxemchuck,

Pinwheel
I Sequencers’ token has seq no and list of

msgs for which seq no has been assigned
(these are sent msgs).

I On receiving token, sequencer assigns
seq nos to received but unsequenced
msgs, and sends the newly sequenced msgs
to dests.

I Dests deliver in order of seq no

Fixed Sequencer: simplifies moving sequencer
approach. E.g., propagation tree, ISIS, Amoeba,
Phoenix, Newtop-asymmetric

Destination agreement:
I Dests receive limited ordering info.
I (i) Timestamp-based (Lamport’s 3-phase)

I (ii) Agreement-based, among dests.
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Semantics of Fault-Tolerant Multicast (1)

Multicast is non-atomic!

Well-defined behavior during failure ⇒ well-defined recovery actions

if one correct process delivers M, what can be said about the other correct
processes and faulty processes being delivered M?

if one faulty process delivers M, what can be said about the other correct processes
and faulty processes being delivered M?

For causal or total order multicast, if one correct or faulty process delivers M, what
can be said about other correct processes and faulty processes being delivered M?

(Uniform) specifications: specify behavior of faulty processes (benign failure model)

Uniform Reliable Multicast of M .

Validity. If a correct process multicasts M, then all correct processes will
eventually deliver M.

(Uniform) Agreement. If a correct (or faulty) process delivers M, then all correct
processes will eventually deliver M.

(Uniform) Integrity. Every correct (or faulty) process delivers M at most once, and only
if M was previously multicast by sender(M).
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Semantics of Fault-Tolerant Multicast (2)

(Uniform) FIFO order. If a process broadcasts M before it broadcasts M ′, then no
correct (or faulty) process delivers M ′ unless it previously delivered M.

(Uniform) Causal Order. If a process broadcasts M causally before it broadcasts M ′,
then no correct (or faulty) process delivers M ′ unless it previously
delivered M.

(Uniform) Total Order. If correct (or faulty) processes a and b both deliver M and M ′,
then a delivers M before M ′ if and only if b delivers M before M ′.

Specs based on global clock or local clock (needs clock synchronization)

(Uniform) Real-time ∆-Timeliness. For some known constant ∆, if M is multicast at
real-time t, then no correct (or faulty) process delivers M after real-time
t + ∆.

(Uniform) Local ∆-Timeliness. For some known constant ∆, if M is multicast at local
time tm, then no correct (or faulty) process delivers M after its local
time tm + ∆.
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Reverse Path Forwarding (RPF) for Constrained Flooding

Network layer multicast exploits topology, e.g., bridged LANs use spannint trees
for learning dests and distributing information, IP layer
RPF approximates DVR/ LSR-like algorithms at lower cost

Broadcast gets curtailed to approximate a spanning tree

Approx. to rooted spanning tree is identified without being computed/stored

# msgs closer to |N| than to |L|

(1) When Pi wants to multicast M to group Dests:

(1a) send M(i, Dests) on all outgoing links.

(2) When a node i receives M(x, Dests) from node j :

(2a) if Next hop(x) = j then // this will necessarily be a new message
(2b) forward M(x, Dests) on all other incident links besides (i, j);
(2c) else ignore the message.
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Steiner Trees

Steiner tree

Given a weighted graph (N, L) and a subset N ′ ⊆ N, identify a subset L′ ⊆ L such
that (N ′, L′) is a subgraph of (N, L) that connects all the nodes of N ′.
A minimal Steiner tree is a minimal weight subgraph (N ′, L′).

NP-complete ⇒ need heuristics
Cost of routing scheme R:

Network cost:
∑

cost of Steiner tree edges

Destination cost: 1
N′

∑
i∈N′ cost(i), where cost(i) is cost of path (s, i)
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Kou-Markowsky-Berman Heuristic for Steiner Tree

Input: weighted graph G = (N, L), and N′ ⊆ N, where N′ is the set of Steiner points

1 Construct the complete undirected distance graph G ′ = (N′, L′) as follows.
L′ = {(vi , vj ) | vi , vj in N′}, and wt(vi , vj ) is the length of the shortest path from vi to vj in (N, L).

2 Let T ′ be the minimal spanning tree of G ′. If there are multiple minimum spanning trees, select one
randomly.

3 Construct a subgraph Gs of G by replacing each edge of the MST T ′ of G ′, by its corresponding
shortest path in G . If there are multiple shortest paths, select one randomly.

4 Find the minimum spanning tree Ts of Gs . If there are multiple minimum spanning trees, select one
randomly.

5 Using Ts , delete edges as necessary so that all the leaves are the Steiner points N′. The resulting
tree, TSteiner , is the heuristic’s solution.

Approximation ratio = 2 (even without steps (4) and (5) added by KMB)

Time complexity: Step (1): O(|N′| · |N|2), Step (2): O(|N′|2), Step (3): O(|N|), Step (4):
O(|N|2), Step (5): O(|N|). Step (1) dominates, hence O(|N′| · |N|2).
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Constrained (Delay-bounded) Steiner Trees

C(l) and D(l): cost, integer delay for edge l ∈ L

Definition
For a given delay tolerance ∆, a given source s and a destination set Dest, where
{s} ∪ Dest = N ′ ⊆ N, identify a spanning tree T covering all the nodes in N ′,
subject to the constraints below.∑

l∈T C (l) is minimized, subject to

∀v ∈ N ′,
∑

l∈path(s,v) D(l) < ∆, where path(s, v) denotes the path from s to
v in T .

constrained cheapest path between x and y is the cheapest path between x
and y having delay < ∆.

its cost and delay denoted C(x , y), D(x , y), resp.
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Constrained (Delay-Bounded) Steiner Trees: Algorithm
C(l), D(l); // cost, delay of edge l
T ; // constrained spanning tree to be constructed
P(x, y); // path from x to y
PC (x, y), PD (x, y); // cost, delay of constrained cheapest path from x to y
Cd (x, y); // cost of the cheapest path with delay exactly d

Input: weighted graph G = (N, L), and N′ ⊆ N, where N′ is the set of Steiner points and source s; ∆ is the constraint on delay.

1 Compute the closure graph G′ on (N′, L), to be the complete graph on N′ . The closure graph is computed using the all-pairs constrained

cheapest paths using a dynamic programming approach analogous to Floyd’s algorithm. For any pair of nodes x, y ∈ N′ :
I Pc (x, y) = mind<∆ Cd (x, y) This selects the cheapest constrained path, satisfying the condition of ∆, among the various

paths possible between x and y . The various Cd (x, y) can be calculated using DP as follows.

I Cd (x, y) = minz∈N{Cd−D(z,y)(x, z) + C(z, y)} For a candidate path from x to y passing through z, the path with weight

exactly d must have a delay of d − D(z, y) for x to z when the edge (z, y) has delay D(z, y).

In this manner, the complete closure graph G′ is computed. PD (x, y) is the constrained cheapest path that corresponds to PC (x, y).

2 Construct a constrained spanning tree of G′ using a greedy approach that sequentially adds edges to the subtree of the constrained
spanning tree T (thus far) until all the Steiner points are included. The initial value of T is the singleton s. Consider that node u is in the
tree and we are considering whether to add edge (u, v).
The following two edge selection criteria (heuristics) can be used to decide whether to include edge (u, v) in the tree.

I Heuristic CSTCD : fCD (u, v) =


C(u,v)

∆−(PD (s,u)+D(u,v))
, if PD (s, u) + D(u, v) < ∆

∞, otherwise

The numerator is the ”incremental cost” of adding (u, v) and the denominator is the ”residual delay” that could be afforded. The
goal is to minimize the incremental cost, while also maximizing the residual delay by choosing an edge that has low delay.

I Heuristic CSTC : fc =

{
C(u, v), if PD (s, u) + D(u, v) < ∆
∞, otherwise

Picks the lowest cost edge between the already included tree edges and their nearest neighbour, provided total delay < ∆.

The chosen node v is included in T . This step 2 is repeated until T includes all |N′| nodes in G′ .

3 Expand the edges of the constrained spanning tree T on G′ into the constrained cheapest paths they represent in the original graph G .
Delete/break any loops introduced by this expansion.
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Constrained (Delay-Bounded) Steiner Trees: Example
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Figure 6.19: (a) Network graph. (b,c) MST and Steiner tree (optimal) are the same and shown

in thick lines.
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Constrained (Delay-Bounded) Steiner Trees: Heuristics,
Time Complexity

Heuristic CSTCD : Tries to choose low-cost edges, while also trying to maximize
the remaining allowable delay.

Heuristic CSTC : Minimizes the cost while ensuring that the delay bound is met.

step (1) which finds the constrained cheapest shortest paths over all the nodes
costs O(n3∆).

Step (2) which constructs the constrained MST on the closure graph having k
nodes costs O(k3).

Step (3) which expands the constrained spanning tree, involves expanding the k
edges to up to n − 1 edges each and then eliminating loops. This costs O(kn).

Dominating step is step (1).
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Core-based Trees

Multicast tree constructed dynamically, grows on demand.
Each group has a core node(s)

1 A node wishing to join the tree as a receiver sends a unicast join message to the
core node.

2 The join marks the edges as it travels; it either reaches the core node, or some
node already part of the tree. The path followed by the join till the core/multicast
tree is grafted to the multicast tree.

3 A node on the tree multicasts a message by using a flooding on the core tree.

4 A node not on the tree sends a message towards the core node; as soon as the
message reaches any node on the tree, it is flooded on the tree.
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