
Chapter 7: Termination Detection

Ajay Kshemkalyani and Mukesh Singhal

Distributed Computing: Principles, Algorithms, and Systems

Cambridge University Press

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 1 / 30

Distributed Computing: Principles, Algorithms, and Systems

Introduction

A fundamental problem: To determine if a distributed computation has
terminated.

A non-trivial task since no process has complete knowledge of the global
state, and global time does not exist.

A distributed computation is globally terminated if every process is locally
terminated and there is no message in transit between any processes.

“Locally terminated” state is a state in which a process has finished its
computation and will not restart any action unless it receives a message.

In the termination detection problem, a particular process (or all of the
processes) must infer when the underlying computation has terminated.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 2 / 30

Distributed Computing: Principles, Algorithms, and Systems

Introduction

A termination detection algorithm is used for this purpose.

Messages used in the underlying computation are called basic messages, and
messages used for the purpose of termination detection are called control
messages.

A termination detection (TD) algorithm must ensure the following:
1 Execution of a TD algorithm cannot indefinitely delay the underlying

computation.
2 The termination detection algorithm must not require addition of new

communication channels between processes.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 3 / 30

Distributed Computing: Principles, Algorithms, and Systems

System Model

At any given time, a process can be in only one of the two states: active,
where it is doing local computation and idle, where the process has
(temporarily) finished the execution of its local computation and will be
reactivated only on the receipt of a message from another process.

An active process can become idle at any time.

An idle process can become active only on the receipt of a message from
another process.

Only active processes can send messages.

A message can be received by a process when the process is in either of the
two states, i.e., active or idle. On the receipt of a message, an idle process
becomes active.

The sending of a message and the receipt of a message occur as atomic
actions.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 4 / 30

Distributed Computing: Principles, Algorithms, and Systems

Definition of Termination Detection

Let pi(t) denote the state (active or idle) of process pi at instant t.

Let ci ,j(t) denote the number of messages in transit in the channel at instant
t from process pi to process pj .

A distributed computation is said to be terminated at time instant t0 iff:
(∀i :: pi (t0) = idle) ∧ (∀i , j :: ci ,j(t0)=0).

Thus, a distributed computation has terminated iff all processes have become
idle and there is no message in transit in any channel.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 5 / 30

Distributed Computing: Principles, Algorithms, and Systems

Termination detection Using Distributed Snapshots

The algorithm assumes that there is a logical bidirectional communication
channel between every pair of processes.

Communication channels are reliable but non-FIFO. Message delay is
arbitrary but finite.

Main idea:

When a process goes from active to idle, it issues a request to all other
processes to take a local snapshot, and also requests itself to take a local
snapshot.

When a process receives the request, if it agrees that the requester became
idle before itself, it grants the request by taking a local snapshot for the
request.

A request is successful if all processes have taken a local snapshot for it.

The requester or any external agent may collect all the local snapshots of a
request.

If a request is successful, a global snapshot of the request can thus be
obtained and the recorded state will indicate termination of the computation,

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 6 / 30

Distributed Computing: Principles, Algorithms, and Systems

Termination detection using distributed snapshots

Formal Description

Each process i maintains a logical clock denoted by x , initialized to zero at
the start of the computation.

A process increments its x by one each time it becomes idle.

A basic message sent by a process at its logical time x is of the form B(x).

A control message that requests processes to take local snapshot issued by
process i at its logical time x is of the form R(x, i).

Each process synchronizes its logical clock x loosely with the logical clocks
x’s on other processes in such a way that it is the maximum of clock values
ever received or sent in messages.

A process also maintains a variable k such that when the process is idle, (x,k)
is the maximum of the values (x, k) on all messages R(x, k) ever received or
sent by the process.

Logical time is compared as follows: (x, k) > (x’, k’) iff (x > x’) or ((x=x’)
and (k>k’)), i.e., a tie between x and x’ is broken by the process
identification numbers k and k’.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 7 / 30

Distributed Computing: Principles, Algorithms, and Systems

Termination detection using distributed snapshots

The algorithm is defined by the following four rules.

(R1): When process i is active, it may send a basic message to process j at any time by doing
send a B(x) to j.

(R2): Upon receiving a B(x’), process i does
let x:=x’+1;
if (i is idle) → go active.

(R3): When process i goes idle, it does
let x:=x+1;
let k:=i;
send message R(x, k) to all other processes;
take a local snapshot for the request by R(x, k).

(R4): Upon receiving message R(x’, k’), process i does
[((x’, k’) > (x,k)) ∧ (i is idle)→ let (x,k):= (x’, k’);

take a local snapshot for the request by R(x’, k’);
�

((x’, k’) ≤ (x,k)) ∧ (i is idle)→ do nothing;
�

(i is active)→ let x:=max(x’, x)].

The last process to terminate will have the largest clock value. Therefore,
every process will take a snapshot for it, however, it will not take a snapshot
for any other process.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 8 / 30

Distributed Computing: Principles, Algorithms, and Systems

Termination detection by Weight Throwing

System Model

A process called controlling agent monitors the computation.

A communication channel exists between each of the processes and the
controlling agent and also between every pair of processes.
Initially, all processes are in the idle state.

The weight at each process is zero and the weight at the controlling agent is
1.

The computation starts when the controlling agent sends a basic message to
one of the processes.

A non-zero weight W (0<W≤1) is assigned to each process in the active
state and to each message in transit in the following manner:

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 9 / 30

Distributed Computing: Principles, Algorithms, and Systems

Termination detection by Weight Throwing

Basic Idea

When a process sends a message, it sends a part of its weight in the message.

When a processreceives a message, it adds the weight received in the
message to it’s weight.

Thus, the sum of weights on all the processes and on all the messages in
transit is always 1.

When a process becomes passive, it sends its weight to the controlling agent
in a control message, which the controlling agent adds to its weight.

The controlling agent concludes termination if its weight becomes 1.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 10 / 30

Distributed Computing: Principles, Algorithms, and Systems

Notations

The weight on the controlling agent and a process is in general represented
by W.

B(DW) - a basic message B sent as a part of the computation, where DW is
the weight assigned to it.

C(DW) - a control message C sent from a process to the controlling agent
where DW is the weight assigned to it.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 11 / 30

Distributed Computing: Principles, Algorithms, and Systems

Algorithm

The algorithm is defined by the following four rules:

Rule 1: The controlling agent or an active process may send a basic message
to one of the processes, say P, by splitting its weight W into W1 and W2
such that W1+W2=W, W1>0 and W2>0. It then assigns its weight
W:=W1 and sends a basic message B(DW:=W2) to P.

Rule 2: On the receipt of the message B(DW), process P adds DW to its
weight W (W:=W+DW). If the receiving process is in the idle state, it
becomes active.

Rule 3: A process switches from the active state to the idle state at any time
by sending a control message C(DW:=W) to the controlling agent and
making its weight W:=0.

Rule 4: On the receipt of a message C(DW), the controlling agent adds DW
to its weight (W:=W+DW). If W=1, then it concludes that the computation
has terminated.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 12 / 30

Distributed Computing: Principles, Algorithms, and Systems

Correctness of Algorithm

Notations

A: set of weights on all active processes

B: set of weights on all basic messages in transit

C: set of weights on all control messages in transit

Wc : weight on the controlling agent.

Two invariants I1 and I2 are defined for the algorithm:

I1: Wc +
∑

W∈(A∪B∪C)

W = 1

I2: ∀ W ∈ (A∪B∪C), W>0

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 13 / 30

Distributed Computing: Principles, Algorithms, and Systems

Correctness of Algorithm

Invariant I1 states that sum of weights at the controlling process, at all active
processes, on all basic messages in transit, and on all control messages in
transit is always equal to 1.

Invariant I2 states that weight at each active process, on each basic message
in transit, and on each control message in transit is non-zero.

Hence,
Wc=1
⇒

∑
W∈(A∪B∪C) W = 0 (by I1)

⇒ (A∪B∪C) = φ (by I2)
⇒ (A∪B) = φ.

(A∪B) = φ implies the computation has terminated. Therefore, the
algorithm never detects a false termination.
Further,
(A∪B) = φ

⇒ Wc +
∑

W∈C W = 1 (by I1)

Since the message delay is finite, after the computation has terminated,
eventually Wc=1.

Thus, the algorithm detects a termination in finite time.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 14 / 30

Distributed Computing: Principles, Algorithms, and Systems

Spanning-Tree-Based Termination Detection Algorithm

There are N processes Pi , 0≤i≤N, which are modeled as the nodes i ,
0≤i≤N, of a fixed connected undirected graph.

The edges of the graph represent the communication channels.

The algorithm uses a fixed spanning tree of the graph with process P0 at its
root which is responsible for termination detection.

Process P0 communicates with other processes to determine their states
through signals.

All leaf nodes report to their parents, if they have terminated.

A parent node will similarly report to its parent when it has completed
processing and all of its immediate children have terminated, and so on.

The root concludes that termination has occurred, if it has terminated and all
of its immediate children have also terminated.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 15 / 30

Distributed Computing: Principles, Algorithms, and Systems

Spanning-Tree-Based Termination Detection Algorithm

Two waves of signals generated one moving inward and other outward
through the spanning tree.

Initially, a contracting wave of signals, called tokens, moves inward from
leaves to the root.

If this token wave reaches the root without discovering that termination has
occurred, the root initiates a second outward wave of repeat signals.

As this repeat wave reaches leaves, the token wave gradually forms and starts
moving inward again, this sequence of events is repeated until the
termination is detected.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 16 / 30

Distributed Computing: Principles, Algorithms, and Systems

A spanning-tree-based termination detection algorithm

Initially, each leaf process is given a token.

Each leaf process, after it has terminated sends its token to its parent.

When a parent process terminates and after it has received a token from each
of its children, it sends a token to its parent.

This way, each process indicates to its parent process that the subtree below
it has become idle.

In a similar manner, the tokens get propagated to the root.

The root of the tree concludes that termination has occurred, after it has
become idle and has received a token from each of its children.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 17 / 30

Distributed Computing: Principles, Algorithms, and Systems

Spanning-Tree-Based Termination Detection Algorithm

A Problem with the algorithm

This simple algorithm fails under some circumstances, when a process after it
has sent a token to its parent, receives a message from some other process,
which could cause the process to again become active (See Figure 1).

Hence the simple algorithm fails since the process that indicated to its parent
that it has become idle, is now active because of the message it received from
an active process.

Hence, the root node just because it received a token from a child, can’t
conclude that all processes in the child’s subtree have terminated.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 18 / 30

Distributed Computing: Principles, Algorithms, and Systems

A spanning-tree-based termination detection algorithm

0

1 2

3 4 5 6

T1

T5 T6

m

denotes a token

Figure 1: An Example of the Problem.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 19 / 30

Distributed Computing: Principles, Algorithms, and Systems

Spanning-Tree-Based Termination Detection Algorithm

Main idea is to color the processes and tokens and change the color when
messages such as in Figure 1 are involved.

The algorithm works as follows:

Initially, each leaf process is provided with a token. The set S is used for
book-keeping to know which processes have the token Hence S will be the set
of all leaves in the tree.

Initially, all processes and tokens are colored white.

When a leaf node terminates, it sends the token it holds to its parent process.

A parent process will collect the token sent by each of its children. After it
has received a token from all of its children and after it has terminated, the
parent process sends a token to its parent.

A process turns black when it sends a message to some other process. When
a process terminates, if its color is black, it sends a black token to its parent.

A black process turns back to white, after it has sent a black token to its
parent.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 20 / 30

Distributed Computing: Principles, Algorithms, and Systems

Spanning-Tree-Based Termination Detection Algorithm

A parent process holding a black token (from one of its children), sends only
a black token to its parent, to indicate that a message-passing was involved
in its subtree.

Tokens are propagated to the root in this fashion. The root, upon receiving a
black token, will know that a process in the tree had sent a message to some
other process. Hence, it restarts the algorithm by sending a Repeat signal to
all its children.

Each child of the root propagates the Repeat signal to each of its children
and so on, until the signal reaches the leaves.

The leaf nodes restart the algorithm on receiving the Repeat signal.

The root concludes that termination has occurred, if
1 it is white,
2 it is idle, and
3 it received a white token from each of its children.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 21 / 30

Distributed Computing: Principles, Algorithms, and Systems

Spanning-Tree-Based Termination Detection Algorithm

Performance

The best case message complexity of the algorithm is O(N), where N is the
number of processes in the computation, which occurs when all nodes send
all computation messages in the first round.

The worst case complexity of the algorithm is O(N*M), where M is the
number of computation messages exchanged, which occurs when only
computation message is exchanged every time the algorithm is executed.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 22 / 30

Distributed Computing: Principles, Algorithms, and Systems

Message-Optimal Termination Detection

The network is represented by a graph G = (V, E), where V is the set of
nodes, and E ⊆ V×V is the set of edges or communication links.

The communication links are bidirectional and exhibit FIFO property.

The algorithm assumes the existence of a leader and a spanning tree in the
network.

If a leader is not available, the minimum spanning tree algorithm of Gallager
et al. can be used to elect a leader and find a spanning tree using O(|E| +
|V| log|V|) messages.

Spanning-tree-based termination detection algorithm is inefficient in terms of
message complexity because every message of the underlying computation
can potentially cause the execution of one more round of the termination
detection algorithm, resulting in significant message traffic.

This is explained next.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 23 / 30

Distributed Computing: Principles, Algorithms, and Systems

Message-Optimal Termination Detection

Consider the example shown in Figure 2.

Suppose before node q receives message m, it has already sent a white token
to its parent.

Node p can not send a white token to its patent until node q becomes idle.

To insure this, node p changes its color to black and sends a black token to
its parent so that termination detection is performed again.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 24 / 30

Distributed Computing: Principles, Algorithms, and Systems

Message-Optimal Termination Detection

p

white token

’s parentq

q

m

Figure 2: Node p sends a message m to node q that has already sent a white
token to its parent.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 25 / 30

Distributed Computing: Principles, Algorithms, and Systems

Message-Optimal Termination Detection

. . . Formal Description of the Algorithm

Initially, all nodes in the network are in state NDT (not detecting
termination) and all links are uncolored.

For termination detection,the root node changes its state to DT (detecting
termination) and sends a warning message on each of its outgoing edges.

When a node p receives a warning message from its neighbor, say q, it colors
the incoming link (q, p) and if it is in state NTD, it changes its state to DT,
colors each of its outgoing edges, and sends a warning message on each of its
outgoing edges.

When a node p in state DT sends a basic message to its neighbor q, it keeps
track of this information by pushing the entry TO(q) on its local stack.

When a node x receives a basic message from node y on the link (y , x) that
is colored by x , node x knows that the sender node y will need an
acknowledgement for this message from it.

The receiver node x keeps track of this information by pushing the entry
FROM(y) on its local stack.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 26 / 30

Distributed Computing: Principles, Algorithms, and Systems

Message-Optimal Termination Detection

. . . Formal Description of the Algorithm

Procedure receive message is given below:

Procedure receive message(y : neighbor);
(* performed when a node x receives a message from its neighbor y on the
link (y ,x) that was colored by x *)

begin

receive message from y on the link (y ,x)
if (link(y ,x) has been colored by x) then

push FROM(y) on the stack
end;

When a node p becomes idle, it calls procedure stack cleanup, which
examines its stack from the top, and for every entry of the form FROM(q), it
deletes the entry and sends the remove entry message to node q.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 27 / 30

Distributed Computing: Principles, Algorithms, and Systems

Message-Optimal Termination Detection

Formal Description of the Algorithm

Node p repeats this until it encounters an entry of the form TO(x) on the
stack.

The idea behind this step is to inform those nodes that sent a message to p
that the actions triggered by their messages to p are complete.

Procedure stack cleanup;
begin

while (top entry on stack is not of the form “TO()”) do
begin

pop the entry on the top of the stack;
let the entry be FROM(q);
send a remove entry message to q

end

end;

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 28 / 30

Distributed Computing: Principles, Algorithms, and Systems

Message-Optimal Termination Detection

Node x on receipt of the control message remove entry from node y,
examines its stack from the top and deletes the first entry of the form TO(y)
from the stack.

If node x is idle, it also performs the stack cleanup operation.

The procedure receive remove entry is defined as follows:

Procedure receive remove entry(y : neighbor);
(* performed when a node x receives a remove entry message from its
neighbor y *)

begin

scan the stack and delete the first entry of the form TO(y);
if idle then

stack cleanup
end;

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 29 / 30

Distributed Computing: Principles, Algorithms, and Systems

Message-Optimal Termination Detection

A node sends a terminate message to its parent when it satisfies all the
following conditions:

1 It is idle.
2 Each of its incoming links is colored (it has received a warning message on

each of its incoming links).
3 Its stack is empty.
4 It has received a terminate message from each of its children (this rule does

not apply to leaf nodes).

When the root node satisfies all of the above conditions, it concludes that
the underlying computation has terminated.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 30 / 30

Distributed Computing: Principles, Algorithms, and Systems

Performance

In the worst case, each node in the network sends one warning message on
each outgoing link. Thus, each link carries two warning messages, one in
each direction.

Since there are |E| links, the total number of warning messages generated by
the algorithm is 2*|E|.

For every message generated by the underlying computation,exactly one
remove message is sent on the network.

If M is the number of messages sent by the underlying computation, then at
most M remove entry messages are used.

Finally, each node sends exactly one terminate message to its parent and
since there are only |V| nodes and |V|−1 tree edges, only |V| − 1 terminate
messages are sent.

Hence, the total number of messages generated by the algorithm is 2* |E| +
|V| − 1 + M.

Thus, the message complexity of the algorithm is O(|E| + M) as |E| > |V| −
1 for any connected network.

The algorithm is asymptotically optimal in the number of messages.

A. Kshemkalyani and M. Singhal (Distributed Computing) Termination Detection CUP 2008 31 / 30

	Main Talk
	Distributed Computing: Principles, Algorithms, and Systems
	Introduction
	
	A Simple Algorithm

