

Self Stabilization
CS553 Distributed Algorithms

Prof. Ajay Kshemkalyani

by
Islam Ismailov & Mohamed M. Ali

Introduction

• There is a possibility for a distributed system
to go into an illegitimate state, for example, if
a message is lost.

• Self-stabilization: regardless of initial state,
system is guaranteed to converge to a
legitimate state in a bounded amount of time
without any outside intervention.

• Problem: nodes do not have a global
memory that they can access instantaneoulsy.

System Model
• An abstract computer model: state machine.
• A distributed system model comprises of a set

of n state machines called processors that
communicate with each other, which can be
represented as a graph.

• Message passing communication model:
queue(s) Qij, for messages from Pi to Pj

• System configuration is set of states, and
message queues.

• In any case it is assumed that the topology
remains connected, i.e., there exists a path
between any two nodes.

Definition

• States satisfying P are called legitimate states
and those not satisfying P are called
illegitimate states.

• A system S is self-stabilizing with respect to
predicate P if it satisfies the properties of
closure and convergence

Dijkstra's self-stabilizing token ring
system

• When a machine has a privilege, it is able to change its
current state, which is referred to as a move.

• A legitimate state must satisfy the following constraints:
• There must be at least one privilege in the system

(liveness or no deadlock).
• Every move from a legal state must again put the

system into a legal state (closure).
• During an infinite execution, each machine should enjoy

a privilege an infinite number of times (no starvation).
• Given any two legal states, there is a series of moves

that change one legal state to the other (reachability).

 Dijkstra considered a legitimate (or legal) state as one in
which exactly one machine enjoys the privilege.

Dijkstra's system (contd)

• For any machine, we use symbols S, L, and R
to denote its own state, state of the left
neighbor and state of the right neighbor on the
ring.

• The exceptional machine:
If L = S then

S = (S+1) mod K;
• All other machines:
If L = S then

S = L;

Dijkstra's system (contd)
• Note that a privilege of a machine is ability to change its

current state on a Boolean predicate that consists of its
current state and the states of its neighbors. When a machine
has a privilege, it is able to change its current state, which is
referred to as a move.

• Second solution (K = 3)
• The bottom machine, machine 0:

If (S+1) mod 3 = R then S = (S−1) mod 3;
• The top machine, machine n−1:

If L = R and (L+1) mod 3 = S then S = (L+1) mod
3;

• The other machines:
If (S+1) mod 3 = L then S = L;

If (S+1) mod 3 = R then S = R;

Example

Systems with less than three states
per node

Ghosh system (contd)

Uniform vs Non-uniform

• From the examples of the preceding section, we
notice that at least one of the machines (exceptional
machine) had a privilege and executed steps that
were different from other machines.

• The individual processes can be anonymous,
meaning they are indistinguishable and all run the
same algorithm.

Central and distributed daemons

• Generally, the presence of a central demon is
assumed in self-stabilizing algorithms.

• Distributed demon is more desirable in
distributed systems.

• The presence of a central demon considerably
simplifies the verification of a weak
correctness criterion of a self-stabilizing
algorithm.

Reducing the number of states in
token ring

• In a self-stabilizing token ring with a central
demon and deterministic execution, Ghosh
showed that a minimum of three states per
machine is required.

• There exists a non-trivial self-stabilizing
system with two states per machine. It
requires a high degree of atomicity in each
action.

Shared memory models

• Two processors, Pi and Pj, are neighbors, then
there are two registers, i and j, between the
two nodes. To communicate, Pi writes to i and
reads from j and Pj writes to j and reads from i.

• Dolev et al. present a dynamic self-stabilizing
algorithm for mutual exclusion. Node failures
may cause an illegal global state, but the
system again converges to a legal state.

Mutual Exclusion
• In a mutual exclusion algorithm, each process

has a critical section of code. Only one
process enters its critical section at any time,
and every process that wants to enter its
critical section, must be able to enter its critical
section in finite time.

• A self-stabilizing mutual exclusion system can
be described in terms of a token system,
which has the processes circulating tokens.
Initially, there may be more than one token in
the system, but after a finite time, only one
token exists in the system which is circulated
among the processes

Costs of self-stabilization

• A study and assessment of cost factors is very
important in any practical implementation.

• Convergence span The maximum number of
transitions that can be executed in a system,
starting from an arbitrary state, before it
reaches a safe state.

• Response span The maximum number of
transitions that can be executed in a system to
reach a specified target state, starting from
some initial state. The choice of initial state
and target state depends upon the application.

Methodologies for design

• After malicious adversary disrupts the normal
operation of the system. If enough
components are left for the system to operate,
then a self-stabilizing system will slowly
resume

• Normal operation after the attack. If not,
system is destroyed.

Layering and modularization

• Self-stabilization is amenable to layering
because the self-stabilization relation is
transitive.

• Time in shared memory systems must meet
these properties:

• Safety All clocks have the same value. (Differ
at most 1)

• Progress At each step, each clock is
incremented by the same amount. (i+1 when
neighbors are i or i+1)

• Topology based primitives: leader election.

Communication protocols
• Communication protocol might be affected due

to:
• Initialization to an illegal state.
• A change in the mode of operation. Not all

processes get the request for the change at
the same time, so an illegal global state
may occur.

• Transmission errors because of message
loss or corruption.

• Process failure and recovery.
• A local memory crash which changes the

local state of a process.

Communication protocols

• Communication protocol must satisfy the
following three properties to be self-stabilizing:

• It must be non-terminating.
• There are an infinite number of safe

states.
• There are timeout actions in a non-empty

subset of processes.

Dolev, Israeli, and Moran Algorithm
 Self stabilizing BFS spanning-tree construction.
 Properties:

 Semi-uniform systems
 Central daemon
 Assume read/write atomicity

 Every node maintains:
 A pointer to one of its incoming edges.
 An integer measuring number of hops from root of

tree.

Dolev, Israeli, and Moran Algorithm
(cont.)

 Nodes periodically exchange their distance
value with each other, (root node always sends
a value of 0).

 Each node chooses the neighbor with minimum
distance as its new parent, and updates its
distance accordingly.

 After reading all neighbors values for k times,
distance value of a process is at least k+1.

Example

Afek, Kutten, and Yung Algorithm
 BFS spanning-tree, in read/write atomicity

model.
 No distinguished process assumption.
 All nodes have globally unique identifiers that

can be totally ordered.
 The largest identifier will be the root of tree.
 Similar to Dolev et al., but also exchange the

current root which a node think it is present.
 If a larger root appears, send a join request to

the other sub-tree, and wait for grant message.

Arora and Gouda Algorithm
 BFS spanning-tree, in composite atomicity

model, with central daemon assumption.
 All nodes have globally unique identifiers that

can be totally ordered.
 The largest identifier will be the root of tree.
 Needs a bound N on the number n of nodes in

network to work correctly.
 Cycles are detected when distance bound

grows to exceed N.
 O(N^2) Vs. O(n^2) for Afek et al.

Afek and Bremler Algorithm
 For synchronous, and asynchronous networks.
 Node with smallest identifier is considered the

root.
 Based on “Power Supply” idea.
 Power is a continuous flow of messages, one

per round.
 When a node receives power from a neighbor

with a smaller identifier, it attaches itself to the
tree.

Afek and Bremler Algorithm
 Weak messages are exchanged between

nodes to synchronize their states, while strong
messages carry power.

 Stabilizes in O(n) rounds without process to
have the knowledge of n.

1-Maximal Independent Set
 A maximal independent set is a set of nodes

such that every node not in the set is adjacent
to a node in the set.

 A 1-maximal independent set is maximal
independent set provided one cannot increase
the cardinality of the independent set by
removing one node and adding more nodes.

Shi et al. Algorithm
 A connected, undirected graph with node set V

and edge set E.
 N(i) denotes a set of neighbors of node i.
 Algorithm is presented as a set of rules, each

with a boolean predicate and action.
 A node will be privileged if predicate is true.
 If a node is privileged, it may execute the

corresponding action, called move.
 A central daemon is assumed to exist.
 Nodes in state '0' will be in the desired set.

Shi et al. Algorithm (cont.)
 Rules:

1.If not involved in a transition process, then set state
to the number of neighbors in state 0 or state 0'.

2.If in state 0 and adjacent to at least two 1s, change
to state 0.

3.If in state 1 and adjacent to a 0', change state to 1'.
4.If in state 0' and adjacent to at least two 1's, change

state to 2'.
5.If in state 1' and adjacent to no 0', change

state to 0.
6.If in state 2' and adjacent to no 1', change state to 2.

Shi et al. Algorithm (cont.)

Probabilistic Self-Stabilizing Leader
Election Algorithm

 All stations try to send messages via the
channel. Collision!

 For a station S, flip a coin for retransmission.
Accordingly, either retransmit or keep silent.

 Keep applying till no collision occurs, and
accordingly leader is elected.

 Is there a probability of all being silent!?

Example

Self-Stabilizing Compilers
 Sequential Programs:

 Rule based program (Brown et al.)
 In initialization, a rule is a multiple assignment

statement with an enabling condition called guard.
 guard is a predicate over the variables of the

program, which is updated at each state.
 A computation is a sequence of rule firings, where

at each step an enabled rule is non-deterministically
selected for execution.

 A program terminates when reaching a fixed point
state where values of variables no longer change.

Self-Stabilizing Compilers (cont.)
 To force self-stabilization while preserving

termination, a program must be:
− Of acyclic data dependence graph.
− Each rule in the program assigns only one variable.
− For any pair of enabled rules with same target variable,

both rules will assign the same value to the variable.
 Message Passing Systems:

 Three component algorithm:
1.A self-stabilizing version of Chandy-Lamport's global

snapshot algorithm.
2.A self-stabilizing reset algorithm that is superposed on it.
3.A non-self-stabilizing program on which the former two

are imposed to obtain self-stabilizing program.

Self-Stabilizing Compilers (cont.)

• Distinguished initiator repeatedly takes global
snapshots.

• After taking a snapshot, initiator evaluates a
predicate (assumed decidable), on the
collected state.

• If an illegitimate global state is detected, reset
algorithm is initiated.

Fault Tolerance
 The following transient faults can be handled by

a self-stabilizing system:
 Inconsistent initialization: Different processes

initialized to local states that are inconsistent with
one another.

 Mode of change: There can be different modes of
execution of a system. In changing the mode of
operation, it is impossible for all processes to effect
the change in same time.

 Transmission errors: Loss, corruption, or reordering
of messages.

 Memory crash

Factors Preventing Self-Stabilization
 Symmetry: Processes should not be

identical/symmetric because solution generally
relies on a distinguished process.

 Termination: If any unsafe global state is a final
state, system will not be able to stabilize.
Exception case of finite state sequential
programs.

 Isolation: Inadequate communication among
processes can lead to local states consistent
with some safe global state, however, the
resulting global state is not safe!

Factors Preventing Self-Stabilization
(cont.)

 Look-alike configurations: Such configurations
result when the same computation is enabled in
two different states with no way to differentiate
between them. Then system cannot guarantee
convergence from the unsafe state.

Limitations of Self-Stabilizing
 Need for an exceptional machine
 Convergence-response tradeoffs

– Convergence span denotes the maximum
number of critical transitions made before the
system reaches a legal state.

– Response span denotes the maximum number
of transitions to get from the starting state to
some goal state.

– Critical transitions. Ex.: A process moves into a
critical section, while another is already in!

Limitations of Self-Stabilizing (cont.)
 Pseudo-stabilization: Weaker, but less

expensive w.r.t self-stabilization. Every
computation only needs to have some state
such that the suffix of the computation
beginning at this state is in the set of legal
computations.

 Verification of self-stabilizing system
– Verification may be difficult.
– Stair method developed; Proving the algorithm

stabilizes in each step verifies correctness of
the entire algorithm, where interleaving
assumptions are relaxed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

