
Chapter 8: Reasoning with Knowledge

Ajay Kshemkalyani and Mukesh Singhal

Distributed Computing: Principles, Algorithms, and Systems

Cambridge University Press

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 1 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario A)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario A: Father says:: ψ: ”At least one of you has
mud on the forehead.”

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: contradicts ψ

k = 1: In r = 1, the d answers ”Yes”.
For r = 2, the c answer ”No”.

k = 2: In r = 1, no responses.
In r = 2, both d answer ”Yes”.
In r = 3, the c answer ”No”

k = 3: In r = 1, 2, no responses.
In r = 3, the 3 d answer ”Yes”.
In r = 4, the n − 3 c answer ”No”.

k ≤ n: In r < k, no responses.
In r = k, the k d answer ”Yes”.
In r = k + 1, the n − k c answer ”No”.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 2 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario A)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario A: Father says:: ψ: ”At least one of you has
mud on the forehead.”

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: contradicts ψ

k = 1: In r = 1, the d answers ”Yes”.
For r = 2, the c answer ”No”.

k = 2: In r = 1, no responses.
In r = 2, both d answer ”Yes”.
In r = 3, the c answer ”No”

k = 3: In r = 1, 2, no responses.
In r = 3, the 3 d answer ”Yes”.
In r = 4, the n − 3 c answer ”No”.

k ≤ n: In r < k, no responses.
In r = k, the k d answer ”Yes”.
In r = k + 1, the n − k c answer ”No”.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 2 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario A)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario A: Father says:: ψ: ”At least one of you has
mud on the forehead.”

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: contradicts ψ

k = 1: In r = 1, the d answers ”Yes”.
For r = 2, the c answer ”No”.

k = 2: In r = 1, no responses.
In r = 2, both d answer ”Yes”.
In r = 3, the c answer ”No”

k = 3: In r = 1, 2, no responses.
In r = 3, the 3 d answer ”Yes”.
In r = 4, the n − 3 c answer ”No”.

k ≤ n: In r < k, no responses.
In r = k, the k d answer ”Yes”.
In r = k + 1, the n − k c answer ”No”.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 2 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario A)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario A: Father says:: ψ: ”At least one of you has
mud on the forehead.”

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: contradicts ψ

k = 1: In r = 1, the d answers ”Yes”.
For r = 2, the c answer ”No”.

k = 2: In r = 1, no responses.
In r = 2, both d answer ”Yes”.
In r = 3, the c answer ”No”

k = 3: In r = 1, 2, no responses.
In r = 3, the 3 d answer ”Yes”.
In r = 4, the n − 3 c answer ”No”.

k ≤ n: In r < k, no responses.
In r = k, the k d answer ”Yes”.
In r = k + 1, the n − k c answer ”No”.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 2 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario A)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario A: Father says:: ψ: ”At least one of you has
mud on the forehead.”

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: contradicts ψ

k = 1: In r = 1, the d answers ”Yes”.
For r = 2, the c answer ”No”.

k = 2: In r = 1, no responses.
In r = 2, both d answer ”Yes”.
In r = 3, the c answer ”No”

k = 3: In r = 1, 2, no responses.
In r = 3, the 3 d answer ”Yes”.
In r = 4, the n − 3 c answer ”No”.

k ≤ n: In r < k, no responses.
In r = k, the k d answer ”Yes”.
In r = k + 1, the n − k c answer ”No”.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 2 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario A)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario A: Father says:: ψ: ”At least one of you has
mud on the forehead.”

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: contradicts ψ

k = 1: In r = 1, the d answers ”Yes”.
For r = 2, the c answer ”No”.

k = 2: In r = 1, no responses.
In r = 2, both d answer ”Yes”.
In r = 3, the c answer ”No”

k = 3: In r = 1, 2, no responses.
In r = 3, the 3 d answer ”Yes”.
In r = 4, the n − 3 c answer ”No”.

k ≤ n: In r < k, no responses.
In r = k, the k d answer ”Yes”.
In r = k + 1, the n − k c answer ”No”.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 2 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario A)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario A: Father says:: ψ: ”At least one of you has
mud on the forehead.”

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: contradicts ψ

k = 1: In r = 1, the d answers ”Yes”.
For r = 2, the c answer ”No”.

k = 2: In r = 1, no responses.
In r = 2, both d answer ”Yes”.
In r = 3, the c answer ”No”

k = 3: In r = 1, 2, no responses.
In r = 3, the 3 d answer ”Yes”.
In r = 4, the n − 3 c answer ”No”.

k ≤ n: In r < k, no responses.
In r = k, the k d answer ”Yes”.
In r = k + 1, the n − k c answer ”No”.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 2 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle: Scenario A Proof
First k − 1 times the father asks ”Do you have mud on your forehead?”, all say
”No”.
kth time: the k muddy children say ”Yes”
Proof by induction

k = 1: The muddy child, seeing no other muddy child, and knowing ψ, can
answer ”Yes”
k = 2: The first round, neither answers ”Yes”.
d1 concludes that were he clean, d2 would have answered ”Yes”
⇒ d1 must be muddy.
⇒ In round 2, d1 answers ”Yes”
(likewise reasoning for d2)
k = x : Assume hypothesis is true.
k = x + 1: Each muddy child reasons as follows.
‘‘If there were x muddy children, then they would all have
answered ‘Yes’ when the question is asked for the x th time.
As that did not happen, there must be more than x muddy
children. As I can see only x other muddy children, I myself
must also be muddy. So I will answer ‘Yes’ when the question
is asked the x + 1th time.’’

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 3 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario B)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario B: Father does not say ψ.

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: ∀r , no child answers ”Yes”

k = 1: In r = 1, no child (c and d)
answers ”Yes”.
In r > 1, no child (c and d) answers ”Yes”.

k = 2: In r = 1, 2, no child (c and d)
answers ”Yes”.
In r > 2, no child (c and d) answers ”Yes”.

k = 3: In r = 1, 2, 3, no child (c and d)
answers ”Yes”.
In r > 3, no child (c and d) answers ”Yes”.

k ≤ n: ∀r , no child answers ”Yes”

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 4 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario B)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario B: Father does not say ψ.

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: ∀r , no child answers ”Yes”

k = 1: In r = 1, no child (c and d)
answers ”Yes”.
In r > 1, no child (c and d) answers ”Yes”.

k = 2: In r = 1, 2, no child (c and d)
answers ”Yes”.
In r > 2, no child (c and d) answers ”Yes”.

k = 3: In r = 1, 2, 3, no child (c and d)
answers ”Yes”.
In r > 3, no child (c and d) answers ”Yes”.

k ≤ n: ∀r , no child answers ”Yes”

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 4 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario B)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario B: Father does not say ψ.

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: ∀r , no child answers ”Yes”

k = 1: In r = 1, no child (c and d)
answers ”Yes”.
In r > 1, no child (c and d) answers ”Yes”.

k = 2: In r = 1, 2, no child (c and d)
answers ”Yes”.
In r > 2, no child (c and d) answers ”Yes”.

k = 3: In r = 1, 2, 3, no child (c and d)
answers ”Yes”.
In r > 3, no child (c and d) answers ”Yes”.

k ≤ n: ∀r , no child answers ”Yes”

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 4 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario B)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario B: Father does not say ψ.

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: ∀r , no child answers ”Yes”

k = 1: In r = 1, no child (c and d)
answers ”Yes”.
In r > 1, no child (c and d) answers ”Yes”.

k = 2: In r = 1, 2, no child (c and d)
answers ”Yes”.
In r > 2, no child (c and d) answers ”Yes”.

k = 3: In r = 1, 2, 3, no child (c and d)
answers ”Yes”.
In r > 3, no child (c and d) answers ”Yes”.

k ≤ n: ∀r , no child answers ”Yes”

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 4 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario B)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario B: Father does not say ψ.

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: ∀r , no child answers ”Yes”

k = 1: In r = 1, no child (c and d)
answers ”Yes”.
In r > 1, no child (c and d) answers ”Yes”.

k = 2: In r = 1, 2, no child (c and d)
answers ”Yes”.
In r > 2, no child (c and d) answers ”Yes”.

k = 3: In r = 1, 2, 3, no child (c and d)
answers ”Yes”.
In r > 3, no child (c and d) answers ”Yes”.

k ≤ n: ∀r , no child answers ”Yes”

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 4 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario B)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario B: Father does not say ψ.

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: ∀r , no child answers ”Yes”

k = 1: In r = 1, no child (c and d)
answers ”Yes”.
In r > 1, no child (c and d) answers ”Yes”.

k = 2: In r = 1, 2, no child (c and d)
answers ”Yes”.
In r > 2, no child (c and d) answers ”Yes”.

k = 3: In r = 1, 2, 3, no child (c and d)
answers ”Yes”.
In r > 3, no child (c and d) answers ”Yes”.

k ≤ n: ∀r , no child answers ”Yes”

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 4 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle (Scenario B)

n children, all intelligent, can see others but not their own faces

k (≤ n) have mud on their forehead

Scenario B: Father does not say ψ.

Father then repeatedly asks (i.e., broadcasts) in

rounds (to model synchronous operation) to the

assembled children:

I Do you have mud on your
forehead?

How does each child respond in each round,
r = 1, 2, . . . k − 1, k, k + 1, . . . n, n + 1, . . .?
An answer is ”broadcast” in that round.

Let c = clean child, d= dirty child

k = 0: ∀r , no child answers ”Yes”

k = 1: In r = 1, no child (c and d)
answers ”Yes”.
In r > 1, no child (c and d) answers ”Yes”.

k = 2: In r = 1, 2, no child (c and d)
answers ”Yes”.
In r > 2, no child (c and d) answers ”Yes”.

k = 3: In r = 1, 2, 3, no child (c and d)
answers ”Yes”.
In r > 3, no child (c and d) answers ”Yes”.

k ≤ n: ∀r , no child answers ”Yes”

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 4 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle: Scenario B Proof

Every time the father asks ”Do you have mud on your forehead?”, all say ”No”.
Proof by induction on # times q the father asks the question.

q = 1: each child answers “No” because he cannot distinguish the two cases:
he has and does not have mud on his forehead.

q = x : Assume hypothesis is true.

q = x + 1: the situation is unchanged because each child has no further
knowledge to distinguish the two cases.

Why is Scenario B different from A?

A: Father announcing φ introduces ”common knowledge” of ψ, i.e., everyone
knows everyone knows . . . (infinitely often) everyone knows ψ is true
This allows children to reason and reach correct answer.

B: Father does not announce φ. No common knowledge of ψ.
Children have no basis to start their reasoning process.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 5 / 29

Distributed Computing: Principles, Algorithms, and Systems

Logic of Knowledge

Identify set of possible worlds (possible universes) and relationships between
them

At a process (in any global state): possible worlds are the global states which
the process thinks consistent with its local state

States expressible as logical formulae over facts φ
I primitive proposition or formula including ∧,∨,¬, knowledge operator K ,

everybody knows operator E
I Ki (φ): process Pi knows φ
I E 1

i (φ) =
∧

i∈N Ki (φ), every process knows φ
I E 2(φ) = E (E 1(φ)), i.e., every process knows E 1(φ).
I E k (φ) = E k−1 (E 1(φ)) for k > 1.

hierarchy of levels of knowledge E j (φ) (j ∈ Z∗), where Z∗ is {0, 1, 2, 3, . . .}.
E k+1(φ) =⇒ E k (φ).

Common knowledge C (φ): a state of knowledge X satisfying X = E (φ ∧ X).
Captures notion of agreement.

C (φ) =⇒
∧

j∈Z∗ E j (φ).

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 6 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle: Using Knowledge

Each child sees at least k − 1 muddy children =⇒ E k−1(ψ)

A muddy child does not see k muddy children =⇒ ¬E k (ψ)

Above is Scenario B. E k−1(ψ) not adequate for muddy children to ever
answer ”Yes”

To answer ”Yes,” E k (Ψ) is required so that the children can progressively
reason and answer correctly in the k th round.

In Scenario A: Father announcing ψ provided C (ψ) which implied E k (Ψ)

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 7 / 29

Distributed Computing: Principles, Algorithms, and Systems

Kripke Structures (informal)

Labeled graph with labeled nodes

set of nodes is the set of states

label of a node s: set of propositions that are true and false at s

label of edge (s, t): ID of each process that cannot distinguish between s and
t

Assume bidirectional edges and reflexive graph

Reachability of states
1 State t is reachable from state s in k steps if there exist states s0, s1, . . . , sk

such that s0 = s, sk = t, and for all j ∈ [0, k − 1], there exists some Pi such
that (sj , sj+1) ∈ Ki .

2 State t is reachable from state s if t is reachable from s in k steps, for some
k > 1.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 8 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle: Using Kripke Structures

Assume n = 3, k = 2, actual state is (1, 1, 0)

(1, 1, 0) |= ¬E 2(ψ) because world (0, 0, 0) is 2-reachable and ψ is false here

I Child 2 believes (1, 0, 0) possible; here child 1 believes (0, 0, 0) possible

E k−1(ψ) is true: each world reachable in k − 1 hops has at least one ’1’

E k (ψ) is false: world (0, . . . 0) reachable in k hops

(a)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

2
3 3

33

1 1

2

2

2

11

(b)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

3

33

1 1

2

2

2

1

(c)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

3

1

2

Fig 6.2: (a) Kripke structure. (b) After father announces ψ (Scenario A) (c) After round one

(Scenario A)

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 9 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle: Scenario A
Father announces ψ means common knowledge that 1 child has mud on his face

=⇒ delete all edges connecting (0, 0, 0) (change in group knowledge)

After round 1 where all children say ”No”: all edges to all possible worlds with a single ’1’

get deleted

I if there were a single muddy child, he would have answered ”Yes” in round 1
I now common knowledge that ≥ 2 muddy children

After round x where all children say ”No”: all edges to all possible worlds with ≤ x ’ ’1’s

get deleted

I now common knowledge that ≥ x + 1 muddy children
if there were x muddy children, they would have answered ”Yes” in round x because they
see x − 1 muddy children and rule out a world in which they are clean

(a)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

2
3 3

33

1 1

2

2

2

11

(b)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

3

33

1 1

2

2

2

1

(c)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

3

1

2

Fig 6.2: Actual state (1, 0, 0). (a) Kripke structure. (b) After father announces ψ (Scenario A)

(c) After round one (Scenario A)A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 10 / 29

Distributed Computing: Principles, Algorithms, and Systems

Muddy Children Puzzle: Scenarios A and B

Scenario A:
If in any iteration, it becomes common
knowledge that world t is impossible, for each
world s reachable from actual world r , edge
(s, t) is deleted

Scenario B:
Children’s state of knowledge never changes

After the first question, each child is
unsure of he is in ’0’ or ’1’ state

This was same before the first question

First round adds no new knowledge

Inductively, same for subsequent rounds

No change in Kripke structure

(a)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

2
3 3

33

1 1

2

2

2

11

(b)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

3

33

1 1

2

2

2

1

(c)

(0,0,0)

(1,0,0) (1,1,0)

(0,0,1)

(1,0,1)
(1,1,1)

(0,1,0)

(0,1,1)

3

1

2

Fig 6.2: Actual state (1, 0, 0). (a) Kripke structure. (b) After father announces ψ (Scenario A)

(c) After round one (Scenario A)

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 11 / 29

Distributed Computing: Principles, Algorithms, and Systems

Axioms of S5 Modal Logic

Distribution Axiom: Kiψ ∧ Ki (ψ =⇒ φ) =⇒ Kiφ

Knowledge Axiom: Kiψ =⇒ ψ
If a process knows a fact, then the fact is true. If Kiψ is true in a
particular state, then ψ is true in all states the process considers possible.

Positive Introspection Axiom: Kiψ =⇒ KiKiψ

Negative Introspection Axiom: ¬Kiψ =⇒ Ki¬Kiψ

Knowledge Generalization Rule: For a valid formula or fact ψ, Kiψ
If ψ is true in all possible worlds, then ψ must be true in all the possible
worlds with respect to any process and any given world.
Assumption: a process knows all valid formulas, which are necessarily true.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 12 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge in Synchronous vs. Asynchronous Systems

Thus far, synchronous systems considered.
How to attain common knowledge in synchronous systems?

Initialize all with common knowledge of φ

Broadcast φ in a round of communication, and let all know that φ is being broadcast.
Each process can begin supporting common knowledge from the next round.

Asynchronous system:

possible worlds: the consistent cuts of the set of possible executions.

Let (a, c) denote a cut c in asynchronous execution a.

(a, c) also denotes the system state after (a, c).

(a, c)i : projection (i.e., state) of c on process i .

Cuts c and c ′ are indistinguishable by process i , denoted (a, c) ∼i (a′, c ′), if and only if
(a, c)i = (a′, c ′)i .

The semantics of knowledge based on asynchronous executions, instead of timed
executions.

Ki (φ): φ is true in all possible consistent global states that include i ’s local state.

Similarly for E k (φ).

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 13 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge in Asynchronous Systems: Logic, Definitions
(1)

(a, c) |= φ if and only if φ is true in cut c of asynchronous execution a.

(a, c) |= Ki (φ) if and only if ∀(a′, c ′), ((a′, c ′) ∼i (a, c) =⇒ (a′, c ′) |= φ)

(a, c) |= E 0(φ) if and only if (a, c) |= φ

(a, c) |= E 1(φ) if and only if (a, c) |=
∧

i∈N Ki (φ)

(a, c) |= E k+1(φ) for k ≥ 1 if and only if (a, c) |=
∧

i∈N Ki (E
k (φ)), for k ≥ 1

(a, c) |= C (φ) if and only if (a, c) |= the greatest fixed point knowledge X
satisfying X = E (X ∧ φ).
C (φ) implies ∧k∈Z∗E

k (φ).

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 14 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge in Asynchronous Systems: Logic, Definitions
(2)

“i knows φ in state sx
i ”, denoted sx

i |= φ, is shorthand for (∀(a, c))
((a, c)i = sx

i =⇒ (a, c) |= φ).

sx
i |= Ki (φ) is shorthand for (∀(a, c)) ((a, c)i = sx

i =⇒ (a, c) |= Ki (φ)).

Learning: Process i learns φ in state sx
i of execution a if i knows φ in sx

i and,
for all states sy

i in execution a such that y < x , i does not know φ.

i attains φ: process learns φ in the present or an earlier state.

φ is attained in an execution a: ∃c , (a, c) |= φ

Local fact: φ is local to process i in system A if A |= (φ =⇒ Kiφ)
e.g., local state, clock value of a process, local component of vector clock

Global fact: A fact that is not local, e.g., global state, timestamp of a cut

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 15 / 29

Distributed Computing: Principles, Algorithms, and Systems

Common Knowledge in Asynchronous Systems
Reaching consensus over φ requires common knowledge of φ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge
about a binary value in an asynchronous message-passing system with unreliable
communication.

Justify: Pi and Pj need to send each other ACKs . . . nonterminating
argument

or Let there be a minimal protocol that has k msgs. Then the kth msg is
redundant ⇒ contradiction

Is common knowledge attainable in the async system with reliable
communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable
communication with an upper bound on message transmission times?

No, for when does a process begin supporting that knowledge?

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 16 / 29

Distributed Computing: Principles, Algorithms, and Systems

Common Knowledge in Asynchronous Systems
Reaching consensus over φ requires common knowledge of φ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge
about a binary value in an asynchronous message-passing system with unreliable
communication.

Justify: Pi and Pj need to send each other ACKs . . . nonterminating
argument

or Let there be a minimal protocol that has k msgs. Then the kth msg is
redundant ⇒ contradiction

Is common knowledge attainable in the async system with reliable
communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable
communication with an upper bound on message transmission times?

No, for when does a process begin supporting that knowledge?

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 16 / 29

Distributed Computing: Principles, Algorithms, and Systems

Common Knowledge in Asynchronous Systems
Reaching consensus over φ requires common knowledge of φ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge
about a binary value in an asynchronous message-passing system with unreliable
communication.

Justify: Pi and Pj need to send each other ACKs . . . nonterminating
argument

or Let there be a minimal protocol that has k msgs. Then the kth msg is
redundant ⇒ contradiction

Is common knowledge attainable in the async system with reliable
communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable
communication with an upper bound on message transmission times?

No, for when does a process begin supporting that knowledge?

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 16 / 29

Distributed Computing: Principles, Algorithms, and Systems

Common Knowledge in Asynchronous Systems
Reaching consensus over φ requires common knowledge of φ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge
about a binary value in an asynchronous message-passing system with unreliable
communication.

Justify: Pi and Pj need to send each other ACKs . . . nonterminating
argument

or Let there be a minimal protocol that has k msgs. Then the kth msg is
redundant ⇒ contradiction

Is common knowledge attainable in the async system with reliable
communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable
communication with an upper bound on message transmission times?

No, for when does a process begin supporting that knowledge?

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 16 / 29

Distributed Computing: Principles, Algorithms, and Systems

Common Knowledge in Asynchronous Systems
Reaching consensus over φ requires common knowledge of φ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge
about a binary value in an asynchronous message-passing system with unreliable
communication.

Justify: Pi and Pj need to send each other ACKs . . . nonterminating
argument

or Let there be a minimal protocol that has k msgs. Then the kth msg is
redundant ⇒ contradiction

Is common knowledge attainable in the async system with reliable
communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable
communication with an upper bound on message transmission times?

No, for when does a process begin supporting that knowledge?

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 16 / 29

Distributed Computing: Principles, Algorithms, and Systems

Common Knowledge in Asynchronous Systems
Reaching consensus over φ requires common knowledge of φ

Impossibility Result

There does not exist any protocol for two processes to reach common knowledge
about a binary value in an asynchronous message-passing system with unreliable
communication.

Justify: Pi and Pj need to send each other ACKs . . . nonterminating
argument

or Let there be a minimal protocol that has k msgs. Then the kth msg is
redundant ⇒ contradiction

Is common knowledge attainable in the async system with reliable
communication without an upper bound on message transmission times?

No. construct a similar argument

Is common knowledge attainable in the async system with reliable
communication with an upper bound on message transmission times?

No, for when does a process begin supporting that knowledge?

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 16 / 29

Distributed Computing: Principles, Algorithms, and Systems

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires ”simultaneity of actions” across processes.
Perfectly synchronized clocks not practical. But we can weaken common knowledge!

Epsilon-common knowledge: Cε(φ) is the greatest fixed point of X = Eε(φ ∧ X)

I E ε denotes “everyone knows within ε time units”
I Assumes timed runs

Eventual common knowledge: C�(φ) is the greatest fixed point of X = E�(φ ∧ X)

I E� denotes “everyone will eventually know (at some point in their execution)”
I reach agreement at some (not necessarily consistent) global state

Timestamped common knowledge: C T (φ) is the greatest fixed point of X = E T (φ ∧ X)

I processes reach agreement at local states having the same local clock value.
I It is applicable to asynchronous systems
I ET (φ) = ∧iK

T
i (φ), where KT

i (φ): process i knows φ at local clock value T

Concurrent common knowledge C C (φ): processes reach agreement at local states that belong to a

consistent cut. When Pi attains C C (φ), it also knows that each other process Pj has also attained the

same concurrent common knowledge in its local state which is consistent with Pi ’s local state.

I Most widely used weakening of common knowledge; studied next

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 17 / 29

Distributed Computing: Principles, Algorithms, and Systems

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires ”simultaneity of actions” across processes.
Perfectly synchronized clocks not practical. But we can weaken common knowledge!

Epsilon-common knowledge: Cε(φ) is the greatest fixed point of X = Eε(φ ∧ X)

I E ε denotes “everyone knows within ε time units”
I Assumes timed runs

Eventual common knowledge: C�(φ) is the greatest fixed point of X = E�(φ ∧ X)

I E� denotes “everyone will eventually know (at some point in their execution)”
I reach agreement at some (not necessarily consistent) global state

Timestamped common knowledge: C T (φ) is the greatest fixed point of X = E T (φ ∧ X)

I processes reach agreement at local states having the same local clock value.
I It is applicable to asynchronous systems
I ET (φ) = ∧iK

T
i (φ), where KT

i (φ): process i knows φ at local clock value T

Concurrent common knowledge C C (φ): processes reach agreement at local states that belong to a

consistent cut. When Pi attains C C (φ), it also knows that each other process Pj has also attained the

same concurrent common knowledge in its local state which is consistent with Pi ’s local state.

I Most widely used weakening of common knowledge; studied next

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 17 / 29

Distributed Computing: Principles, Algorithms, and Systems

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires ”simultaneity of actions” across processes.
Perfectly synchronized clocks not practical. But we can weaken common knowledge!

Epsilon-common knowledge: Cε(φ) is the greatest fixed point of X = Eε(φ ∧ X)

I E ε denotes “everyone knows within ε time units”
I Assumes timed runs

Eventual common knowledge: C�(φ) is the greatest fixed point of X = E�(φ ∧ X)

I E� denotes “everyone will eventually know (at some point in their execution)”
I reach agreement at some (not necessarily consistent) global state

Timestamped common knowledge: C T (φ) is the greatest fixed point of X = E T (φ ∧ X)

I processes reach agreement at local states having the same local clock value.
I It is applicable to asynchronous systems
I ET (φ) = ∧iK

T
i (φ), where KT

i (φ): process i knows φ at local clock value T

Concurrent common knowledge C C (φ): processes reach agreement at local states that belong to a

consistent cut. When Pi attains C C (φ), it also knows that each other process Pj has also attained the

same concurrent common knowledge in its local state which is consistent with Pi ’s local state.

I Most widely used weakening of common knowledge; studied next

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 17 / 29

Distributed Computing: Principles, Algorithms, and Systems

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires ”simultaneity of actions” across processes.
Perfectly synchronized clocks not practical. But we can weaken common knowledge!

Epsilon-common knowledge: Cε(φ) is the greatest fixed point of X = Eε(φ ∧ X)

I E ε denotes “everyone knows within ε time units”
I Assumes timed runs

Eventual common knowledge: C�(φ) is the greatest fixed point of X = E�(φ ∧ X)

I E� denotes “everyone will eventually know (at some point in their execution)”
I reach agreement at some (not necessarily consistent) global state

Timestamped common knowledge: C T (φ) is the greatest fixed point of X = E T (φ ∧ X)

I processes reach agreement at local states having the same local clock value.
I It is applicable to asynchronous systems
I ET (φ) = ∧iK

T
i (φ), where KT

i (φ): process i knows φ at local clock value T

Concurrent common knowledge C C (φ): processes reach agreement at local states that belong to a

consistent cut. When Pi attains C C (φ), it also knows that each other process Pj has also attained the

same concurrent common knowledge in its local state which is consistent with Pi ’s local state.

I Most widely used weakening of common knowledge; studied next

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 17 / 29

Distributed Computing: Principles, Algorithms, and Systems

Variants of Common Knowledge for Asynchronous Systems

Common knowledge requires ”simultaneity of actions” across processes.
Perfectly synchronized clocks not practical. But we can weaken common knowledge!

Epsilon-common knowledge: Cε(φ) is the greatest fixed point of X = Eε(φ ∧ X)

I E ε denotes “everyone knows within ε time units”
I Assumes timed runs

Eventual common knowledge: C�(φ) is the greatest fixed point of X = E�(φ ∧ X)

I E� denotes “everyone will eventually know (at some point in their execution)”
I reach agreement at some (not necessarily consistent) global state

Timestamped common knowledge: C T (φ) is the greatest fixed point of X = E T (φ ∧ X)

I processes reach agreement at local states having the same local clock value.
I It is applicable to asynchronous systems
I ET (φ) = ∧iK

T
i (φ), where KT

i (φ): process i knows φ at local clock value T

Concurrent common knowledge C C (φ): processes reach agreement at local states that belong to a

consistent cut. When Pi attains C C (φ), it also knows that each other process Pj has also attained the

same concurrent common knowledge in its local state which is consistent with Pi ’s local state.

I Most widely used weakening of common knowledge; studied next

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 17 / 29

Distributed Computing: Principles, Algorithms, and Systems

Concurrent Common Knowledge: Definition

(a, c) |= φ if and only if φ is true in cut c of execution a.

(a, c) |= Ki (φ) if and only if ∀(a′, c ′), ((a′, c ′) ∼i (a, c) =⇒ (a′, c ′) |= φ)

(a, c) |= Pi (φ) if and only if ∃(a, c ′), ((a, c ′) ∼i (a, c) ∧ (a, c ′) |= φ)

(a, c) |= EC 0

(φ) if and only if (a, c) |= φ

(a, c) |= EC 1

(φ) if and only if (a, c) |=
∧

i∈N KiPi (φ)

(a, c) |= EC k+1

(φ) for k ≥ 1 if and only if (a, c) |=
∧

i∈N KiPi (E
C k

(φ)),
for k ≥ 1

(a, c) |= CC (φ) if and only if (a, c) |= the greatest fixed point knowledge
X satisfying X = EC (X ∧ φ).
CC (φ) implies ∧k∈Z∗(E

C)k (φ).

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 18 / 29

Distributed Computing: Principles, Algorithms, and Systems

Concurrent Knowledge

Possibly operator Pi (φ) means “φ is true in some consistent state in the same
asynchronous run, that includes process i ’s local state”.

EC (φ) is defined as
∧

i∈N Ki (Pi (φ)).

EC (φ): every process at the (given) cut knows only that φ is true in some cut that
is consistent with its own local state.

Concurrent knowledge is weaker than regular knowledge

I But, for a local, stable fact, and assuming other processes learn the fact via
message chains, the two are equivalent

CC (φ) is attained at a consistent cut:
(informally speaking), each process at its local cut state knows that “in some state
consistent with its own local cut state, φ is true and that all other process know all
this same knowledge (described within quotes)”.

CC (φ) underlies all protocols that reach agreement about properties of the global
state

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 19 / 29

Distributed Computing: Principles, Algorithms, and Systems

Concurrent Common Knowledge: Snapshot-based
Algorithm

Protocol 1 (Snapshot-based algorithm).
1 At some time when the initiator I knows φ:

I it sends a marker MARKER(I , φ,CCK) to each neighbour Pj , and
atomically reaches its cut state.

2 When a process Pi receives for the first time, a message
MARKER(I , φ,CCK) from a process Pj :

I process Pi forwards the message to all of its neighbours except Pj , and
atomically reaches its cut state.

attains CC (φ) when it reaches its cut state.

Complexity: 2l messages; time complexity: O(d)

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 20 / 29

Distributed Computing: Principles, Algorithms, and Systems

Concurrent Common Knowledge: Three-phase Send
Inhibitory Algorithm
Protocol 2 (Three-phase send-inhibitory algorithm).

1 At some time when the initiator I knows φ:

I it sends a marker PREPARE(I , φ,CCK) to each process Pj .

2 When a (non-initiator) process receives a marker PREPARE(I , φ,CCK):

I it begins send-inhibition for non-protocol events.
I sends a marker CUT (I , φ,CCK) to the initiator I .
I it reaches its cut state at which it attains CC (φ).

3 When the initiator I receives a marker CUT (I , φ,CCK) from each other process:

I the initiator reaches its cut state
I sends a marker RESUME(I , φ,CCK) to all other processes.

4 When a (non-initiator) process receives a marker RESUME(I , φ,CCK):

I it resumes sending its non-protocol messages which had been inhibited in
step 2.

attains CC (φ) when it reaches its cut state. Needs FIFO.
Complexity: 3(n − 1) messages; time complexity: 3 hops; send-inhibitory

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 21 / 29

Distributed Computing: Principles, Algorithms, and Systems

Concurrent Common Knowledge: Three-phase Send
Inhibitory Tree Algorithm

Protocol 3 (Three-phase send-inhibitory tree algorithm).

Phase I (broadcast): The root initiates PREPARE control messages down the ST; when a
process receives such a message, it inhibits computation message sends and
propagates the received control message down the ST.

Phase II (convergecast): A leaf node initiates this phase after it receives the PREPARE
control message broadcast in phase I. The leaf reaches and records its cut
state, and sends a CUT control message up the ST. An intermediate (and
the root) node reaches and records its cut state when it receives such a
CUT control message from each of its children, and then propagates the
control message up the ST.

Phase III (broadcast): The root initiates a broadcast of a RESUME control message down
the ST after Phase II terminates. On receiving such a RESUME message, a
process resumes inhibited computation message send activity and
propagates the control message down the ST.

attains C C (φ) when it reaches its cut state. non-FIFO.

Complexity: 3(n − 1) messages; time complexity: O(depth) hops; send-inhibitory

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 22 / 29

Distributed Computing: Principles, Algorithms, and Systems

Concurrent Common Knowledge: Inhibitory Ring
Algorithm

Protocol 4 (Send-inhibitory ring algorithm).

1 Once a fact φ about the system state is known to some process, the process atomically
reaches its cut state and begins supporting C(φ), begins send inhibition, and sends a
control message CUT (φ) along the ring.

2 This CUT (φ) message announces φ. When a process receives the CUT (φ) message, it
reaches its cut state and begins supporting C(φ), begins send inhibition, and forwards
the message along the ring.

3 When the initiator gets back CUT (φ), it stops send inhibition, and forwards a RESUME
message along the ring.

4 When a process receives the RESUME message, it stops send-inhibition, and forwards
the RESUME message along the ring. The protocol terminates when the initiator gets
back the RESUME it initiated.

attains C C (φ) when it reaches its cut state. FIFO.

Complexity: 2n messages; time complexity: O(2n) hops; send-inhibitory

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 23 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge Transfer (1)

Message chain and Process chain
A message chain in an execution is a sequence of messages 〈mik , mik−1

, mik−2
, . . ., mi1 〉 such

that for all 0 < j ≤ k, mij is sent by process ij to process ij−1 and receive(mij) ≺ send(mij−1
).

The message chain identifies process chain 〈i0, i1, . . . , ik−2, ik−1, ik 〉.

If φ is false and later P1 knows that P2 knows that . . . Pk knows φ, then there must exist a
process chain 〈i1, i2, . . . ik 〉.
Indistinguishability of cuts (a, c) ∼i (a′, c ′) is expressible in the interleaving model using

isomorphism of executions. Let:

I x , y , z denote executions or execution prefixes in interleaving model.
I xp: projection of execution x on process p.

Isomorphism of executions

1 For x and y , relation x[p]y is true iff xp = yp .

2 For x and y and a process group G , relation x[G]y is true iff, for all p ∈ G , xp = yp .

3 Let Gi be process group i and let k > 1. Then, x[G0,G1, . . . ,Gk]z if and only if
x[G0,G1, . . . ,Gk−1]y and y [Gk]z.

Exercise: Examine isomorphism (items 1,2,3 each) using Kripke structures!
A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 24 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge Transfer (1)

Message chain and Process chain
A message chain in an execution is a sequence of messages 〈mik , mik−1

, mik−2
, . . ., mi1 〉 such

that for all 0 < j ≤ k, mij is sent by process ij to process ij−1 and receive(mij) ≺ send(mij−1
).

The message chain identifies process chain 〈i0, i1, . . . , ik−2, ik−1, ik 〉.

If φ is false and later P1 knows that P2 knows that . . . Pk knows φ, then there must exist a
process chain 〈i1, i2, . . . ik 〉.
Indistinguishability of cuts (a, c) ∼i (a′, c ′) is expressible in the interleaving model using

isomorphism of executions. Let:

I x , y , z denote executions or execution prefixes in interleaving model.
I xp: projection of execution x on process p.

Isomorphism of executions

1 For x and y , relation x[p]y is true iff xp = yp .

2 For x and y and a process group G , relation x[G]y is true iff, for all p ∈ G , xp = yp .

3 Let Gi be process group i and let k > 1. Then, x[G0,G1, . . . ,Gk]z if and only if
x[G0,G1, . . . ,Gk−1]y and y [Gk]z.

Exercise: Examine isomorphism (items 1,2,3 each) using Kripke structures!
A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 24 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge Transfer (1)

Message chain and Process chain
A message chain in an execution is a sequence of messages 〈mik , mik−1

, mik−2
, . . ., mi1 〉 such

that for all 0 < j ≤ k, mij is sent by process ij to process ij−1 and receive(mij) ≺ send(mij−1
).

The message chain identifies process chain 〈i0, i1, . . . , ik−2, ik−1, ik 〉.

If φ is false and later P1 knows that P2 knows that . . . Pk knows φ, then there must exist a
process chain 〈i1, i2, . . . ik 〉.
Indistinguishability of cuts (a, c) ∼i (a′, c ′) is expressible in the interleaving model using

isomorphism of executions. Let:

I x , y , z denote executions or execution prefixes in interleaving model.
I xp: projection of execution x on process p.

Isomorphism of executions

1 For x and y , relation x[p]y is true iff xp = yp .

2 For x and y and a process group G , relation x[G]y is true iff, for all p ∈ G , xp = yp .

3 Let Gi be process group i and let k > 1. Then, x[G0,G1, . . . ,Gk]z if and only if
x[G0,G1, . . . ,Gk−1]y and y [Gk]z.

Exercise: Examine isomorphism (items 1,2,3 each) using Kripke structures!
A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 24 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge Transfer (2)

Knowledge operator in the interleaving model

p knows φ at execution x if and only if, for all executions y such that x [p]y , φ is true at
y .

When a message is received, set of isomorphic executions can only decrease.

Knowledge transfer theorem
For process groups G1, . . ., Gk , and executions x and y ,
(KG1KG2 . . .KGk (φ) at x and x [G1, . . .Gk]y) =⇒ KGk (φ) at y .

Proof by induction.

Trivial for k = 1.

k, k > 1: We infer ∃ some z | x [G1, . . .Gk−1]z and z[Gk]y .
From KG1KG2 . . .KGk−1 [KGk (φ)] at x , and from the induction hypothesis:
infer that KGk−1 [KGk (φ)] at z .
Hence, KGk (φ) at z . As z[Gk]y , KGk (φ) at y .

I.t.o. Kripke structures, there is a path from state node x = s0 to state node y = sk , via

state nodes s1, s2, . . ., sk−1, such that the k edges (si , si+1), 0 ≤ i ≤ k − 1 are labeled by

Gi+1.
A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 25 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge Transfer (2)

Knowledge operator in the interleaving model

p knows φ at execution x if and only if, for all executions y such that x [p]y , φ is true at
y .

When a message is received, set of isomorphic executions can only decrease.

Knowledge transfer theorem
For process groups G1, . . ., Gk , and executions x and y ,
(KG1KG2 . . .KGk (φ) at x and x [G1, . . .Gk]y) =⇒ KGk (φ) at y .

Proof by induction.

Trivial for k = 1.

k, k > 1: We infer ∃ some z | x [G1, . . .Gk−1]z and z[Gk]y .
From KG1KG2 . . .KGk−1 [KGk (φ)] at x , and from the induction hypothesis:
infer that KGk−1 [KGk (φ)] at z .
Hence, KGk (φ) at z . As z[Gk]y , KGk (φ) at y .

I.t.o. Kripke structures, there is a path from state node x = s0 to state node y = sk , via

state nodes s1, s2, . . ., sk−1, such that the k edges (si , si+1), 0 ≤ i ≤ k − 1 are labeled by

Gi+1.
A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 25 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge Transfer (2)

Knowledge operator in the interleaving model

p knows φ at execution x if and only if, for all executions y such that x [p]y , φ is true at
y .

When a message is received, set of isomorphic executions can only decrease.

Knowledge transfer theorem
For process groups G1, . . ., Gk , and executions x and y ,
(KG1KG2 . . .KGk (φ) at x and x [G1, . . .Gk]y) =⇒ KGk (φ) at y .

Proof by induction.

Trivial for k = 1.

k, k > 1: We infer ∃ some z | x [G1, . . .Gk−1]z and z[Gk]y .
From KG1KG2 . . .KGk−1 [KGk (φ)] at x , and from the induction hypothesis:
infer that KGk−1 [KGk (φ)] at z .
Hence, KGk (φ) at z . As z[Gk]y , KGk (φ) at y .

I.t.o. Kripke structures, there is a path from state node x = s0 to state node y = sk , via

state nodes s1, s2, . . ., sk−1, such that the k edges (si , si+1), 0 ≤ i ≤ k − 1 are labeled by

Gi+1.
A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 25 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge Transfer (2)

Knowledge operator in the interleaving model

p knows φ at execution x if and only if, for all executions y such that x [p]y , φ is true at
y .

When a message is received, set of isomorphic executions can only decrease.

Knowledge transfer theorem
For process groups G1, . . ., Gk , and executions x and y ,
(KG1KG2 . . .KGk (φ) at x and x [G1, . . .Gk]y) =⇒ KGk (φ) at y .

Proof by induction.

Trivial for k = 1.

k, k > 1: We infer ∃ some z | x [G1, . . .Gk−1]z and z[Gk]y .
From KG1KG2 . . .KGk−1 [KGk (φ)] at x , and from the induction hypothesis:
infer that KGk−1 [KGk (φ)] at z .
Hence, KGk (φ) at z . As z[Gk]y , KGk (φ) at y .

I.t.o. Kripke structures, there is a path from state node x = s0 to state node y = sk , via

state nodes s1, s2, . . ., sk−1, such that the k edges (si , si+1), 0 ≤ i ≤ k − 1 are labeled by

Gi+1.
A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 25 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge Transfer (2)

Knowledge operator in the interleaving model

p knows φ at execution x if and only if, for all executions y such that x [p]y , φ is true at
y .

When a message is received, set of isomorphic executions can only decrease.

Knowledge transfer theorem
For process groups G1, . . ., Gk , and executions x and y ,
(KG1KG2 . . .KGk (φ) at x and x [G1, . . .Gk]y) =⇒ KGk (φ) at y .

Proof by induction.

Trivial for k = 1.

k, k > 1: We infer ∃ some z | x [G1, . . .Gk−1]z and z[Gk]y .
From KG1KG2 . . .KGk−1 [KGk (φ)] at x , and from the induction hypothesis:
infer that KGk−1 [KGk (φ)] at z .
Hence, KGk (φ) at z . As z[Gk]y , KGk (φ) at y .

I.t.o. Kripke structures, there is a path from state node x = s0 to state node y = sk , via

state nodes s1, s2, . . ., sk−1, such that the k edges (si , si+1), 0 ≤ i ≤ k − 1 are labeled by

Gi+1.
A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 25 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge Transfer (3)

Knowledge gain theorem
For processes P1, . . ., Pk , and executions x and y , where x is a prefix of y , let

¬Kk (φ) at x and K1K2 . . .Kk (φ) at y .

Then there is a process chain 〈i1, . . . ik−1, ik〉 in (x , y).

This formalizes that there must exist a message chain 〈mik , mik−1 , mik−2 , . . ., mi1〉 in

order that a fact φ that becomes known to Pk after execution prefix x of y , leads to the

state of knowledge K1K2 . . .Kk (φ) after execution y .

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 26 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge and Clocks

Assumption: Facts are timestamped by the time of their becoming true and by PID
at which they became true.

Full-information protocol (FIP): protocol in which a process piggybacks all its
knowledge on outgoing messages, & a process adds to its knowledge all the
knowledge that is piggybacked on any message it receives.

Knowledge always increases when a message is received.

The amount of knowledge keeps increasing ⇒ impractical

Facts can always be appropriately encoded as integers.

Monotonic facts: Facts about a property that keep increasing monotonically
(e.g., the latest time of taking a checkpoint at a process).

By using a mapping between logical clocks and monotonic facts, information about
the monotonic facts can be communicated between processes using piggybacked
timestamps.

Being monotonic, all earlier facts can be inferred from the fixed amount of
information that is maintained and piggybacked.

E.g., Clki [j] indicates the local time at each Pj , and implicitly that all lower clock
values at Pj have occurred.

With appropriate encoding, facts about a monotonic property can be represented
using vector clocks.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 27 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge and Clocks

Assumption: Facts are timestamped by the time of their becoming true and by PID
at which they became true.

Full-information protocol (FIP): protocol in which a process piggybacks all its
knowledge on outgoing messages, & a process adds to its knowledge all the
knowledge that is piggybacked on any message it receives.

Knowledge always increases when a message is received.

The amount of knowledge keeps increasing ⇒ impractical

Facts can always be appropriately encoded as integers.

Monotonic facts: Facts about a property that keep increasing monotonically
(e.g., the latest time of taking a checkpoint at a process).

By using a mapping between logical clocks and monotonic facts, information about
the monotonic facts can be communicated between processes using piggybacked
timestamps.

Being monotonic, all earlier facts can be inferred from the fixed amount of
information that is maintained and piggybacked.

E.g., Clki [j] indicates the local time at each Pj , and implicitly that all lower clock
values at Pj have occurred.

With appropriate encoding, facts about a monotonic property can be represented
using vector clocks.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 27 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge, Scalar Clocks, and Matrix Clocks (2)

Vector clock: Clki [j] represents Ki Kj (φj), where φj is the local component of Pj ’s clock.

Matrix clock: Clki [j , k] represents Ki Kj Kk (φk), where φk is the local component Clkk [k, k] of

Pk ’s clock.

The j th row of MC Clki [j , ·]: the latest VC value of Pj ’s clock, as known to Pi .

The j th column of MC Clki [·, j]: the latest scalar clock values of Pj , i.e., Clk[j , j], as known
to each process in the system.

Vector and matrix clocks: knowledge is imparted via the inhibition-free ambient
message-passing that (i) eliminates protocol messages by using piggybacking, and (ii)
diffuses the latest knowledge using only messages, whenever sent, by the underlying
execution.

VC provides knowledge E 0(φ), where φ is a property of the global state, namely, the local scalar

clock value of each process.

MC at Pj provides knowledge Kj (E 1(φ)) = Kj (∧i∈N Ki (φ)), where φ is the same property
of the global state.

Matrix clocks: used to design distributed database protocols, fault-tolerant protocols, and
protocols to discard obsolete information in distributed databases. Also to solve the
distributed dictionary and distributed log problems.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 28 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge, Scalar Clocks, and Matrix Clocks (2)

Vector clock: Clki [j] represents Ki Kj (φj), where φj is the local component of Pj ’s clock.

Matrix clock: Clki [j , k] represents Ki Kj Kk (φk), where φk is the local component Clkk [k, k] of

Pk ’s clock.

The j th row of MC Clki [j , ·]: the latest VC value of Pj ’s clock, as known to Pi .

The j th column of MC Clki [·, j]: the latest scalar clock values of Pj , i.e., Clk[j , j], as known
to each process in the system.

Vector and matrix clocks: knowledge is imparted via the inhibition-free ambient
message-passing that (i) eliminates protocol messages by using piggybacking, and (ii)
diffuses the latest knowledge using only messages, whenever sent, by the underlying
execution.

VC provides knowledge E 0(φ), where φ is a property of the global state, namely, the local scalar

clock value of each process.

MC at Pj provides knowledge Kj (E 1(φ)) = Kj (∧i∈N Ki (φ)), where φ is the same property
of the global state.

Matrix clocks: used to design distributed database protocols, fault-tolerant protocols, and
protocols to discard obsolete information in distributed databases. Also to solve the
distributed dictionary and distributed log problems.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 28 / 29

Distributed Computing: Principles, Algorithms, and Systems

Knowledge, Scalar Clocks, and Matrix Clocks (2)

Vector clock: Clki [j] represents Ki Kj (φj), where φj is the local component of Pj ’s clock.

Matrix clock: Clki [j , k] represents Ki Kj Kk (φk), where φk is the local component Clkk [k, k] of

Pk ’s clock.

The j th row of MC Clki [j , ·]: the latest VC value of Pj ’s clock, as known to Pi .

The j th column of MC Clki [·, j]: the latest scalar clock values of Pj , i.e., Clk[j , j], as known
to each process in the system.

Vector and matrix clocks: knowledge is imparted via the inhibition-free ambient
message-passing that (i) eliminates protocol messages by using piggybacking, and (ii)
diffuses the latest knowledge using only messages, whenever sent, by the underlying
execution.

VC provides knowledge E 0(φ), where φ is a property of the global state, namely, the local scalar

clock value of each process.

MC at Pj provides knowledge Kj (E 1(φ)) = Kj (∧i∈N Ki (φ)), where φ is the same property
of the global state.

Matrix clocks: used to design distributed database protocols, fault-tolerant protocols, and
protocols to discard obsolete information in distributed databases. Also to solve the
distributed dictionary and distributed log problems.

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 28 / 29

Distributed Computing: Principles, Algorithms, and Systems

Matrix Clocks

(local variables)
array of int Clki [1 . . . n, 1 . . . n]

MC0. Clki [j , k] is initialized to 0 for all j and k

MC1. Before process i executes an internal event, it does the following.
Clki [i , i] = Clki [i , i] + 1

MC2. Before process i executes a send event, it does the following:
Clki [i , i] = Clki [i , i] + 1
Send message timestamped by Clki .

MC3. When process i receives a message with timestamp T from
process j , it does the following.
(k ∈ N) Clki [i , k] = max(Clki [i , k],T [j , k]);
(l ∈ N \ {i}) (k ∈ N), Clki [l , k] = max(Clki [l , k],T [l , k]);
Clki [i , i] = Clki [i , i] + 1;
deliver the message.

Message overhead: O(n2) space and processing time

A. Kshemkalyani and M. Singhal (Distributed Computing) Reasoning with Knowledge CUP 2008 29 / 29

	Distributed Computing: Principles, Algorithms, and Systems

