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Introduction

•  There is a possibility for a distributed system 
to go into an illegitimate state, for example, if 
a message is lost.

•  Self-stabilization: regardless of initial state, 
system is guaranteed to converge to a 
legitimate state in a bounded amount of time 
without any outside intervention.

•  Problem: nodes do not have a global 
memory that they can access instantaneoulsy.



  

System Model
•  An abstract computer model: state machine.
•  A distributed system model comprises of a set 

of n state machines called processors that 
communicate with each other, which can be 
represented as a graph.

•  Message passing communication model: 
queue(s) Qij, for messages from Pi to Pj

•  System configuration is set of states, and 
message queues.

•  In any case it is assumed that the topology 
remains connected, i.e., there exists a path 
between any two nodes.



  

Definition

•  States satisfying P are called legitimate states 
and those not satisfying P are called 
illegitimate states.

• A system S is self-stabilizing with respect to 
predicate P if it satisfies the properties of 
closure and convergence



  

Dijkstra's self-stabilizing token ring 
system

•  When a machine has a privilege, it is able to change its 
current  state, which is referred to as a move.

•  A legitimate state must satisfy the following constraints:
• There must be at least one privilege in the system 

(liveness or no deadlock).
• Every move from a legal state must again put the 

system into a legal state (closure).
• During an infinite execution, each machine should enjoy 

a privilege an infinite number of times (no starvation).
• Given any two legal states, there is a series of moves 

that change one legal state to the other (reachability).

 Dijkstra considered a legitimate (or legal) state as one in 
which exactly one machine enjoys the privilege.



  

Dijkstra's system (contd)

• For any machine, we use symbols S, L, and R 
to denote its own state, state of the left 
neighbor and state of the right neighbor on the 
ring.

• The exceptional machine:
If L = S then

S = (S+1) mod K;
• All other machines:
If L = S then

S = L;



  

Dijkstra's system (contd)
• Note that a privilege of a machine is ability to change its 

current state on a Boolean predicate that consists of its 
current state and the states of its neighbors. When a machine 
has a privilege, it is able to change its current state, which is 
referred to as a move.

• Second solution (K = 3)
• The bottom machine, machine 0:

If (S+1) mod 3 = R then S = (S−1) mod 3;
• The top machine, machine n−1:

If L = R and (L+1) mod 3 = S then S = (L+1) mod 
3;

• The other machines:
If (S+1) mod 3 = L then S = L;

If (S+1) mod 3 = R then S = R;



  

Example



  

Systems with less than three states 
per node



  

Ghosh system (contd)



  

Uniform vs Non-uniform

• From the examples of the preceding section, we 
notice that at least one of the machines (exceptional 
machine) had a privilege and executed steps that 
were different from other machines.

• The individual processes can be anonymous, 
meaning they are indistinguishable and all run the 
same algorithm.



  

Central and distributed daemons

• Generally, the presence of a central demon is 
assumed in self-stabilizing algorithms. 

• Distributed demon is more desirable in 
distributed systems.

• The presence of a central demon considerably 
simplifies the verification of a weak 
correctness criterion of a self-stabilizing 
algorithm.



  

Reducing the number of states in 
token ring

• In a self-stabilizing token ring with a central 
demon and deterministic execution, Ghosh 
showed that a minimum of three states per 
machine is required.

• There exists a non-trivial self-stabilizing 
system with two states per machine. It 
requires a high degree of atomicity in each 
action.



  

Shared memory models

• Two processors, Pi and Pj, are neighbors, then 
there are two registers, i and j, between the 
two nodes. To communicate, Pi writes to i and 
reads from j and Pj writes to j and reads from i.

• Dolev et al. present a dynamic self-stabilizing 
algorithm for mutual exclusion. Node failures 
may cause an illegal global state, but the 
system again converges to a legal state.



  

Mutual Exclusion
• In a mutual exclusion algorithm, each process 

has a critical section of code. Only one 
process enters its critical section at any time, 
and every process that wants to enter its 
critical section, must be able to enter its critical 
section in finite time.

• A self-stabilizing mutual exclusion system can 
be described in terms of a token system, 
which has the processes circulating tokens. 
Initially, there may be more than one token in 
the system, but after a finite time, only one 
token exists in the system which is circulated 
among the processes



  

Costs of self-stabilization

• A study and assessment of cost factors is very 
important in any practical implementation.

• Convergence span The maximum number of 
transitions that can be executed in a system, 
starting from an arbitrary state, before it 
reaches a safe state.

• Response span The maximum number of 
transitions that can be executed in a system to 
reach a specified target state, starting from 
some initial state. The choice of initial state 
and target state depends upon the application.



  

Methodologies for design

• After malicious adversary disrupts the normal 
operation of the system. If enough 
components are left for the system to operate, 
then a self-stabilizing system will slowly 
resume

• Normal operation after the attack. If not, 
system is destroyed. 



  

Layering and modularization

• Self-stabilization is amenable to layering 
because the self-stabilization relation is 
transitive.

• Time in shared memory systems must meet 
these properties:

• Safety All clocks have the same value. (Differ 
at most 1)

• Progress At each step, each clock is 
incremented by the same amount. (i+1 when 
neighbors are i or i+1)

• Topology based primitives: leader election.



  

Communication protocols
• Communication protocol might be affected  due 

to:
• Initialization to an illegal state.
• A change in the mode of operation. Not all 

processes get the request for the change at 
the same time, so an illegal global state 
may occur.

• Transmission errors because of message 
loss or corruption.

• Process failure and recovery.
• A local memory crash which changes the 

local state of a process.



  

Communication protocols

• Communication protocol must satisfy the 
following three properties to be self-stabilizing:

• It must be non-terminating.
• There are an infinite number of safe 

states.
• There are timeout actions in a non-empty 

subset of processes.



  

Dolev, Israeli, and Moran Algorithm
 Self stabilizing BFS spanning-tree construction.
 Properties:

 Semi-uniform systems
 Central daemon
 Assume read/write atomicity

 Every node maintains:
 A pointer to one of its incoming edges.
 An integer measuring number of hops from root of 

tree.



  

Dolev, Israeli, and Moran Algorithm 
(cont.)

 Nodes periodically exchange their distance 
value with each other, (root node always sends 
a value of 0).

 Each node chooses the neighbor with minimum 
distance as its new parent, and updates its 
distance accordingly.

 After reading all neighbors values for k times, 
distance value of a process is at least k+1.



  



  

Example



  

Afek, Kutten, and Yung Algorithm
 BFS spanning-tree, in read/write atomicity 

model.
 No distinguished process assumption.
 All nodes have globally unique identifiers that 

can be totally ordered.
 The largest identifier will be the root of tree.
 Similar to Dolev et al., but also exchange the 

current root which a node think it is present.
 If a larger root appears, send a join request to 

the other sub-tree, and wait for grant message.



  

Arora and Gouda Algorithm
 BFS spanning-tree, in composite atomicity 

model, with central daemon assumption.
 All nodes have globally unique identifiers that 

can be totally ordered.
 The largest identifier will be the root of tree.
 Needs a bound N on the number n of nodes in 

network to work correctly.
 Cycles are detected when distance bound 

grows to exceed N.
 O(N^2) Vs. O(n^2) for Afek et al.



  

Afek and Bremler Algorithm
 For synchronous, and asynchronous networks.
 Node with smallest identifier is considered the 

root.
 Based on “Power Supply” idea.
 Power is a continuous flow of messages, one 

per round.
 When a node receives power from a neighbor 

with a smaller identifier, it attaches itself to the 
tree.



  

Afek and Bremler Algorithm
 Weak messages are exchanged between  

nodes to synchronize their states, while strong 
messages carry power.

 Stabilizes in O(n) rounds without process to 
have the knowledge of n.



  

1-Maximal Independent Set
 A maximal independent set is a set of nodes 

such that every node not in the set is adjacent 
to a node in the set.

 A 1-maximal independent set is maximal 
independent set provided one cannot increase 
the cardinality of the independent set by 
removing one node and adding more nodes.



  

Shi et al. Algorithm
 A connected, undirected graph with node set V 

and edge set E.
 N(i) denotes a set of neighbors of node i.
 Algorithm is presented as a set of rules, each 

with a boolean predicate and action.
 A node will be privileged if predicate is true.
 If a node is privileged, it may execute the 

corresponding action, called move.
 A central daemon is assumed to exist.
 Nodes in state '0' will be in the desired set.



  

Shi et al. Algorithm (cont.)
 Rules:

1.If not involved in a transition process, then set state 
to the number of neighbors in state 0 or state 0'.

2.If in state 0 and adjacent to at least two 1s, change 
to state 0.

3.If in state 1 and adjacent to a 0', change state to 1'.
4.If in state 0' and adjacent to at least two 1's, change 

state to 2'.
5.If in state 1' and adjacent to no 0', change 

state to 0.
6.If in state 2' and adjacent to no 1', change state to 2.



  



  

Shi et al. Algorithm (cont.)



  

Probabilistic Self-Stabilizing Leader 
Election Algorithm

 All stations try to send messages via the 
channel. Collision!

 For a station S, flip a coin for retransmission. 
Accordingly, either retransmit or keep silent.

 Keep applying till no collision occurs, and 
accordingly leader is elected.

 Is there a probability of all being silent!?



  

Example



  

Self-Stabilizing Compilers
 Sequential Programs:

 Rule based program (Brown et al.)
 In initialization, a rule is a multiple assignment 

statement with an enabling condition called guard.
 guard is a predicate over the variables of the 

program, which is updated at each state.
 A computation is a sequence of rule firings, where 

at each step an enabled rule is non-deterministically 
selected for execution.

 A program terminates when reaching a fixed point 
state where values of variables no longer change.



  

Self-Stabilizing Compilers (cont.)
 To force self-stabilization while preserving 

termination, a program must be:
− Of acyclic data dependence graph.
− Each rule in the program assigns only one variable.
− For any pair of enabled rules with same target variable, 

both rules will assign the same value to the variable.
 Message Passing Systems:

 Three component algorithm:
1.A self-stabilizing version of Chandy-Lamport's global 

snapshot algorithm.
2.A self-stabilizing reset algorithm that is superposed on it.
3.A non-self-stabilizing program on which the former two 

are imposed to obtain self-stabilizing program.



  

Self-Stabilizing Compilers (cont.)

• Distinguished initiator repeatedly takes global 
snapshots.

• After taking a snapshot, initiator evaluates a 
predicate (assumed decidable), on the 
collected state.

• If an illegitimate global state is detected, reset 
algorithm is initiated.



  

Fault Tolerance
 The following transient faults can be handled by 

a self-stabilizing system:
 Inconsistent initialization: Different processes 

initialized to local states that are inconsistent with 
one another.

 Mode of change: There can be different modes of 
execution of a system. In changing the mode of 
operation, it is impossible for all processes to effect 
the change in same time.

 Transmission errors: Loss, corruption, or reordering 
of messages.

 Memory crash



  

Factors Preventing Self-Stabilization
 Symmetry: Processes should not be 

identical/symmetric because solution generally 
relies on a distinguished process.

 Termination: If any unsafe global state is a final 
state, system will not be able to stabilize. 
Exception case of finite state sequential 
programs.

 Isolation: Inadequate communication among 
processes can lead to local states consistent 
with some safe global state, however, the 
resulting global state is not safe!



  

Factors Preventing Self-Stabilization 
(cont.)

 Look-alike configurations: Such configurations 
result when the same computation is enabled in 
two different states with no way to differentiate 
between them. Then system cannot guarantee 
convergence from the unsafe state.



  

Limitations of Self-Stabilizing
 Need for an exceptional machine
 Convergence-response tradeoffs

– Convergence span denotes the maximum 
number of critical transitions made before the 
system reaches a legal state.

– Response span denotes the maximum number 
of transitions to get from the starting state to 
some goal state.

– Critical transitions. Ex.: A process moves into a 
critical section, while another is already in!



  

Limitations of Self-Stabilizing (cont.)
 Pseudo-stabilization: Weaker, but less 

expensive w.r.t self-stabilization. Every 
computation only needs to have some state 
such that the suffix of the computation 
beginning at this state is in the set of legal 
computations.

 Verification of self-stabilizing system
– Verification may be difficult. 
– Stair method developed; Proving the algorithm 

stabilizes in each step verifies correctness of 
the entire algorithm, where interleaving 
assumptions are relaxed.
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