
University of Trento

40

Effective Analysis, Characterization, and

Detection of Malicious Activities on the

Web

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in

Computer Science

by

Birhanu Mekuria Eshete

Supervisor:

Prof. Adolfo Villafiorita, Fondazione Bruno Kessler, Italy

Examination Committee:

Prof. Alessandro Armando, University of Genova, Italy

Prof. Luca Vigano, King’s College London, UK

Prof. Venkat Venkatakrishnan, University of Illinois at Chicago, USA

Prof. Paolo Tonella, Fondazione Bruno Kessler, Italy

December 2013





Acknowledgments
The well-spent years in my PhD were incredibly adventurous and trans-

forming. Of all the lessons I learned, solving problems that matter to

humanity is what always echoes in my head. Equally captivating to me is

the often ignored truth that research should be fun to do and should not

be a rote technical gymnastic to comply with academic routine. As much

as the “what” and the “how” of doing research matter, so does the “why”.

During my PhD, I was lucky to have the support of many great people and

I, therefore, owe them a heartfelt gratitude.

Most of all, I thank my supervisor, Prof. Adolfo Villafiorita, not only for

his paramount mentorship but also for his kindness to give me the freedom

to think independently and to think outside the box.

Next, I am thankful to members of my examination committee: Prof.

Alessandro Armando, Prof. Luca Vigano, Prof. Venkat Venkatakrishnan,

and Prof. Paolo Tonella, who dedicated their time to provide me with

priceless comments to improve this dissertation.

I am particularly grateful to Prof. Venkat Venkatakrishnan for hosting

me in his research group at the University of Illinois at Chicago and for the

fruitful collaboration that ended up to be a chapter in this dissertation. I

am also grateful to Prof. Mohammad Zulkernine from Queen’s University

in Canada for the great collaboration on a part of this dissertation.

From the days I was hesitant about pursuing a PhD up until the day I

completed this dissertation, Komminist Weldemariam is not only a great

friend but also a motivator and contributor to this dissertation.

I am indebted to Federico Maggi for the initial discussions that ignited

my interest to work on this fascinating research topic.

I highly acknowledge the Bruno Kessler Foundation for funding my re-

search work.

Biniyam Asfaw, Fitsum Meshesha, and Surafel Lemma are simply the



greatest friends one can have. Their countless assistance and moral support

makes me feel lucky to have them.

With my friend Biruk Haileye, I had the privilege of exploring funda-

mental topics in life as much as it takes, no matter what. I still miss those

eye-opening conversations with him.

Itzel Morales, my special friend in Trento, with whom I shared a lot

of constructive ideas and memorable moments is a great friend that I will

always remember. Thank you Itzel for your great friendship.

Many friends and colleagues have left living memories in the course

of this adventurous journey. So, I thank (in no particular order): An-

drea Mattioli, Giordano Adami, Andrea Manica, Frencesca Longo, Aaron

Ciaghi, Pietro Molini, Andrea Nodari, Lorenzo Rigato, Roberto Zen, Giu-

lia Petronella, Andrea Bontempelli, Ali Alshammari, Ilse Grau, Andrea

Avancini, Mariano Ceccatto, Chiara Di Francescomarino, Cu D. Nguyen,

Mirko Morandini, Kalpana Gondi, Rigel Gjomemo, Phu Phung, Karen

Heart, Maliheh Monshizadeh.

My family has always been my source of inspiration and courage. I am

thankful of their love and encouragement. In particular, I am grateful to

my mother, my sister (Mimmi), and my brothers (Tizazu and Tekabe).

Last, but certainly not least, Helen deserves a special gratitude for her

unconditional love, support, and patience.

Birhanu M. Eshete

December 2013

Trento, Italy

4



Abstract
The Web has evolved from a handful of static web pages to billions of dy-

namic and interactive web pages. This evolution has positively transformed

the paradigm of communication, trading, and collaboration for the benefit

of humanity. However, these invaluable benefits of the Web are shadowed

by cyber-criminals who use the Web as a medium to perform malicious

activities motivated by illegitimate benefits. Cyber-criminals often lure vic-

tims to visit malicious web pages, exploit vulnerabilities on victims’ devices,

and then launch attacks that could lead to: stealing invaluable credentials

of victims, downloading and installation of malware on victims’ devices, or

complete compromise of victims’ devices to mount future attacks.

While the current state-of-the-art is to detect malicious web pages is

promising, it is yet limited in addressing the following three problems.

First, for the sake of focused detection of certain class of malicious web

pages, existing techniques are limited to partial analysis and characteriza-

tion of attack payloads. Secondly, attacker-motivated and benign evolution

of web page artifacts have challenged the resilience of existing detection

techniques. The third problem is the prevalence and evolution of Exploit

Kits used in spreading web-borne malware. In this dissertation, we present

the approaches and the tools we developed to address these problems.

To address the partial analysis and characterization of attack pay-

loads, we propose a holistic and lightweight approach that combines static

analysis and minimalistic emulation to analyze and detect malicious web

pages. This approach leverages features from URL structure, HTML con-

tent, JavaScript executed on the client, and reputation of URLs on so-

cial networking websites to train multiple models, which are then used in

confidence-weighted majority vote classifier to detect unknown web pages.

Evaluation of the approach on a large corpus of web pages shows that the

approach not only is precise enough in detecting malicious web pages with



very low false signals but also does detection with a minimal performance

penalty.

To address the evolution of web page artifacts, we propose an evolution-

aware approach that tunes detection models inline with the evolution of web

page artifacts. Our approach takes advantage of evolutionary searching

and optimization using Genetic Algorithm to decide the best combination

of features and learning algorithms, i.e., models, as a function of detection

accuracy and false signals. Evaluation of our approach suggests that it

reduces false negatives by about 10% on a fairly large testing corpus of web

pages.

To tackle the prevalence of Exploit Kits on the Web, we first analyze

source code and runtime behavior of several Exploit Kits in a contained set-

ting. In addition, we analyze the behavior of live Exploit Kits on the Web

in a contained environment. Combining the analysis results, we character-

ize Exploit Kits pertinent to their attack-centric and self-defense behaviors.

Based on these behaviors, we draw distinguishing features to train classi-

fiers used to detect URLs that are hosted by Exploit Kits. The evaluation

of our classifiers on independent testing dataset shows that our approach

is effective in precisely detecting malicious URLs linked with Exploit Kits

with very low false positives.

Keywords

malicious web pages, web-borne malware, holistic characterization, evolution-

aware detection, exploit kits.

6



Contents

1 Introduction 1

1.1 Research Problems . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Partial Analysis and Characterization of Attacks . . 5

1.1.2 Evolution of Web Page Artifacts . . . . . . . . . . . 6

1.1.3 Prevalence of Exploit Kits . . . . . . . . . . . . . . 6

1.2 Overview of Proposed Approaches . . . . . . . . . . . . . . 7

1.2.1 Holistic Detection . . . . . . . . . . . . . . . . . . . 7

1.2.2 Evolution-Aware Detection . . . . . . . . . . . . . . 8

1.2.3 Detection of Exploit Kits . . . . . . . . . . . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . 10

2 Malicious Activities on the Web 11

2.1 Drive-by-Downloads . . . . . . . . . . . . . . . . . . . . . 13

2.2 Phishing Sites . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Malware Distribution Networks . . . . . . . . . . . . . . . 17

2.4 Malicious Advertisements . . . . . . . . . . . . . . . . . . 18

2.5 Exploit Kits . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Holistic Detection 23

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



3.2 Holistic Characterization . . . . . . . . . . . . . . . . . . . 25

3.2.1 URL Features . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Page-Source Features . . . . . . . . . . . . . . . . . 28

3.2.3 Social-Reputation Features . . . . . . . . . . . . . . 30

3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . 32

3.3.2 Multi-Model Training . . . . . . . . . . . . . . . . . 34

3.3.3 Confidence-Weighted Majority Vote Classification . 34

3.4 Dataset and Setup . . . . . . . . . . . . . . . . . . . . . . 36

3.4.1 Implementation Overview . . . . . . . . . . . . . . 36

3.4.2 Dataset Source and Dataset . . . . . . . . . . . . . 36

3.4.3 Experimental Procedure . . . . . . . . . . . . . . . 37

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 Analysis of Models . . . . . . . . . . . . . . . . . . 38

3.5.3 Significance of New Features . . . . . . . . . . . . . 41

3.5.4 Classification Accuracy . . . . . . . . . . . . . . . . 42

3.5.5 Performance Overhead . . . . . . . . . . . . . . . . 44

3.5.6 Resilience to Evasion . . . . . . . . . . . . . . . . . 44

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Evolution-Aware Detection 47

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Insights . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Crawling and Feature Extraction . . . . . . . . . . 55

4.3.2 Candidate Models Generation . . . . . . . . . . . . 56

ii



4.3.3 Evolutionary Searching and Optimization . . . . . 57

4.4 Dataset and Setup . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Implementation . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Dataset Collection and Validation . . . . . . . . . . 65

4.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . 66

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Accuracy and Error Rate . . . . . . . . . . . . . . . 68

4.5.2 Performance Overhead . . . . . . . . . . . . . . . . 69

4.5.3 Results from a Public Service . . . . . . . . . . . . 72

4.5.4 Immunity to Possible Evasion . . . . . . . . . . . . 72

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Detection of Exploit Kits 75

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Exploit Kits . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 From Behavior to Features . . . . . . . . . . . . . . . . . . 81

5.3.1 Attack-Centric Behaviors . . . . . . . . . . . . . . . 81

5.3.2 Self-Defense Behaviors . . . . . . . . . . . . . . . . 85

5.3.3 Features . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 WebWinnow Overview . . . . . . . . . . . . . . . . . . . 91

5.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1 Locally Installed Exploit Kits . . . . . . . . . . . . 94

5.5.2 Live Exploit Kits on the Web . . . . . . . . . . . . 94

5.5.3 Non Exploit Kit URLs . . . . . . . . . . . . . . . . 95

5.5.4 Model Generation . . . . . . . . . . . . . . . . . . . 96

5.6 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6.1 Rule Based Pre-Filtering . . . . . . . . . . . . . . . 97

5.6.2 Learning-Based Classification . . . . . . . . . . . . 98

5.6.3 Implementation Overview . . . . . . . . . . . . . . 99

iii



5.7 Data Collection and Setup . . . . . . . . . . . . . . . . . . 101

5.7.1 Data Collection . . . . . . . . . . . . . . . . . . . . 101

5.7.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . 103

5.7.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8.1 Analysis of Features . . . . . . . . . . . . . . . . . 105

5.8.2 Accuracy of Models on Training Set . . . . . . . . . 107

5.8.3 Accuracy of Classifiers on Testing Set . . . . . . . . 107

5.8.4 Effectiveness of the Pre-Filtering . . . . . . . . . . 108

5.8.5 Error Analysis . . . . . . . . . . . . . . . . . . . . . 112

5.8.6 Comparison with a Similar System . . . . . . . . . 113

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Related Work 115

6.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Other Techniques . . . . . . . . . . . . . . . . . . . . . . . 126

7 Conclusions and Future Work 129

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography 133

A Supervised Learning Algorithms 147

A.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . 148

A.3 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . 149

A.5 Support Vector Machine . . . . . . . . . . . . . . . . . . . 150

iv



B Publications 153

v





List of Tables

3.1 Summary of features used in Binspect. . . . . . . . . . . 29

3.2 Dataset for training and testing Binspect. . . . . . . . . . 37

3.3 Binspect: Overall Contribution of new features on the ac-

curacy of classifiers. . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Binspect: Performance of classifiers with and without new

features on the training set. . . . . . . . . . . . . . . . . . 43

3.5 Performance of Binspect in comparison with a public mali-

cious web page analysis and detection service on the testing

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Dataset for training and testing of Einspect. . . . . . . . 66

4.2 Einspect: Percentage of FPs/FNs of candidate models

with 10-fold cross validation on the training set. . . . . . . 67

5.1 Characterization of Exploit Kits based on their attack-centric

and self-defense behaviors. Ver= Version, CP= Client Pro-

filing, IPB= IP Blocking, Sel= Exploit Selection, Obf= Ex-

ploit Obfuscation, Blklst= Blacklist Lookup, Sign.Ev.= Sig-

nature Evasion, Rbt.Blk= Robot Blocking, Cod.Prt= Code

Protection, Add.= Allow Adding Exploit. . . . . . . . . . 82

5.2 Features used in WebWinnow to detect malicious URLs

hosted by Exploit Kits. . . . . . . . . . . . . . . . . . . . . 88

5.3 Summary of rules compiled for 18 popular Exploit Kits. . . 99

vii



5.4 Dataset for training and testing of WebWinnow. . . . . . 104

5.5 WebWinnow: Performance of models on the training set. 107

5.6 WebWinnow: Performance of classifiers on a separate test-

ing set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 WebWinnow: Effectiveness evaluation of the pre-filtering

on the dataset used for training and testing of the classifiers. 110

5.8 Detection accuracy comparison between WebWinnow and

Wepawet. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



List of Figures

2.1 A typical drive-by-download attack chain. . . . . . . . . . 13

2.2 A typical phishing attack chain [15]. 1©: Phisher sends a

legitimate-looking email posing as a Bank. 2©: User as-

sumes email is legitimate and submits bank credentials. 3©:

In reality, bank credentials submitted to Phisher’s server.

4©: Phisher logs into the bank with user’s credentials. 5©:

Phisher steals user’s money. . . . . . . . . . . . . . . . . . 16

2.3 Typical workflow in Exploit Kits. . . . . . . . . . . . . . . 20

3.1 Distribution of the top 100 Twitter share-counts for benign

and malicious URLs on the training set. . . . . . . . . . . 31

3.2 BINSPECT System Overview. . . . . . . . . . . . . . . . . 33

3.3 Binspect: Evaluation of classifiers with all features. . . . 39

3.4 Binspect: Evaluation of classifiers with URL features. . . 39

3.5 Binspect: Evaluation of classifiers with Page-Source features. 40

3.6 Binspect: Evaluation of classifiers with Social-Reputation

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Decision Tree classifier performance evolution over a period

of 15 days with daily feature extraction and classifier training. 51

4.2 Naive Bayes classifier performance evolution over a period

of 15 days with daily feature extraction and classifier training. 51

ix



4.3 Feature value evolution of HTML features over a period of

15 days. These features are separately plotted for the sake

of clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Feature value evolution of HTML features over a period of

15 days. These features are separately plotted for the sake

of clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Feature value evolution of JavaScript features over a period

of 15 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Operational Framework of Einspect. . . . . . . . . . . . . 55

4.7 Candidate models generation tree structure. . . . . . . . . 57

4.8 Einspect: False Positives for classifiers before and after the

GA on the training set. . . . . . . . . . . . . . . . . . . . . 69

4.9 Einspect: False Positives and False Negatives of the GA-

guided fittest model on the training set. . . . . . . . . . . . 70

4.10 Einspect: False Positives and False Negatives of the GA-

guided fittest model on the test set. . . . . . . . . . . . . . 70

4.11 CPU clock overhead in relation to number of features se-

lected by the GA to build the best detection model from

the training set with increasing number of generations. . . 71

5.1 Part of an activity trace of the RedKit Exploit Kit on July

10, 2013. Visited from IE6.0 on Windows XP SP3 with

Adobe Acrobat Reader Version 9.1.0, Java plugin Version

1.6.0.32, and Shockwave Flash Version 10.0.64.0. . . . . . . 79

5.2 WebWinnow Training and detection pipeline. HC = Hon-

eyClient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Percentage distribution of live Exploit Kits successfully probed

during the data collection period. . . . . . . . . . . . . . . 103

x



5.4 WebWinnow: Pre-filtering performance on the Alexa Top

1 Million sites. . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 WebWinnow: Pre-filtering performance on the Malware

Domain Blacklist. . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Distribution of Exploit Kit types in the pre-filtering out-

put of 6698 URLs from Malware Domain List that matched

Exploit Kit URL rules. . . . . . . . . . . . . . . . . . . . . 111

5.7 Distribution of Exploit Kit types in the pre-filtering output

from Malware Domain Blacklist. . . . . . . . . . . . . . . . 111

xi





Chapter 1

Introduction

When Tim Berners-Lee invented the Web in 1991, it was a collection of a

handful of static web pages used by a small number of scientists at CERN

[6]. Now, the Web has evolved into a ubiquitous global platform that

hosts well over a trillion of web pages backed by hundreds of millions of

complex web applications used by billions of people from all over the globe

[3, 45, 67]. The ubiquity of the Web has positively transformed the way

people do business, spend their spare time, exchange ideas, and socialize.

With new online businesses and communities emerging every day, the web

will continue to evolve in features and content it hosts, and humanity will

also continue to increasingly depend on the Web.

Unfortunately, the Web is also where evil-doers carry-out criminal ac-

tivities to: steal invaluable credentials (e.g., online banking credentials)

from unsuspecting victims, infect victims’ devices with malware (e.g., key-

logger), or even compromise and remotely command-and-control victims’

devices as part of a Botnet [13, 22, 72, 83]. On the Web, it just takes a

mere visit of a web page to be a victim of these kinds of attacks. In a

typical daily online activity, it has become customary to visit a myriad

of web pages for activities such as searching information, keeping in-touch

with other people, checking-out news, or watching a video.

1



2 Chapter 1. Introduction

Taking advantage of the sheer number of users of the Web and the lack

of awareness of users, one common strategy used by cyber-criminals is to

lure unsuspecting victims into visiting a web page that is either purposely

crafted to launch attacks or a vulnerable legitimate web page that is under

the control of the cyber-criminal. Most attacks on the Web happen when

victims visit malicious websites. They lure them to give away sensitive in-

formation (e.g., phishing sites) or exploit vulnerabilities in the web browser,

its extensions and plugins (e.g., drive-by-downloads, malicious advertise-

ments) to drop a malware binary on the victim’s computer [16, 18, 19]. To

maximize the success rate of malicious activities, cyber-criminals employ

several traffic attraction mechanisms such as spam email, black-hat Search

Engine Optimization (SEO), pay-per-install services, web blogs, and social

networking websites.

In the past, orchestrating such malicious activities required an experi-

enced attacker to craft malicious web pages. The motivation was often

fame and curiosity. Now, the motivation behind cyber-crime is largely

illegal financial gain. Inexperienced attackers can purchase attack toolk-

its, called Exploit Kits, to craft malicious web pages from which they can

mount attacks. The Exploit Kits are developed and marketed by experi-

enced attackers in the underground market [86]. Akin to legitimate soft-

ware, Exploit Kits are periodically upgraded with novel attack payloads

and evasion techniques to challenge detection mechanisms [37].

In order to defend users from malicious activities on the Web, the re-

search community first responded with blacklisting of known or suspected

malicious URLs, domains, and IP addresses. As blacklisting does not cope

with the explosive growth of the number of web pages and exhaustive black-

listing is infeasible, heuristics-based countermeasures emerged. Heuristics-

based methods are effective only to identify known attack patterns for

which signatures are stored a priori. In addition, the rate at which mali-



3

cious activities evolve on the Web is by far faster than the rate at which

signature databases are updated —rendering such countermeasures inef-

fective.

To address the inadequacy of blacklisting and heuristics-based detection

of malicious activities on the Web, two complementary approaches have

been proposed. These techniques are based on static analysis and dynamic

analysis of web pages. Static analysis techniques quickly extract features

that characterize malicious activities on a web page without rendering the

page in a browser [13, 14, 54, 55, 79, 89]. By contrast, dynamic analysis

techniques capture behavioral artifacts that characterize malicious activi-

ties when the page is executed by the browser [11, 18, 43, 65, 72, 75, 78].

Despite existing countermeasures, the Web has become more and more

susceptible to an increasing number of malicious activities [87]. With the

aim of shedding light on the state of malware on the Web, Provos et al.

[70] conducted a measurement study on a corpus of about 4.5 million web

pages indexed by Google. They found out that one in ten web pages may

contain malicious code. In another study, Provos et al. [71] reported that

Google identified over 3 million URLs that launched attacks against their

visitors. An even more troubling finding is that about 1.3% of the search

queries submitted from users of Google search were served with at least

one malicious URL. In a recent study, Canali and Balzarotti [12] deployed

a network of 500 honeypot websites with several services over a period of

100 days to analyze what attackers do during and after compromising a

website. Their findings indicate that, among other 10 malicious activities,

phishing, drive-by-downloads, and defacement of websites are prevalent on

the Web.

Similarly to these large-scale measurement studies, security firms also

report that recent years have witnessed a significant prevalence of mali-

cious activities embedded in web pages. The prevalence reports show two



4 Chapter 1. Introduction

categories of malicious activities, i.e., those embedded in the purposely-

crafted malicious web pages and those injected into legitimate websites

compromised by cyber-criminals.

With regards to prevalence of malicious web pages, in the period 2009-

2010, Websense estimated an increase of about 111% in the number of

malicious web pages [101]. In the same period, Symantec estimated about

310, 000 malicious domains and a monthly average of about 4.4 million

malicious web pages [85]. A recent report from Symantec on threats on

the Internet indicates an increase in the number of: malware URLs sent

via email, phishing attacks, and malicious domains [87].

The prevalence reports also show a trend in using compromised legit-

imate websites for malicious activities. For instance, Symantec reported

that in 2010, about 70 of the top 100 reputable websites were either host-

ing malicious content or were injected with an iframe that redirects to

other malicious web pages. In the same year, Websense [101] reported

that about 80% of the Websites with malicious code were compromised

legitimate sites.

The insights from these studies are attributed to three challenges in the

state of the art detection techniques. Firstly, the focus on specific classes

of malicious activities such as drive-by-download attacks. Secondly, the

evolution of the threat landscape which challenges the resilience of existing

countermeasures. Thirdly, the prevalence of Exploit Kits that played a key

role in the proliferation of malicious activities on the Web.

In this dissertation, we present approaches that improve the current

state of the art with the aim of effective analysis, characterization, and

detection of malicious activities on the Web. As the aforementioned studies

found out, malicious web pages are one of the major vectors to carry-

around malicious activities on the Web. Hence, the problem domain of this

dissertation is in the context of malicious activities embedded in malicious



1.1. Research Problems 5

web pages pertinent to phishing sites, drive-by-download sites, malware

distribution sites, malicious advertisements, and URLs linked with Exploit

Kits.

1.1 Research Problems

Given the alarming prevalence of malicious activities on the Web and the

constantly evolving tactics of cyber-criminals to spawn new variants of

attacks [85, 86, 87], existing approaches, which are pretty effective at de-

tecting one prominent attack (such as drive-by-downloads), are limited to

partial and course-grained analysis and characterization of attack payloads

[27, 63]. Moreover, on top of the prevalence of Exploit Kits on the Web,

the constant evolution of attack payloads in malicious web pages and the

healthy evolution of artifacts of benign web pages challenges the effective-

ness and efficiency of existing defenses against malicious activities on the

Web. In the following, we briefly pose the specific research problems that

this dissertation addresses.

1.1.1 Partial Analysis and Characterization of Attacks

Existing approaches base the intuition of their detection techniques on spe-

cific attacks (e.g., phishing, drive-by-downloads). However, cyber-criminals

are often one step ahead in crafting virtually any possible combination of

existing attacks or blending existing attack payloads with newly spawned

threats and embed it into web pages. As a result, the majority of the tech-

niques, as they are based on partial analysis of web page artifacts, overlook

a different type of attack. This happens due to loose characterization of

malicious activities. Consequently, malicious web pages escape detection

techniques.



6 Chapter 1. Introduction

1.1.2 Evolution of Web Page Artifacts

Artifacts of web pages, on which existing analysis and detection techniques

are based, are under evolution [69]. Old artifacts become less relevant over

time while new ones emerge due to evolution of artifacts. For benign web

pages, the evolution of artifacts is attributed to: hosting infrastructure,

web page source, functionality, web protocols, browser components and its

extensions, and usage policies. Evolution regarding artifacts of malicious

web pages is due to emerging attack vectors that exploit vulnerabilities. For

instance, the transition from HTML4 to HTML5 is a relevant example for

changes in some artifacts which can be extracted from HTML content of a

web page (e.g., inline multimedia inclusion, local storage) [103]. Evolution

of web pages results in evolution of the training dataset used to generate

the detection models. In effect, the performance of the detection model

eventually changes and the change might mean reduction in accuracy which

leads to having more false signals. Hence, the challenge for existing analysis

and detection techniques is how to cope with such evolution in artifacts of

web pages without compromising the precision of detection.

1.1.3 Prevalence of Exploit Kits

Since the advent of the first Exploit Kit in 2006, Exploit Kits have become

prevalent mean of attack on the Web [51]. To this end, it is a natural

question to ask whether a given URL points to an Exploit Kit. This is

a question that has significant implications for the safety of Web users,

given the proliferation of criminal activities in recent years and the change

in the “business model” of the underground market from selling crimeware

to providing it as a service akin to software-as-a-service [37, 82].



1.2. Overview of Proposed Approaches 7

1.2 Overview of Proposed Approaches

To address the problems discussed in the previous section, we propose and

evaluate three approaches with a shared goal of improving the effectiveness

of the analysis, characterization, and detection of malicious activities on

the Web.

1.2.1 Holistic Detection

To address the partial analysis and characterization of attacks in mali-

cious web pages, we propose and evaluate a holistic approach called Bin-

spect. Our approach aims at ensuring the right balance between the fast-

and-imprecise static analysis and the slow-and-precise dynamic analysis

techniques. To achieve this balance, Binspect leverages a combination

of static analysis and minimalistic emulation and uses supervised learning

techniques to detect malicious web pages. The targeted attacks are perti-

nent to drive-by-download, phishing, injection, and malware distribution.

While we start from previous work [13, 14, 18, 54], we introduce novel

features and enhance existing features to more effectively put apart mali-

cious and benign web pages. Our approach is lightweight while capturing

a comprehensive snapshot of the artifacts we extract from web pages. This

is ensured by using an optimal set of features and a minimalistic emulation

to render web pages. When provided with an unknown web page, instead

of relying on one best model, Binspect uses confidence-weighted majority

vote of multiple models to classify web pages as benign or malicious.

Evaluation of Binspect on a large-scale corpus of web pages achieved

detection accuracy above 97% with low false signals and an average per-

formance overhead of 5 seconds to analyze and detect a single web page.



8 Chapter 1. Introduction

1.2.2 Evolution-Aware Detection

To address evolution of web page artifacts, we propose and evaluate an

approach called Einspect, that leverages evolutionary searching and op-

timization to align learning-based detection models with the evolution of

web page artifacts.

Einspect starts with an initial population of candidate models trained

using standard learning algorithms based on discriminative features ex-

tracted from: URL string, HTML content, JavaScript code, and reputa-

tion metadata of web pages on social networking websites. It then uses a

Genetic Algorithm to automatically search and optimize the best combina-

tion of features and learning algorithms to obtain what we call the fittest

model. Using the fittest model, it detects unknown web pages to flag them

as malicious or benign. The key idea of our approach is that, upon a new

dataset, instead of re-training multiple models and pick the model(s) with

the best performance, Einspect exhaustively evaluates the best combina-

tion of features and learning algorithms using a Genetic Algorithm.

Evaluation results of Einspect show that, on a fairly large-scale dataset,

it is possible to significantly reduce false negatives (up to 10% in our

dataset) of a detection model using evolutionary model searching and op-

timization in order to make learning-based techniques evolution-friendly.

1.2.3 Detection of Exploit Kits

To address the prevalence of Exploit Kits, we tackle the problem with an

approach formulated as a machine learning based technique for the de-

tection of malicious URLs hosted by Exploit Kits. At the core of our

approach is that, based on contained analysis of workflows of Exploit Kits,

we leverage their attack-centric and self-defense behaviors to design dis-

tinguishing features based on which we train precise classifiers to detect



1.3. Contributions 9

malicious URLs.

Our approach resembles techniques that combine honeyclients and learn-

ing to analyze the side-effects of malicious activities. These techniques

(e.g., [65, 99]) inspect the pre-execution and post-execution snapshots of a

honeyclient system properties (e.g., processes, memory access). However,

in our approach, the focus of the characterization of malicious activities

is on what happens during execution instead of analyzing the side-effects.

In effect, the goal of the analysis is shifted from examining side-effects

to analyzing firsthand execution dynamics to reveal malicious activities.

Moreover, we avoid the overhead of taking system snapshots before and

after execution.

We implemented our approach in a tool called WebWinnow. More-

over, we built a fast pre-filtering front-end to make WebWinnow usable

in a resource-constrained environment. Evaluation of WebWinnow with

real world malicious URLs suggests that it is effective in the detection of

malicious URLs hosted by Exploit Kits with very low false positives.

1.3 Contributions

The following are the main contributions of this dissertation in the area of

Web Security:

• We propose and evaluate an approach for holistic analysis, character-

ization, and detection of malicious web pages by leveraging static as-

pects, dynamic aspects, and metadata in order to capture fine-grained

artifacts web pages. In addition, we reduce the analysis cost using

light-weight emulation.

• We propose and evaluate an approach that exploits evolutionary search-

ing and optimization to improve the precision of detection models us-



10 Chapter 1. Introduction

ing Genetic Algorithm. By doing so, our approach aligns detection

techniques with the evolution of the underlying web page artifacts.

• We propose and evaluate an approach that leverages the attack-centric

and self-defense behavior of Exploit Kits to detect malicious URLs

that are linked with Exploit Kits.

• We introduce novel features to enhance learning-based detection tech-

niques in the characterization of malicious activities on the Web.

1.4 Dissertation Structure

The rest of this dissertation is organized into the following six chapters.

In Chapter 2, we present an illustrated discussion of the predominant

malicious activities on the Web.

In Chapter 3, we present the approach-level details and experimental

evaluation of an approach proposed to address the problem of partial anal-

ysis and characterization of attack payloads in malicious web pages.

In Chapter 4, we present an approach to address the evolution of arti-

facts of both malicious and benign web pages.

In Chapter 5, we present an approach that leverages the workflow of

Exploit Kits to analyze and detect malicious URLs that are linked with

Exploit Kits.

In Chapter 6, we present a detailed discussion of the related work fo-

cusing on approaches proposed to detect malicious activities on the Web.

In Chapter 7, we present a summary of the problems addressed in this

dissertation, the approaches we proposed to overcome the problems, limi-

tations of our approaches, and finally some directions for future work.



Chapter 2

Malicious Activities on the Web

In this chapter, we present a discussion of malicious activities relevant to

the problems addressed in this dissertation.

The malicious landscape on the Web is characterized by several ma-

licious activities. It ranges from phishing sites [16] to rogue Anti-Virus

campaigns [19]; from organized spam campaigns to malware distribution

centers; from drive-by-downloads to malicious advertisements, and from

pay-per-install deceptions to Exploit Kits [37].

Central to the malicious landscape on the Web are malicious web pages.

A malicious web page is a web page which exploits one or more vulnera-

bilities of the browsing environment1 to launch an attack upon a visit by

an unsuspecting victim [72]. Typical ways through which malicious web

pages carry attacks include: obfuscated malicious JavaScript, redirection

to other malicious destinations (e.g., using HTTP or JavaScript redirec-

tion), victim luring (e.g., social engineering tricks), and victim-takeover

(e.g., installing malware).

In a recent trend, cyber-criminals combine social engineering, spam

email, black-hat SEO, and compromised benign websites to make the in-

fection chain more complex to analyze and detect [46]. For instance, an

1Browsing environment refers to a combination of the client operating system, the web browser, and

plugins and extensions of the browser.

11



12 Chapter 2. Malicious Activities on the Web

attacker, after crafting a malicious web page, creates a legitimate-looking

profile on a social network website and sends a friendship request to an

unsuspecting victim. The victim accepts the invitation and confirms the

attacker as a friend. For the first few interactions, the attacker shares

legitimate links to build trust.

After a while, the attacker starts to share a link to a website that hosts

malware. The victim, as it has already trusted the attacker, checks out the

link. When the page of the shared link is served by the victim’s browser,

malware is downloaded to the victim’s machine without the victim noticing

it. In fact, the attack may not be limited to just installing malware. De-

pending on the vulnerability of the environment (e.g., the browser cache),

the attacker may steal session information and impersonate the victim on

the social network site [25, 94].

Another example that combines spam, black-hat SEO, and compro-

mised benign websites starts with the attacker sending spam email that

contains a link the victim has to visit. Let us suppose that the victim is

suspicious of the legitimacy of the link and makes a safety check by search-

ing it on a search engine. Since the attacker has already implemented an

SEO technique to boost ranking, the link shows up in the top search re-

sults. However, the victim is still suspicious of clicking on the URL in the

search result and does an eyeball inspection of the search results. Tricky

enough, the attacker might have already compromised a benign website

and injected a redirection script to it. At this point, the victim is likely to

stop speculation and deem the website as safe-to-visit. Unfortunately, the

moment the URL is rendered by the victim’s browser, the actual exploit

happens whereby a vulnerability in one of the browser plugins allows not

only an automatic download but also execution of malware binary on the

victim’s machine.

As a foundation for our discussions in the subsequent chapters of this



2.1. Drive-by-Downloads 13

44

Victim

Drive-by-Download Attack

Landing Server

redirections

 download malware to victim’s computer 

visits malicious/compromised page

Redire
ctor

Exploit S
erver

Malware Server

load 
remote 
page

exploit succeeds

1 2 3

5

4

Figure 2.1: A typical drive-by-download attack chain.

dissertation, in the rest of this chapter, we focus on five malicious activities

we believe are worth-watching in order to effectively analyze, characterize,

and detect malicious activities on the Web. These are: drive-by-downloads,

phishing sites, malware distribution centers, malicious advertisements, and

Exploit Kits.

2.1 Drive-by-Downloads

In a typical drive-by-download attack (see Figure 2.1), a victim with a

vulnerable browser visits a malicious (compromised) page. The page auto-

matically redirects to a remote page that, after a series of redirections, lands

on a page with the actual exploit. Then the victim’s environment (e.g., the

browser, browser plugins) is fingerprinted and inspected for known vulner-

abilities based on which a presumably effective exploit is crafted. Finally,

the exploit binary is automatically downloaded and executed on the realm

of the victim’s environment [24]. All this happens without the victim notic-

ing any suspicious activity. In the following, we discuss the attack chain

and implications of a real drive-by-download attack.

On September 26, 2011, when users visited http://www.mysql.com, the

file at http://mysql.com/common/js/s_code_remote.js?ver=20091011

was infected by a heavily obfuscated malicious JavaScript code (the de-

obfuscated version of the code is shown in Listing 2.1). The malicious



14 Chapter 2. Malicious Activities on the Web

JavaScript code embeds an iframe that points to the malicious domain:

http://falosfax.in/info/in.cgi?5. Notice from Listing 2.1 that the

small size of the iframe (10x10 pixels) and its hidden visibility make it

difficult for a user to visually notice the difference on the page. Upon

landing on this malicious domain, the browser is served with an HTTP

302 redirection2. This redirection leads to the exploit domain3.

This exploit domain hosts the infamous BlackHole exploit pack which,

upon discovering a vulnerable browsing environment (Java plugin vulner-

ability in this case), leads the browser to download a malware binary to

the user’s machine. All this happens without the user’s knowledge and it

happens just by visiting www.mysql.com. In this attack, the actual pay-

load is an exploitation of Java runtime vulnerability in Internet Explorer

6. The final mission of the attack chain is to download and execute a mal-

ware binary. The duty of the malware binary is to steal and send to the

attacker FTP client passwords from the user’s machine. At first glance,

the attack described before sounds specific to a compromised legitimate

website, i.e., http://www.mysql.com. However, detailed examination of

the attack chain provides a number of interesting insights.

Listing 2.1: De-obfuscated JavaScript exploit code of the attack in [5]

1 if (document.getElementsByTagName(’body’)[0]){

2 iframer();

3 }else{

4 document.write(<iframe src=’http://falosfax.in/info/in.cgi?5’ width=’10’

height=’10’

style=’visibility:hidden;position:absolute;left:0;top:0;’></iframe>);

5 }

6 function iframer(){

7 var f=document.createElement(’iframe’);

8 f.setAttribute(’src’, ’http://falosfax.in/info/in.cgi?5’);

2http://falosfax.in/info/in.cgi?5&ab_iframe=1&ab_badtraffic=1&antibot_hash=

1255098964&ur=1&HTTP_REFERER=http://mysql.com/
3http://truruhfhqnviaosdpruejeslsuy.cx.cc/main.php



2.1. Drive-by-Downloads 15

9 f.style.visibility=’hidden’;

10 f.style.position=’absolute’;

11 f.style.left=’0’;

12 f.style.top=’0’;

13 f.setAttribute(’width’, ’10’);

14 f.setAttribute(’height’, ’10’);

15 document.getElementsByTagName(’body’)[0].appendChild(f);

16 }

First, the attacker targeted a high-profile website with solid user-base

and large traffic. Secondly, she identified and then exploited a vulnerable

spot on the website (to inject malicious code) and abused HTTP redirection

to lead the browser to where the actual exploit is hosted. Then after, she

exploited a vulnerability of the browser extension to trick the browser into

downloading a malware binary.

Even though the target in this attack is the Java plugin, in principle

this could have been any one of the vulnerable browser-components (e.g.,

HTML Parser) or the vulnerable browser-extensions (e.g., PDF Renderer,

Flash Player) since the malware, once on the user’s machine, runs with the

privilege of the current user. Similarly, the downloaded malware binary

could as dangerous as a key-logger that steals and submits passwords and

credit card details to a remote server controlled by the attacker. Or even

worse, it could be a malware that compromises the victim’s machine to

remotely control it as a member of Botnet4 to use it in future criminal

activities (e.g., spam campaigns, click fraud). Generally, the vulnerabil-

ity of the browsing environment could be of different risks depending on

the actual combination of the type and version of: the operating system,

browser, and browser extensions. An essential part of the attack chain is

the fingerprinting of the environment which provides clues to vulnerable

4Botnet: a network of compromised machines that are under the control of an attacker, often called

the Bot Master [83].



16 Chapter 2. Malicious Activities on the Web

Figure 2.2: A typical phishing attack chain [15]. 1©: Phisher sends a legitimate-looking

email posing as a Bank. 2©: User assumes email is legitimate and submits bank creden-

tials. 3©: In reality, bank credentials submitted to Phisher’s server. 4©: Phisher logs into

the bank with user’s credentials. 5©: Phisher steals user’s money.

spots based on which the next steps of the attack chain are subsequently

orchestrated.

2.2 Phishing Sites

Phishing is a form of social engineering whereby cyber-criminals (Phishers

in this sense) obtain confidential information from unsuspecting victims

by exploiting their trust [16, 33]. A common way of phishing is using

fraudulent pages that mimic trusted websites [105]. A typical phishing

attack scenario is depicted in Figure 2.2. When designing these fraudulent

pages, Phishers imitate the look-and-feel of a legitimate website (e.g., login

page of victim’s favorite bank) to lure the victim (e.g., via a link embedded

in a tempting email) to give away sensitive credentials (e.g., online banking

credentials, passwords).



2.3. Malware Distribution Networks 17

In addition to crafting a misleading UI, Phishers deceptively manipulate

the URL strings of the mimicked page to reduce the level of suspicion when

victims see a slightly misspelled URL. For instance, it is likely that Phishers

exploit the lack of attention by users who might not recognize the subtle

difference in spelling of https://www.unicreditbanca.it (the legitimate

URL) with respect to https://www.unicerditbanca.it (the fake URL).

2.3 Malware Distribution Networks

A Malware Distribution Network (MDN) refers to a collection of landing

pages, malware repository servers, and intermediate redirection pages [98].

The goal of an MDN is to redirect the victim from a landing page to a

malware repository sever through intermediate landing pages. Traffic is

directed to landing pages in MDNs via a range of techniques such as rogue

software download link, search engine referrers, links from compromised

legitimate sites, or pay-per-install services. The downloading of a malware

binary to the victim’s machine may be automatically done by the exploit

code on the malware repository server or it may involve the victim clicking

on a download link (e.g., in case of rogue Anti-Virus alert).

A typical attack scenario in MDNs happens when a victim issues a

search query (e.g., to download an audio player application) to a search

engine. The attacker exploits SEO to boost the rank of a landing page

so that the landing page shows up at the top of the search result. If the

search query leads to the crafted landing page, the victim will visit it as the

URL of the crafted page would show up in the top search results. When

the victim visits the landing page assuming that it is where the audio

player application is hosted, the MDN redirects the victim through a chain

of intermediate landing pages and eventually to the malware repository

server. Then from the malware repository server, a binary executable,



18 Chapter 2. Malicious Activities on the Web

that looks like the audio player application requested by the victim, is

downloaded to the victim’s machine. Then, the victim goes ahead and

installs it. Once installed, the executable binary could do a myriad of

attacks from key-logging to spamming other victims. The main challenge

in detecting MDNs is cloaking, whereby the malware repositories and the

intermediate landing pages change dynamically even for two successive

visits from the same victim.

2.4 Malicious Advertisements

Online advertisement has become a multi-billion industry [10]. It is, there-

fore, no surprise that cyber-criminals target this lucrative industry. Ma-

licious advertisements (malvertisements) are advertisements on the Web

that infect the viewer’s machine with malware. The malware makes the

compromised machine a member of a Botnet, which is then used to orches-

trate a more organized cyber-crime (e.g., spam campaign) [52].

Malvertisements are placed on a website via legitimate advertisements

or pop-up ads which deliver the malware (e.g., in a form of Scareware5)

as soon as the advertisement shows up on the viewer’s screen. In some

cases, the malware executes when the user clicks the close button on the

pop-up window. Scripting languages such as ActionScript allow embedding

additional logic into the advertisement [32]. This enables cyber-criminals

to embed malicious code that executes in the victim’s browser in parallel

with the execution of the advertisement, or to redirect the victim’s browser

to other malicious destinations (e.g., Exploit Kit sites). To make instant

detection difficult, the cyber-criminal may schedule the malicious code to

run some time after the advertisement is displayed (see Listing 2.2 for an

5A type of malware designed to trick victims into purchasing and downloading useless and potentially

dangerous software.



2.5. Exploit Kits 19

example in JavaScript).

Listing 2.2: A time bomb to skip execution of a malicious code on first encounter.

1 var now =new Date();

2 var future=Date(2013,12,31);

3 if now.getTime()<future.getTime(){

4 // keep quiet

5 }

Among the well-known incidents of malicious advertisements are the

fake virus scanner alerts on the New York Times [95], eWeek [100], and

FoxNews [21] that asked visitors to pay for the “virus scanner” which

claimed to remove infections from their computer via a rogue Anti-Virus

software.

2.5 Exploit Kits

An Exploit Kit is an of off-the-shelf software that can be purchased from

the underground market. When installed and configured on a web server,

it carries out a malicious campaign targeting innocent victims [37]. One

of the vectors for the significant proliferation of cyber-crime on the Web

in recent times is the advent of criminal, for-profit, software infrastructure

for conducting attacks on endusers. In this infrastructure, Exploit Kits oc-

cupy a central role as they facilitate the infection of users through browser

compromises. Examples of attacks that are launched through Exploit Kits

include drive-by-downloads, spam and denial-of-service. A website hosting

an Exploit Kit is usually advertised through URLs disseminated through

spam links, search campaigns, social network sites, blogs, or sites hijacked

by cyber-criminals. Innocent victims that click on these URLs have their

systems compromised through drive-by-download attacks, and the infected

hosts are subsequently used for staging further criminal activities.



20 Chapter 2. Malicious Activities on the Web

victim seemingly-benign.comspam email exploit-kit.com

1 2 3 4

5

kit owner

landing 
page

Figure 2.3: Typical workflow in Exploit Kits.

A typical workflow of an Exploit Kit is shown in Figure 2.3 where num-

bers highlight the major steps. It usually starts with a victim being lured

to a URL (e.g., by clicking a link in a spam email as in Step 1) to visit a

seemingly benign web page (Step 2). After a series of redirections (Step 3),

the victim reaches a landing page(Step 4). The kit then gathers identifying

information of the victim in pursuit of vulnerabilities to exploit. At this

stage, a kit analyzes the User-Agent information of the victim to identify

the type and version number of the operating system, browser, and third-

party plugins. If the exploit succeeds, a malicious payload (malware) is

silently downloaded and executed on the victim’s machine (Step 5). In ad-

dition to delivering the exploit payload to the victim, the Exploit Kit also

updates the infection statistics accessible to the kit owner (administrator).

In fact, the workflow of Exploit Kits is similar to a drive-by-download

attack we already discussed. The difference, in the case of Exploit Kits,

however, is that there is a complex and well-organized “business model”

that is run by a network of cyber-criminals in the underground market-

place. The fact that most Exploit Kits provide functionalities on details

of infection statistics to an Exploit Kit administrator is an indication that

the malicious activity is well-planned and infection strategies evolve based

on feedback from operational experience in the wild.



2.6. Summary 21

2.6 Summary

In fact, the infection chains of different malicious activities we discussed

in this chapter have notable overlaps, which entails how difficult it is to

detect these aforementioned malicious activities. A typical instance of

malicious activity on the Web, for instance, may be initiated when a victim

receives a spam email that lures him to give away his bank credentials via a

phishing page that mimics the login page of the bank. In another occasion,

a victim may be tricked to click on a rogue antivirus update alert where the

ultimate landing page is a malware hosting server. A victim may click on a

web advertisement banner that could be carrying a malicious code itself or

redirects to an Exploit Kit site that fingerprints the client and downloads

malware on the victim’s machine. The bottom line is that a mix of these

attack scenarios happen, or are at least initiated, when an unsuspecting

victim visits a web page.



22 Chapter 2. Malicious Activities on the Web



Chapter 3

Holistic Detection

In this chapter, we present an approach that addresses the partial analysis

and characterization of attack payloads in detecting malicious web pages.

3.1 Overview

Studies show that attacks are getting more and more complex whereby at-

tackers use blended techniques to evade existing countermeasures [48, 73].

More importantly, using static or dynamic analysis approaches in a com-

plementary manner is limited to capturing partial snapshot of a malicious

web page.

To this end, we present a holistic approach called Binspect to address

partial analysis and characterization of attack payloads in malicious web

pages. A key intuition of our approach is a holistic analysis and character-

ization of malicious payloads in web pages by ensuring the right balance

between the fast-and-imprecise static analysis and the slow-and-precise dy-

namic analysis techniques. To achieve this balance, Binspect leverages

a combination of static analysis and minimalistic emulation to use super-

vised learning techniques for detecting malicious web pages pertinent to

drive-by-download, phishing, injection, and malware distribution.

While we reuse effective features from previous work (such as from [13],

23



24 Chapter 3. Holistic Detection

[14], [18], [54]), we also introduce novel features and enhance existing fea-

tures to more effectively put apart malicious and benign web pages. In

the course of analyzing and characterizing web pages to capture a compre-

hensive snapshot of malicious web pages, we also ensure that the analysis

remains lightweight in terms of its responsiveness and resource consump-

tion.

The following are the contributions of the approach presented in this

chapter:

• we developed an approach1 that combines static analysis and mini-

malistic emulation to analyze and detect malicious web pages with

low performance overhead.

• we introduced 10 novel features and enhanced existing ones to improve

their discriminative power in the characterization of malicious and

benign web pages.

• we designed, implemented, and evaluated our approach over a large

dataset of malicious and benign web pages and demonstrated that our

approach is effective in practice.

The rest of this chapter is organized as follows. In Section 3.2, we

present details of how we characterize web pages holistically focusing on

features. Section 3.3 discusses the details of our approach. A discussion

of the implementation and experimental setup is presented in Section 3.4.

Experimental evaluation and discussion of results is presented in Section

3.5. We present the summary of this chapter in Section 3.6.

1An earlier version and part of this approach has appeared in [28] and [26] respectively.



3.2. Holistic Characterization 25

3.2 Holistic Characterization

Given an unknown web page, Binspect analyses and classifies the web

page as malicious or benign. To do the analysis and the classification,

Binspect extracts features from the page under inspection and applies

a number of models that evaluate the features extracted from the page.

The models are derived from training on a known mix of benign and ma-

licious web pages. The corpus of malicious web pages used in training

Binspect comprise web pages that launch drive-by-download, phishing,

injection, and malware delivery attacks.

In Binspect, we have three classes of features used for the statistical

characterization of web pages. These feature classes are: URL features,

Page-Source features (HTML and JavaScript), and Social-Reputation fea-

tures. The underlying assumption in using these classes of features is based

on the premise that the statistical distribution of feature values of mali-

cious web pages are different from that of benign web pages [13]. In fact,

there are some exceptions to some features (e.g., the use of some JavaScript

functions like setTimeout()) that might appear in both malicious and be-

nign samples. Nonetheless, practice shows that it is highly unlikely to get

similar distribution of feature values for the combination of all the features

we use in this work. In the rest of this section, we describe the 39 features

we extract to build the models we use to classify unknown web pages in

Binspect.

3.2.1 URL Features

The use of the lexical elements of a URL string has been proved to be

effective in identifying benign and malicious URLs, specially for fast de-

tection of spam and phishing URLs [54]. In Binspect, we rely on 11 URL

features among which we reuse 8 features from prior work ([13], [54]) and



26 Chapter 3. Holistic Detection

we introduce 3 novel features. The URL features we reuse are: length of

URL string, length of host name, number of dots (‘.’), number of hyphens

(‘-’), number of underscores (‘ ’), number of forward slashes (‘/’), number

of equal signs (‘=’), and presence of the client and/or server words in

the URL.

By evaluating the F-Score [102] measure of candidate URL features, we

found the 3 novel features to be of significant relevance as a high F-score

value of a feature indicates a higher potential of the feature to split benign

and malicious web pages. These novel features are: length of the path in

the URL string, length of the query in the URL string, and length of the

file-path in the URL string. Apart from the F-Score, manual inspection also

shows that most malicious URLs have abnormally long path and query as

compared to benign URLs. In Section 3.5, we will show the experimental

evaluation as to the effectiveness of these novel URL features in practice.

In the following, we give context on the statistical variation of URL

features based on a measurement study2 we conducted on a corpus of: be-

nign URLs from Alexa top sites (100, 000 URLs), phishing pages from the

PhishTank database (7, 896 URLs), malware-delivery URLs from multi-

ple blacklists (6, 801 URLs), and URLs received via spam emails (119,

833 URLs). For the sake of the following analysis of features, we ran-

domly selected 500 URLs from: Alexa top sites (Alexa-Set), PhishTank

database (Phish-Set), multiple blacklists (Blacklist-Set), and Spam Email

(Spam-Set).

URL Length. This feature is relevant as malicious URLs tend to be

unusually long as compared to benign URLs. For example, the average

URL length of the Alexa-Set and the Phish-Set is 15 and 47 respectively

with a ratio of 1:3.

Host Name Length. The host name part of malicious URLs is usually

2http://disi.unitn.it/~eshete/pdfs/SVM_MULTI_CLASS_URLs.pdf



3.2. Holistic Characterization 27

quite complex and longer than its counterpart in legitimate URLs. For

instance, the average host name length: in the Spam-Set is 15, in the

Phish-Set is 32, and in the Blacklist-Set is 10. On the other hand, the

average host name length of the Alexa-Set is 8.

Number of Dots. Due to attempts to have URLs hidden within a

domain or file paths within a long path, malicious URLs have often times

large number of dots. From our measurement, the average number of dots

for the Alexa-Set is just 1 as compared to an average of 4 and 2 dots for

the Phish-Set and the Blacklist-Set respectively.

Path Length. Although there are legitimate URLs with long paths, it

is more common to encounter abnormally long paths in the URL string of

malicious web pages. For instance, as opposed to the average path length

of 1 in the Alexa-Set, the average path length of URLs in the Phish-Set is

29 and that of URLs in the Blacklist-Set is 12.

File Path Length. Malicious URLs exhibit long and obscurely-generated

(sometimes random-looking) file paths because files leading to malicious

payloads are stored under complex paths to trick human eyes. The average

file-path length of the Phish-Set URLs is 46 and that of the Blacklist-Set

URLs is 19. This average is in contrast to the zero average file-path length

of the Alexa-Set URLs.

Query Length. The query string of malicious URLs is usually complex

and long as compared to query strings in benign URLs. The average query

length of the Phish-Set URLs is 17 and that of the Blacklist-Set URLs is 9

with respect to the zero average query length of the Alexa-Set URLs.

Number of Hyphens. This feature is relevant as a significant number

of phishing URLs have larger number of hyphens as compared to benign

URLs. For instance, of the Phish-Set URLs, on average there are 2 hyphens

in each URL while it is 1 in the Alexa-Set URLs.

Number of Underscores. The occurrence of underscores in malicious



28 Chapter 3. Holistic Detection

URLs is more frequent than in benign URLs. In the Alexa-Set URLs,

underscores occurred only 4 times. While in the dataset of the Phish-Set

URLs and the Blacklist-Set URLs, underscores occurred 121 and 42 times

respectively.

Number of Forward Slashes. On average, the Phish-Set URLs and

the Blacklist-Set URLs respectively have 5 and 4 forward slashes as opposed

to 2 forward slashes in the Alexa-Set URLs.

Number of Equal Signs. This feature is correlated with length of

query in a URL string. The longer the query length, the higher the number

of equal signs to pass query parameters. For instance, the average number

of equal signs in the Alexa-Set URLs is zero while in the Phish-Set URLs

and the Blacklist-Set URLs is 2 and 1 respectively.

Presence of “client” or “server” Words in URL. words “client”

and “server” often appear in URL strings of malicious (specially spam

URLs) more often than in benign ones. In the Spam-Set URLs, these

keywords appeared 5 times while they did not appear at all in the Alexa-

Set URLs.

3.2.2 Page-Source Features

While previous work (e.g., [13, 42, 54]) extracts HTML and JavaScript

features statically, we use an emulated browser to visit the URL, parse

and render the HTML, and execute JavaScript on page-load to capture

what is manifested by JavaScript code. In this sense, the granularity of

HTML features used in Binspect is high because the side-effects of the

JavaScript code that is executed on page-load enriches the HTML features.

Another reason to use an emulated browser is to capture the side-effects of

obfuscated JavaScript code that is executed when the page loads because

malicious JavaScript is often ‘shipped’ with a strong shell of obfuscation.

In total, we extract 25 Page-Source features. These are: document



3.2. Holistic Characterization 29

Table 3.1: Summary of features used in Binspect.
URL Features

Feature Name Feature Description Remark

URL Length character count of a URL string used in [13], [54]

HostName Length character count of the host name part of a URL used in [13], [54]

Number of Dots count of ’.’ in a URL string used in [13], [54]

Path Length length of path in a URL string novel

File Path Length length of only file path in the path of a URL string novel

Query Length length of query appended in a URL string novel

Number of Hyphens count of ’-’ in a URL string used in [13], [54]

Number of Forward Slashes count of ’/’ in a URL string used in [13], [54]

Number of Equal Signs count of ’=’ in a URL string used in [13], [54]

Number of Underscores count of ’ ’ in a URL string used in [13], [54]

Number of Client-Server Words count of “client” and “server” words in a URL string used in [13]

Page-Source Features

Feature Name Description Remark

Document Length character count of the whole HTML page used in [13], [42]

Number of Words count of words in a page used in [13], [42]

Number of Lines count of lines in a page used in [13], [42]

Number of Blank Spaces count of blank spaces in a page used in [13], [42]

Number of Blank lines count of blank lines in a page used in [13], [42]

Average Length of Words average length of words in a page used in [13], [42]

Number of Links count of href links on a page used in [13], [42]

Number of Executable Remote Links count of links pointing to remote executables refactored

Number of Same-Origin Links count of links to same origin refactored

Number of Remote-Origin Links count of links of remote origin refactored

Number of Remote JavaScript Files count of remote JavaScript inclusions refactored

Number of Hidden Elements count of all hidden elements used in [13], [42]

Number of Iframes count of iframes used in [13], [42]

Number of Suspicious JavaScript Functions count of JavaScript functions linked with malicious activities used in [13], [42]

Number of subString count of the subString() function used in [13], [42]

Number of fromCharCode count of the fromCharCode() function used in [13], [42]

Number of eval count of the eval() function used in [13], [42]

Number of setTimeout count of the setTemeout() function used in [13], [42]

Number of document.write count of the document.write() function used in [13], [42]

Number of createElement count of the createElement() function used in [13], [42]

Number of escape count of the escape() function used in [13], [42]

Number of unescape count of the unescape() function used in [13], [42]

Number of link count of the link() function used in [13], [42]

Number of exec count of the exec() function used in [42]

Number of search count of the search() function used in [13], [42]

Social Reputation Features

Feature Name Description Remark

Facebook Share Count count of unique public shares of a URL on Facebook novel

Twitter Share Count count of unique public shares of a URL on Twitter novel

Google Plus Share Count count of unique public shares of a URL on Google+ novel



30 Chapter 3. Holistic Detection

length, number of words, number of lines, number of blank spaces, aver-

age length of words, number of links, number of same-origin links, number

of different-origin links, number of external JavaScript files, number of

hidden elements, number of iframes, and number of suspicious JavaScript

functions. Moreover, we include the count of the individual suspicious func-

tions including: subString(), fromCharCode(), eval(), setTimeout(),

document.write(), createElement(), unescape(), escape(), link(),

exec(), and search().

While the Page-Source features we use are mostly from prior work, the

way in which we extract these features, i.e., when the emulated browser

finishes loading the page, enriches the values with artifacts. Moreover, we

refactor existing features for a fine-grained characterization of web pages.

For instance, apart from extracting the total number of links on the page,

we split links to: number of same-origin links, number of remote-origin

links, number of remote-origin links to executables, and number of external-

JavaScript files. We refactored link features because manual analysis shows

that malicious web pages link to remote origins and malicious JavaScript

is often downloaded from external domains, for which an aggregate count

of links may reduce the discriminative power of the feature.

3.2.3 Social-Reputation Features

The widespread use of social networking websites, such as Facebook, Twit-

ter, and Google Plus, is continuously changing the landscape of online

social interaction and reputation building about what is shared online.

For instance, search engines rely on social network reputation of URLs

to enrich their ranking algorithms because of human intervention in rat-

ing URLs [80]. To evaluate if these social-reputation indicators are of use

in the characterization of malicious and benign URLs, we examined the

statistical distribution of URL-Sharing on Facebook and Twitter as these



3.2. Holistic Characterization 31

Figure 3.1: Distribution of the top 100 Twitter share-counts for benign and malicious

URLs on the training set.

platforms keep track of the public share-count of URLs.

Figure 3.1 shows a statistical separation in distribution of public share-

counts for benign and malicious URLs on Twitter over a part of the training

set we used for this work. Based on this statistical separation, we introduce

three novel features namley: Facebook Share Count, Twitter Share Count,

and GooglePlus Share Count, which tell the number of times a URL is

publicly shared on Facebook, Twitter, and Google Plus, respectively.

An attentive reader may argue that these features may contribute to

false negatives in the case where an attacker publicly shares a malicious

URL on a social network and accumulates large share-count within a short

period of time. We too recognize this as a legitimate concern. However, as

time passes by, the tendency that a malicious URL is circulated across the

social networking website reduces or the share-count of the URL is unlikely

to increase because of built-in URL analysis and detection techniques in

the social networking websites which will flag it as malicious. For instance,



32 Chapter 3. Holistic Detection

Facebook uses the Link Shim3 system to protect its users from malicious

URLs.

3.3 Approach

With the aim of addressing partial analysis and characterization of attack

payloads in malicious web pages, Binspect combines static analysis and

minimalistic emulation to analyze and characterize web pages using proven

existing features and novel features we introduce so as to train multiple

models. When provided with an unknown web page, instead of relying

on one best model, Binspect uses confidence-weighted majority vote by

multiple models to classify web pages as benign or malicious. In a nutshell,

Binspect has three major components: feature extraction, multi-model

training, and confidence-weighted majority vote classification, as shown in

Figure 3.2. In the following, we present a high-level discussion of the

components of Binspect.

3.3.1 Feature Extraction

As shown in the upper block of Figure 3.2, we use a labelled dataset of

benign and malicious samples (described in Section 3.4) to extract the

necessary features that characterize malicious and benign web pages. The

URL features are extracted by lexical scanning of the URL string. The

Page-Source features are collected by visiting the page via a lightweight

emulated browser so as to capture the details of what is rendered (HTML)

and executed (JavaScript). For the purpose of collecting Page-Source fea-

tures, we customized the HTMLUnit [81] headless browser for the emu-

lation and used it with two User-Agent personalities (Internet Explorer

6 and Mozilla Firefox 3). For each URL we visit for feature extraction,

3http://www.facebook.com/note.php?note_id=10150492832835766



3.3. Approach 33

Feature Extraction

Page-
Source 
Feature 

Extraction

Social-
Reputation 

Feature 
Extraction

Multi-Model Training

. . . . . .

Classification

�������	���
�
��
����

URL Feature 
Extraction

 features

Emulated Browser

 features  features

Benign Malicious

Web

learning 
algorithms

Unknown URL

. . . . . .
predictions

models

Confidence-Weighted 
Majority Vote

Malicious

Benign

Figure 3.2: BINSPECT System Overview.

a fresh instance of the emulated browser is created to ensure a unique

session for each URL. To extract the Social-Reputation features, we used

the Facebook Graph API [30], the Twitter URLs API [92], and a custom4

script for Google Plus. Finally, features extracted from each web page are

represented as a vector of the form [v
(i)
1 , v

(i)
2 , ..., v

(i)
n−1, v

(i)
n , class(i)] where

the v
(i)
k ’s are feature values (k = 1, .., n), n is the number of features, and

4A standard API for Google Plus was not available at the time of the experiment for this work.



34 Chapter 3. Holistic Detection

class(i) ∈ {benign, malicious} is the class label of the ith URL.

3.3.2 Multi-Model Training

In machine learning, supervised learning is the task of inferring a function

from a labeled training data [7]. The training data consist of a set of

training examples. Each example is a pair consisting of an input object

(typically a vector) and a desired output (target) value (also called a class

label). A supervised learning algorithm analyzes the training examples

and produces an inferred function, which is called a classifier —for discrete

output or a regression function —for continuous output. In formal terms,

given a set of training examples of the form (x1, y1), ..., (xn, yn), a learning

algorithm seeks a function h : X → Y , where X is the input space and Y is

the output space. The inferred function should predict the correct output

value for any valid input object. This requires the learning algorithm to

generalize from the training data to unseen instances in a way that avoids

over-fitting [7].

In Binspect, using the extracted features, we train seven supervised

learning algorithms namely J48 Decision Tree, Random Tree, Random For-

est, Naive Bayes, Bayes Network, Support Vector Machine, and Logistic

Regression. At the end of the training, one model for each classifier is

maintained as shown in the middle block of Figure 3.2. The mathematical

formalism of the supervised learning algorithms we use in this dissertation

is discussed in Appendix A.

3.3.3 Confidence-Weighted Majority Vote Classification

For classification of an unknown web page using the learned models, we

use the confidence-weighted majority vote algorithm described in [34] that

we customized for the purpose of this work (see Algorithm 1) to decide



3.3. Approach 35

the class of an unknown web page. To deem a page as either malicious or

benign, instead of taking the class label that obtains the highest number of

votes (the most frequent vote), in our approach, the vote count of the class

label is multiplied with the sum of confidence values, strictly probability

values, with which the predictions are made by each model (Lines 17, 20,

and 23 in Algorithm 1).

Algorithm 1 Confidence-Weighted Majority Vote Classification.

1: Confbenign ← 0

2: Confmalicious ← 0

3: V otebenign ← 0

4: V otemalicious ← 0

5: for i = 1→ numModels do

6: features← extractFeatures(URL)

7: V otei, Confi ← getPredictionWithConfidence(features,Modeli)

8: if V otei = benign then

9: V otebenign ← V otebenign + 1

10: Confbenign ← Confbenign + Confi

11: end if

12: if V otei = malicious then

13: V otemalicious ← V otemalicious + 1

14: Confmalicious ← Confmalicious + Confi

15: end if

16: end for

17: if (V otemalicious × Confmalicious) > (V otebenign × Confbenign) then

18: Prediction← malicious

19: end if

20: if (V otemalicious × Confmalicious) < (V otebenign × Confbenign) then

21: Prediction← benign

22: end if

23: if (V otemalicious × Confmalicious) = (V otebenign × Confbenign) then

24: Prediction← suspicious

25: end if

The advantage of confidence-weighted majority vote is twofold. First, it



36 Chapter 3. Holistic Detection

minimizes the bias of relying on a single model to do classification as some

classifiers perform differently depending on the statistical distributions of

an unknown sample. Secondly, it allows comparison of different models and

makes the overall result more resistant to evasion attempts by attackers.

3.4 Dataset and Setup

Next, we describe the data collection, dataset preparation, and the exper-

imental procedure we used to evaluate Binspect.

3.4.1 Implementation Overview

The URL feature extraction engine is implemented based on the Java URL

class. The Page-Source feature extraction engine which interacts with the

emulated browser is also implemented in Java as the emulated browser

itself, HTMLUnit, is also Java-based. The training and classification are

automated using scripts to invoke the respective JAR files for the classifiers

in the Weka machine learning suite, which is also Java-based.

3.4.2 Dataset Source and Dataset

We collected samples from multiple sources for both malicious and benign

web pages and divided the dataset into a training and a testing set as shown

in Table 3.2. For the malicious dataset, we collected 71,919 URLs from the

malware and phishing blacklist of Google Safe Browsing Service [35], the

Phishtank database of collaboratively verified phishing pages [68], and the

malware and injection attack blacklist of MalwareURL [60]. A dataset of

414,000 benign URLs is also drawn from three popular sources. These are

the Alexa Top sites [1], the Yahoo random URL generation service [44],

and the DMOZ directory [23].



3.5. Evaluation 37

Table 3.2: Dataset for training and testing Binspect.

Purpose Benign Malicious Total

Training 300, 000 50, 000 350, 000

Testing 114, 465 21, 919 136, 384

3.4.3 Experimental Procedure

Using the training set, we extracted the 39 features shown in Table 3.1

of which 3 are Social-Reputation features, 11 are URL features, and the

remaining 25 are Page-Source features. When extracting the Page-Source

features, we configured the emulated browser to manifest two different

browser personalities (Internet Explorer 6 and Mozilla Firefox 3) and we

used only the core components of the browser, i.e., the Necko HTML Engine

and Rhino JavaScript Engine in order to make the analysis lightweight.

We used the Weka [38] machine learning toolbox to train seven standard

classifiers with 10-fold cross validation. These classifiers are J48 Decision

Tree, Random Tree, Random Forest, Naive Bayes, Bayes Net, Support

Vector Machine, and Logistic Regression. As a sanity check of the dataset,

we removed from the training set, i.e., all URLs that were unreachable

when visited from the emulated browser. Using the testing set, we run

the confidence-weighted majority vote to classify the URLs as benign or

malicious.

3.5 Evaluation

We now evaluate Binspect from the standpoint of its accuracy, signif-

icance of the features we introduced, its performance overhead, and its

immunity to possible evasion.



38 Chapter 3. Holistic Detection

3.5.1 Metrics

To evaluate the effectiveness of detection models, we use three established

metrics [7]. These are: Detection (classification) Rate (DR), False Positive

Rate (FPR), and False Negative Rate (FNR). Suppose that a dataset con-

tains a total of Mt examples of malicious URLs and a total of Bt benign

URLs. Moreover, let us assume that Mc denotes the correctly classified

malicious URLs out of Mt (Mc is called True Positive). Similarly, let Bc

denote the correctly classified benign URLs out of Bt (Bc is called True

Negative). Equations 3.1, 3.2, and 3.3 are used to compute DR, FPR, and

FNR respectively.

DR =
Mc +Bc

Mt +Bt
(3.1)

FPR =
Mt −Mc

Mt
(3.2)

FNR =
Bt −Bc

Bt
(3.3)

An effective detection model is characterized by high DR, low FPR, and

low FNR. In this chapter and throughout this dissertation, unless explicitly

specified, the meanings of DR, FPR, and FNR correspond to Equations

3.1, 3.2, and 3.3 respectively.

3.5.2 Analysis of Models

To decide the best combination of classifiers in Binspect, we evaluated

the 7 classifiers in terms of accuracy, False Positive Rate (FPR), and False

Negative Rate (FNR). Figures 3.3, 3.4, 3.5, and 3.6 show performance

evaluation of the classifiers over the training set across the four classes of

features, i.e., all features, URL features, Page-Source features, and Social-

Reputation features respectively. As shown in Figure 3.3, training on all



3.5. Evaluation 39
!"#$$%&'($

)#*'+,-./

!""#$%&'()%*

0!!1(#!2 3)4 354
678 9:;;< 9:=.; 9:=8-

4#>?@AB('' =:999 9:999 9:999
4#>?@A3@('$C 9:;;; 9:9=. 9:9=.

9:<9/ 9:98, 9:9/9

9:;77 9:,8; 9:,;.
DEF 9:;// 9:;// =:999

G@*%$C%! 9:;., 9:../ 9:89,

+,'-#./0#$%&'()%*#12"3

0!!1(#!2 3)4 354
678 9:;8- 9:<.8 9:<;=

4#>?@AB('' 9:;;= 9:,<, 9:,79
4#>?@A3@('$C 9:;;= 9:,97 9:,==

9:;=7 9:.;, 9:8=.
9:;=/ 9:,8- 9:,;=

DEF 9:;// 9:;// =:999

G@*%$C%! 9:;/8 9:878 9:8..

+,'-#4&5%6*1()7%#$%&'()%*#12"3
0!!1(#!2 3)4 354

678 9:;.; 9:-7; 9:-/8
4#>?@AB('' 9:;;; 9:9=. 9:9=.

4#>?@A3@('$C 9:;;8 9:9<; 9:</9

9:,<= 9:9;; 9:9.7
9:88, 9:7=8 9:7,8

DEF 9:;// 9:;// =:999
G@*%$C%! 9:;// 9:;// =:999

+,'-#*17,&"6)%4('&',12#$%&'()%*#12"3
0!!1(#!2 3)4 354

678 9:;// 9:;// =:999
4#>?@AB('' 9:;// 9:;// =:999

4#>?@A3@('$C 9:;// 9:;// =:999
9:,9< 9:9,8 =:999

9:;// 9:;// =:999

DEF 9:;// 9:;// =:999
G@*%$C%! 9:;// 9:;// =:999

+,'-1('#2%+#$%&'()%*
0!!1(#!2 3)4 354

678 9:;8; 9:,/9 9:,/8

5#%H'I#2'$
I#2'$5'C

5#%H'I#2'$
I#2'$5'C

5#%H'I#2'$
I#2'$5'C

5#%H'I#2'$

I#2'$5'C

678 4#>?@AB('' 4#>?@A3@('$C 5#%H'I#2'$ I#2'$5'C DEF G@*%$C%!

9:9

9:-

=:9

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

678 4#>?@AB('' 4#>?@A3@('$C 5#%H'I#2'$ I#2'$5'C DEF G@*%$C%!

9:9

9:-

=:9

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

678 4#>?@AB('' 4#>?@A3@('$C 5#%H'I#2'$ I#2'$5'C DEF G@*%$C%!

9:9

9:-

=:9

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

Figure 3.3: Binspect: Evaluation of classifiers with all features.

!"#$$%&'($

)#*'+,-./

!""#$%&'()%*

0!!1(#!2 3)4 354
678 9:;;< 9:=.; 9:=8-

4#>?@AB('' =:999 9:999 9:999
4#>?@A3@('$C 9:;;; 9:9=. 9:9=.

9:<9/ 9:98, 9:9/9

9:;77 9:,8; 9:,;.
DEF 9:;// 9:;// =:999

G@*%$C%! 9:;., 9:../ 9:89,

+,'-#./0#$%&'()%*#12"3

0!!1(#!2 3)4 354
678 9:;8- 9:<.8 9:<;=

4#>?@AB('' 9:;;= 9:,<, 9:,79
4#>?@A3@('$C 9:;;= 9:,97 9:,==

9:;=7 9:.;, 9:8=.
9:;=/ 9:,8- 9:,;=

DEF 9:;// 9:;// =:999

G@*%$C%! 9:;/8 9:878 9:8..

+,'-#4&5%6*1()7%#$%&'()%*#12"3
0!!1(#!2 3)4 354

678 9:;.; 9:-7; 9:-/8
4#>?@AB('' 9:;;; 9:9=. 9:9=.

4#>?@A3@('$C 9:;;8 9:9<; 9:</9

9:,<= 9:9;; 9:9.7
9:88, 9:7=8 9:7,8

DEF 9:;// 9:;// =:999
G@*%$C%! 9:;// 9:;// =:999

+,'-#*17,&"6)%4('&',12#$%&'()%*#12"3
0!!1(#!2 3)4 354

678 9:;// 9:;// =:999
4#>?@AB('' 9:;// 9:;// =:999

4#>?@A3@('$C 9:;// 9:;// =:999
9:,9< 9:9,8 =:999

9:;// 9:;// =:999

DEF 9:;// 9:;// =:999
G@*%$C%! 9:;// 9:;// =:999

+,'-1('#2%+#$%&'()%*
0!!1(#!2 3)4 354

678 9:;8; 9:,/9 9:,/8

5#%H'I#2'$
I#2'$5'C

5#%H'I#2'$
I#2'$5'C

5#%H'I#2'$
I#2'$5'C

5#%H'I#2'$

I#2'$5'C

678 4#>?@AB('' 4#>?@A3@('$C 5#%H'I#2'$ I#2'$5'C DEF G@*%$C%!

9:9

9:-

=:9

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

678 4#>?@AB('' 4#>?@A3@('$C 5#%H'I#2'$ I#2'$5'C DEF G@*%$C%!

9:9

9:-

=:9

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

678 4#>?@AB('' 4#>?@A3@('$C 5#%H'I#2'$ I#2'$5'C DEF G@*%$C%!

9:9

9:-

=:9

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

Figure 3.4: Binspect: Evaluation of classifiers with URL features.

the features suggests that tree-based classifiers outperformed the other clas-

sifiers. In particular, the Random Tree classifier achieved 100% accuracy,

0% FPR, and 0% FNR.

We also evaluated how the classifiers perform on individual feature

classes and the results suggest that some classifiers perform way better

than the union of the features. For instance, accuracy of Naive Bayes in-

creased by 30% (Figure 3.4) on URL features probably because the URL

features have a statistical distribution that fits into the high degree of

independence assumed in the algorithm.

Another interesting insight from Figure 3.6 is the high FNR of all the

classifiers on social-reputation features which is attributed to the fact that



40 Chapter 3. Holistic Detection

!"#$$%&'($

)#*'+,-./

!""#$%&'()%*

0!!1(#!2 3)4 354
678 9:;;< 9:=.; 9:=8-

4#>?@AB('' =:999 9:999 9:999
4#>?@A3@('$C 9:;;; 9:9=. 9:9=.

9:<9/ 9:98, 9:9/9

9:;77 9:,8; 9:,;.
DEF 9:;// 9:;// =:999

G@*%$C%! 9:;., 9:../ 9:89,

+,'-#./0#$%&'()%*#12"3

0!!1(#!2 3)4 354
678 9:;8- 9:<.8 9:<;=

4#>?@AB('' 9:;;= 9:,<, 9:,79
4#>?@A3@('$C 9:;;= 9:,97 9:,==

9:;=7 9:.;, 9:8=.
9:;=/ 9:,8- 9:,;=

DEF 9:;// 9:;// =:999

G@*%$C%! 9:;/8 9:878 9:8..

+,'-#4&5%6*1()7%#$%&'()%*#12"3
0!!1(#!2 3)4 354

678 9:;.; 9:-7; 9:-/8
4#>?@AB('' 9:;;; 9:9=. 9:9=.

4#>?@A3@('$C 9:;;8 9:9<; 9:</9

9:,<= 9:9;; 9:9.7
9:88, 9:7=8 9:7,8

DEF 9:;// 9:;// =:999
G@*%$C%! 9:;// 9:;// =:999

+,'-#*17,&"6)%4('&',12#$%&'()%*#12"3
0!!1(#!2 3)4 354

678 9:;// 9:;// =:999
4#>?@AB('' 9:;// 9:;// =:999

4#>?@A3@('$C 9:;// 9:;// =:999
9:,9< 9:9,8 =:999

9:;// 9:;// =:999

DEF 9:;// 9:;// =:999
G@*%$C%! 9:;// 9:;// =:999

+,'-1('#2%+#$%&'()%*
0!!1(#!2 3)4 354

678 9:;8; 9:,/9 9:,/8

5#%H'I#2'$
I#2'$5'C

5#%H'I#2'$
I#2'$5'C

5#%H'I#2'$
I#2'$5'C

5#%H'I#2'$

I#2'$5'C

678 4#>?@AB('' 4#>?@A3@('$C 5#%H'I#2'$ I#2'$5'C DEF G@*%$C%!

9:9

9:-

=:9

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

678 4#>?@AB('' 4#>?@A3@('$C 5#%H'I#2'$ I#2'$5'C DEF G@*%$C%!

9:9

9:-

=:9

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

678 4#>?@AB('' 4#>?@A3@('$C 5#%H'I#2'$ I#2'$5'C DEF G@*%$C%!

9:9

9:-

=:9

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

Figure 3.5: Binspect: Evaluation of classifiers with Page-Source features.

!"#$$%&'($

)#*'+,-..

/#01234('' 56777 76777 76777

/#012382('$9 76::: 7675. 7675.
76,;, 765,, 76577

76:5< 76<;5 76<:5
=>? 76:@@ 76:@@ 56777

A2*%$9%! 76:@: 76;B- 76;.B

!"#$%&'!%()*%+',#-.'/
011-.,12 34) 35)

CB; 76:;: 76,-B 76,@,

/#01234('' 56777 76777 76777
/#012382('$9 76::: 7675B 7675B

76B@- 765;B 765.5
76:<< 76<-7 76<@7

=>? 76:@@ 76:@@ 56777
A2*%$9%! 76:.5 76.:; 76;,-

D%9E+0'D+F#*'G$2H(!'+&'#9H('$
I!!H(#!J 8)/ 8K/

CB; 76:;: 76,@7 76,@;
/#01234('' 56777 76777 76777

/#012382('$9 76::: 7675B 7675B

76,;5 7655: 767:.
76:7; 76<;5 76<:5

=>? 76:@@ 76:@@ 56777
A2*%$9%! 76:@: 76;B, 76;.5

D%9E+0'D+$2!%#"G('FH9#9%20+&'#9H('$

I!!H(#!J 8)/ 8K/
CB; 76:;: 76,@- 76,.B

/#01234('' 56777 76777 76777

/#012382('$9 76::: 7675B 7675B
76,@@ 767.- 767-5

76:<< 76<-< 76<@,
=>? 76:@@ 76:@@ 56777

A2*%$9%! 76:.5 76;7@ 76;<B

K#%L'M#J'$

M#J'$K'9

K#%L'M#J'$
M#J'$K'9

K#%L'M#J'$
M#J'$K'9

K#%L'M#J'$

M#J'$K'9

CB; /#01234('' /#012382('$9 K#%L'M#J'$ M#J'$K'9 =>? A2*%$9%!

767

76-

567

I!!H(#!J

8)/

8K/

)
'
(&
2
(3
#
0
!
'

C
B
;

/
#
0
1
2
3
4
('
'

/
#
0
1
2
3
8
2
('
$
9

K
#
%L
'
M
#
J
'
$

M
#
J
'
$
K
'
9

=
>
?

A
2
*
%$
9%
!

767

76-

567

I!!H(#!J

8)/

8K/

)
'
(&
2
(3
#
0
!
'

C
B
;

/
#
0
1
2
3
4
('
'

/
#
0
1
2
3
8
2
('
$
9

K
#
%L
'
M
#
J
'
$

M
#
J
'
$
K
'
9

=
>
?

A
2
*
%$
9%!

767

76-

567

I!!H(#!J

8)/

8K/

)
'
(&
2
(3
#
0
!
'

Figure 3.6: Binspect: Evaluation of classifiers with Social-Reputation features.



3.5. Evaluation 41

malicious URLs which have higher share-count are likely to be misclassified

as benign, suggesting that it is more effective to combine social-reputation

features with other features to increase their predictive power. In general,

the overall classification performance is better on all the features than the

individual feature classes with the exception of Naive Bayes, which did not

perform well in most cases (see Figures 3.3, 3.5, and 3.6).

3.5.3 Significance of New Features

To verify whether the new features are of predictive importance in en-

hancing the accuracy of detecting malicious web pages, we compared the

classification accuracy, FPR, and FNR of the classifiers with and without

our newly introduced (enhanced) features on the training set. As shown in

Table 3.4, the new features, particularly the new URL features, improved

the overall performance of 5 of the 7 classifiers (J48, Random Forest, Naive

Bayes, Bayes Net, and Logistic Regression) shown with (↑) for accuracy

and with (↓) for FPR and FNR. The new Page-Source features improved

the overall performance of only 2 classifiers (Random Forest and Logis-

tic Regression). Social-Reputation features have also improved the overall

classification accuracy of Random Forest, Bayes Net, and Logistic Regres-

sion classifiers. Not surprisingly, the performance of Naive Bayes has not

improved much with the new features as its overall performance is also

very low.

In addition to the individual contribution of the new features, we also

measured the overall improvement in accuracy of the classifiers as a result

of the new features. This evaluation is summarized in Table 3.3. The new

features improved the accuracy of 4 of the 7 classifiers with improvements

in the range 0.21% to 3.08%. Among the remaining 3 classifiers, on 2 (Ran-

dom Forest and Support Vector Machine), the new features seem to have

no contribution on accuracy. The Random Tree classifier is an exception in



42 Chapter 3. Holistic Detection

this case as its accuracy was 100% even without the new features. Out of

curiosity, we measured its accuracy with the new features and it remained

the same, which most probably implies that this is the best classifier given

the feature set and the dataset we used for training.

Table 3.3: Binspect: Overall Contribution of new features on the accuracy of classifiers.

Classifier Without new (%) With new(%) Change(%)

J48 Decision Tree 98.97 99.27 ↑ 0.30

Random Tree 100.0 100.0 −
Random Forest 99.94 99.94 −
Naive Bayes 28.16 30.62 ↑ 2.46

Bayes Net 91.28 94.36 ↑ 3.08

SVM 96.62 96.62 −
Logistic Regression 96.94 97.15 ↑ 0.21

3.5.4 Classification Accuracy

For testing, we used all the classifiers except Naive Bayes due to its poor

performance on the training set. Table 3.5 shows the overall classifica-

tion accuracy of Binspect over the testing set. We submitted the same

testing set to Wepawet [93] to compare Binspect with a publicly de-

ployed analysis and detection service. As can be seen from Table 3.5,

Binspect correctly classified 97.81% of the test set with a FPR of 0.189

and FNR of 0.011. On the other hand, Wepawet achieved a classification

acuracy of 61.62% on the same testing set. The only speculation behind the

low performance of Wepawet in our opinion is the difference in the class

of features we use in Binspect which span URL, HTML, JavaScript, and

social reputation scores while Wepawet uses emulation to dynamically

analyze web pages.

The high accuracy of Binspect and its very low FNR on the testing set



3.5. Evaluation 43

Table 3.4: Binspect: Performance of classifiers with and without new features on the

training set.

Classifier Accuracy(%) False Positive Rate False Negative Rate

Without new features

J48 Decision Tree 98.97 0.260 0.268

Random Tree 100.00 0.000 0.000

Random Forest 99.94 0.017 0.017

Naive Bayes 28.16 0.122 0.100

Bayes Net 91.28 0.381 0.391

Support Vector Machine 96.62 0.966 1.000

Logistic Regression 96.94 0.845 0.874

With new URL features

J48 Decision Tree 98.98(↑) 0.254(↓) 0.262(↓)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 46.45(↑) 0.184(↑) 0.171(↑)
Bayes Net 93.32(↑) 0.350(↓) 0.360(↓)
Support Vector Machine 96.62 0.966 1.000(↑)
Logistic Regression 97.05(↑) 0.798(↓) 0.825(↓)
With new Page-Source features

J48 Decision Tree 98.93(↓) 0.260 0.268 ↑)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 28.08(↓) 0.119(↑) 0.095(↓)
Bayes Net 90.85(↓) 0.381(↓) 0.391(↓)
Support Vector Machine 96.62 0.966 1.000

Logistic Regression 96.96(↑) 0.0842(↓) 0.871(↓)
With new Social-Reputation features

J48 Decision Tree 98.99(↑) 0.265(↑) 0.274(↑)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 26.69(↓) 0.075(↓) 0.051(↓)
Bayes Net 93.29(↑) 0.353(↓) 0.362(↓)
Support Vector Machine 96.62 0.966 1.000

Logistic Regression 97.06(↑) 0.806(↓) 0.834(↓)



44 Chapter 3. Holistic Detection

proves that our approach is effective at analyzing and detecting malicious

web pages in a holistic manner with low performance overhead while cover-

ing malicious web pages leading to drive-by-download, phishing, injection,

and malware delivery.

Table 3.5: Performance of Binspect in comparison with a public malicious web page

analysis and detection service on the testing set.

Measure Binspect Wepawet [93]

Classification Accuracy 97.81% 61.62%

False Positive Rate 0.189 0.983

False Negative Rate 0.011 0.073

3.5.5 Performance Overhead

The experimental infrastructure we used is an Intel dual-core 2.66GHz

CPU and 64-bit MacOSX operating system with 8GB of memory. Under

this computational resource, the average time it takes to train a classifier is

only 1.51 seconds. Binspect took between 3 to 5 seconds (under variable

system load) to analyze and detect a single page, which is an acceptable

overhead given the fact that part of the analysis requires rendering the page

in an emulated browser. Unfortunately, we could not compare performance

overhead of Binspect with Wepawet due to the long delay it took to

get back the results from Wepawet server which uses queueing to process

batch requests for analysis.

3.5.6 Resilience to Evasion

Given the holistic nature of our approach, we claim that Binspect is

not easily evadable. However, by closely inspecting the features we use,

there are a few things an attentive attacker could try to evade our analysis



3.6. Conclusions 45

and detection technique. One method an attacker might use is to craft a

benign-looking URL so as to imitate lexical aspects of benign URLs, which

makes the URL features less useful in discriminating benign URLs from

malicious ones.

Another approach is for the attacker to use a highly obfuscated client-

side code (e.g., JavaScript) that is executed after page-load. In such a case,

Binspect is likely to be partly tricked because we only consider side-effects

of obfuscation (if any) on page-load.

With regards to the Social-Reputation features, the major risk is that

the attacker might lure users on social networks to publicly share a link to

a malicious URL in order to collect reputation scores that could mislead

Binspect. Even in this case, the luring would not last long because the

built-in URL scanning facility of the social networking platform would most

likely discover the maliciousness of the URL.

In general, it requires a great deal of effort from the attacker’s side to

completely bypass Binspect as it is quite difficult for the attacker to take

control of the three complementary classes of features used in our approach

and due to the nature of the classification that relies on weighted-confidence

of each classifier.

3.6 Conclusions

Existing techniques for detecting malicious web pages are effective at de-

tecting specific attack types. However, they are limited to partial snapshot

of a malicious payload which limits their ability to cope up with the blended

and complex threats posed by malicious web pages.

In this chapter, we presented Binspect, a holistic approach to de-

fend users against malicious web pages by leveraging static analysis and

lightweight emulation combined with supervised learning. We have shown



46 Chapter 3. Holistic Detection

through large scale evaluation that Binspect is effective at precisely de-

tecting malicious web pages with very low false signals. Moreover, the new

features we introduced are relevant enough in improving the performance

of the analysis and detection of malicious web pages. Our experiments sug-

gest that Binspect incurs acceptable overhead cost to analyze web pages

in a realistic scenario due to effective features reused from prior work and

due to novel features introduced in this work.



Chapter 4

Evolution-Aware Detection

In this chapter, we address a problem that challenges the resilience of

learning-based analysis and detection of malicious web pages, i.e., evolution

of web page artifacts.

4.1 Overview

To derive detection models for malicious web pages, distinguishing arti-

facts of benign and malicious web pages are analyzed. Nevertheless, these

artifacts are under constant evolution [31, 48, 73]. The evolution is typi-

cally two-sided. On the one hand, cyber-criminals constantly revamp their

strategies to craft attack payloads in malicious web pages not only aimed at

making attacks more complex but also to evade existing countermeasures

[48, 73]. On the other hand, benign web pages evolve because of new con-

tent, new functionalities, or changes to the underlying technologies used in

building the web pages [31]. Both types of the evolution impact the pre-

cision of the detection techniques, rendering detection models out-of-date,

in turn, resulting in malicious web pages that escape detection.

To this end, we present an approach called Einspect, that leverages

evolutionary searching and optimization to align learning-based detection

models with evolution of web page artifacts with the goal of more precise

47



48 Chapter 4. Evolution-Aware Detection

analysis and detection of malicious web pages. To achieve this goal, Ein-

spect starts with an initial population of candidate models trained using

standard learning algorithms based on discriminative features extracted

from: URL string, HTML content, JavaScript code, and reputation meta-

data of web pages on social networking websites. It then uses a Genetic

Algorithm (GA) to automatically search and optimize the best combina-

tion of features and learning algorithms. We call this best combination the

fittest model, which embraces the evolution of web page artifacts into the

analysis and detection task. Using the fittest model, it detects unknown

web pages to flag them as malicious or benign.

The key idea of our approach is that instead of training multiple classi-

fiers on a given feature set and pick the classifier(s) with the best perfor-

mance, as in most learning-based approaches (such as [13], [18], [54], [55],

and [14]), in Einspect we exhaustively evaluate the best combination of

features and learning algorithms using a GA.

The contributions of the approach presented in this chapter are the

following:

• an evolution-aware approach1 to embrace the constant evolution of

the underlying artifacts of both benign and malicious web pages into

the learning-based analysis and detection task using a GA.

• design, implementation, and evaluation of the approach on a fairly

large-scale dataset.

The remainder of this chapter is structured as follows. In Section 4.2,

we give an experimental evidence to support our claim that web pages

are under constant evolution and this evolution impacts the effectiveness

of detection models. Section 4.3 presents the key intuition and technical

1An earlier version of the work in this chapter and part of it has been presented in [29] and [26]

respectively.



4.2. A Case Study 49

details of our approach. The implementation, dataset description, and

experimental protocol are discussed in Section 4.4. Section 4.5 discusses

the evaluation results of Einspect. Finally, we present a summary of this

chapter in Section 4.6.

4.2 A Case Study

The vast majority of existing approaches which use machine learning (e.g.,

[54], [18], [42], [55], [75], [105], [14], [89]) report the best performance of

a detection model, let us say Mt, at time t with dataset Dt on feature

set Ft with feature values Vt. The question, however, is “What will be

Dt′, Ft′ and Vt′ at a later time t′, and what will be the implication on the

efficacy of Mt?”. In response to this question, we present some insights

from a measurement study to demonstrate the impact of the evolution

of web page artifacts on the precision of detection models using real-life

data. Using the insights in this section as a springboard, we formulate our

approach in the next section.

4.2.1 Context

To proof-check the research problem, we measured the classifiers’ accuracy

and feature-value trend on real-world samples for both benign and mali-

cious web pages. For benign web pages, we used the top 100 Alexa sites

on July 17, 2012. For the malicious ones, we used 54 malicious web pages

from the Google phishing and malware blacklist. Before using the samples

in this experiment, we validated the malicious web pages using McAfee Site

Advisor[62]. It is worth noting that even though we started with about 200

malicious web pages on the first day, only 54 web pages remained active

for the duration of the study, for which we could collect features on a daily

basis in parallel with the benign ones.



50 Chapter 4. Evolution-Aware Detection

Using the dataset, during July 17-31, 2012 (for 15 consecutive days),

we configured an emulated headless browser based on HtmlUnit [81] that

disguised itself as Mozilla Firefox 6 to render each web page and extract

a total of 25 (HTML and JavaScript) features we presented in Chapter 3.

Using the features collected daily, we trained the Decision Tree and Naive

Bayes classifiers to examine their daily performance by measuring their

classification accuracy and false positive rate with 10-fold cross-validation

on the training sample. In addition, we also measured the mean feature

value trend over the training dataset to examine the evolution pertinent

to each feature.

4.2.2 Insights

Decision Tree: As shown in Figure 4.1, within the 15 days period the

classification accuracy fluctuated between 94.1% (on the 13th day) and

98.02% (for most of the days). The false positive rate of the classifier is

even more variable between 0.191 and 0.950. On the 10th day, the highest

false positive rate (0.191) is encountered. Manual analysis of the web pages

shows that, about 19 of the 54 malicious samples redirected the emulated

browser to a benign web page. In 2 of the 19 cases, the redirection was to

the home page of Google (http://www.google.com).

Naive Bayes: As compared to the Decision Tree classifier, the Naive

Bayes classifier has relatively lower classification accuracy (with a maxi-

mum of 79.2%). However, its false positive rate is way lower than that of

Decision Tree (see Figure 4.2). For instance, for Decision Tree, the average

false positive rate is 0.379 while for Naive Bayes it is 0.027.

Discussion. As can be seen from Figure 4.1 and Figure 4.2, the varia-

tion in classification accuracy and false positive rate across different classi-

fiers and within the same classifier over an extended period of time proves

that different learning algorithms respond differently to the underlying



4.2. A Case Study 51

changes in features of the web pages. The evolution in model performance

is not only about quantitative changes in accuracy but also of qualitative

changes in the discriminative significance of the underlying features used

in building the models. Infact, the features also evolve when web pages

change for the good or the evil purpose. To verify this issue, we examined

the average feature values over the period of the case study.

!"#$%&'#()*+),-./

0-1!2*

3-. 455%6-5. 708 3-. 455%6-5. 708

3-.2* 9:;<* 9:;<* 3-.2* 9:<+* 9:*;*

3-.2= 9:;>* 9:?*< 3-.2= 9:><+ 9:9*@

3-.2? 9:;@* 9:@=> 3-.2? 9:<+* 9:9?<

3-.2< 9:;>9 9:<>9 3-.2< 9:><9 9:9*>

3-.2+ 9:;>* 9:<>* 3-.2+ 9:><+ 9:9*@

3-.2@ 9:;A9 9:?A9 3-.2@ 9:>;= 9:9**

3-.2> 9:;A9 9:*;* 3-.2> 9:>+9 9:9*?

3-.2A 9:;A9 9:*;* 3-.2A 9:>+9 9:9*?

3-.2; 9:;A9 9:*;* 3-.2; 9:>A9 9:9*=

3-.2*9 9:;+* 9:;+9 3-.2*9 9:><? 9:9*?

3-.2** 9:;A9 9:*;* 3-.2** 9:>A9 9:9*=

3-.2*= 9:;A9 9:*;* 3-.2*= 9:>?? 9:9*<

3-.2*? 9:;A9 9:*;* 3-.2*? 9:>>9 9:9*=

3-.2*< 9:;A9 9:*;* 3-.2*< 9:><? 9:9*?

3-.2*+ 9:;A9 9:*;* 3-.2*+ 9:><? 9:9*?

B'( 9:*;

B-C 9:;+

!"#$% !"#$& !"#$' !"#$( !"#$) !"#$* !"#$+ !"#$, !"#$- !"#$%. !"#$%% !"#$%& !"#$%' !"#$%( !"#$%)

./...

./%..

./&..

./'..

./(..

./)..

./*..

./+..

./,..

./-..

01123"1#

456

!"#

5
7
38
9
3:
"
;
1
7
$<
7
"
=
2
37
>?
@

!"#$% !"#$& !"#$' !"#$( !"#$) !"#$* !"#$+ !"#$, !"#$- !"#$%. !"#$%% !"#$%& !"#$%' !"#$%( !"#$%)

./...

./&..

./(..

./*..

./,..

%/...

%/&..

01123"1#

456

!"#

5
7
38
9
3:
"
;
1
7
$<
7
"
=
2
37
>?
@

Figure 4.1: Decision Tree classifier performance evolution over a period of 15 days with

daily feature extraction and classifier training.

!"#$%&'#()*+),-./

0-1!2*

3-. 455%6-5. 708 3-. 455%6-5. 708

3-.2* 9:;<* 9:;<* 3-.2* 9:<+* 9:*;*

3-.2= 9:;>* 9:?*< 3-.2= 9:><+ 9:9*@

3-.2? 9:;@* 9:@=> 3-.2? 9:<+* 9:9?<

3-.2< 9:;>9 9:<>9 3-.2< 9:><9 9:9*>

3-.2+ 9:;>* 9:<>* 3-.2+ 9:><+ 9:9*@

3-.2@ 9:;A9 9:?A9 3-.2@ 9:>;= 9:9**

3-.2> 9:;A9 9:*;* 3-.2> 9:>+9 9:9*?

3-.2A 9:;A9 9:*;* 3-.2A 9:>+9 9:9*?

3-.2; 9:;A9 9:*;* 3-.2; 9:>A9 9:9*=

3-.2*9 9:;+* 9:;+9 3-.2*9 9:><? 9:9*?

3-.2** 9:;A9 9:*;* 3-.2** 9:>A9 9:9*=

3-.2*= 9:;A9 9:*;* 3-.2*= 9:>?? 9:9*<

3-.2*? 9:;A9 9:*;* 3-.2*? 9:>>9 9:9*=

3-.2*< 9:;A9 9:*;* 3-.2*< 9:><? 9:9*?

3-.2*+ 9:;A9 9:*;* 3-.2*+ 9:><? 9:9*?

B'( 9:*;

B-C 9:;+

!"#$% !"#$& !"#$' !"#$( !"#$) !"#$* !"#$+ !"#$, !"#$- !"#$%. !"#$%% !"#$%& !"#$%' !"#$%( !"#$%)

./...

./%..

./&..

./'..

./(..

./)..

./*..

./+..

./,..

./-..

01123"1#

456

!"#

5
7
38
9
3:
"
;
1
7
$<
7
"
=
2
37
>?
@

!"#$% !"#$& !"#$' !"#$( !"#$) !"#$* !"#$+ !"#$, !"#$- !"#$%. !"#$%% !"#$%& !"#$%' !"#$%( !"#$%)

./...

./&..

./(..

./*..

./,..

%/...

%/&..

01123"1#

456

!"#

5
7
38
9
3:
"
;
1
7
$<
7
"
=
2
37
>?
@

Figure 4.2: Naive Bayes classifier performance evolution over a period of 15 days with

daily feature extraction and classifier training.

Figures 4.3 and 4.4 show the mean value trend of HTML features and

Figure 4.5 shows the mean value trend of JavaScript features. While

changes in some feature values (e.g., document length, number of words)



52 Chapter 4. Evolution-Aware Detection

!"#$%&"'(#)%"*'"(+)%$,+-

.#/"01

!"#$ !%&'()* +,-.%/0$* 0%&1()2 +,-.%/0$2 +,-'3)($ +,-'3)4$ +,-5"-(6/373)'3)4$

!"#8* 23454 6781 23457 6781 3449 33772 33 143 41

!"#82 66169 5866 66169 5866 377: 3:815 31 197 48

!"#89 2:158 6112 2:158 6112 3431 33387 31 199 78

!"#8: 64634 68:4 64634 68:4 371: 3:279 3: 188 72

!"#8; 65:52 6139 65:52 6139 37:9 3:636 31 114 79

!"#8< 63813 5693 63813 5693 3885 3:195 31 131 79

!"#8= 65:52 6344 65:52 6344 3962 3:582 33 115 71

!"#8> 66189 6899 66189 6899 371: 3:254 33 112 77

!"#8? 64846 6156 64846 6156 398: 3:528 33 113 97

!"#8*@ 66912 6879 66912 6879 3736 3:262 33 183 77

!"#8** 67948 6:59 67948 6:59 3974 3:723 33 135 77

!"#8*2 65247 6873 65247 6873 3732 3:268 33 116 77

!"#8*9 64771 615: 64771 615: 398: 3:524 33 113 97

!"#8*: 66715 6944 66715 6944 3716 33338 33 183 77

!"#8*; 66399 6935 66399 6935 3711 3::76 33 18: 74

+,-A1")4$B"&($ CD7.%/0'()

!"#8* !"#82 !"#89 !"#8: !"#8; !"#8< !"#8= !"#8> !"#8? !"#8*@ !"#8** !"#8*2 !"#8*9 !"#8*: !"#8*;

@

9@@@

<@@@

?@@@

*2@@@

*;@@@

*>@@@

2*@@@

2:@@@

2=@@@

9@@@@

99@@@

9<@@@

9?@@@

:2@@@

:;@@@

:>@@@

;*@@@

;:@@@

;=@@@

<@@@@

<9@@@

<<@@@

<?@@@

=2@@@

=;@@@

=>@@@

>*@@@

>:@@@

>=@@@

?@@@@

?9@@@

!%&'()*

+,-.%/0$*

0%&1()2

+,-.%/0$2

+,-'3)($

+,-A1")4$B"&($

!"#

C
D
(
/"
7
(
8E
(
"
F,
/(
8G
"
1,
(
H&
%
,
)
FI

Figure 4.3: Feature value evolution of HTML features over a period of 15 days. These

features are separately plotted for the sake of clarity.

might happen for benign purposes (e.g., new text content on a web page),

there are specifically suspicious changes in feature values which are linked

to malicious activities. For example, apart from the trends shown in Fig-

ures 4.3 and 4.4, and Figure 4.5, manual analysis of the feature values

reveals that dangerous JavaScript functions mostly linked with attacks in-

volving obfuscated malicious JavaScript code (e.g., eval(), escape(),

unescape()), time-bomb attacks (e.g., setTimeout()), and shell-code ex-

ecution (e.g., exec()) are manifested more frequently in malicious web

pages than in benign ones.

In summary, the observations show that it is not sufficient to just retrain

a detection model with new dataset. To cope with evolving web page

artifacts, it requires a more systematic and evolution-aware method.



4.2. A Case Study 53

!"#$%&"'(#)%"*'"(+)%$,+-

.#/"01

!"#$ !%&'()* +,-.%/0$* 0%&1()2 +,-.%/0$2 +,-'3)($ +,-'3)4$ +,-5"-(6/373)'3)4$

!"#8* 23454 6718 23457 6718 3449 33772 33 843 48

!"#82 66869 5166 66869 5166 377: 3:185 38 897 41

!"#89 2:851 6882 2:851 6882 3438 33317 38 899 71

!"#8: 64634 61:4 64634 61:4 378: 3:279 3: 811 72

!"#8; 65:52 6839 65:52 6839 37:9 3:636 38 884 79

!"#8< 63183 5693 63183 5693 3115 3:895 38 838 79

!"#8= 65:52 6344 65:52 6344 3962 3:512 33 885 78

!"#8> 66819 6199 66819 6199 378: 3:254 33 882 77

!"#8? 64146 6856 64146 6856 391: 3:521 33 883 97

!"#8*@ 66982 6179 66982 6179 3736 3:262 33 813 77

!"#8** 67941 6:59 67941 6:59 3974 3:723 33 835 77

!"#8*2 65247 6173 65247 6173 3732 3:261 33 886 77

!"#8*9 64778 685: 64778 685: 391: 3:524 33 883 97

!"#8*: 66785 6944 66785 6944 3786 33331 33 813 77

!"#8*; 66399 6935 66399 6935 3788 3::76 33 81: 74

+,-A1")4$B"&($ CD7.%/0'()

!"#8* !"#82 !"#89 !"#8: !"#8; !"#8< !"#8= !"#8> !"#8? !"#8*@ !"#8** !"#8*2 !"#8*9 !"#8*: !"#8*;

@

:

>

*2

*<

2@

2:

2>

92

9<

:@

::

:>

;2

;<

<@

<:

<>

=2

=<

>@

>:

>>

?2

:

:;3

:;8

:;1

:;9

:;7

:;4

:;5

:;6

:;2

3

+,-5,$B3&3%,$E5F,)&G3%)$

),-$,H5G/3)7F,)&

),-I/%-JK"/&%0(F,)&

),-(D"1F,)&

),-$(GL3-(%,GF,)&

),-0%&./3G(F,)&

),-&/("G(M1(-()GF,)&

),-($&"B(F,)&

),-'3)4F,)&

),-($&"B(F,)&

),-(N(F,)&

),-5("/&KF,)&

!"#

O
(
"
)
8F
(
"
G,
/(
8P
"
1,
(
8Q
J
%
,
)
GR

!"#8* !"#82 !"#89 !"#8: !"#8; !"#8< !"#8= !"#8> !"#8? !"#8*@ !"#8** !"#8*2 !"#8*9 !"#8*: !"#8*;

@

*@

2@

9@

:@

;@

<@

=@

>@

?@

*@@

**@

*2@

*9@

*:@

*;@

*<@

*=@

*>@

*?@

2@@

2*@

22@

29@

2:@

2;@

2<@

2=@

CD7.%/0'()

+,-'3)4$

+,-5"-(6/373)'3)4$

+,-MN(S(-%G('3)4$

+,-S(-%G(E5

+,-T300()M1(-()G$

+,-UI/"-($

!"#

O
(
"
)
8F
(
"
G,
/(
8P
"
1,
(
8Q
J
%
,
)
GR

Figure 4.4: Feature value evolution of HTML features over a period of 15 days. These

features are separately plotted for the sake of clarity.

!"#$%&"'(#)%"*'"(+)%$,+-

.#/"01

!"#$ !%&'()* +,-.%/0$* 0%&1()2 +,-.%/0$2 +,-'3)($ +,-'3)4$ +,-5"-(6/373)'3)4$

!"#8* 23454 6718 23457 6718 3449 33772 33 843 48

!"#82 66869 5166 66869 5166 377: 3:185 38 897 41

!"#89 2:851 6882 2:851 6882 3438 33317 38 899 71

!"#8: 64634 61:4 64634 61:4 378: 3:279 3: 811 72

!"#8; 65:52 6839 65:52 6839 37:9 3:636 38 884 79

!"#8< 63183 5693 63183 5693 3115 3:895 38 838 79

!"#8= 65:52 6344 65:52 6344 3962 3:512 33 885 78

!"#8> 66819 6199 66819 6199 378: 3:254 33 882 77

!"#8? 64146 6856 64146 6856 391: 3:521 33 883 97

!"#8*@ 66982 6179 66982 6179 3736 3:262 33 813 77

!"#8** 67941 6:59 67941 6:59 3974 3:723 33 835 77

!"#8*2 65247 6173 65247 6173 3732 3:261 33 886 77

!"#8*9 64778 685: 64778 685: 391: 3:524 33 883 97

!"#8*: 66785 6944 66785 6944 3786 33331 33 813 77

!"#8*; 66399 6935 66399 6935 3788 3::76 33 81: 74

+,-A1")4$B"&($ CD7.%/0'()

!"#8* !"#82 !"#89 !"#8: !"#8; !"#8< !"#8= !"#8> !"#8? !"#8*@ !"#8** !"#8*2 !"#8*9 !"#8*: !"#8*;

@

:

>

*2

*<

2@

2:

2>

92

9<

:@

::

:>

;2

;<

<@

<:

<>

=2

=<

>@

>:

>>

?2

:

:;3

:;8

:;1

:;9

:;7

:;4

:;5

:;6

:;2

3

+,-5,$B3&3%,$E5F,)&G3%)$

),-$,H5G/3)7F,)&

),-I/%-JK"/&%0(F,)&

),-(D"1F,)&

),-$(GL3-(%,GF,)&

),-0%&./3G(F,)&

),-&/("G(M1(-()GF,)&

),-($&"B(F,)&

),-'3)4F,)&

),-($&"B(F,)&

),-(N(F,)&

),-5("/&KF,)&

!"#

O
(
"
)
8F
(
"
G,
/(
8P
"
1,
(
8Q
J
%
,
)
GR

!"#8* !"#82 !"#89 !"#8: !"#8; !"#8< !"#8= !"#8> !"#8? !"#8*@ !"#8** !"#8*2 !"#8*9 !"#8*: !"#8*;

@

*@

2@

9@

:@

;@

<@

=@

>@

?@

*@@

**@

*2@

*9@

*:@

*;@

*<@

*=@

*>@

*?@

2@@

2*@

22@

29@

2:@

2;@

2<@

2=@

CD7.%/0'()

+,-'3)4$

+,-5"-(6/373)'3)4$

+,-MN(S(-%G('3)4$

+,-S(-%G(E5

+,-T300()M1(-()G$

+,-UI/"-($

!"#

O
(
"
)
8F
(
"
G,
/(
8P
"
1,
(
8Q
J
%
,
)
GR

Figure 4.5: Feature value evolution of JavaScript features over a period of 15 days.



54 Chapter 4. Evolution-Aware Detection

4.3 Approach

The principal idea in our approach is to improve learning-based detection

of malicious web pages and reinforce it with evolutionary searching and

optimization to build more accurate detection models. By doing so, we

ensure that the models learned are aligned with the evolution of web page

artifacts, especially of malicious web pages. The approach is evolution-

aware by design and scalable-enough to automatically evaluate how robust

the new model is with respect to the changes in the threat landscape and

healthy evolution of web pages.

Figure 4.6 shows the high-level operational framework of Einspect. It

is organized into four components: Crawling and Feature Extraction, Can-

didate Models Generation, Evolutionary Searching and Optimization, and

Detection. Einspect relies on a crawler that bases its crawling on seeds

from trending topics on the Web to harvest potentially malicious URLs.

The result of the crawling is enriched with samples from publicly-known

blacklists (for malicious) and whitelists (for benign). The feature extrac-

tion engine extracts potentially relevant features pertinent to URL string,

HTML, JavaScript, and reputation of web pages on social networking web-

sites. These features are reused from Chapter 3.

Using the extracted features, the Candidate Models Generation com-

ponent creates a randomly clustered set of features for which multiple

classifiers are trained to generate candidate models. The Evolutionary

Searching and Optimization component takes the candidate models as ini-

tial population and iterates over a series of generations (by applying se-

lection, crossover, and mutation) to ultimately select the fittest model(s)

based on which unknown web pages are detected. This whole workflow in

Einspect is repeated whenever there is a change in (1) feature sets (2)

learning algorithms or (3) dataset used to generate candidate models.



4.3. Approach 55

In the rest of this section, we describe our approach in more detail by

shading light on how an evolutionary technique, a GA in particular, is

leveraged to improve the precision of detecting malicious web pages.

result

fittest 
model

candidate 
models

features

Unknown web page

re
sp

on
sereq

ue
st

URLs

URLs
Seed

Web

Candidate 
Models

 Generation

White-listBlack-list

Candidate Models
 Generation

Evolutionary 
Searching & 

Optimization
Detection

Crawler

Figure 4.6: Operational Framework of Einspect.

4.3.1 Crawling and Feature Extraction

The crawler is periodically fed with seed URLs. Trending topics from

Google, Twitter, and Wikipedia are used as search queries to collect the

seed URLs. In order to enrich the data collected using the crawler, we

also use publicly-endorsed and constantly-updated blacklists (e.g., Google

blacklist, PhishTank database) and whitelists (e.g., Alexa Top Sites, DMOZ

directory). Before using the collected web pages for our experiments, we

verify them using a custom-built honeyclient to discard irrelevant samples

such as unreachable pages.

Features we use in Einspect are those described in Chapter 3 in which

we demonstrated the effectiveness of 10 new features and 29 existing fea-

tures reused from the literature [13, 54]. The characterization of web pages

is based on 11 URL string features, 10 HTML features, 15 JavaScript fea-

tures, and 3 features on reputation metadata of URLs in social networking

websites.



56 Chapter 4. Evolution-Aware Detection

A point worth-mentioning about the HTML and JavaScript features is

that, unlike most prior work which extracts HTML and JavaScript features

statically [13, 54], we use an emulated browser to render the page first and

then run feature extraction to capture JavaScript artifacts generated on

page-load and the side-effects of the execution on the HTML content and

structure generated in effect. Not to repeat ourselves here, we suggest the

interested reader to refer to Chapter 3 for the detailed description about

large-scale evaluation as to the effectiveness of the features we reuse in

Einspect.

4.3.2 Candidate Models Generation

The candidate models generation step is described in Algorithm 2. Given

a labeled set of web pages called the training set T= {URLi|i = 1, ..., n} of

size n, for each URLi in T , we extract d classes of features (e.g., URL string

features (F1), HTML features (F2), JavaScript features (F3), reputation

features (F4)). Then, for each feature class Fj (j = 1, ..., d), the extracted

features are encoded as feature vectors to a set of supervised learning al-

gorithms {Ak|k = 1, ...,m} to generate a model j,k over the training set

T . At the end, for d distinct feature classes, and m distinct supervised

learning algorithms, a total of d×m candidate models are generated. Put

differently, the candidate model generation could also be illustrated as a

tree with the training set at the root (see Figure 4.7). In the tree structure,

traversing the tree from the root (T ) to any one of the leaves results in a

unique candidate model.

In practice, not all of the generated candidate models are good enough

to make it to the initial population of candidate models which are used to

initialize the GA. By setting a threshold on the accuracy of the models,

those models with accuracy below a certain threshold are eliminated to

reduce noise from the set of candidate models right from the outset.



4.3. Approach 57

Algorithm 2 Candidate Models Generation.
1: d :# of feature classes

2: m :# of learning algorithms

3: T ← getTrainigSet()

4: for j:=1 ; j ≤ d ; j++ do

5: FeatureV aluesj ← extractFeatures(T, Fj)

6: for k= 1 ; k ≤m ; k++ do

7: modelj,k ← generateModel(FeatureV aluesj , Ak)

8: end for

9: end for

Figure 4.7: Candidate models generation tree structure.

4.3.3 Evolutionary Searching and Optimization

The key intuition behind GA is that given a problem for which there are a

number of good solutions of which the best one is unknown, the alternative

solutions (among other possible solutions) are evolved toward the best

solution(s) [104]. The individual solutions in a GA are called chromosomes

and the whole collection of the solutions is called a population.

A generic GA is shown in Algorithm 3. Initially, a GA starts with a

random set of chromosomes called the initial population (line 1 in Algo-



58 Chapter 4. Evolution-Aware Detection

Algorithm 3 Genetic Algorithm (general).

1: P ← setInitialPopulation()

2: repeat

3: N ← size(P )

4: P ′ ← {}
5: repeat

6: chromosome1 ← select(P )

7: chromosome2 ← select(P )

8: offspring1, offspring2 ← crossover(chromosome1, chromosome2)

9: offspring1 ← mutate(offspring1)

10: offspring2 ← mutate(offspring2)

11: P ′ ← P ∪ {offspring1, offspring2}
12: until size(P’) = N

13: P ← P ′

14: until termination-criteria = true

rithm 3). In each generation, a GA applies three genetic operations (lines

6-11 in Algorithm 3) in the order: selection (picking the best individuals to

breed), crossover (the breeding), and mutation (apply certain changes to

new individuals so as to favor diversity in the population). The selection

operation relies on a fitness score, obtained using a fitness function2, which

is assigned depending on how “good” a chromosome is. The measure of

the “goodness” of a chromosome is specific to the problem at hand. The

selection-crossover-mutation operations continue until the fittest chromo-

some(s) surviving the evolution is (are) obtained as optimal solution(s).

Commonly, the GA terminates (Line 14 in Algorithm 3) when either a

maximum number of generations is reached, or a satisfactory fitness level

is reached for the population.

Algorithm 4 shows the GA adapted in the context of our approach.

While the basic GA workflow is the same, in Einspect, we have to train

the newly created offsprings (models) at each iteration (Line 9 in Algorithm

2Fitness function: a particular type of objective function that is used to summarize, as a single figure

of merit, how close a given solution is to achieving the expected aims.



4.3. Approach 59

4). The training is required in order to compute the fitness (Line 10 in

Algorithm 4) of the new models and compare them with the rest of the

models in the population, for conducting selection.

Algorithm 4 GA-Based Model Searching and Optimization.
1: initPop← genCandidateModels(F,A, T )

2: curPop← genRandomPop(initPop, popSize)

3: repeat

4: repeat

5: model1,model2 ← select(curPop, fitness)

6: offspring1, offspring2 ← crossover(model1,model2)

7: offspring1 ← mutate(offspring1)

8: offspring2 ← mutate(offspring2)

9: train(offspring1, offspring2, F,A, T )

10: computeF itness(offspring1, offspring2)

11: newPop← getNewPop(curPop, offspring1, offspring2)

12: curPop← newPop

13: gen← gen+ 1

14: until fittestModelFound or gen = maxGen

15: until executionT ime = maxExecT ime

Running Example. To illustrate how the major genetic operations

are contextualized for the purpose of our approach, suppose that we have

a labelled training set T = {[URL1, benign], [URL2, malicious], [URL3,

benign], [URL4, malicious]} and two feature sets F1 = {urlLen, pathLen,

remoteLnk} and F2 = {zeroSizeIframes, nativeJSFunc}. Let the algorithms

to generate the models be Decision Tree (DT) and Support Vector Machine

(SVM).

Using Algorithm 2 on T , we obtain number of feature classes to be d=2

and number of algorithms to be m=2. The number of candidate models

is d×m=2×2=4 meaning that the combination of the feature sets (Fj’s —

j=1, ..., d) and the algorithms (Ak’s — k =1, ..., m) generates the following

4 candidate models:



60 Chapter 4. Evolution-Aware Detection

model1,1 =
[
T urlLen pathLen remoteLnk DT

]
model1,2 =

[
T urlLen pathLen remoteLnk SVM

]
model2,1 =

[
T zeroSizeIframes nativeJSFunc DT

]

model2,2 =
[
T zeroSizeIframes nativeJSFunc SVM

]
Chromosome. In Einspect, what we refer to as a chromosome is

encoded in a form of an n × m matrix Mn×m where n is the size of the

training set, m is the number of features, and m[i, j] is the feature value

of the jth feature of the ith training example for a given learning algorithm

Ak.

For instance, a chromosome representation for model1,1 of the running

example could look like the following:

model1,1 =


URL Alg urlLen pathLen remoteLnk

1 DT 56 21 5

2 DT 123 68 25

3 DT 82 15 15

4 DT 245 81 33


Fitness Function. The fitness function is an objective function that

maximizes the accuracy of the candidate model while minimizing its false

signals. More precisely, models with higher Detection Rate (DR), lower

False Positives (FPs), and lower False Negatives (FNs) are more likely to

gain more fitness scores. In Einspect, given a model m with Detection



4.3. Approach 61

Rate DR and False Positive Rate FPR, we use the following objective

function to compute the fitness score for m:

fitness(m) =
(DRm − FPRm)

100
(4.1)

Selection. The fitness score determines which pair of chromosomes to

pick for crossover (Line 5 in Algorithm 4). In addition to the fitness score,

a valid pair of chromosomes is one from the same algorithm but distinct

feature sets to avoid useless selection. A common selection method is to

use an elite-based selection in which the most fit individuals are picked

for crossover. While elite-based selection is simple and favors the most

fit ones, it penalizes the chromosomes with lower fitness scores and re-

duces the randomness assumption in GA. To this end, in Einspect we

use the Tournament (see Algorithm 5) selection. Selection of models is

done by first randomly picking k models from the population (Lines 4-8

in Algorithm 5). Then, the one with the highest fitness score is selected

for crossover (Lines 9-13 in Algorithm 5). The parameter k is called the

tournament size which tells the number of times the tournament is run.

Algorithm 5 Tournament-Based Selection for k=2.
1: n :# of models

2: selected← model[0]

3: for i=1 ; i ≤ n ; i++ do

4: a← random(1, n)

5: b← random(1, n− 1)

6: if b ≥ a then

7: b← b+ 1

8: end if

9: if fitness[a] > fitness[b] then

10: selected← model[a]

11: else

12: selected← model[b]

13: end if

14: end for



62 Chapter 4. Evolution-Aware Detection

Crossover. After two chromosomes are selected (using Algorithm 5),

the semantics of crossover in our approach is such that one or more of

the features of the selected chromosomes are swapped to produce two off-

springs. Which feature to swap is determined by applying an n-point

crossover operation where indices of the features to be swapped are selected

randomly at each generation. For instance, to apply a 3-point crossover,

at each generation when doing crossover, 3 numbers in the range [1,m]

are randomly selected where m is the number of features. Then after, the

features at the selected positions of the models are swapped to complete

the crossover operation.

From our running example, suppose that the following models are se-

lected for the crossover:

model1,1 =


URL Alg urlLen pathLen remoteLnk

1 DT 56 21 5

2 DT 123 68 25

3 DT 82 15 15

4 DT 245 81 33



model2,1 =


URL Alg zeroSizeIframes nativeJSFunc

1 DT 0 5

2 DT 5 23

3 DT 1 7

4 DT 10 49


The chromosomes, model1,1 and model2,1, are from the same algorithm

(DT in this case) and have distinct feature sets (F1 and F2 respectively).

An instance of a valid crossover operation could be swapping the last two

features of the two chromosomes. More precisely, the last two features,

pathlen and remoteLnk, of model1,1 are swapped symmetrically with the



4.3. Approach 63

last two features, zeroSizeIframes and nativeJSFunc, of model2,1 resulting

in the following two offsprings:

offspring1 : crossover(model1,1,model2,1)

offspring11 =


URL Alg urlLen zeroSizeIframes nativeJSFunc

1 DT 56 1 11

2 DT 123 6 50

3 DT 82 0 2

4 DT 245 9 35


offspring2 : crossover(model2,1,model1,1)

offspring12 =


URL Alg pathLen remoteLnk

1 DT 36 8

2 DT 300 12

3 DT 50 13

4 DT 259 18


In offspring1 and offspring2, the values in bold are the values for

the features swapped as a result of the crossover operation. Once the

crossover is done, the fitness score for the offsprings is computed. In this

context, computing the fitness score requires training the DT algorithm on

offspring1 and offspring2 to get the DR and FPs from which the fitness

score is computed (using Equation 4.1) for the next generation of the GA.

After the crossover operation, chromosomes for which the algorithm and

features are the same, i.e., redundant chromosomes, may emerge. In such

a case, the more fit chromosome is maintained. If redundant chromosomes

happen to have the same fitness score, one of them is selected at random

and maintained in the population.



64 Chapter 4. Evolution-Aware Detection

Mutation. The goal of mutation is to introduce a reasonable diversity

to the population under evolution by making slight changes to offsprings.

A common mutation strategy is to modify the values of features using a cer-

tain mutation probability. For instance, after the crossover, a small value

(e.g., 0.02) is added to the feature values of offspring1 and offspring2

to get a slightly modified varieties of the offsprings. To imitate evolution

over a time-frame, we may also consider replacing unreachable URLs (e.g.,

pages taken-down after malicious activity) in the training set and take

this replacement as a mutation operation (we call it Inherent Mutation).

This would potentially be a realistic mutation operation for malicious web

pages. An alternative mutation strategy is to introduce new feature(s) to

both of the offsprings and compute the fitness score after the mutation.

Termination Criteria. In general, a GA is terminated either when the

best fitness score is attained by at least one chromosome or a certain max-

imum iteration of generations is reached. In our approach, the termination

criteria is fulfilled either when a desired threshold for FPs, FNs, and DR

is attained by the best chromosome or after a maximum of k iterations.

For example, 0.01% FPs, 0.01% FNs and 99% DR within the first k or

less iterations could be used for termination. If the GA does not converge

to the threshold after k iterations, we just pick the chromosome with the

highest fitness score to terminate the evolution. The best chromosome,

i.e., the fittest model, that is obtained at the end of the evolution, is used

to detect unknown web pages to classify them as benign or malicious.

4.4 Dataset and Setup

In this section, we first highlight the implementation details of Einspect.

Then, we discuss the dataset description and experimental protocol.



4.4. Dataset and Setup 65

4.4.1 Implementation

Our crawler is a customized instance of HERITRIX [4], an open-source,

web-scale, and archival-quality crawler. We reused the feature extraction

engines from Chapter 3 in which the URL feature extraction engine is im-

plemented based on the URL class of Java. The HTML and JavaScript

feature extraction engine is implemented as a wrapper on a custom head-

less browser based on HtmlUnit [81], and we used the respective APIs of

Facebook [30], Twitter [92], and Google+ [36] to extract reputation fea-

tures.

We used seven standard learning algorithms namely: J48 Decision Tree,

Random Tree, Random Forest, Naive Bayes, Bayes Network, Support Vec-

tor Machine, and Logistic Regression classifier on the Weka [38] machine

learning suite. We have also used these algorithms and evaluated them on

a large-scale dataset in Chapter 3. Therefore, we decided to start with and

build up on effective algorithms and make them more effective by using

the GA. The GA is implemented in Python to accept the feature matrix

and accuracy values of candidate models and iterate over generations to

select the best model.

4.4.2 Dataset Collection and Validation

To maintain the representativeness of the dataset, we collected a total of

22, 891 samples from our crawler and other data sources. The breakdown

of our dataset is shown in Table 4.1.

For benign web pages, we used the Alexa [1] top global websites, the

Yahoo [44] random URL generator, and the DMOZ [23] directory to col-

lect a total of 6, 867 pages. For malicious web pages, we used the mal-

ware and phishing blacklist of Google Safe Browsing [35], the PhishTank

[68] database of verified phishing pages, and the MalwareURL [60] list of



66 Chapter 4. Evolution-Aware Detection

malware-serving URLs to collect a total of 16, 024 unique URLs. In prepar-

ing the dataset, we made sure that the dataset (specially for benign pages)

is not skewed to a particular group of web pages by limiting the propor-

tion of web pages belonging to the same domain. As a sanity check, we

validated the entire data set with a custom-made honeyclient and removed

from the dataset those URLs that responded with HTTP 404 (page not

found) error.

Table 4.1: Dataset for training and testing of Einspect.

Purpose Benign Malicious Total

Training 5, 055 10, 969 16, 024

Testing 2, 166 4, 701 6, 867

4.4.3 Experimental Setup

Candidate Models Generation. To evaluate Einspect, we divided the

dataset into a training set (70%) and a test set (30%) as shown in Table 4.1

with a benign-to-malicious ratio of 1:2. Using Algorithm 2, we generated 35

candidate models by training the 7 learning algorithms on 5 feature classes.

All the candidate models were trained using 10-fold cross validation and

the accuracy of the candidate models is summarized in Table 4.2 with the

percentage of FPs/FNs for each model across the 5 feature classes.

Benchmark Selection. Depending on how much we tolerate FPs or

FNs, the best model from the candidates is either Random Forest on all

features or J48 on all features (see values in bold in Table 4.2). In clas-

sifying web pages, the ultimate goal is to minimize (eliminate if possible)

FNs (malicious web pages deemed benign) but reasonable number of FPs

(benign web pages deemed malicious) are tolerable at the cost of more

resource for analysis. As a result, we selected the J48 classifier on all fea-



4.4. Dataset and Setup 67

Table 4.2: Einspect: Percentage of FPs/FNs of candidate models with 10-fold cross

validation on the training set.

Feature Sets: % FP/% FN

Classifiers URL HTML JavaScript Reputation All Features

J48 33.2/1.8 24.7/13.3 40.1/10.7 36.8/0.4 6.4/1.9

Random Tree 33.7/1.9 26.8/12.9 38.7/10.9 34.9/0.2 9.1/4.4

Random Forest 33.2/1.8 19.5/14.0 38.7/10.8 34.8/0.2 4.9/2.7

Naive Bayes 41.8/4.7 80.6/2.9 86.3/5.5 98.1/0.0 67.4/4.4

Bayes Net 38.9/4.9 22.3/24.9 42.7/16.4 40.4/7.4 9.5/15.3

SVM 32.8/1.7 74.3/0.4 38.3/11.0 34.8/0.6 73.7/0.2

Logistic 33.7/2.9 73.5/3.4 88.9/2.3 93.6/0.1 23.4/4.1

tures as it has the lowest FNs (1.9%) with reasonably low FPs (6.4%). We

used the performance of this model as a benchmark to compare it with the

performance of the models obtained after applying the evolutionary model

searching and optimization.

GA-Based Model Searching and Optimization. We used the Evo-

lutionarySearch3 library for GA-guided feature searching and optimization.

We ran the GA 6 times with 20, 30, 40, 60, 80, and 100 generations. For all

the 6 iterations of the GA, we used the binary Tournament selection (Algo-

rithm 5), 2-point crossover with crossover probability of 0.6, and BitFlip4

mutation with mutation probability of 0.1. At the end of the execution of

the GA, we retrain the seven classifiers on the features selected by the GA

to evaluate the models’ fitness. When the GA is not able to improve the

fitness of the best model any more, we save the best model to use it for

detection. Finally, using the same test set used for the best model prior

to the GA, we evaluate the fittest model for accuracy and compare it with

the benchmark (the best model trained without the GA).

3http://weka.sourceforge.net/packageMetaData/EvolutionarySearch/
4Bit-Flip Mutation: a bit at a random position in a binary chromosome string is flipped.



68 Chapter 4. Evolution-Aware Detection

4.5 Evaluation

In this section, we evaluate Einspect from the standpoints of: accuracy

of detection, error rates, performance overhead, and practical significance

of the evolution-guided detection of malicious web pages.

4.5.1 Accuracy and Error Rate

Benchmark Performance. On the training set, without running the GA,

the best model (J48 with all features) achieved 96.6% accuracy with 6.4%

FPs, and 1.9% FNs. On the test set, it achieved classification accuracy of

60.1% with 4.5% FPs and 58.5% FNs.

Significance of the GA. The best model after running the GA is still

on the J48 classifier but with only 12 features (4 URL, 6 JavaScript, and

2 reputation features) that survived the evolution and the accuracy on the

training set is 96.5% with 8.1% FPs and 1.7% FNs. Comparing it with the

best model before running the GA, the FNs are reduced from 1.9% to 1.7%

amounting to 10.5% reduction in FNs. This reduction means that the GA-

guided model is able to avoid a misclassification of about 1152 malicious

web pages as benign in the training set, proving that the GA-guided model

is 10.5% more precise than the benchmark counterpart.

As can be seen from Figure 4.9, the fittest model is found when running

the GA for 20 generations. The best model produced by the GA did not

improve for iterations starting from 60 generations onwards. The results of

evaluating the best model by the GA on the separate test set also shows an

improvement in precision of the fittest model. More precisely, the fittest

model achieved classification accuracy of 74.8% with 7.1% FPs and 33.5%

FNs. In comparison to the performance of the benchmark model on the

same test set, the GA-guided model improved the detection accuracy by

14.7% while significantly reducing the FPs by 25%. In fact, the significant



4.5. Evaluation 69

!"

#$%&'()

*'!&+&,$-./+0 1$20&'#/0.-.3&0456 1$20&'7&%$-.3&0456
8) 9:; (:9
<) =:( (:9
;) 9:> 8:(
?) (8:> <:=

=) (8:> <:=
()) (8:> <:=

*'!&+&,$-./+0 1$20&'#/0.-.3&0456 1$20&'7&%$-.3&0456
8) 9:( <<:@
<) =:= ;@:;
;) 9:< ;(
?) (8:9 <;:=
=) (8:9 <;:=
()) (8:9 <;:=

A2$00.B.&, '5'1#0'C.-D/E-'!" 5'1#0'C.-D'!"
F;= (:> (:9

G$+H/I'J,&& ;:; <:8
G$+H/I'1/,&0- 8:9 8:;
7$K3&'L$M&0 ;:; ;:(
L$M&0'7&- (@:< 9:@
NOP ):8 (?
Q/%.0-.R ;:( (:9

!&+&,$-./+ J.I&'B/,'N&2&R-./+ J.I&'B/,'!"ST$0&H'J,$.+.+% J.I&40&R:6 *'1&$-E,&0
8) 8 9:8 >:8 (8
<) 8:8 ?:( =:< ()
;) 8:9 @:; =:( =
?) <:( (:> @ ?
=) <:( (:> @ ?
()) <:8 (:> @:( ?

!"#$%&'#%() J.I&'-/'TE.2H'I/H&240&R/+H06
F;= *+,- 89:?
G$+H/I'J,&& ):;= ;:=
G$+H/I'1/,&0- 8:)= 8):=
7$K3&'L$M&0 ):8@ 8:@

8) <) ;) ?) =) ())

)

8

;

?

=

()

(8

(;
#&,B/,I$+R&'/B'!"S%E.H&H'T&0-'I/H&2'/+'-,$.+.+%'0&-

1$20&'#/0.-.3&0456

1$20&'7&%$-.3&0456

*'/B'!&+&,$-./+0

#
&
,B
/
,I
$
+
R
&
'P
&
$
0
E
,&
45
6

8) <) ;) ?) =) ())

)

()

8)

<)

;)

@)
#&,B/,I$+R&'/B'!"S%E.H&H'T&0-'I/H&2'/+'-&0-'0&-

1$20&'#/0.-.3&0456

1$20&'7&%$-.3&0456

*'/B'!&+&,$-./+0

#
&
,B
/
,I
$
+
R
&
'P
&
$
0
E
,&
'4
5
6

./
0

1
23
4&
5
%6
78
8

1
23
4&
5
%9
&7
8:
#

;
2<
=8
%>
2?
8:

>
2?
8:
%;
8#

@A
B

C&
D"
:#
"E

)

8

;

?

=

()

(8

(;

(?

(=
1$20&'#/0.-.3&0'/B'A2$00.B.&,0'/+'-,$.+.+%'0&-'C.-D/E-'$+H'C.-D'!"

'5'1#0'C.-D/E-'!"

5'1#0'C.-D'!"

5
'1
$
20
&
'#
/
0
.-
.3
&
0

Figure 4.8: Einspect: False Positives for classifiers before and after the GA on the

training set.

improvement using the GA is achieved at a reasonable cost of a little more

FPs which is tolerable given the the criticality of misclassifying malicious

web pages as benign.

Another interesting insight from using the GA is that the FPs of most

classifiers decreased after running the GA for 20 generations. We took

the best models for each classifier in Table 4.2 (precisely values in the last

column) to evaluate the impact of the GA on the rest of the classifiers

apart from the best model in the candidates. As shown in Figure 4.8, the

FPs of six out of the seven classifiers is reduced as a result of the GA with

the exception of SVM for which the FPs increased significantly with the

GA.

4.5.2 Performance Overhead

The computing resource we used in our experiment is an Intel i7 dual-

core 2.66GHz CPU with 8GB of RAM running 64-bit MacOSX operating

system. Under a fairly normal load of the machine, we measured the



70 Chapter 4. Evolution-Aware Detection

!"

#$%&'()

*'!&+&,$-./+0 1$20&'#/0.-.3&0456 1$20&'7&%$-.3&0456
8) 9:; (:9
<) =:( (:9
;) 9:> 8:(
?) (8:> <:=

=) (8:> <:=
()) (8:> <:=

*'!&+&,$-./+0 1$20&'#/0.-.3&0456 1$20&'7&%$-.3&0456
8) 9:( <<:@
<) =:= ;@:;
;) 9:< ;(
?) (8:9 <;:=
=) (8:9 <;:=
()) (8:9 <;:=

A2$00.B.&, '5'1#0'C.-D/E-'!" 5'1#0'C.-D'!"
F;= (:> (:9

G$+H/I'J,&& ;:; <:8
G$+H/I'1/,&0- 8:9 8:;
7$K3&'L$M&0 ;:; ;:(
L$M&0'7&- (@:< 9:@
NOP ):8 (?
Q/%.0-.R ;:( (:9

!&+&,$-./+ J.I&'B/,'N&2&R-./+ J.I&'B/,'!"ST$0&H'J,$.+.+% J.I&40&R:6 *'1&$-E,&0
8) 8 9:8 >:8 (8
<) 8:8 ?:( =:< ()
;) 8:9 @:; =:( =
?) <:( (:> @ ?
=) <:( (:> @ ?
()) <:8 (:> @:( ?

!"#$%&'#%() J.I&'-/'TE.2H'I/H&240&R/+H06
F;= *+,- 89:?
G$+H/I'J,&& ):;= ;:=
G$+H/I'1/,&0- 8:)= 8):=
7$K3&'L$M&0 ):8@ 8:@

8) <) ;) ?) =) ())

)

8

;

?

=

()

(8

(;
#&,B/,I$+R&'/B'!"S%E.H&H'T&0-'I/H&2'/+'-,$.+.+%'0&-

1$20&'#/0.-.3&0456

1$20&'7&%$-.3&0456

*'/B'!&+&,$-./+0

#
&
,B
/
,I
$
+
R
&
'P
&
$
0
E
,&
45
6

8) <) ;) ?) =) ())

)

()

8)

<)

;)

@)
#&,B/,I$+R&'/B'!"S%E.H&H'T&0-'I/H&2'/+'-&0-'0&-

1$20&'#/0.-.3&0456

1$20&'7&%$-.3&0456

*'/B'!&+&,$-./+0

#
&
,B
/
,I
$
+
R
&
'P
&
$
0
E
,&
'4
5
6

./
0

1
23
4&
5
%6
78
8

1
23
4&
5
%9
&7
8:
#

;
2<
=8
%>
2?
8:

>
2?
8:
%;
8#

@A
B

C&
D"
:#
"E

)

8

;

?

=

()

(8

(;

(?

(=
1$20&'#/0.-.3&0'/B'A2$00.B.&,0'/+'-,$.+.+%'0&-'C.-D/E-'$+H'C.-D'!"

'5'1#0'C.-D/E-'!"

5'1#0'C.-D'!"

5
'1
$
20
&
'#
/
0
.-
.3
&
0

Figure 4.9: Einspect: False Positives and False Negatives of the GA-guided fittest model

on the training set.

!"

#$%&'()

*'!&+&,$-./+0 1$20&'#/0.-.3&0456 1$20&'7&%$-.3&0456
8) 9:; (:9
<) =:( (:9
;) 9:> 8:(
?) (8:> <:=

=) (8:> <:=
()) (8:> <:=

*'!&+&,$-./+0 1$20&'#/0.-.3&0456 1$20&'7&%$-.3&0456
8) 9:( <<:@
<) =:= ;@:;
;) 9:< ;(
?) (8:9 <;:=
=) (8:9 <;:=
()) (8:9 <;:=

A2$00.B.&, '5'1#0'C.-D/E-'!" 5'1#0'C.-D'!"
F;= (:> (:9

G$+H/I'J,&& ;:; <:8
G$+H/I'1/,&0- 8:9 8:;
7$K3&'L$M&0 ;:; ;:(
L$M&0'7&- (@:< 9:@
NOP ):8 (?
Q/%.0-.R ;:( (:9

!&+&,$-./+ J.I&'B/,'N&2&R-./+ J.I&'B/,'!"ST$0&H'J,$.+.+% J.I&40&R:6 *'1&$-E,&0
8) 8 9:8 >:8 (8
<) 8:8 ?:( =:< ()
;) 8:9 @:; =:( =
?) <:( (:> @ ?
=) <:( (:> @ ?
()) <:8 (:> @:( ?

!"#$%&'#%() J.I&'-/'TE.2H'I/H&240&R/+H06
F;= *+,- 89:?
G$+H/I'J,&& ):;= ;:=
G$+H/I'1/,&0- 8:)= 8):=
7$K3&'L$M&0 ):8@ 8:@

8) <) ;) ?) =) ())

)

8

;

?

=

()

(8

(;
#&,B/,I$+R&'/B'!"S%E.H&H'T&0-'I/H&2'/+'-,$.+.+%'0&-

1$20&'#/0.-.3&0456

1$20&'7&%$-.3&0456

*'/B'!&+&,$-./+0

#
&
,B
/
,I
$
+
R
&
'P
&
$
0
E
,&
45
6

8) <) ;) ?) =) ())

)

()

8)

<)

;)

@)
#&,B/,I$+R&'/B'!"S%E.H&H'T&0-'I/H&2'/+'-&0-'0&-

1$20&'#/0.-.3&0456

1$20&'7&%$-.3&0456

*'/B'!&+&,$-./+0

#
&
,B
/
,I
$
+
R
&
'P
&
$
0
E
,&
'4
5
6

./
0

1
23
4&
5
%6
78
8

1
23
4&
5
%9
&7
8:
#

;
2<
=8
%>
2?
8:

>
2?
8:
%;
8#

@A
B

C&
D"
:#
"E

)

8

;

?

=

()

(8

(;

(?

(=
1$20&'#/0.-.3&0'/B'A2$00.B.&,0'/+'-,$.+.+%'0&-'C.-D/E-'$+H'C.-D'!"

'5'1#0'C.-D/E-'!"

5'1#0'C.-D'!"

5
'1
$
20
&
'#
/
0
.-
.3
&
0

Figure 4.10: Einspect: False Positives and False Negatives of the GA-guided fittest

model on the test set.



4.5. Evaluation 71��

������

	
 �
 �
 

 �
 �






	

�




�

�


�	

��
���������������������������������������������

����������

 �!�������

 ��"������������

�
��
�
��
�
�
�
�
�
�
�#
� 
��
"�
!
�
�
��
��
�

Figure 4.11: CPU clock overhead in relation to number of features selected by the GA to

build the best detection model from the training set with increasing number of generations.

average time to build a model without the GA and compared it with the

average time it takes to build a model when using the GA-guided model

generation.

While the time spent to build the best model without the GA is only

2.76 seconds, the GA-guided model building took 9.2 seconds. This over-

head is understandable as the GA spends extra time to search for the best

combination of features before training. As can be seen from Figure 4.11,

the bigger the number of generations the less time the GA needs to build

the detection model. This gain in speed is due to the fact that the number

of features selected by the GA gets fewer as the number of generations

increase. Consequently, making the model generation faster, but the accu-

racy of the model drops as important features are eliminated in an attempt

to converge the GA.



72 Chapter 4. Evolution-Aware Detection

4.5.3 Results from a Public Service

To examine the effectiveness of Einspect, we submitted the test set to

Wepawet [93], a publicly available, anomaly-based, dynamic analysis

service to analyze and detect web-based threats triggered by visiting a

web page. Differently from Wepawet, in Einspect, we use static anal-

ysis with lightweight emulation and the analysis and detection is rather

learning-based with a reinforcement from evolutionary technique using a

GA.

With respect to the 92.8% correct classification of benign web pages

from the test set by Einspect, Wepawet correctly flagged 92% of the

benign web pages with 2 benign pages reported as malicious (one of them

also reported malicious by Einspect). In addition, Wepawet flagged

11 benign pages as suspicious (most of which are flagged as benign in

Einspect), and on 161 benign pages it returned error. On the malicious

test set, Wepawet returned 2.34% as suspicious, 97% as benign, 2.7%

as error, and 0% as malicious. On the other hand, Einspect correctly

flagged 65.5% of the malicious test set with 35% misclassification error.

Manual analysis of the majority of malicious web pages that Wepawet

classified as benign shows that these web pages are no longer served with

malicious content. This difference is reasonably valid as the time at which

we extracted features from these web pages and the time at which we

submitted these web pages to Wepawet has a difference of 5 days.

4.5.4 Immunity to Possible Evasion

To completely evade our technique, an attentive attacker needs to study

all the features we use in Einspect and come up with attack payloads to

mislead and ultimately escape detection by our model. To do so would not

be an easy task as the features we use to capture web page artifacts are



4.6. Conclusions 73

reasonably comprehensive and to avoid most (all) the features in an at-

tempt to render our detection model ineffective forces the attacker to have

an easy-to-detect web page that can be caught by simple static analysis or

signature matching techniques.

Above all, at the core of building our detection model is a GA which,

depending on the fitness of the candidate models, hides the details of the

fittest model (features and algorithm) at a given time. As a result, the

adversary has no (very limited) way of deducing which particular features

are in use due to the change in the relevance of the features every time the

GA is run.

4.6 Conclusions

In line with the evolving and polymorphic nature of online threat, tech-

niques devised to defend web users from malicious content need to be up-

to-date enough to automatically tune themselves to cope with the threat

landscape on the Internet. Keeping detection models inline with the con-

stantly changing artifacts of web pages in general and malicious web pages

in particular is a challenge in devising precise countermeasures against

malicious web pages.

In this chapter, we presented Einspect, an inherently evolution-aware

and learning-based approach that is guided by a GA to analyze and detect

malicious web pages leveraging static analysis and lightweight dynamic

analysis.

Our evaluation on a fairly large-scale dataset shows that Einspect is

able to significantly improve the precision (especially False Negatives) in

detection of malicious web pages by enhancing learning-based detection

using evolutionary model searching and optimization with the help of a

GA.



74 Chapter 4. Evolution-Aware Detection

And more importantly, as we implemented Einspect on top of Bin-

spect (from Chapter 3), we proved how the evolution-aware approach we

presented in this chapter can reinforce a learning-based approach.



Chapter 5

Detection of Exploit Kits

In this chapter, we turn our attention to one of the preferred mean used by

cyber-criminals in spreading web-borne malware to infect innocent victims,

i.e., prevalence of Exploit Kits.

5.1 Overview

Cybercrime on the Internet has seen a proliferation in recent times [12, 87].

This proliferation has been largely due to the development of criminal, for-

profit, software infrastructure for conducting attacks on endusers. In this

infrastructure, Exploit Kits play a central role as they facilitate the in-

fection of users through malware that exploits client vulnerabilities. An

Exploit Kit comes as a piece of off-the-shelf software that can be licensed

from the underground market, which when installed and configured on a

web server, carries out a malicious campaign targeting innocent victims.

Examples of attacks that are launched by Exploit Kits include drive-by-

downloads, spam and denial-of-service. A website hosting an Exploit Kit

is advertised through URLs disseminated through spam links, search cam-

paigns, social networking platforms, web postings or website hijacking. In-

nocent victims that click on these URLs have their systems compromised

through drive-by-download attacks and the infected hosts are subsequently

75



76 Chapter 5. Detection of Exploit Kits

used for staging further criminal activities (e.g., spam campaigns as part

of a Botnet).

Given the role of Exploit Kits in cybercrime, it is a natural question

to ask whether a given URL points to an Exploit Kit. This is a question

that has significant implications for the safety of end-users on the Internet,

given the proliferation of criminal activities in recent years and the change

in the “business model” of the underground market from selling crimeware

to providing it as a service akin to software-as-a-service [37, 82].

Identifying Exploit-Kit-hosted URLs has the potential to be useful to

a broad stakeholders. For example, search engines can use such detection

techniques to prevent indexing of such URLs as these URLs are usually

accompanied with black-hat SEO techniques to boost their rank. They also

can pass on such blacklisted URLs to end users and browser vendors, who

can protect their customers from harmful infection. Anti-virus companies

can also keep their signature datasets up-to-date by analyzing such URLs.

Moreover, take-down operations against malicious activities on the Internet

can be reinforced by a detection technique that identifies Exploit Kits.

Previous work on detecting Exploit Kit hosted pages primarily relied on

either looking for anomalous characteristics of the downloaded code [18, 75]

or detect [71, 99] changes to the system properties. The former is harder to

define for new exploits included by the Exploit Kits (which are continuously

updated) while the latter involves the difficult task of correct execution of

malicious code.

In this chapter, we tackle the problem of detecting whether a given

URL is hosted by an Exploit Kit with a new approach that uses machine

learning to realize fast detection of Exploit Kit hosted pages. Through an

extensive analysis of the workflows of 38 different Exploit Kits, we develop

an approach that uses machine learning to detect whether a given URL is

hosting an Exploit Kit. Central to our approach is the design of distin-



5.1. Overview 77

guishing features drawn from the analysis of attack-centric and self-defense

behaviors of Exploit Kits. This design is based on observations drawn from

Exploit Kits that we installed in a laboratory setting as well as live Ex-

ploit Kits that were hosted on the Web. We implemented our approach in

a tool that we call WebWinnow. Moreover, to allow resource-constrained

deployment of WebWinnow, we also built a fast pre-fitering engine. Eval-

uation of WebWinnow with real world malicious URLs suggest that it is

highly effective in the detection of malicious URLs hosted by Exploit Kits

with very low false-positives.

The contributions of the approach we present in this chapter are the

following:

• a detailed analysis and characterization of Exploit Kits based on

source code analysis and runtime probing to shade light on the attack-

centric and self-defense behaviors of Exploit Kits.

• a machine learning approach that takes advantage of distinguishing

features drawn from the attack-centric and self-defense behaviors of

Exploit Kits to detect malicious URLs.

• an implementation and evaluation of the approach and a fast pre-

filtering front-end to allow resource-constrained deployment of the

approach.

The remainder of this chapter is organized as follows. In Section 5.2,

we present a brief background on Exploit Kits. Section 5.3 presents the

details of the attack-centric and self-defense behaviors of Exploit Kits and

how we leverage these behaviors to draw effective features for detection of

malicious URLs linked with Exploit Kits. A brief overview of our approach

is discussed in Section 5.4. The discussion on the training infrastructure

and detection are presented in Section 5.5 and Section 5.6 respectively. We

present the data collection methodology, dataset, and experimental setup



78 Chapter 5. Detection of Exploit Kits

in Section 5.7. In Section 5.8, we discuss the evaluation results of our

approach. Finally, Section 5.9 concludes this chapter.

5.2 Exploit Kits

An Exploit Kit is a pre-packaged malicious software that is used to ex-

ploit vulnerabilities found in software applications (e.g., operating system,

browsers, geo-location, browser plugins) for the purpose of spreading mal-

ware. Exploit Kits are one of the most common methods used in cybercrime

and their emergence has been well documented in recent work [37]. Cyber-

criminals target vulnerabilities in operating systems, web browsers, office

software, and third-party plugins to infect victim machines. The advent

of Exploit Kits dates back to 2006 when the MPack kit was discovered for

the first time [51].

Exploit Kits come with pre-written exploit code and they usually in-

clude installer scripts, a number of exploits, configuration details, admin-

istration features for the kit owner. The payload of the exploits could

be key-loggers, botnets, fake anti-virus engines, or trojans. Exploit Kits

are marketed in the underground marketplace and like legitimate software

there are regular bug fixes, feature enhancements, customer support, end-

user license agreements, and even competitions among the Kit developers.

Most Exploit Kits: are written in PHP (some in C/C++), use fingerprinting

code, use extensive obfuscation, and use a number of third-party code (e.g.,

JavaScript and CSS). Examples of popular Exploit Kits include RedKit,

CrimePack, CrimeBoss, Cool, Blackhole, SweetOrange, Eleanore, Fragus,

NuclearPack, Sakura, NeoSploit, Siberia Private, and Styx.

According to the 2013 Internet Security Threat Report by Symantec

[87], Blackhole took 41% of all Web-based attacks in 2012. There was also

the release of an updated version of the kit (Blackhole 2.0) hinting that



5.2. Exploit Kits 79

1:   [HTTP Redirection (Status: 302)]  http://sunny99.cholerik.cz/plugins/3yvPRqFJ.php --> http://antiktextile.ru/dnfl.html  
2:   [HTTP] URL: http://antiktextile.ru/dnfl.html  (Content-type: text/html; charset=utf8, MD5: 802d356f66471af21f6526fe949f7f71) 
3:   [params redirection] http://antiktextile.ru/dnfl.html  -> http://antiktextile.ru/bt.jnlp 
4:   http://antiktextile.ru/dnfl.html  -- params --> http://antiktextile.ru/bt.jnlp 
5:   [HTTP] URL: http://antiktextile.ru/bt.jnlp  (Status: 200, Referrer: http://antiktextile.ru/dnfl.html ) 
6:   [HTTP] URL: http://antiktextile.ru/bt.jnlp  (Content-type: text/html; charset=utf8, MD5: 454a4155942feba2a03e2d6d3fba160f) 
7:   [JNLP] <param name=\"__applet_ssv_validated\" value=\"true\"></param>
8:   [JNLP redirection] http://antiktextile.ru/dnfl.html  -> http://antiktextile.ru/6p.jar
9:   http://antiktextile.ru/dnfl.html  -- JNLP --> http://antiktextile.ru/6p.jar  
10: [HTTP] URL: http://antiktextile.ru/6p.jar  (Status: 200, Referrer: http://antiktextile.ru/dnfl.html )", 
11: [HTTP] URL: http://antiktextile.ru/6p.jar  (Content-type: application/java-archive, MD5: 291580278dc13a025390634126b3f8b9)

Figure 5.1: Part of an activity trace of the RedKit Exploit Kit on July 10, 2013. Visited

from IE6.0 on Windows XP SP3 with Adobe Acrobat Reader Version 9.1.0, Java plugin

Version 1.6.0.32, and Shockwave Flash Version 10.0.64.0.

its impact is likely to continue. Another Exploit Kit is Sakura which took

22% of overall kit usage in 2012. The next 3 in the top 5 kits in 2012 are

Phoenix (10%), RedKit (7%), and Nuclear (3%).

1 function qweqwewqe(hid) {

2 var info = {

3 plugins : {

4 java: plg_all_vers(’Java’),

5 adobe_reader: plg_ver(’AdobeReader’),

6 flash: plg_ver(’Flash’),

7 quick_time: plg_ver(’QuickTime’),

8 real_player: plg_ver(’RealPlayer’),

9 shockwave: plg_ver(’Shockwave’),

10 silver_light: plg_ver(’Silverlight’),

11 vlc: plg_ver(’VLC’),

12 wmp: plg_ver(’WMP’)

13 }

14 }

15

16 var pass = rnd_str(1+Math.floor(Math.random()*10));

17 var obj = {};

18 obj["h"+rnd_str(1+Math.floor(Math.random()*10))] = hid; // host id

19 obj["p"+rnd_str(1+Math.floor(Math.random()*10))] = pass; // XOR pass

20 obj["i"+rnd_str(1+Math.floor(Math.random()*10))] =

kor(JSON.stringify(info), pass);

21



80 Chapter 5. Detection of Exploit Kits

22 $("body").load("c"+rnd_str(1+Math.floor(Math.random()*10)), obj);

23 }

24

25 function plg_all_vers(name) {

26 var info = PluginDetect.getInfo(name);

27 var vers = info.All_versions;

28 if(!vers)

29 return ’’;

30 return info.All_versions.join(’;’)

31 }

32

33 function plg_ver(name) {

34 var info = PluginDetect.getVersion(name);

35 return info;

36 }

Listing 5.1: An excerpt from a client-fingerprinting code in the Neutrino Exploit Kit [58].

Figure 5.1 shows an excerpt from interaction with a real Exploit Kit

on July 10, 2013. When a browser was pointed to http://sunny99.

cholerik.cz/plugins/3yvPRqFJ.php, it was automatically redirected to

http://antiktextile.ru/dnfl.html, a landing page for the RedKit Ex-

ploit Kit (Lines 1-2 in Figure 5.1). What happens next is a parameter-

based redirection (Lines 3-6) to initiate the JNLP (Java Network Launch

Protocol) to download and execute a remote JAR file by exploiting the se-

curity warning bypass vulnerability (CVE-2013-2423) on Java Web Start

plugin (Lines 7-11).

As we discussed in Chapter 2 (Section 2.5), a vital step in the workflow

of Exploit Kits is the client-profiling (fingerprinting) step. The subsequent

steps of the attack chain are determined based on the outcome of this step.

As an example, Listing 5.1 shows a fingerprinting code from the landing

page of the Neutrino Exploit Kit. This code is a customized version of

the popular PluginDetect1 library that is used in several Exploit Kits. As

1http://www.pinlady.net/PluginDetect/



5.3. From Behavior to Features 81

can be seen from Listing 5.1, the Exploit Kit checks details about the type

and version number of the common browser plugins (Lines 1-14) and a

PluginDetect object is used to get these details (Lines 26 and 34).

5.3 From Behavior to Features

In this section, we discuss how, based on our analysis of 38 distinct Ex-

ploit Kits, we derive distinguishing features based on which we train our

classifiers for detection.

As we discussed earlier, the mission of Exploit Kits is to infect victims’

devices with malware and compromise the victims’ environment to use it to

conduct further attacks. To accomplish this mission, Exploit Kits exhibit

several attack-centric characteristics. At the same time, we have observed

that Exploit Kits have to do a great deal of self-defense to evade detection.

We got access to the source code of 38 distinct Exploit Kits. We ana-

lyzed them with the purpose of leveraging their characteristics to automati-

cally detect URLs linked with them. The analysis involved semi-automated

source code inspection, deployment and then runtime probing of the Kits

in a contained setting. A detailed characterization of the 38 Exploit Kits

we analyzed is summarized in Table 5.1. To complement our in-house anal-

ysis, we used a virtualized sandbox environment to probe live Exploit Kits

on the Web. In the rest of this section, we describe how we take advantage

of the attack-centric and self-defense behaviors of Exploit Kits to develop

features we use to train our classifiers for detecting malicious URLs hosted

by Exploit Kits.

5.3.1 Attack-Centric Behaviors

From the point of view of detecting malicious URLs that lead to Exploit

Kits, we noticed that the attack chain of an Exploit Kit when it is visited by



82 Chapter 5. Detection of Exploit Kits

Table 5.1: Characterization of Exploit Kits based on their attack-centric and self-defense

behaviors. Ver= Version, CP= Client Profiling, IPB= IP Blocking, Sel= Exploit Selec-

tion, Obf= Exploit Obfuscation, Blklst= Blacklist Lookup, Sign.Ev.= Signature Evasion,

Rbt.Blk= Robot Blocking, Cod.Prt= Code Protection, Add.= Allow Adding Exploit.

Kit Ver. CP IPB Sel. Obf. Blklst. Sign.Ev. Cloak Rbt.Blk Cod.Prt. Lang. Add.

0x88 3.0 Yes Yes Yes Yes No No No Yes None PHP No

Adrenalin NA Yes Yes Yes Yes Yes Yes Yes No ZendGuard PHP Yes

Armitage 1.0 Yes Yes Yes Yes No No Yes No None PHP No

Blackhole 1.1.0 Yes Yes Yes Yes Yes Yes Yes No IonCube PHP Yes

BleedingLife 2.0 Yes No Yes No No No Yes No IonCube PHP No

CrimePack 3.1.3 Yes Yes Yes Yes Yes No Yes Yes IonCube PHP Yes

Cry NA Yes Yes No No No No Yes Yes IonCube PHP No

Eleonore 1.4.1 Yes Yes Yes Yes No No Yes Yes None PHP No

El Fiesta 1.8 Yes No Yes Yes No No No No None PHP No

FirePack 0.18 Yes Yes Yes Yes No No Yes No ZendGuard PHP No

Fragus 1.0 Yes Yes Yes Yes Yes Yes Yes Yes IonCube PHP Yes

GPack NA Yes Yes Yes Yes No No Yes No IonCube PHP No

IcePack 5 Yes Yes Yes Yes No No No No None PHP No

Liberty NA Yes Yes Yes Yes No No No No None PHP No

Luckysploit NA Yes Yes Yes Yes No No Yes No Crypto PHP No

MPack 0.99 Yes Yes Yes Yes No No Yes No Custom PHP No

MultiSploit NA Yes Yes Yes Yes No No Yes No None PHP No

MyPolySploit NA Yes Yes Yes Yes No No Yes No None PHP No

NeoSploit 2.1 Yes No Yes Yes No No No No Custom PHP No

Neon NA Yes Yes Yes Yes No No Yes No ZendGuard PHP No

Nuke NA Yes Yes Yes Yes No No No Yes None PHP No

Phoenix 2.1 Yes Yes Yes Yes Yes No Yes Yes IonCube PHP No

RDS 2.0 Yes Yes No Yes No No Yes No None PHP No

SALOPack NA Yes Yes Yes Yes No No Yes No None PHP No

Fiesta NA Yes Yes Yes Yes No No Yes No None PHP No

SEOSploitPack NA Yes No Yes Yes No No Yes No None PHP No

Sava NA Yes Yes Yes Yes No No Yes No None PHP No

Siberia NA Yes Yes Yes Yes No No Yes Yes None PHP No

SmartPack NA Yes Yes Yes Yes No No Yes Yes None PHP Yes

Sploit25 NA Yes Yes Yes Yes No No Yes Yes None PHP No

SpyEye 1.4.1 Yes Yes Yes Yes Yes Yes Yes Yes Custom PHP Yes

TargetExploit 0.06 Yes Yes Yes Yes No No Yes Yes None PHP No

ToRPack NA Yes Yes Yes Yes No No Yes Yes ZendGuard PHP No

Tornado NA Yes Yes Yes Yes No No Yes No ZendGuard PHP No

Unique 1.4.1 Yes Yes Yes Yes No No No No IonCube PHP Yes

Yes 2.0 Yes No Yes Yes No No Yes No IonCube PHP No

ZuesKit 1.2.1.8 Yes Yes Yes Yes No Yes Yes Yes None PHP Yes

zoPack NA Yes Yes Yes Yes No No Yes Yes None PHP No



5.3. From Behavior to Features 83

a victim client gives useful insights as to the characterization of Exploit Kit

behaviors. From our analysis, we identify the following four attack-centric

behaviors of Exploit Kits.

Client Profiling

From our analysis, we noticed that an essential component in all Exploit

Kits is the use of a fingerprinting routine in a form of obfuscated JavaScript

code that is unpacked and executed on the client browser. Fingerprinting in

most Exploit Kits has two components performed in the order identification

and then validation. Identification is aimed at collecting the client profile

which includes the type and version of the operating system, browser, and

installed browser plugins. In particular, most Exploit Kits (34 out of 38)

check the presence and version number of Acrobat Reader, Flash Player,

and the Java WebStart plugin. All the 38 Exploit Kits we analyzed perform

identification of the visiting-client.

Validation involves further inspection of the client personality to check

if the client is a real user as opposed to a bot. As per our analysis, 36 out

of the 38 Exploit Kits perform validation with the exception of Eleonore

and RDS which proceed to preparing the exploit based only on the identity

of the client.

The crucial features we capture from client profiling are routines invoked

when an obfuscated JavaScript is unpacked and executed on the client

side. These are fingerprinting specific features manifesting themselves as

routines from the common PluginDetect2 library that is widely used by

Exploit Kits to collect identifying information of the client. For example,

de-obfuscation of the obfuscated JavaScript code used by Exploit Kits for

fingerprinting consistently shows the occurrence of the flagship functions

such as getjavainfo.jar, pdpd(), and getversion(). We confirmed the

2http://www.pinlady.net/PluginDetect/



84 Chapter 5. Detection of Exploit Kits

presence of these functions in 28 of the 38 Exploit Kits while the other

10 Exploit Kits used function aliases to wrap these functions. The feature

PluginDetect Routines under the Interaction-Specific feature class in Table

5.2 is used to capture the unique number of these functions during client

profiling.

Chain of Redirections

Probing if live Exploit Kits shows that the Kits take clients through a

chain of redirections to ultimately land them on the page that hosts the

actual exploit. Depending on the remote resource they want to interact

with (access), they use different redirect types. The redirect types include

window-open, HTTP (with different status codes like HTTP 3XX), script

source (mostly used to point to remote JavaScript), params (redirection

based on URL parameters), applets (remote invocation of Java applet),

JNLP (Java Network Launch Protocol invocation), iframe (specially hidden

and small iframes as legitimate iframes are large enough to be visible),

and HREF-based redirection. According to our observation when probing

live Exploit Kits on the Web, we confirmed that Exploit Kits such as

RedKit, SweetOrange, Blackhole, and Cool are particularly notorious in

using complex redirection chains by combining these redirect methods.

Exploit Obfuscation

Except two Exploit Kits, BleedingLife and Cry217, all the rest (about

95%) of the Exploit Kits we analyzed obfuscate the malicious JavaScript

code they use in client profiling, exploit preparation, and exploit delivery.

Obfuscation renders static analysis techniques ineffective and further com-

plicates the task of dynamic analysis. Usually, the obfuscation technique

is one of the components to be revamped when a new version of an Exploit

Kit is released. Because, by the time the Kits are popular on the Web,



5.3. From Behavior to Features 85

the obfuscation technique is likely to be uncovered and countermeasure is

developed to thwart it.

Allowing Additional Exploits

According to our analysis, 7 out of the 38 Exploit Kits allow uploading an

additional exploit binary on top of the exploits they are shipped with. To

confirm the addition of new exploits, we first added a key-logger executable

to CrimePack3.1.3 and Fragus1.0 Exploit Kits. Then, we deployed them

on a server and pointed a vulnerable client to both Exploit Kits. In both

cases, the key-logger executable was successfully downloaded to the client.

Although not available in most Exploit Kits, the possibility to include

additional exploits is a functionality to allow skillful attackers to extend

the Exploit Kit with “user-defined” exploits.

5.3.2 Self-Defense Behaviors

The primary purpose of Exploit Kits is to be effective in infecting victims

with malware. However, to continuously infect victims, they need to escape

detection techniques, for which they have to be armed with self-defense

functionalities. In the following, we discuss six self-defense behaviors we

inferred from our analysis.

IP Blocking

In an attempt to escape from automated analysis techniques, almost all Ex-

ploit Kits we analyzed are equipped with IP blocking mechanisms against

bots (e.g., GoogleBot) and IP addresses from ToR networks. About 87%

of the Exploit Kits we analyzed have features to block IP addresses of

known services from Anti-Virus companies or security researchers. The

only Exploit Kits that do not use IP blocking are Bleeding Life, El Fiesta,



86 Chapter 5. Detection of Exploit Kits

NeoSploit, SEOSploitPack, and the Yes Exploit Kit.

Blacklist Lookup

Exploit Kits check if their URL is blacklisted in one or more public black-

listing services. If so, the kit owner (administrator) changes (relocates) the

URL and the kit continues to operate until it is discovered and blacklisted

again. In total, 6 of the 38 Exploit Kits in our analysis check their URL

against one or more blacklists. CrimePack, for instance, has a feature that

allows it to lookup the Kit’s URL in 8 major blacklists including Google

Safe Browsing.

Signature Evasion

Anti-virus engines and Intrusion Detection Systems use string signatures to

detect malicious content. Some Exploit Kits lookup the signature databases

of online malware (virus) scanning services (such as virtest3, scan4you4) so

as to check if their signatures belong there. For example, the latest ver-

sion of Blackhole (Version 2.1.0) checks for its own signatures in virtest

and scan4you online virus-scanning services. The 5 Exploit Kits that

check for their own signatures in online ant-virus engines are Adrenalin,

Blackhole, Fragus, SpyEye, and ZeusKit.

Cloaking

We confirmed that 15 out of the 38 Exploit Kits use cloaking. When

visited after a successful exploit delivery, most (13) of them respond with

the HTTP 404 (page not found) error while a few (2) responded with a

blank page with no content and / or action. There are two cases in which

an Exploit Kit might use cloaking. One is upon failure to exploit a client

3http://virtest.com
4http://scan4you.com



5.3. From Behavior to Features 87

either because the client turns out to be invulnerable or it is a bot. In

this scenario, the most common practice is to show HTTP 404 error or

to simply redirect the client to a harmless page. Some Exploit Kits throw

back to the client a random exploit just to try their chance (we noticed this

in 0x88, Eleonore, Fragus, and Sava). The other case in which cloaking is

used is when an already infected victim visits the Exploit Kit page. In this

case, most Exploit Kits respond with HTTP 404 while some show a blank

page with no action.

Blocking of Robots

We found the robots.txt file in 14 of the 38 Exploit Kits and in all the

cases the kits disallow any indexing attempt. Search engine crawlers rely

on the robots.txt file placed in the public directory of websites to check

permission for indexing of web pages. Some Exploit Kits (e.g., CrimePack,

Eleonore, Fragus, Nuke, Phoenix, Siberia) disallow indexing by blocking all

bots. This is done in an attempt to escape from a more advanced analysis

by search engines to filter-out (from their index) suspicious or malicious

web pages. Although not all Exploit Kits block robots, our analysis shows

that when combined with attack-centric characteristics, such as client pro-

filing and redirections, this behavior contributes to the identification of

Exploit Kit URLs in practice.

Code Protection

Our analysis shows 3 distinct outcomes as to the code protection scheme

used by Exploit Kits. About 8 (24%) use IonCube5, about 5 (13%) use

ZendGuard6, and about 4 (10%) use custom code protection scheme (e.g.,

custom cryptography). The motivation in code protection is primarily to

5http://www.ioncube.com/
6http://www.zend.com/en/products/guard/



88 Chapter 5. Detection of Exploit Kits

Table 5.2: Features used in WebWinnow to detect malicious URLs hosted by Exploit

Kits.
Aggregate-Behavioral

Feature Name Feature Description Behavior

Exploits known exploits from exploit-db.com Attack

Redirections count of all types of redirections (used in [18]) Attack

Connections count of all connections made to other resources Attack/Defense

Locations count of all remote locations contacted Attack/Defense

Files count of all files received from remote locations Attack/Defense

Interaction-Specific

Feature Name Description Behavior

Window Opens count of window.open redirections Attack (redirect)

HTTP Redirects count of HTTP 3xx redirects (used in [18]) Attack (redirect)

JNLP Redirects count of JNLP initiations Attack (redirect)

Param Redirects count of parameter-based redirections Attack (redirect)

Script-SRC Redirects count of script src redirections Attack (redirect)

Link Redirects count of link redirections Attack(redirect)

iFrame Redirects count of iframe-based redirections Attack (redirect)

Familiar Kit URLs count of familiar Exploit Kit URL patterns Attack (redirect)

PluginDetect Routines count of functions related to PluginDetect library Defense (anti-robot)

Java WebStart Routines count of Java WebStart initiations Attack (redirect)

URL Translation Redirects count of URL translation redirections Attack (redirect)

Connection-Specific

Feature Name Description Behavior

ActiveX Attempts count of attempts to load ActiveX controls Attack (obfuscation)

Heap Spray Attempts count of attempts to allocate very large heap size Attack (obfuscation)

Unique Countries count of unique countries traversed Attack(redirect)/ Defense (cloaking)

Top Level Domains count of unique TLDs involved in interaction Attack (redirect) /Defense (cloaking)

Content-Specific

Feature Name Description Behavior

HTML size in bytes of HTML content Defense (cloaking)

CSS size in bytes of the CSS content Attack (obfuscation)

JavaScript size in bytes of JavaScript code Defense (obfuscation)

JAR size in bytes Java Archive files Defense (obfuscation)

Octet-Stream size in bytes of arbitrary content Defense (obfuscation)

Command size in bytes of commands (e.g. shell command injection) Defense (obfuscation)

Plain Text size in bytes of plain text delivered to client Defense (obfuscation)

Compressed Content size in bytes of compressed content Defense (obfuscation)

XML size in bytes of XML document Defense (obfuscation)

Portable Document size in bytes of portable document Defense (obfuscation)



5.3. From Behavior to Features 89

prevent code stealing while at the same time giving hard time for detection

techniques that use code analysis. IonCube, for instance, not only allows

encoding of PHP code but also allows binding of code to a certain IP

address or domain. Despite these code protection mechanisms, source code

is sometimes leaked. To combat source code leakage, some Exploit Kits

(e.g., Blackhole) are shifting their “business model” to only rental mode

(exploit-as-a-service [37, 82]) to ensure that they do not give away even

the protected source code.

5.3.3 Features

The features we draw from the attack-centric and self-defense behaviors

of Exploit Kits are summarized in Table 5.2. We designed a total of 30

features of which 5 are Aggregate-Behavioral; 11 are Interaction-Specific; 4

are Connection-Specific; and 10 are Content-Specific features. Of all the

the features, the interaction-specific features are the most discriminating

features because we characterize fingerprinting and the various redirection

attempts using fine-grained details of interaction types. In the following,

we briefly describe these features. In Section 5.8, we evaluate the statistical

significance of these features based on the training dataset.

Aggregate-Behavioral

These 5 generic features provide a course-grained characterization in terms

of the number of known exploits (based on CVE entry in Exploit Database7),

aggregated count of redirections (similar to the redirection feature in [18]),

total number of connections made to other destinations, total number of lo-

cations from which remote content is fetched, and total number of distinct

files dropped on the client.

7http://exploit-db.com



90 Chapter 5. Detection of Exploit Kits

Interaction-Specific

In this class of features, 8 out of the 11 features have not been used by

previous work. Only HTTP Redirects, Script-SRC Redirects, and Link

Redirects have been used in previous work [18] to detect malicious web

pages. We noticed that these fine-grained redirection features are effective

in separating Exploit Kit URLs from non Exploit Kits. Another particu-

larly useful feature is the PluginDetect Routines, which counts the number

of fingerprinting routines used by Exploit Kits.

Connection-Specific

The 4 features in this class are those that are captured when connections

are made to remote sources. They include ActiveX loading attempts (e.g.,

presence of Microsoft XMLHTTP ActiveX), heap-spraying attempts (e.g.,

when the argument to the eval() function is too large), unique number of

countries traversed and Top Level Domains (TLDs) involved in the con-

nection. Features such as these are attributed to the strategy followed by

cyber-criminals to complicate the traceability of the Exploit Kit infrastruc-

ture during take-down operations by Law Enforcement.

Content-Specific

We extract a total of 10 features from the content-related activity logs.

Some MIME types (e.g., PDF, Shockwave file) are particularly attractive

for Exploit Kits as they target vulnerable plugins that render such file

types. More precisely, we extract the size of content delivered to the client

for common MIME types used on the Web with emphasis on content-

type used by Exploit Kits. In particular, these features include size (in

bytes) of HTML, CSS, JavaScript, Octet-Stream (e.g., long byte pattern),

command, plain text, compressed content (e.g., *. zip, *.gz, *.tar), XML,



5.4. WebWinnow Overview 91

PDF, and Postscript content. Notice that where there is obfuscation these

content-specific features are extracted after de-obfuscation so as to obtain

feature values that can distinguish content delivered by Exploit Kits from

content delivered by benign web sites.

5.4 WebWinnow Overview

In a nutshell, our approach is formulated as a machine-learning based tech-

nique for the detection of malicious URLs hosted by Exploit Kits. At the

core of our approach is that, based on the workflows of Exploit Kits, we

leverage their attack-centric and self-defense behaviors to design distin-

guishing features. Using the features, we train precise classifiers to detect

malicious URLs hosted by Exploit Kits.

Our approach resembles techniques that combine honeyclients and learn-

ing to analyze the side-effects of malicious activities. These techniques

(e.g., [65, 99]) inspect the pre-execution and post-execution snapshots of

a honeyclient system properties (e.g., processes, memory access). How-

ever, in our approach, we base the characterization of malicious activities

on what happens during execution instead of analyzing the side-effects.

In effect, the goal of the analysis is shifted from examining side-effects

to analyzing firsthand execution dynamics to reveal malicious activities.

Moreover, we avoid the overhead of taking system snapshots before and

after execution. The following three steps summarize the pipeline of our

approach:

1. As we have seen in Section 5.3, we analyze source code and runtime

behavior of Exploit Kits by deploying them in a controlled setting.

In addition, we probe live Exploit Kits on the Web to capture their

activity and the content they deliver to the client. By combining these

observations, we identify attack-centric and self-defense mechanisms of



92 Chapter 5. Detection of Exploit Kits

Exploit Kits. Based on careful examination of the attack-centric and

self-defense behaviors, we then draw features that are precise enough

in distinguishing URLs hosted by Exploit Kits.

2. We extract these features from samples of (1) Exploit Kits we installed

locally (2) live Exploit Kits on the Web and (3) non Exploit Kit

URLs. Using the features, we train and evaluate supervised learning

algorithms from which we generate detection models. We discuss the

training in detail in Section 5.5.

3. Given an unknown URL, we query the detection models to give the

verdict as to whether the URL is an Exploit Kit URL or not. In

Section 5.6, we describe the detection in detail.

As the notion of malicious URLs is broad, before we continue to de-

scribe the training and detection, we highlight the semantics of what we

call an “Exploit Kit URL”. The notion of an Exploit Kit URL in our ap-

proach is a URL that when a victim lands on it: fingerprints the victim’s

personality; involves a series of redirections; and eventually attempts to

download and execute arbitrary binary on the victim’s environment with-

out the knowledge of the victim. In addition, when visited again (e.g., after

a few seconds), the same URL responds with benign-looking page, page not

found error, or another variant of the content it tried to download and ex-

ecute in the first encounter. Alternatively, when a victim directly visits

a landing page of an Exploit Kit and the fingerprinting and exploit deliv-

ery proceeds without redirections, we also call such a URL an Exploit Kit

URL. Hence, it is such a URL that we focus on in this approach.



5.5. Training 93

1

HC HC HC

Training
Classifier

Pre-Filtering 
Engine

Exploit Kit

Unknown URL

features
HC

HoneyClients

Classifier

result

suspicious

features

Locally Deployed 
Exploit Kits

Live 
Exploit Kits

features

HC

HC

HC

Training Phase Detection Phase

Web

Figure 5.2: WebWinnow Training and detection pipeline. HC = HoneyClient.

5.5 Training

We now present the details of the training phase of WebWinnow by

describing the training infrastructure for Exploit Kits we installed locally,

live Exploit Kits on the Web, and non Exploit Kit URLs.

Based on the features derived from the behavioral characterization of

Exploit Kits we described in Section 5.3, the goal of the training is to

generate a model that is used to detect Exploit Kit URLs. To enrich our

training set, we capture as much activity-centric details as possible of both

Exploit Kit and non Exploit Kit URLs in a contained environment. To

this end, we divide the acquisition of our training dataset into three parts.

The first part probes locally deployed Exploit Kits. The second part deals

with probing of live Exploit Kit URLs. The third part involves probing of

non-Exploit Kit URLs. In what follows, we describe these three contained

probing steps in detail.



94 Chapter 5. Detection of Exploit Kits

5.5.1 Locally Installed Exploit Kits

To inspect the attack-centric and self-defense behavior of Exploit Kits in

action, we installed Exploit Kits for which we could get the source code.

The advantage of having locally installed Exploit Kits is twofold. First,

it gives a deeper understanding of the operational mechanics of the Ex-

ploit Kits, specially how they orchestrate attacks. Second, it gives insights

as to how the infection statistics is collected and the mechanisms that

the Exploit Kits employ to evade detection techniques. In a virtualized

environment with multiple Exploit Kits deployed on the server-side, we

schedule honeyclients on the client-side to visit the Exploit Kit URLs with

a vulnerable user-agent personalities (details in Section 5.7.1). The hon-

eyclients are directly pointed to and visit the landing page of the Exploit

Kits so as to collect whatever the Exploit Kits throw back to the client.

More precisely, we collect HTML and CSS content, script loaded (mainly

JavaScript), exploit payload dropped into the honeyclient, remote con-

tent fetched, and shell-code execution attempts, and more importantly the

whole HTTP transaction. After a few seconds, we repeat the visit in order

to compare the activity logs with the first visit. In most Exploit Kits, if the

first visit succeeds in dropping an exploit payload, the subsequent visits

from the same address of the honeyclient are usually served with benign-

looking response or error codes. As explained earlier, most Exploit Kits

make use of cloaking.

5.5.2 Live Exploit Kits on the Web

For probing the activity log of live Exploit Kits on the Web, we rely on

our data sources of live Exploit Kits in the wild. Given a live Exploit Kit

URL at hand, we launch one of our honeyclients and probe the server to

collect its activity logs with details similar to the Exploit Kits installed



5.5. Training 95

locally. The honeyclients we use for live Exploit Kits are separate from the

ones we use for the locally installed kits. More importantly, we reset the

honeyclients after collecting the activity logs of a given Exploit Kit before

moving on to visit the next Exploit Kit URL.

An attentive reader might wonder about the distinction between the

contained probing of locally installed and live Exploit Kits on the Web.

There are two fundamental variations pertinent to the typical steps in-

volved in Exploit Kit workflow we described in Chapter 2. In the first

place, live Exploit Kits are engaged in a series of redirections before reach-

ing the landing page while the locally installed ones are not (unless we

configure them to have redirections). Secondly, compared to the versions

of the kits we deployed locally, we presume that live Exploit Kits are likely

to be more recent versions which, we assume, give us a fresher insight of

their workflow.

5.5.3 Non Exploit Kit URLs

For this class of URLs, we use publicly known benign URLs to monitor

their execution activity using the same configuration of honeyclients used

for locally installed Exploit Kits and live Exploit Kits. The difference in

this case, however, is that we do not repeat the probing as we assume that

these URLs have a fairly stable activity log apart from changes in page

content and client-side code, which we do not analyze directly as we only

measure the size in bytes of content delivered to the honeyclient. We also

use separate honeyclient instance to probe non Exploit Kit URLs to ensure

the sanity of the activity logs we collect.



96 Chapter 5. Detection of Exploit Kits

5.5.4 Model Generation

To verify the Exploit Kit samples (of both locally installed and those live

on the Web), we semi-automatically inspect the activity logs we collected

to ensure that they drop into the honeyclient at least one exploit payload.

Similarly, for non Exploit Kit samples, we manually check for the pres-

ence of suspicious samples that might arise due to compromised legitimate

websites that might have been hijacked by cyber-criminals and injected

with an iframe leading to an Exploit Kit URL. After verifying the samples

collected, we extract the 30 features described in Section 5.3. Finally, we

label the samples as EK (Exploit Kit) for samples from locally installed

and live kits on the Web or as NEK (Non-Exploit Kit) for those which are

known to be benign.

Using the labeled samples, we use established supervised learning algo-

rithms (described in Appendix A) to train classifiers and evaluate them to

decide which classifier to use for detection. The metrics to evaluate the

classifiers is True Positive Rate (TPR) and False Positive Rate (FPR) on

the training set using stratified 10-fold cross validation. We used 3 tree-

based learning algorithms namely: J48 Decision Tree, Random Tree, and

Random Forest. In addition, we also used one stochastic learning algo-

rithm (Bayes Network) and one function-based learning algorithm (Logis-

tic Regression). The details of performance evaluation on these algorithms

during training and testing are discussed in Section 5.8.

5.6 Detection

Given an unknown URL, to detect if it leads to an Exploit Kit site, Web-

Winnow’s detection phase works as follows. If resource is a constraint,

a pre-filtering component is invoked to check if the URL under exami-

nation can be quickly matched against pre-compiled rules based on URL



5.6. Detection 97

anatomy of popular Exploit Kits. If not, the URL is directly analyzed using

the learning-based classification. Note that the pre-filtering component in

detection is not necessary if resource is not a constraint. In the rest of this

section, we discuss these two components of the detection in more detail.

5.6.1 Rule Based Pre-Filtering

Detecting malicious content using rules based on heuristics that match the

payload of malware is commonly used in Anti-Virus engines and Intrusion

Detection Systems. When the samples to analyze are resource intensive,

fast scanning of the samples saves resources by filtering out easy-to-detect

samples. Such a need for a fast but imprecise filtering front-end for the

detection of malicious URLs is recognized and used by Provos et al. [70, 71]

on finding potentially malicious web pages on the Web and by Canali et al.

[13] on web pages that launch drive-by-download pages.

In light of facilitating resource-constrained deployment of our approach,

we analyzed the URL anatomy of Exploit Kits and specified pattern recog-

nition rules similar to Intrusion Detection rules. Our analysis of the lexical

aspects of the URLs of Exploit Kits shows that most Exploit Kits have

reasonably stable URL patterns for the landing pages. Parts of the URLs

used for exploit delivery also have predictable patterns except for the dy-

namically generated elements of the URL parameters. However, the URL

patterns vary across different classes of Exploit Kits and in some cases

across different versions of an Exploit Kit. For instance, prior to June

2013, the Blackhole Version 2.0.1 exploit delivery URL did not use upper-

case letters in parameter names. With the upgrade to Blackhole Version

2.1.0 in June 2013, it started to use uppercase letters in parameter names

along with a few changes in the way other parameter values are generated

(e.g., using seldom encoding of exploit payload) [47].

To take into account these kinds of variations, we specify separate rule



98 Chapter 5. Detection of Exploit Kits

sets for each Exploit Kit and each version of the same Exploit Kit. In the

course of specifying the rules, we consider the landing URL, its parameter

names, parameter values, and the various parameter encodings used on

payloads (e.g., hex-encode). The rule set is updated either when the URL

anatomy of an Exploit Kit changes or when a new Exploit Kit is discovered

in the wild.

To this end, we compiled rules for 18 currently prevalent Exploit Kits

after carefully studying the anatomy of landing pages and exploit delivery

URLs of each kit, including the variations in URL anatomy across different

versions of the same kit. In addition to compiling the rules ourselves,

we also validated and reused some rules made publicly available by other

authors [57, 59]. Table 5.3 shows a summary of number of rules for landing

page(s) and exploit specific URLs we compiled up until the time of this

writing. Notice that the number of rules refers to all the versions of kits

for which we were able to analyze their URL anatomy.

5.6.2 Learning-Based Classification

Given an unknown URL, first a honeyclient probes the remote server the

URL points to in order to collect activity logs from the beginning to the

end of the interaction. From the transactions of the interaction, activity-

centric features are extracted and an already trained model is queried to

classify the URL as an Exploit Kit URL or not. The main assumption in

the activity-centric characterization to distinguish Exploit Kit URLs from

other types of URLs is the intrinsic workflow in Exploit Kits that involves

client fingerprinting, series of redirections, attempts to deliver and then

execute exploit payload, along with typical self-defense behaviors (e.g.,

cloaking) we already discussed.



5.6. Detection 99

Table 5.3: Summary of rules compiled for 18 popular Exploit Kits.

Exploit Kit Landing URL(s) Exploit Total

Blackhole 11 4 15

Cool 2 0 2

CrimeBoss 2 1 3

CritXPack 2 1 3

Fiesta 2 3 5

g01Pack 0 3 3

Impact 1 1 2

Neutrino 1 3 4

Nuclear 1 2 3

Popads 1 4 5

Private 1 0 1

RedKit 1 3 4

SafePack 0 2 2

Sakura 1 0 1

Sofosfo 1 1 2

Styx 3 8 11

SweetOrange 2 3 5

TDS 2 0 2

5.6.3 Implementation Overview

Pre-Filtering. To specify the rules based on the URL anatomy of Exploit

Kits, we use YARA8, an open source, multi-platform malware identifica-

tion and classification system. YARA provides a rich and flexible rule

specification language similar to the struct construct in the C language.

Using YARA, one can specify rules that detect strings, instruction se-

quences, regular expressions, and byte patterns of different encodings. In

addition to the rule specification language, YARA provides a scanning en-

gine that can be invoked given rules and samples to identify. For example,

8http://code.google.com/p/yara-project/



100 Chapter 5. Detection of Exploit Kits

YARA rules for detecting some landing URLs for the Blackhole Exploit

Kit and certain URLs used in dropping malware payloads of the RedKit

Exploit Kit might respectively look like the following:

rule BLACKHOLE : exploit_kit

{

strings:

$bh_url= /.php?.*?:[A-Za-z0-9:]{6,}&.*?&/

condition:

$bh_url

}

rule REDKIT_BINARY : exploit_kit

{

strings:

$rk_binary_url = //d{2}.htmls/

condition:

$rk_binary_url

}

As shown in the above examples, a YARA rule is a block composed of

two parts namely: strings and condition. The first is used to define string

patterns through a Perl-Compliant Regular Expression (PCRE) syntax.

The second is where we specify the logical expression to match the patterns

and regular expressions in the strings block. The pre-filtering engine that

takes the YARA rules as input to do the matching is implemented in



5.7. Data Collection and Setup 101

Python taking advantage of the YARA-Python9 wrapper.

Learning-Based Component. To probe remote URLs, we use Thug10,

an open source honeyclient written in Python. Thug is configured on a

virtual machine image that we replicate as needed. We used the Thug

honeyclient for two reasons. First, it is well integrated with the YARA

system. Second, and more importantly, the level of granularity in the activ-

ity logs captured when probing a remote URL is suitably detailed for the

characterization of the typical workflow in Exploit Kits. Before probing

Exploit Kit URLs, identifying parameters of the honeyclient personality

such as user-agent string (e.g., browser type and version, operating sys-

tem type and version), referrer, DOM events, and plugins are properly

configured not only to simulate a realistic browsing behavior but also to

maximize the chance of capturing the end-to-end infection chain that is

orchestrated by Exploit Kits.

5.7 Data Collection and Setup

In this section, we discuss the data collection methodology, the dataset,

and setup for evaluation.

5.7.1 Data Collection

To collect the dataset we use for our evaluation, we analyzed Exploit Kits

in the period April-August 2013 for about 5 months in a contained en-

vironment. In this period, we scheduled the honeyclients to periodically

visit and record the interactions involved with the Exploit Kits we installed

locally. At the same time, we also probed on a daily basis live Exploit Kit

URLs reported by online detection services and blacklists.

9https://pypi.python.org/pypi/yara
10https://github.com/buffer/thug



102 Chapter 5. Detection of Exploit Kits

Using the locally installed Exploit Kits on the server side, we deployed

4 virtual machines as clients with the Thug honeyclient configured with

Internet Explorer 6.0 on Windows XP SP 3 with plugins for Adobe Acro-

bat Reader (Version 9.1.0), Java plugin (Version 1.6.0.32), and Shockwave

Flash (Version 10.0.64.0). We decided to use this user-agent configura-

tion details because it has vulnerabilities that are highly likely to attract

Exploit Kits. We noticed that most Exploit Kits check for such combina-

tion of browser, operating system, and plugins. As for the DOM events’

configuration, we used a standard configuration which enables load() and

mousemove() events.

With the same honeyclient configuration, for live Exploit Kits on the

Web, we relied on the URLs reported as Exploit Kit URLs by the URL-

Query11service. Whenever we find these Exploit Kit sites live, we launch

our honeyclient to probe the URL and record the whole transaction. For

each live Exploit Kit URL that succeeds in dropping an exploit binary to

the honeyclient, we re-probe it after 10 seconds in case of different behavior

(e.g., to check if it performs cloaking). It is important to note that collect-

ing the execution dynamics of live Exploit Kits was not an easy task as

Exploit Kits have a very short lifetime (usually less than 24 hours). This

is because the kit owners relocate them once their URL is blacklisted by

detection services. During the data collection, we noticed quite frequently

that these URLs are taken down or relocated in a matter of few minutes

after they are publicly reported.

The data collection from live Exploit Kits involved 11 kits on a total

of 500 Exploit Kits for which we semi-automatically verified the delivery

of at least one exploit binary when the Kits are probed. Figure 5.3 shows

the percentage distribution of each Exploit Kit in the collected dataset for

training. In the top 3 are g01pack (28%), Styx (21%), and Cool (20%)

11http://urlquery.net



5.7. Data Collection and Setup 103

!"#$%&"$#'"()#"*+

,-./01

2**3 4/&5"# .61,-7! 89//#:'-+./ ;"/$#- 2'"</=*$$ ><?-7# @/)#'"+* @)73/-' 8#AB C*#-3

DE F6 GF 1FH I1 F F F G 1 EF GHD

=3-7!J*3/

!""#$%&'()&*

+#,-./"#0$%1(23*

405678$%9(29*

:';<,-.$%&=('=*

>?008@A,B:0$%;)(9)*

C70D8,$%'(1E*

!A7F0+"DD$%'(1E*

GFH,-8$%'(1E*

I0J8A7B"$%'(9;*

IJ-#0,A$%'(&)*

>8KL$%&;(''*

Figure 5.3: Percentage distribution of live Exploit Kits successfully probed during the

data collection period.

comprising nearly 70% of the dataset followed by SweetOrange (14%),

RedKit (10%), and Blackhole (5%). Interestingly, on June 26, 2013 McAfee

released a report [84] that shows correlation with the high percentage of

the Styx Exploit Kit in the data we collected. According to the report,

from February 2013 to June 2013, a spike in the prevalence of the Styx

Exploit Kit was observed. This time-frame overlaps roughly by 3 months

(April-June) with our data collection period.

5.7.2 Dataset

For training the classifier, we rely on samples collected from the execution

dynamics of the Exploit Kits we installed and executed in a contained en-

vironment. In addition, we use live Exploit Kit URLs that we successfully

probed on the Web during the data collection period. The majority of



104 Chapter 5. Detection of Exploit Kits

these live URLs are collected from http://urlquery.net while few more

are collected from [8, 90, 91, 97]). For non Exploit Kit samples, we used

the Alexa top sites as we, like other approaches [13, 18, 42], assume that

these sites (at least those in the top 500) are less likely to host Exploit

Kits. The collected dataset is divided into labeled training and testing set

as shown in Table 5.4. The training set is used to train different classifiers

and evaluate their performance while the testing set is used to evaluate the

performance of the trained models on a dataset disjoint with the training

set.

To evaluate the pre-filtering engine, we used three datasets of URLs.

The first is the Alexa Top 1 Million sites. Secondly, we used the blacklist

of Malware Domain List. The third is the set of URLs used in training

and testing the classifiers.

Table 5.4: Dataset for training and testing of WebWinnow.

Purpose Non Exploit Kits Exploit Kits Total

Training 500 500 1000

Testing 1117 512 1629

5.7.3 Setup

Training. Using the features collected on the training set, the WEKA

machine learning suite [39] was used to train five supervised learning algo-

rithms to derive detection models. The algorithms are: J48 Decision Tree,

Random Tree, Random Forest, Bayes Network, and Logistic Regression.

The training was done with 10-fold cross validation for all the algorithms.

Testing. On the testing set, the trained classifiers were independently

ran and the classification results were analyzed for accuracy and false pos-

itives.



5.8. Evaluation 105

Pre-Filtering. First, the rule-based pre-filtering engine was ran against

the Alexa Top 1 Million sites and the Malware Domain List URLs collected

over an extended period. Secondly, the pre-filtering was ran on both the

training and testing set.

5.8 Evaluation

This section discusses the evaluation of WebWinnow in light of the ef-

fectiveness of the accuracy of the models generated, accuracy of classifiers

on a separate test set, effectiveness of the pre-filtering engine, analysis of

false positives, and comparison of WebWinnow with a similar system.

More precisely, our evaluation is aimed at answering the following research

questions:

RQ1: Does workflow analysis of Exploit Kits and characterizing them

with distinguishing features based on their attack-centric and self-defense

behavior improve the detection accuracy of existing techniques in malicious

web content detection?

RQ2: Since client-side attacks such as drive-by-downloads are mostly

initiated by Exploit Kits, can we build a mechanism to combat Exploit Kits

in real time?

RQ3: In modeling the dynamic behavior of Exploit Kits, can we leverage

interaction of a potentially vulnerable client and an Exploit Kit server so

as to build better models?

5.8.1 Analysis of Features

Based on the training dataset we used in this work, we now discuss the

statistical significance of the features we presented in Section 5.3.

Aggregate-Behavioral Features. In the training set, the average

number of redirections (of all types) for Exploit Kit URLs is 102 while



106 Chapter 5. Detection of Exploit Kits

for non Exploit Kit URLs is 82. On average, we found one exploit in the

Exploit Kit dataset as opposed to zero in non Exploit Kit dataset. The

average number of connections made to remote sources is 25 for Exploit

Kit dataset while it is 20 in non Exploit Kits. These aggregate values of

features, in fact, are fairly discriminative in putting apart Exploit Kit and

non Exploit Kit URLs.

Interaction-Specific Features. While we observed an average of 1

JNLP-based redirection in Exploit Kit URLs, we could not come across

even a single JNLP-based redirection attempt in non Exploit Kit URLs.

The average number of HTTP 3XX redirections shows that the average is

5 in Exploit Kits compared to an average of 2 in non Exploit Kit dataset.

One of the useful features in this class is the PluginDetect Routines with

an average count of 2 for Exploit Kit dataset as opposed to zero for non

Exploit Kit URLs.

Connection-Specific Features. The average number of ActiveX load-

ing attempts is 4 for Exploit Kit dataset while it is 2 for non Exploit Kit

dataset. The average number of unique countries traversed and TLDs

involved is 4 and 3 respectively for Exploit Kit URLs. Whereas in non

Exploit Kit dataset, it is 1 for unique-countries and TLDs.

Content-Specific Features. On average, the size (in bytes) of plain

text, HTML, CSS, and XML delivered by Exploit Kit URLs is less than

content delivered by non Exploit Kit URLs. On the other hand, the average

size of JavaScript, Octet-Stream, and portable document is greater in the

case of Exploit Kit URLs. For instance, Octet-Stream average size in Ex-

ploit Kit dataset is 13 times that of non Exploit Kit octet-stream content.

Similarly, the average JavaScript content delivered by Exploit Kit URLs is

about 1.5 times bigger in size than JavaScript in non Exploit Kit URLs.

These statistical variations are important indicators of the discriminative

power of these features in practice.



5.8. Evaluation 107

5.8.2 Accuracy of Models on Training Set

The performance of the classifiers derived from our training set is sum-

marized in Table 5.5. We use the usual meanings of True Positive Rate

(TPR, the percentage of correctly classified URLs for both labels), and

False Positive Rate (FPR, the percentage of misclassified URLs for both

labels). Using 10-fold cross validation, J48 Decision Tree and Bayes Net-

work classifier have 100% TPR and 0% FPR. In fact, only the Random

Tree classifier has the lowest TPR and the highest FPR (misclassification

of 29 in 1000 URLs). Overall, the classifiers are quite precise which indi-

cates the discriminative power of the features we derived by leveraging the

attack-centric and self-defense behavior of Exploit Kits’ workflow.

Table 5.5: WebWinnow: Performance of models on the training set.

Classifier TPR FPR

J48 Decision Tree 100% 0.000

Random Tree 97.1% 0.029

Random Forest 99.8% 0.003

Bayes Network 100% 0.000

Logistic Regression 99.9% 0.001

5.8.3 Accuracy of Classifiers on Testing Set

Table 5.6 shows the accuracy of the classifiers on an independent testing

set. Overall, all the classifiers except Random Tree achieved above 99%

accuracy with very low FPR. As shown in the results, the classifiers are

precise enough to correctly classify samples disjoint with the training set,

which shows that our system is effective for realtime detection of malicious

URLs hosted by Exploit Kits and hence the results are in favor of RQ1

and RQ2.



108 Chapter 5. Detection of Exploit Kits

Table 5.6: WebWinnow: Performance of classifiers on a separate testing set.

Classifier TPR FPR

J48 Decision Tree 99.9% 0.001

Random Tree 89.9% 0.032

Random Forest 99.7% 0.002

Bayes Network 99.8% 0.003

Logistic Regression 99.4% 0.005

5.8.4 Effectiveness of the Pre-Filtering

We first evaluated performance of the rule based pre-filtering on the top 1

million Alexa sites over a randomly selected dates from July 18, 2013 to Sep

14, 2013. Figure 5.4 shows the number of URLs flagged as Exploit Kit out

of the top 1 million. Over this period, assuming that the analysis of each

URL consumes the same amount of computational resource, the average

reduction of performance overhead by the pre-filtering is 99.52%. Hence,

if one has to use WebWinnow under a resource-constrained scenario to

analyze the top 1 million Alexa sites, an average of only about 0.5% of

the URLs are to be forwarded to the resource-intensive honeyclient-based

analysis component.

Zooming out the pre-filtering output on August 18, 2013, about 99.49%

of the URLs did not match any of the Exploit Kit rules while 5060 URLs

were pre-filtered as potentially Exploit Kit URLs. This translates to about

0.51% of the 1 million. Further inspection of the pre-filtered URLs showed

that 2138 of the 5060 URLs are related to a URL pattern on youtube.com

domain, which is of the form http://youtube.com/user/USER-NAME with

the USER-NAME part referring to the user name of the account owner on

youtube.com. Wondering if there are Exploit Kit URLs linked with this

URL pattern on youtube, we searched for incidents on the Web. Interest-



5.8. Evaluation 109

!"#$%&'(#")#*+'

,+-#./

01234235 04206235 04201235 04237235 04234235 042/3235 042/5235 042/6235 042/8235 042/1235 042/4235 042/9235 04250235 04253235

7080 6145 6149 6145 6173 619/ 6117 6430 6464 6479 6459 6435 6195 6435

04238235 04231235 042/3235 042/5235 042/6235 042/8235 042/1235 042/4235 042/9235 04250235 04253235 0920/235 09205235 09236235
8894 8894 8894 8894 8894 8894 83/4 8894 8894 8894 8899 8899 8899 8899

+*#"+-# 8871:71

1:15

;<".8894.=&(>.!"#$%&'(#"#?

!""# !$%&'(")) *%')+, -./0,12 3&4,1+ 5'6+$%7" 561#',$ 0$%8,+' 9':;%+ <,='0,12
1/5 898 / 54 / 415 5 / 3 63 5083 5/7 0

!""# !$%&'(")) *%')+, -./0,12 3&4,1+ 5'6+$%7" 561#',$ 0$%8,+' 9':;%+ <,='0,12
1/3 849 / 54 3 44/ 0 0 0 0 5083 0 0

;<".83/4.=&(>.!"#$%&'(#"#?

(#,12>"#' !$%+?0,12 0"4,:)

(#,12>"#' !$%+?0,12 0"4,:)

.
@
A/
B
A/
C

.
B
A.
D
A/
C

.
B
A.
@
A/
C

.
B
A/
E
A/
C

.
B
A/
B
A/
C

.
B
AF
/
A/
C

.
B
AF
C
A/
C

.
B
AF
D
A/
C

.
B
AF
G
A/
C

.
B
AF
@
A/
C

.
B
AF
B
A/
C

.
B
AF
H
A/
C

.
B
AC
.
A/
C

.
B
AC
/
A/
C

.
H
A.
F
A/
C

.
H
A.
C
A/
C

.
H
A/
D
A/
C

.

D..

B..

/F..

/G..

F...

FD..

FB..

CF..

CG..

D...

DD..

DB..

EF..

I,J

K
LM
9
N
)
L&
,
+>
%7
-
L'
O
4
#P
2
%+
LM
9
N
L4
,
++
'
$7

.
B
A/
G
A/
C

.
B
A/
@
A/
C

.
B
AF
/
A/
C

.
B
AF
C
A/
C

.
B
AF
D
A/
C

.
B
AF
G
A/
C

.
B
AF
@
A/
C

.
B
AF
B
A/
C

.
B
AF
H
A/
C

.
B
AC
.
A/
C

.
B
AC
/
A/
C

.
H
A.
F
A/
C

.
H
A.
C
A/
C

.
H
A/
D
A/
C

EB..

EH..

G...

G/..

GF..

GC..

GD..

GE..

GG..

G@..

GB..

I,J

K
LM
9
N
)
L&
,
+1
>
%7
-
L'
O
4
P2
%+
LM
9
N
L4
,
++
'
$7

(
#,
1
2>
"
#'

!
"
"
#

!
$%
&
'
(
"
)
)

!
$%
+?
0
,
1
2

*
%'
)
+,

-
.
/
0
,
1
2

3&
4
,
1
+

5
'
6
+$
%7
"

5
6
1
#'
,
$

0
"
4
,
:
)

0
$%
8
,+
'

9
'
:
;
%+

<
,
='
0
,
1
2

<
,
2
6
$,

<
"
="
)
="

<
+J
O

<
Q
'
'
+R
$,
7
-
'

S
I
<

.

C..

G..

H..

/F..

/E..

/B..

F/..

FD..

F@..

C...

CC..

1/5 898

/ 54 /

415

5 / 3 63

5083

5/7

0 0 0 77
/34

874

TO4#"%+L;%+

K
L&
,
+1
>
'
)

(
#,
1
2>
"
#'

!
"
"
#

!
$%
&
'
(
"
))

!
$%
+?
0
,
1
2

*
%'
)
+,

-
.
/
0
,
1
2

3&
4
,
1
+

5
'
6
+$
%7
"

5
6
1
#'
,
$

0
"
4
,
:
)

0
$%
8
,
+'

9
'
:
;
%+

<
,
='
0
,
1
2

<
,
2
6
$,

<
"
="
)
="

<
+J
O

<
Q
'
'
+R
$,
7
-
'

S
I
<

.

C..

G..

H..

/F..

/E..

/B..

F/..

FD..

F@..

C...

CC..

1/3 849

/ 54 3

44/

0 0 0 0

5083

0 0 0 0 18 0

874

TO4#"%+L;%+

K
L&
,
+1
>
'
)

Figure 5.4: WebWinnow: Pre-filtering performance on the Alexa Top 1 Million sites.

ingly, we came across a news [61] reporting about malicious advertisements

redirecting visitors of youtube channels to the RedKit Exploit Kit landing

page, which seems to correlate with the output of our pre-filtering engine.

Another evaluation of the pre-filtering engine was on a public blacklist of

malicious URLs from Malware Domain List12. We ran the pre-filtering on

this blacklist from Aug 16, 2013 to Sep 14, 2013 and the results turned out

to be quite similar for the most part. Of the total of about 86, 446 URLs

in the database, an averge of about 6658 (7.73%) are flagged as Exploit

Kit URLs by our pre-filtering engine. In fact, the database does not label

URLs with specific malicious activity and all the URLs in this database

are believed to be malicious. Supposing that all the URLs in this database

are to be analyzed for maliciousness, our pre-filtering engine reduces the

performance overhead by about 8%.

A detailed distribution of the Exploit Kit types in the pre-filtering out-

put is shown in Figure 5.6. As can be seen from the figure, Private,

g01Pack, Blackhole, Cool, and TDS comprise the top 5 percentage of the

12http://malwaredomainlist.com/mdl.php



110 Chapter 5. Detection of Exploit Kits

!"#$%&'(#")#*+'

,+-#./

01234235 04206235 04201235 04237235 04234235 042/3235 042/5235 042/6235 042/8235 042/1235 042/4235 042/9235 04250235 04253235

7080 6145 6149 6145 6173 619/ 6117 6430 6464 6479 6459 6435 6195 6435

04238235 04231235 042/3235 042/5235 042/6235 042/8235 042/1235 042/4235 042/9235 04250235 04253235 0920/235 09205235 09236235
8894 8894 8894 8894 8894 8894 83/4 8894 8894 8894 8899 8899 8899 8899

+*#"+-# 8871:71

1:15

;<".8894.=&(>.!"#$%&'(#"#?

!""# !$%&'(")) *%')+, -./0,12 3&4,1+ 5'6+$%7" 561#',$ 0$%8,+' 9':;%+ <,='0,12
1/5 898 / 54 / 415 5 / 3 63 5083 5/7 0

!""# !$%&'(")) *%')+, -./0,12 3&4,1+ 5'6+$%7" 561#',$ 0$%8,+' 9':;%+ <,='0,12
1/3 849 / 54 3 44/ 0 0 0 0 5083 0 0

;<".83/4.=&(>.!"#$%&'(#"#?

(#,12>"#' !$%+?0,12 0"4,:)

(#,12>"#' !$%+?0,12 0"4,:)

.
@
A/
B
A/
C

.
B
A.
D
A/
C

.
B
A.
@
A/
C

.
B
A/
E
A/
C

.
B
A/
B
A/
C

.
B
AF
/
A/
C

.
B
AF
C
A/
C

.
B
AF
D
A/
C

.
B
AF
G
A/
C

.
B
AF
@
A/
C

.
B
AF
B
A/
C

.
B
AF
H
A/
C

.
B
AC
.
A/
C

.
B
AC
/
A/
C

.
H
A.
F
A/
C

.
H
A.
C
A/
C

.
H
A/
D
A/
C

.

D..

B..

/F..

/G..

F...

FD..

FB..

CF..

CG..

D...

DD..

DB..

EF..

I,J

K
LM
9
N
)
L&
,
+>
%7
-
L'
O
4
#P
2
%+
LM
9
N
L4
,
++
'
$7

.
B
A/
G
A/
C

.
B
A/
@
A/
C

.
B
AF
/
A/
C

.
B
AF
C
A/
C

.
B
AF
D
A/
C

.
B
AF
G
A/
C

.
B
AF
@
A/
C

.
B
AF
B
A/
C

.
B
AF
H
A/
C

.
B
AC
.
A/
C

.
B
AC
/
A/
C

.
H
A.
F
A/
C

.
H
A.
C
A/
C

.
H
A/
D
A/
C

EB..

EH..

G...

G/..

GF..

GC..

GD..

GE..

GG..

G@..

GB..

I,J

K
LM
9
N
)
L&
,
+1
>
%7
-
L'
O
4
P2
%+
LM
9
N
L4
,
++
'
$7

(
#,
1
2>
"
#'

!
"
"
#

!
$%
&
'
(
"
)
)

!
$%
+?
0
,
1
2

*
%'
)
+,

-
.
/
0
,
1
2

3&
4
,
1
+

5
'
6
+$
%7
"

5
6
1
#'
,
$

0
"
4
,
:
)

0
$%
8
,+
'

9
'
:
;
%+

<
,
='
0
,
1
2

<
,
2
6
$,

<
"
="
)
="

<
+J
O

<
Q
'
'
+R
$,
7
-
'

S
I
<

.

C..

G..

H..

/F..

/E..

/B..

F/..

FD..

F@..

C...

CC..

1/5 898

/ 54 /

415

5 / 3 63

5083

5/7

0 0 0 77
/34

874

TO4#"%+L;%+

K
L&
,
+1
>
'
)

(
#,
1
2>
"
#'

!
"
"
#

!
$%
&
'
(
"
))

!
$%
+?
0
,
1
2

*
%'
)
+,

-
.
/
0
,
1
2

3&
4
,
1
+

5
'
6
+$
%7
"

5
6
1
#'
,
$

0
"
4
,
:
)

0
$%
8
,
+'

9
'
:
;
%+

<
,
='
0
,
1
2

<
,
2
6
$,

<
"
="
)
="

<
+J
O

<
Q
'
'
+R
$,
7
-
'

S
I
<

.

C..

G..

H..

/F..

/E..

/B..

F/..

FD..

F@..

C...

CC..

1/3 849

/ 54 3

44/

0 0 0 0

5083

0 0 0 0 18 0

874

TO4#"%+L;%+

K
L&
,
+1
>
'
)

Figure 5.5: WebWinnow: Pre-filtering performance on the Malware Domain Blacklist.

pre-filter followed by RedKit and SweetOrange. This list correlates by 5

kits with the top 6 in the dataset we collected during our experiment (Fig-

ure 5.3) with the exception of Private (from Figure 5.7) and Styx (from

Figure 5.3).

Table 5.7: WebWinnow: Effectiveness evaluation of the pre-filtering on the dataset used

for training and testing of the classifiers.

Class Flagged as Exploit Kit Total

Non Kit URLs 5(0.32%) 1584

Exploit Kit URLs 61(3.4%) 1817

Table 5.7 shows the performance of the pre-filtering engine on the dataset

used for training and testing. As can be seen from the table, the pre-fitering

engine is pretty accurate in filtering-out the non Exploit Kit URLs with

99.68% accuracy. In this case, only 5 URLs are passed to the more resource-

intensive analysis step. As for the Exploit Kit URLs, the pre-filtering



5.8. Evaluation 111

!"#$%&'(#")#*+'

,+-#./

01234235 04206235 04201235 04237235 04234235 042/3235 042/5235 042/6235 042/8235 042/1235 042/4235 042/9235 04250235

7080 6145 6149 6145 6173 619/ 6117 6430 6464 6479 6459

04238235 04231235 042/3235 042/5235 042/6235 042/8235 042/1235 042/4235 042/9235 04250235

8894 8894 8894 8894 8894 8894 83/4 8894 0 0

:;".8894.<&(=.!"#$%&'(#"#>

!""# !$%&'(")) *%')+, -./0,12 3&4,1+ 5'6+$%7" 561#',$ 0$%8,+' 9':;%+ <,='0,12

1/5 898 / 54 / 415 5 / 3 63 5083 5/7 0

!""# !$%&'(")) *%')+, -./0,12 3&4,1+ 5'6+$%7" 561#',$ 0$%8,+' 9':;%+ <,='0,12

1/3 849 / 54 3 44/ 0 0 0 0 5083 0 0

:;".83/4.<&(=.!"#$%&'(#"#>

(#,12>"#' !$%+?0,12 0"4,:)

(#,12>"#' !$%+?0,12 0"4,:)

.
@
A/
B
A/
C

.
B
A.
D
A/
C

.
B
A.
@
A/
C

.
B
A/
E
A/
C

.
B
A/
B
A/
C

.
B
AF
/
A/
C

.
B
AF
C
A/
C

.
B
AF
D
A/
C

.
B
AF
G
A/
C

.
B
AF
@
A/
C

.
B
AF
B
A/
C

.
B
AF
H
A/
C

.
B
AC
.
A/
C

.

/...

F...

C...

D...

E...

G...

I,J

K
LM
9
N
)
L&
,
+>
%7
-
L'
O
4
#P
2
%+
LM
9
N
L4
,
++
'
$7

.
B
A/
G
A/
C

.
B
A/
@
A/
C

.
B
AF
/
A/
C

.
B
AF
C
A/
C

.
B
AF
D
A/
C

.
B
AF
G
A/
C

.
B
AF
@
A/
C

.
B
AF
B
A/
C

.
B
AF
H
A/
C

.
B
AC
.
A/
C

.

/...

F...

C...

D...

E...

G...

@...

B...

I,J

K
LM
9
N
)
L&
,
+1
>
%7
-
L'
O
4
P2
%+
LM
9
N
L4
,
++
'
$7

(
#,
1
2
>
"
#'

!
"
"
#

!
$%
&
'
(
"
)
)

!
$%
+?
0
,
1
2

*
%'
)
+,

-
.
/
0
,
1
2

3&
4
,
1
+

5
'
6
+$
%7
"

5
6
1
#'
,
$

0
"
4
,
:
)

0
$%
8
,
+'

9
'
:
;
%+

<
,
='
0
,
1
2

<
,
2
6
$,

<
"
="
)
="

<
+J
O

<
Q
'
'
+R
$,
7
-
'

S
I
<

.

FE.
E..
@E.
/...
/FE.
/E..
/@E.
F...
FFE.
FE..
F@E.
C...
CFE.

CE..

1/5 898

/ 54 /

415

5 / 3 63

5083

5/7

0 0 0 77
/34

874

TO4#"%+L;%+

K
L&
,
+1
>
'
)

(
#,
1
2
>
"
#'

!
"
"
#

!
$%
&
'
(
"
)
)

!
$%
+?
0
,
1
2

*
%'
)
+,

-
.
/
0
,
1
2

3&
4
,
1
+

5
'
6
+$
%7
"

5
6
1
#'
,
$

0
"
4
,
:
)

0
$%
8
,
+'

9
'
:
;
%+

<
,
='
0
,
1
2

<
,
2
6
$,

<
"
="
)
="

<
+J
O

<
Q
'
'
+R
$,
7
-
'

S
I
<

.

C..

G..

H..

/F..

/E..

/B..

F/..

FD..

F@..

C...

CC..

1/3 849

/ 54 3

44/

0 0 0 0

5083

0 0 0 0 18 0

874

TO4#"%+L;%+

K
L&
,
+1
>
'
)

Figure 5.6: Distribution of Exploit Kit types in the pre-filtering output of 6698 URLs

from Malware Domain List that matched Exploit Kit URL rules.

!"#$%&'(#")#*+'

,+-#./

01234235 04206235 04201235 04237235 04234235 042/3235 042/5235 042/6235 042/8235 042/1235 042/4235 042/9235 04250235

7080 6145 6149 6145 6173 619/ 6117 6430 6464 6479 6459

04238235 04231235 042/3235 042/5235 042/6235 042/8235 042/1235 042/4235 042/9235 04250235

8894 8894 8894 8894 8894 8894 83/4 8894 0 0

:;".8894.<&(=.!"#$%&'(#"#>

!""# !$%&'(")) *%')+, -./0,12 3&4,1+ 5'6+$%7" 561#',$ 0$%8,+' 9':;%+ <,='0,12

1/5 898 / 54 / 415 5 / 3 63 5083 5/7 0

!""# !$%&'(")) *%')+, -./0,12 3&4,1+ 5'6+$%7" 561#',$ 0$%8,+' 9':;%+ <,='0,12

1/3 849 / 54 3 44/ 0 0 0 0 5083 0 0

:;".83/4.<&(=.!"#$%&'(#"#>

(#,12>"#' !$%+?0,12 0"4,:)

(#,12>"#' !$%+?0,12 0"4,:)

.
@
A/
B
A/
C

.
B
A.
D
A/
C

.
B
A.
@
A/
C

.
B
A/
E
A/
C

.
B
A/
B
A/
C

.
B
AF
/
A/
C

.
B
AF
C
A/
C

.
B
AF
D
A/
C

.
B
AF
G
A/
C

.
B
AF
@
A/
C

.
B
AF
B
A/
C

.
B
AF
H
A/
C

.
B
AC
.
A/
C

.

/...

F...

C...

D...

E...

G...

I,J

K
LM
9
N
)
L&
,
+>
%7
-
L'
O
4
#P
2
%+
LM
9
N
L4
,
++
'
$7

.
B
A/
G
A/
C

.
B
A/
@
A/
C

.
B
AF
/
A/
C

.
B
AF
C
A/
C

.
B
AF
D
A/
C

.
B
AF
G
A/
C

.
B
AF
@
A/
C

.
B
AF
B
A/
C

.
B
AF
H
A/
C

.
B
AC
.
A/
C

.

/...

F...

C...

D...

E...

G...

@...

B...

I,J

K
LM
9
N
)
L&
,
+1
>
%7
-
L'
O
4
P2
%+
LM
9
N
L4
,
++
'
$7

(
#,
1
2
>
"
#'

!
"
"
#

!
$%
&
'
(
"
)
)

!
$%
+?
0
,
1
2

*
%'
)
+,

-
.
/
0
,
1
2

3&
4
,
1
+

5
'
6
+$
%7
"

5
6
1
#'
,
$

0
"
4
,
:
)

0
$%
8
,
+'

9
'
:
;
%+

<
,
='
0
,
1
2

<
,
2
6
$,

<
"
="
)
="

<
+J
O

<
Q
'
'
+R
$,
7
-
'

S
I
<

.

FE.
E..
@E.
/...
/FE.
/E..
/@E.
F...
FFE.
FE..
F@E.
C...
CFE.

CE..

1/5 898

/ 54 /

415

5 / 3 63

5083

5/7

0 0 0 77
/34

874

TO4#"%+L;%+

K
L&
,
+1
>
'
)

(
#,
1
2
>
"
#'

!
"
"
#

!
$%
&
'
(
"
)
)

!
$%
+?
0
,
1
2

*
%'
)
+,

-
.
/
0
,
1
2

3&
4
,
1
+

5
'
6
+$
%7
"

5
6
1
#'
,
$

0
"
4
,
:
)

0
$%
8
,
+'

9
'
:
;
%+

<
,
='
0
,
1
2

<
,
2
6
$,

<
"
="
)
="

<
+J
O

<
Q
'
'
+R
$,
7
-
'

S
I
<

.

C..

G..

H..

/F..

/E..

/B..

F/..

FD..

F@..

C...

CC..

1/3 849

/ 54 3

44/

0 0 0 0

5083

0 0 0 0 18 0

874

TO4#"%+L;%+

K
L&
,
+1
>
'
)

Figure 5.7: Distribution of Exploit Kit types in the pre-filtering output from Malware

Domain Blacklist.



112 Chapter 5. Detection of Exploit Kits

identified about 3.4% of the URLs as Exploit Kits, while the rest are to

be analyzed by the learning-based component of WebWinnow. Overall,

on the whole dataset, the pre-filtering is able to reduce the performance

overhead by 48.2%, which is a substantial saving in a resource-constrained

deployment of WebWinnow.

Table 5.8: Detection accuracy comparison between WebWinnow and Wepawet.

Class WebWinnow Wepawet [93]

Benign 63 67

Malicious 31 19

Error 6 14

5.8.5 Error Analysis

Here, using manual analysis, we reason out as to what caused the misclas-

sification of URLs on the testing set.

The J48 Decision Tree classifier misclassified 2 Exploit Kit samples as

non Exploit Kit URLs. One of these URLs is a file-sharing website from

which users download content by interacting with the Website and it ap-

parently has no redirections up on first encounter. However, when we

manually clicked on the “Download’ link, we witnessed 3 redirects to lead

to a file to download. For the other URL, the (limited) data we had was

not sufficient to attribute a clear reason for the misclassification.

The Random Tree classifier, misclassified 23 Exploit Kits as non exploit

URLs. As shown in the results, this classifier was not as precise as the

others. Manual inspection showed that the feature values for octet-stream

and JavaScript content are less than the average size of these features for

Exploit Kit URLs in the training set, which, we suspect, might have slightly

skewed the classifier.



5.8. Evaluation 113

The Random Forest classifier misclassified only 3 Exploit Kit URLs as

non Exploit Kit URLs. In this case, 2 of the URLs span a single country

and top-level domain, which is below the average feature value of 4 and 3

respectively for Exploit Kit URLs in the training set.

5.8.6 Comparison with a Similar System

To evaluate how WebWinnow performs in comparison with online ma-

licious content detection systems, we prepared a separate comparison set

of 100 URLs reported to be linked with Exploit Kits by the URLQuery13

service. We then submitted the dataset to WebWinnow and a public ser-

vice, Wepawet [93], at about the same time. The results are summarized

in Table 5.8. Overall, WebWinnow classified 31 URLs as Exploit Kits

while Wepawet classified 19 as malicious and suspicious combined (2 and

17 respectively). Of the 31 URLs flagged as Exploit Kits by WebWin-

now, Wepawet flagged 2 as malicious, 4 as suspicious, 23 as benign, and

2 as error. Manual analysis of the activity logs of these 31 URLs shows

that they have indeed dropped a binary payload to WebWinnow’s honey-

client. We speculate that the large number of mismatch with Wepawet’s

output is probably attributed to the fact that it is a public service and

the Exploit Kits might have blacklisted it to serve it with benign response.

This mistmatch partially confirmed with Wepawet’s detailed reports for

7 of the URLs classified as benign to be pages with HTTP 404 (page not

found) response.

Wepawet classified 67 URLs as benign and WebWinnow classified

63 as non exploit of which 33 URLs match the benign, and 12 URLs match

the suspicious classification of Wepawet. WebWinnow was not able to

finish the analysis of 6 URLs while Wepawet terminated with time-out

error on 14 URLs. Overall, this experiment demonstrates that WebWin-

13http://urlquery.net



114 Chapter 5. Detection of Exploit Kits

now is at least as accurate as existing tools in detecting malicious URLs

hosted by Exploit Kits.

5.9 Conclusions

Exploit Kits are prevalent on the Internet and they contribute to a signifi-

cant portion of web-based threats. Understanding how they: function, at-

tack victims, and evade detection systems is crucial in designing techniques

to detect them in realtime. In this chapter, we presented an approach that

leverages the firsthand observation of the attack-centric and self-defense

behavior of Exploit Kits to develop a machine learning approach that pre-

cisely detects malicious URLs hosted by Exploit Kits.

We implemented our approach in a tool called WebWinnow with a fast

pre-filtering component to allow resource-constrained deployment. Our

evaluation of WebWinnow shows that the classifiers we trained based on

the features derived from the Exploit Kits’ workflow perform very well with

very low false positives. Moreover, we have also shown that the pre-filtering

engine of WebWinnow substantially reduces the performance overhead

when resource is a constraint.



Chapter 6

Related Work

In this chapter, we discuss the most notable body of related work in the

context of and in comparison with the approaches presented in this disser-

tation.

Broadly, there are two complementary techniques that have been pro-

posed to detect malicious activities on the Web, with a focus on malicious

web pages. These techniques are:static analysis and dynamic analysis.

The former uses source code of web pages and some static features such

as URL structure and host details to characterize malicious payload. The

latter focuses on capturing behavior manifested when a page is loaded

and executed in a real or emulated browsing environment (e.g., sandbox).

A strategy common to both static and dynamic analysis is that they in-

volve extraction of features that allow identification of patterns of malicious

payloads in web pages, based on which a classification scheme is devised,

usually using machine learning techniques.

The remainder of this chapter is organized as follows. In Section 6.1,

we present the related work that use static analysis. Section 6.2 presents

dynamic analysis approaches. Finally, in Section 6.3, we discuss approaches

which do not fall well into neither static nor dynamic analysis techniques.

115



116 Chapter 6. Related Work

6.1 Static Analysis

Lexical elements of a URL string (e.g., query string, path string), host

identity information (e.g., WHOIS details, DNS records), and artifacts

pertinent to HTML (e.g., iframes, remote links ) and JavaScript content

(e.g., suspicious native functions) have been demonstrated to be successful

artifacts to quickly characterize malicious web pages [13, 14, 53, 54, 55, 79,

89]. The major assumption behind such static aspects of web pages is that

statistical distribution of features from the static aspects of malicious web

pages tend to differ from the benign counterparts. Once these features are

extracted, their values are encoded to train machine learning techniques to

build classifiers.

A notable strength of static analysis techniques is the quick extraction

of features without loading the web page in the browser. The major lim-

itation of static analysis techniques is that it is difficult to detect attacks

that exploit execution of the page. More specifically, a limitation in using

only page source is the high risk of obfuscated content (e.g., obfuscated

JavaScript) and overlooking malicious JavaScript that exploits vulnerabil-

ities of browser plug-ins (because the attack is initiated when the plugins

are invoked). In addition, if we consider the host identity details of fresh

(benign) websites, registered by registrars with low reputation, such web-

sites are likely to be misclassified as malicious due to low reputation scores.

In effect, there is a high risk of false positives.

Conversely, false negatives may arise as old and well-reputed registrars

may host malicious websites which have escaped the static analysis effort.

Another cause of false negatives are websites that use free hosting services

or already compromised sites with a benign-looking URL and host infor-

mation. For static analysis techniques that extract lexical URL features to

characterize malicious web pages, an attacker may evade these features to



6.1. Static Analysis 117

confuse detection techniques by carefully crafting malicious URLs to make

them look statistically indistinguishable from the benign ones.

Garera et al. [33] developed a framework for the detection and large-

scale Internet-wide measurement of phishing attacks. In this work, the

authors identify several fine-grained heuristics used to distinguish between

a phishing URL and a benign URL. These heuristics are used to train a

logistic regression classifier. In addition to heuristics pertinent to obfusca-

tion (e.g., obfuscating with large host names), the authors introduce several

general heuristics (e.g., page rank, word-based features) by leveraging the

Google index infrastructure. The classification technique achieves an ac-

curacy of 97.3%. In addition to the detection, using 12 days of Google

Toolbar URLs, they also conducted a large-scale measurement aimed at

shedding light on the prevalence of phishing attacks on the Internet. Ac-

cording to the results of the measurement, on average they found about

777 unique phishing URLs daily and an average of 8.24% of the users who

visit phishing pages are likely to be victims of the phishing attack.

Seifert et al. [77] proposed a heuristic-based technique to build signa-

tures of known attack payloads. These signatures are used by Anti-Virus

engines or Intrusion Detection Systems to scan a web page and flag it as

malicious if its heuristic pattern matches signatures in the database. While

precise for known attacks, signatures can be evaded by attackers (mainly

with obfuscation); the heuristic also fails to detect novel attack vectors.

In addition, the rate at which the signature database of heuristic-based

systems is updated is slower than the pace at which attackers overwhelm

victims with novel attacks, resulting in zero-day exploits.

Ma et al. [54] proposed a technique based on lightweight extraction and

analysis of lexical aspects and host-based information of URLs to derive

a model that learns a classifier on a dataset of mostly spam and phishing

URLs. The core assumption in this technique is that URL tokens and



118 Chapter 6. Related Work

host-based values of malicious URLs tend to be significantly different from

their benign counterparts. According to the experimental results in this

work, using Naive Bayes, Support Vector Machines, and Logistic Regres-

sion Classifiers on a large dataset of URLs, Logistic Regression gave the

best result: 99% detection accuracy with 0.1% FPR on about 30,000 URLs

drawn from different public data sources. The approaches we presented in

Chapter 3 and Chapter 4 reuse 8 URL features from this work and we

introduce three new URL features. Our analysis, however, combines static

analysis and lightweight dynamic analysis —using an emulated browser

to visit and render the page and execute client-side code upon page load.

Moreover, we use 4 more learning algorithms for classification and in Chap-

ter 3, instead of relying on the best classifier, we use confidence-weighted

majority vote classification to classify unknown web pages.

In a follow-up work, Ma et al. [55] enhanced the technique they proposed

in [54] by applying online learning algorithms over URL and host-based fea-

tures via live feed of URLs and feature enhancement on the fly. The premise

is that batch learning techniques fail to cope with the continuously chang-

ing distribution of features over time. The online learning algorithms used

in this work are: Perceptron, Logistic Regression with Stochastic Gradient

Descent, Passive-Aggressive Algorithm, and Confidence-Weighted Learn-

ing. The best classification accuracy (99%) is achieved with Confidence-

Weighted algorithm over a balanced data set from a webmail provider. By

contrast, in our approach in Chapter 4, we aim at addressing the evolution

of web page artifacts using Genetic Algorithms while in this work online

learning algorithms are used for the same purpose. Moreover, the underly-

ing analysis and feature set in our approach is not limited to static aspects.

Instead, the analysis in our approach spans static, dynamic, and metadata

features of URLs.

Hou et al. [42] proposed an obfuscation-resilient approach based on ma-



6.1. Static Analysis 119

chine learning to detect malicious web content, with a focus on malicious

DHTML. The features considered are mainly page content related features

(such as text content, native JavaScript functions and objects, ActiveX

objects, and iframe size). The approach is based on standard supervised

learning algorithms, namely: Naive Bayes, Decision Trees, Support Vec-

tor Machines, and Boosted Decision Trees. The Boosted Decision Tree

classifier gave the best classification accuracy (96%) with 7.6% FPR on a

dataset of 176 malicious and 965 benign samples. The page-source features

we presented in Chapter 3 and, in particular the JavaScript features, are

similar to the features used in this work. However, our page-source feature

set is different in that we re-factor some features (e.g., remote links) into

fine-grained features to capture intrinsic details of malicious web pages.

Canali et al. [13] proposed Prophiler, a pre-filtering mechanism based

on machine learning to optimize resource consumption of an expensive dy-

namic analysis and detection backend system [93]. Prophiler is a purely

static pre-filtering technique that deems web pages as likely malicious or

likely benign and it focuses on web pages that launch drive-by-download

attacks. Prophiler achieved a very low false positive rate over a large

testing set of URLs using 78 features on URL, host details, HTML, and

JavaScript features. While Prophiler reuses features from [42] and [54],

there are 48 new features introduced in this approach and demonstrated

to be effective for fast pre-filtering of likely malicious web pages. Un-

like Prophiler where the best classifiers are used for detection, in the

approach we presented in Chapter 3, we use confidence-weighted major-

ity vote for classification that relies on seven classifiers. Compared to

Prophiler’s dimension of features (78 features), the two approaches we

presented in Chapter 3 and Chapter 4 use only 39 features. In fact, all

the approaches we presented in this dissertation aim at deeming unknown

web pages as either benign or malicious, while in Prophiler the goal is



120 Chapter 6. Related Work

to deem a web page as likely benign or likely malicious.

Xu et al. [107] proposed JStill, a mostly static approach to detect

obfuscated malicious JavaScript code. JStill uses function invocation

analysis to capture essential characteristics of obfuscated malicious code.

Moreover, it leverages the combination of static analysis and lightweight

runtime inspection not only to detect, but also to prevent the execution

of obfuscated malicious JavaScript code in browsers. The authors report

that evaluation of JStill on real-world malicious JavaScript samples and

websites selected from the Alexa top sites demonstrates high detection ac-

curacy and low false positives with negligible performance overhead. From

the standpoint of the analysis, JStill resembles the approach we presented

in Chapter 3 in that the side-effects of the runtime analysis of JavaScript

code are used to enrich the static artifacts.

6.2 Dynamic Analysis

Behavior-based or execution monitoring approaches have been shown to

be effective in the analysis and detection of malicious web pages [11, 17,

18, 43, 65, 72, 75, 78]. Such techniques could be deployed at a proxy-level

(e.g., [65]) to intercept requests from or responses to the user, visit the URL

in a controlled environment (e.g., disposable virtual machine), analyze its

execution dynamics for hints of malicious activity (e.g., unusual process

creation, repeated redirection), and decide if it is safe to render the page in

the browser. Alternatively, client-side sandboxing of critical page content

(e.g., JavaScript code) could be used to log critical actions (e.g., invoking

a plugin) and match logs with known patterns of malicious activities (e.g.,

as in [22]).

Among dynamic analysis techniques, honeyclients [72] are the predom-

inantly adopted systems that mimic a human visitor and use a dedicated



6.2. Dynamic Analysis 121

sandbox environment (e.g., virtual machine) to visit a web page. When a

page is rendered, the execution dynamics is captured and analyzed to infer

evidences for attack payloads. Honeyclients are of two types, namely: low-

interaction and high-interaction. Honeyclients that use simulated browser

and minimal OS features for rendering a web page are called low-interaction

honeyclients while those that use real browser and full OS features for ren-

dering a web page are termed as high-interaction honeyclients.

Low-interaction honeyclients (e.g., HoneyC [41], Monkey-Spider1,

PhoneyC2, Thug3) are typically limited to monitoring the traces of activ-

ities during the interaction against pre-defined signatures. As a result, they

can not detect zero-day exploits due to the static nature of the reference

signatures. On the contrary, high-interaction honeyclients (e.g., Capture-

HPC [88], MITRE HoneyClient [64], Microsoft HoneyMonkey [99],

Shelia4) check integrity changes in system states. The integrity check

requires monitoring: file system, registry entries, processes, network con-

nection, and anomalies in memory and CPU consumption. The inherent

advantage of honeyclients, especially high-interaction ones, is the deep in-

sight they provide on the malicious activities embedded in malicious web

pages.

While effective at detecting daunting malicious web pages, dynamic

analysis approaches including honeyclients are resource intensive. This

is because they need to load and execute individual pages under analysis

and modern web pages are usually stuffed with rich client-side code and

multimedia which take a long analysis time. Moreover, not all web pages

are likely to launch attacks upon visiting. There are web pages which de-

mand user interaction or wait for time/logic-bomb to take action. From the

1http://monkeyspider.sourceforge.net
2http://code.google.com/p/phoneyc/
3https://github.com/buffer/thug
4http://www.cs.vu.nl/~herbertb/misc/shelia/



122 Chapter 6. Related Work

evadability point of view, IP addresses of honeyclients can be black-listed

by malicious servers, their virtual machines be detected through advanced

fingerprinting techniques, and they may also be victims of Turing verifica-

tions that necessarily require the action of human visitor.

Wang et al. [99] designed and implemented a system called Strider

HoneyMonkey, which consists of an array of monkey programs running

possibly vulnerable browsers on virtual machines with different patch lev-

els. The goal is to patrol the Web to discover and classify websites that

exploit browser vulnerabilities. The classification is done by correlating

unusual changes to system sates (e.g., unauthorized file creation) to a suc-

cessful exploit. Our approach in Chapter 5 resembles Strider Honey-

Monkey in using honeyclients. However, instead of changes in system

state, we focus on the actual activities when a web page is executed in a

honeyclient system to detect malicious behavior.

Moshchuk et al. [65] proposed SpyProxy, an execution-based Web

content analysis system to protect users from Internet-borne malware. The

SpyProxy system intercepts and evaluates web content in transit from

web servers to the browser. When a browser requests a web page, the proxy

front end intercepts the request, retrieves the root page, and statically

analyzes it for safety. If the root page cannot be deemed safe based on

the static analysis, the front end forwards the URL to a Virtual Machine

worker. A browser in the Virtual Machine downloads and renders the page

content. If the page is safe, the Virtual Machine notifies the front end,

and the page content is released to the browser. In case the page under

analysis has already been cached and was previously determined to be safe,

the front end forwards it directly to the client. According to the authors,

the evaluation of SpyProxy shows that it detected every malware threat

to which it was exposed, with a minimal delay of only 600 milliseconds to

analyze a web page.



6.2. Dynamic Analysis 123

Ratanaworabhan et al. [74] designed Nozzle, an approach to detect

heap spraying attacks. Nozzle intercepts calls to the browser’s memory

manager and tries to detect heap spraying attacks by observing the objects

on the heap. Nozzle treats local objects as they were code and tries to

interpret them, thus detecting potentially malicious code. The Nozzle

lightweight emulator scans these objects for valid x86 code. Once found,

such code sequences are disassembled and a control flow graph is built,

which can then be analyzed using network packet processing methods.

Nozzle is integrated into a browser and is hence easy to use even for

inexperienced users. Moreover, it has a very low false positive rate and at

the same time detects heap spraying attacks very effectively. According

to the authors, Nozzle was able to detect all heap spraying attacks it

was evaluated against. Even though Nozzle protects quite well against

heap spraying attacks, these are not the only attacks Web users have to be

protected against.

Kapravelos et al. [49] examined the security model that high-interaction

honeyclients use and evaluated their weaknesses in practice. They intro-

duced and discussed a number of possible attacks, and tested them against

several popular, well-known high-interaction honeyclients. In particular,

they have introduced three novel attack techniques (JavaScript-based hon-

eyclient detection, in-memory execution, and whitelist-based attacks) and

analyzed known attacks. These attacks evade the detection of the tested

honeyclients, while successfully compromising regular visitors. Further-

more, they suggest several countermeasures aiming to improve honey-

clients. By employing these countermeasures, a honeyclient will be better

protected from evasion attempts and will provide more accurate results.

Cova et al. [18] developed an approach that aims at analyzing mali-

cious JavaScript code with the goal of detecting drive-by-download attacks.

The approach combines emulation, anomaly detection, and machine learn-



124 Chapter 6. Related Work

ing for detecting drive-by-download attacks. Based on this approach they

built Wepawet [93], an emulation-based dynamic analysis and detection

framework for malicious content (mainly malicious JavaScript and mal-

ware). Wepawet is available as a public service. Wepawet is reported

by the authors to have a low false negative rate, particularly for drive-by-

download web pages.

Dewald et al. [22] proposed ADSandbox, a client-side JavaScript sand-

boxing and heuristics-based analysis technique that executes JavaScript

embedded in a page within an isolated environment and logs every criti-

cal action to detect malicious web pages. ADSandbox uses the Mozilla

JavaScript engine SpiderMonkey [66] to execute JavaScript code and log

every action during the execution. For detection, it uses heuristics (in a

form of regular expressions). The approach is implemented as a Browser

Helper Object (BHO) on the Internet Explorer browser. Whenever mali-

cious content is detected, the user is warned by the BHO and the malicious

content is blocked unless the user explicitly wants to load it anyway. AD-

Sandbox achieved false positive close to zero but at a high performance

overhead.

Rieck et al. [75] proposed Cujo, a system embedded in a web proxy for

efficient detection of drive-by-downloads with an emphasis on malicious

JavaScript. The authors use Support Vector Machines to characterize, an-

alyze, and detect drive-by-download attacks using a combination of static

and dynamic aspects of JavaScript code. Cujo is reported to achieve about

95% detection rate with low false alarms and an average analysis time of

0.5 seconds per a single web page. In Chapter 3 and Chapter 4, we also

use Support Vector Machines among other learning algorithms with some

static as well as dynamic features of JavaScript code (in particular suspi-

cious JavaScript function such as eval(), unescape(), fromCharCode(),

and createElement()). Nevertheless, the approaches we presented in this



6.2. Dynamic Analysis 125

dissertation are attack-type-agnostic to target a wider array of attacks.

Heiderich et al. [40] built IceSheild, a lightweight in-browser system

to perform in-line dynamic JavaScript code analysis and de-obfuscation.

They use features of ECMA Script 5 to freeze DOM object properties so

that objects cannot be modified at runtime.

Curtsinger et al. [20] proposed Zozzle, a low-overhead JavaScript mal-

ware detection system that combines static and dynamic analysis. Zozzle

is based on a Bayesian classifier using features extracted from the hierar-

chical aspects of the Abstract Syntax Tree of JavaScript code. Because

Zozzle is trained using samples collected by Zozzle [74], it is more ef-

fective in detecting heap spray attacks. The authors report that Zozzle

is able to detect JavaScript malware through mostly static code analysis

effectively and it has an extremely low false positive rate of 0.0003%.

Seifert et al. [78] proposed Rozzle, a JavaScript multi-execution vir-

tual machine, as a way to explore multiple execution paths within a single

execution so that environment-specific malware will reveal itself. Using

large-scale experiments, the authors report that Rozzle increases the de-

tection rate for offline runtime detection by almost seven times. In addition,

Rozzle triples the effectiveness of online runtime detection. Rozzle is

also reported to incur virtually no runtime overhead.

Thomas et al. [89] reused the static analysis portion from [54] and [55]

with an introduction of a dynamic analysis component to design a sys-

tem called Monarch, a real-time system that crawls URLs as they are

submitted to web services to determine whether the URLs direct to spam

content.

Xu et al. [106] leveraged URL features, host-based features, and fea-

tures derived from network-traffic (based on execution). This approach is

similar to the approach we presented in Chapter 3 and 4 in its aim, i.e.,

combining static and dynamic analysis for effective detection of malicious



126 Chapter 6. Related Work

web pages. However, in place of the the minimalistic emulation we use in

our approaches, the authors use network traffic. While we use an emulated

browser, they use honeyclient.

6.3 Other Techniques

Kotov and Massacci [50] conducted a preliminary analysis of the source

code of 30 different Exploit Kits. As per their analysis, the key strength

of Exploit Kits is the functionalities to support the kit owner to manage

exploits, escape detection, and monitor traffic. On the other hand, they

conclude that Exploit Kits use limited number of and unsophisticated vul-

nerabilities focusing on large volume of infection traffic to maximize the

rate of successful infection of victims. One of the findings in this work is

the fact that Exploit Kits have similar functionality, which also coincides

with our preliminary analysis. Nonetheless, in the approach we presented

in Chapter 5, we analyzed 38 different Exploit Kits and versions of some

of the Exploit Kits in our set are different from theirs. Our motivation

of the analysis is to leverage Exploit Kit workflow to design a detection

technique while the authors’ goal is to analyze and characterize Exploit

Kits as software artifacts.

Allodi et al. [2] discussed MalwareLab, an experience from a con-

trolled experimental evaluation of resilience of 10 Exploit Kits with respect

to changes in software configuration (e.g., browser personality of victims).

As per the findings, there seem to be two types of Exploit Kits with regards

to resilience to changes in software configuration. One type are Exploit Kits

designed to be effective for an extended period of time at the expense of

lower infection rate. The other type are Exploit Kits designed to be effec-

tive in infecting as many victims as possible within a very short period,

at the expense of low resilience. The analysis of Exploit Kits used in our



6.3. Other Techniques 127

approach in Chapter 5 is similar to MalwareLab in some aspects, such

as the use of virtual machines and automation of execution when feasible.

However, our goal, as already discussed, is to have a deeper insight as to

how the Exploit Kits function to perform attacks and to evade detection

techniques.

Grier et al. [37] conducted a large-scale analysis on the emergence of

exploit-as-a-service model on the malware ecosystem by examining the

current landscape of drive-by-downloads on the Internet. For the analysis,

the authors analyze 77,000 malicious URLs from Google Safe Browsing

and a crowd-sourced feed of blacklisted URLs known to lead to Exploit

Kits. These URLs led to over 10,000 distinct executables. The results of

contained execution of these binaries show about 32 families of malware

(among which are the prominent ones) are carried around on the Web via

drive-by-downloads supported by Exploit Kits (with Blackhole accounting

for 29% of all malicious URLs). In addition, the authors also used passive

DNS data to conclude that the infrastructure that hosts these Exploit Kits

is short-lived (receives traffic only for about 2.5 hours). Although we did

not measure the lifetime of Exploit Kits in Chapter 5, we also noticed that

they do not live long.



128 Chapter 6. Related Work



Chapter 7

Conclusions and Future Work

In this chapter, we summarize the problems addressed in this dissertation,

highlight approaches we proposed, and finally discuss possible lines of future

work.

7.1 Conclusions

Cyber-criminals, motivated by illegal financial gain, abuse the convenience

and flexibility of the Web through malicious activities targeting vulnerable

browsing environments and unsuspecting victims. The malicious activities

are initiated when an unsuspecting victim visits a web page. Just after a

mere visit of a web site, the victim may lose its invaluable credentials (e.g.,

credit card details) or get its device infected with malware that is used in

orchestrating more complex attacks.

While the current state-of-the-art to mitigate malicious activities on the

Web is commendable, the effectiveness of existing defense mechanisms is

impeded by (1) partial and course-grained analysis and characterization

of attack payloads (2) evolution of web page artifacts which renders de-

tection models out-of-date and (3) prevalence of exploit kits that spread

web-borne malware. This dissertation tackled these problems and pre-

sented approaches to address them with a common goal of effective analy-

129



130 Chapter 7. Conclusions and Future Work

sis, characterization, and detection of malicious activities on the Web.

To address the problem of partial and course-grained analysis and char-

acterization of attack payloads, we presented, in Chapter 3, a holistic ap-

proach that leverages static analysis and minimalistic emulation to detect

malicious web pages. In this approach, we introduced and demonstrated

the effectiveness of 10 novel features and we used confidence-weighted ma-

jority vote classification. We showed, through a large-scale evaluation,

that the approach works well both in terms of detection accuracy and its

reasonably low performance overhead.

To address the evolution of web page artifacts, we presented, in Chap-

ter 4, an evolution-aware approach that exploits evolutionary searching and

optimization using Genetic Algorithm to ensure that, inline with the evo-

lution of web page artifacts, the best combination of features and learning

algorithms are used in detecting malicious web pages. We demonstrated

the significance of the GA-guided detection model in reducing the false

negatives up to 10.5% on a fairly large-scale experimental corpus of web

pages.

On the front of defending Web users from Exploit Kits, we presented,

in Chapter 5, an approach in which we (1) analyzed the source code and

runtime behavior of 38 distinct Exploit Kits in a contained setting (2)

probed live Exploit Kits on the Web in pursuit of capturing their typ-

ical workflow (3) combined the observations of the analyses to leverage

the attack-centric and self-defense characteristics of Exploit Kits to draw

distinguishing features to characterize Exploit Kits and (4) trained precise

classifiers to automatically detect malicious URLs linked with Exploit Kits.

By evaluating our approach, we demonstrated that it is possible to very

precisely detect malicious URLs hosted by Exploit Kits.



7.2. Future Work 131

7.2 Future Work

With the aim of evading web-borne malicious activity detection systems,

cyber-criminals delay the actual exploit when the page loads. Delayed

exploits wait for conditions to execute attack payloads. Typically, the

condition is either a time bomb (e.g., after 5 seconds of page load) or a

logic bomb (e.g., on first mouse click). Both time bombs and logic bombs

are intrinsically random –which makes the characterization and detection

of delayed exploit a difficult task. Hence, one interesting direction of future

work is to investigate ways in which delayed exploits can be characterized

and then detected.

Another line of future work is regarding the integration of Binspect,

Einspect, and WebWinnow. We plan to combine the three systems to

eventually deploy them as a framework to analyze and detect web-borne

malicious activities.





Bibliography

[1] Alexa. Alexa Top 500 Global Websites. http://www.alexa.com/

topsites, July 2011.

[2] Luca Allodi, Vadim Kotov, and Fabio Massacci. MalwareLab - Ex-

perimentation with Cybercrime Attack Tools. In USENIX Workshop

on Cyber Security Experimentation and Test (CSET), 2013.

[3] Jesse Alpert and Nissan Hajaj. We Knew the Web Was Big... http:

//googleblog.blogspot.it/2008/07/we-knew-web-was-big.

html, July 2008.

[4] Internet Archive. HERITRIX Crawler. http://crawler.archive.

org/index.html, July 2012.

[5] Armorize. Mysql.com Hacked: Infecting Visitors

with Malware. http://blog.armorize.com/2011/09/

mysqlcom-hacked-infecting-visitors-with.html, Septem-

ber 2011.

[6] Tim Berners-Lee and Mark Fischetti. Weaving the Web. HarperOne,

Secaucus, NJ, USA, 1999.

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning

(Information Science and Statistics). Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2006.

133



134 Bibliography

[8] Malware Blacklist. Malware Blacklist. http://www.

malwareblacklist.com/showMDL.php, June 2013.

[9] Leo Breiman and Adele Cutler. Random Forests. http://www.stat.

berkeley.edu/~breiman/RandomForests/cc_home.html, October

2013.

[10] Interactive Advertising Bureau. IAB Internet Advertising Rev-

enue Report. http://www.iab.net/media/file/IAB_Internet_

Advertising_Revenue_Report_HY_2013.pdf, October 2013.

[11] K. Byung-Ik, I. Chae-Tae, and J. Hyun-Chul. Suspicious Malicious

Web Site Detection with Strength Analysis of a JavaScript Obfusca-

tion. In International Journal of Advanced Science and Technology,

pages 19–32, 2011.

[12] Davide Canali and Davide Balzarotti. Behind the Scenes of Online

Attacks: An Analysis of Exploitation Behaviors on the Web. In

NDSS 2013, 20th Annual Network and Distributed System Security

Symposium, February 2013.

[13] Davide Canali, Marco Cova, Giovanni Vigna, and Christpher

Kruegel. Prophiler: A Fast Filter for the Large-Scale Detection of

Malicious Web Pages. In Proceedings of the 20th international con-

ference on World Wide Web, WWW’11, pages 197–206. ACM, 2011.

[14] Hyunsang Choi, Bin B. Zhu, and Heejo Lee. Detecting Malicious Web

Links and Identifying their Attack Types. In Proceedings of the 2nd

USENIX conference on Web application development, WebApps’11,

pages 11–11. USENIX Association, 2011.

[15] Credit Counselors Corporation. Phishing Scams Lead to Iden-



Bibliography 135

tity Theft. http://www.cccindy.com/credit-counseling-blog/

phishing-scams-lead-to-identity-theft/, October 2013.

[16] M. Cova, C. Kruegel, and G. Vigna. There is No Free Phish: An Anal-

ysis of Free and Live Phishing Kits. In Proceedings of the USENIX

Workshop On Offensive Technologies (WOOT), San Jose, CA, Au-

gust 2008.

[17] Marco Cova. Taming the Malicious Web: Avoiding and Detecting

Web-based Attack. PhD thesis, University of California, Santa Bar-

bara, 2010.

[18] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection

and Analysis of Drive-by-Download Attacks and Malicious JavaScript

Code. In Proceedings of the 19th international conference on World

wide web, WWW ’10, pages 281–290, New York, NY, USA, 2010.

ACM.

[19] Marco Cova, Corrado Leita, Olivier Thonnard, Angelos D.

Keromytis, and Marc Dacier. An Analysis of Rogue AV Campaigns.

In Proceedings of the 13th international conference on Recent ad-

vances in intrusion detection, RAID’10, pages 442–463, Berlin, Hei-

delberg, 2010. Springer-Verlag.

[20] Charlie Curtsinger, Benjamin Livshits, Benjamin Zorn, and Chris-

tian Seifert. ZOZZLE: Fast and Precise In-Browser JavaScript Mal-

ware Detection. In Proceedings of the 20th USENIX conference on

Security, SEC’11, pages 3–3, Berkeley, CA, USA, 2011. USENIX As-

sociation.

[21] Dancho Danchev. Scareware Pops-Up at FoxNews. http://www.

zdnet.com/blog/security/scareware-pops-up-at-foxnews/

3140, April 2009.



136 Bibliography

[22] Andreas Dewald, Thorsten Holz, and Felix C. Freiling. ADSandbox:

Sandboxing JavaScript to Fight Malicious Websites. In Proceedings

of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages

1859–1864, New York, NY, USA, 2010. ACM.

[23] DMOZ. Open Directory Project. http://www.dmoz.org/, Septem-

ber 2011.

[24] Manuel Egele, Engin Kirda, and Christopher Kruegel. Mitigating

Drive-by Download Attacks: Challenges and Open Problems, 2009.

[25] Manuel Egele, Gianluca Stringhini, Christopher Krgel, and Giovanni

Vigna. COMPA: Detecting Compromised Accounts on Social Net-

works. In Proceedings of the Network and Distributed System Security

Symposium. The Internet Society, 2013.

[26] Birhanu Eshete. Effective Analysis, Characterization, and Detection

of Malicious Web Pages. In Proceedings of the 22nd international

conference on World Wide Web companion, WWW ’13 Companion,

pages 355–360, Rio de Janeiro, Brazil, 2013. ACM.

[27] Birhanu Eshete, Adolfo Villafiorita, and Komminist Weldemariam.

Malicious Website Detection: Effectiveness and Efficiency Issues. In

Proceedings of SysSec Workshop, pages 123–126. IEEE, 2011.

[28] Birhanu Eshete, Adolfo Villafiorita, and Komminist Weldemariam.

BINSPECT: Holistic Analysis and Detection of Malicious Web Pages.

In Proceedings of Security and Privacy in Communication Networks,

SecureComm’12, pages 149–166. Springer-Verlag, 2012.

[29] Birhanu Eshete, Komminist Weldemariam, Adolfo Villafiorita, and

Mohammad Zulkernine. EINSPECT: Evolution-Guided Analysis and



Bibliography 137

Detection of Malicious Web Pages. In Proceedings of the 37th An-

nual International Computer Software & Applications., pages 375–

380, Kyoto, Japan, July 2013. IEEE.

[30] Facebook. Facebook Graph API. https://developers.facebook.

com/docs/reference/api/, March 2012.

[31] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener.

A Large-Scale Study of the Evolution of Web Pages. In Proceedings

of the Twelfth Conference on World Wide Web, Budapest, Hungary,

2003. ACM Press.

[32] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni Vigna.

Analyzing and Detecting Malicious Flash Advertisements. In AC-

SAC, pages 363–372, 2009.

[33] Sujata Garera, Niels Provos, Monica Chew, and Aviel D. Rubin.

A Framework for Detection and Measurement of Phishing Attacks.

In Proceedings of the 2007 ACM workshop on Recurring malcode,

WORM ’07, pages 1–8, New York, NY, USA, 2007. ACM.

[34] Sally A. Goldman, Manfred K. Warmuth, and David Haussler. Learn-

ing Binary Relations Using Weighted Majority Voting. In Machine

Learning, pages 453–462. ACM Press, 1995.

[35] Google. Google Safe Browsing API. http://code.google.com/

apis/safebrowsing/, August 2011.

[36] Google. Google Plus URL share count API. https://clients6.

google.com/rpc, July 2012.

[37] Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Chris-

tian J. Dietrich, Kirill Levchenko, Panayiotis Mavrommatis, Damon

McCoy, Antonio Nappa, Andreas Pitsillidis, Niels Provos, M. Zubair



138 Bibliography

Rafique, Moheeb Abu Rajab, Christian Rossow, Kurt Thomas, Vern

Paxson, Stefan Savage, and Geoffrey M. Voelker. Manufacturing

Compromise: The Emergence of Exploit-as-a-Service. In Proceed-

ings of the 19th ACM Conference on Computer and Communication

Security, October 2012.

[38] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter

Reutemann, and Ian H. Witten. The WEKA Data Mining Software:

An Update. SIGKDD Explorations, 11, 2009.

[39] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Pe-

ter Reutemann, and Ian H. Witten. Weka 3: Data Mining and

Open Source Machine Learning Software in Java. http://www.cs.

waikato.ac.nz/ml/weka/, July 2013.

[40] Mario Heiderich, Tilman Frosch, and Thorsten Holz. IceShield: De-

tection and Mitigation of Malicious Websites with a Frozen DOM. In

Proceedings of the 14th international conference on Recent Advances

in Intrusion Detection, RAID’11, pages 281–300, Berlin, Heidelberg,

2011. Springer-Verlag.

[41] HoneyClient Project. Honeyc. https://projects.honeynet.org/

honeyc, July 2011.

[42] Yung-Tsung Hou, Yimeng Chang, Tsuhan Chen, Chi-Sung Laih, and

Chia-Mei Chen. Malicious Web Content Detection by Machine Learn-

ing. Expert Syst. Appl., 37(1):55–60, January 2010.

[43] Ali Ikinci, Thorsten Holz, and Felix C. Freiling. Monkey-Spider:

Detecting Malicious Websites with Low-Interaction Honeyclients. In

Sicherheit, volume 128 of LNI, pages 407–421. GI, 2008.



Bibliography 139

[44] Yahoo Inc. Yahoo Random URL Generator. http://random.yahoo.

com/bin/yrl/, October 2011.

[45] Internet World Stats. World internet usage and population statistics.

http://www.internetworldstats.com/stats.htm, June 2012.

[46] Danesh Irani, Marco Balduzzi, Davide Balzarotti, Engin Kirda, and

Calton Pu. Reverse Social Engineering Attacks in Online Social Net-

works. In Proceedings of the 8th international conference on Detection

of intrusions and malware, and vulnerability assessment, DIMVA’11,

pages 55–74. Springer-Verlag, 2011.

[47] Kafiene. Blackhole Exploit Kit goes 2.1.0: Shows New

URL Patterns. http://malware.dontneedcoffee.com/2013/06/

blackhole-exploit-kit-goes-210-shows.html, June 2013.

[48] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vi-

gna. Revolver: An Automated Approach to the Detection of Evasive

Web-based Malware. In USENIX Security, 2013.

[49] Alexandros Kapravelos, Marco Cova, Christopher Kruegel, and Gio-

vanni Vigna. Escape from Monkey Island: Evading High-Interaction

Honeyclients. In Proceedings of the 8th international conference on

Detection of intrusions and malware, and vulnerability assessment,

DIMVA’11, pages 124–143. Springer-Verlag, 2011.

[50] Vadim Kotov and Fabio Massacci. Anatomy of Exploit Kits - Pre-

liminary Analysis of Exploit Kits as Software Artefacts. In ESSoS,

pages 181–196, 2013.

[51] Robert Lemos. MPack Developer on Automated Infection Kit.

http://www.theregister.co.uk/2007/07/23/mpack_developer_

interview/, July 2007.



140 Bibliography

[52] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang.

Knowing Your Enemy: Understanding and Detecting Malicious Web

Advertising. In Proceedings of the 2012 ACM conference on Com-

puter and communications security, CCS ’12, pages 674–686, New

York, NY, USA, 2012. ACM.

[53] Justin Ma. Learning to Detect Malicious URLs. PhD thesis, Univer-

sity of California, San Diego, 2010.

[54] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M.

Voelker. Beyond Blacklists: Learning to Detect Malicious Web Sites

from Suspicious URLs. In Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining,

KDD ’09, pages 1245–1254, New York, NY, USA, 2009. ACM.

[55] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M.

Voelker. Identifying Suspicious URLs: An Application of Large-Scale

Online Learning. In Proceedings of the 26th Annual International

Conference on Machine Learning, ICML ’09, pages 681–688, New

York, NY, USA, 2009. ACM.

[56] David J. C. MacKay. Information Theory, Inference & Learning

Algorithms. Cambridge University Press, New York, NY, USA, 2002.

[57] Malc0de. Malc0de. http://twitter.com/malc0de, July 2013.

[58] Malforsec. Neutrino Exploit Kit Landing Page De-

mystified. http://malforsec.blogspot.no/2013/03/

neutrino-exploit-kit-landing-page.html, March 2013.

[59] MalwareSigs. MalwareSigs: Helping Network Analysts Detect Mal-

ware. http://www.malwaresigs.com, July 2013.



Bibliography 141

[60] MalwareURL. Malware URLs. http://www.malwareurl.com/,

September 2011.

[61] MalwarSigs. Malvertising on Youtube.com Redirects to Sweet

Orange Exploit Kit. http://www.malwaresigs.com/2013/07/30/

malvertising-on-youtube-com-redirects-to-sweet-orange-ek/,

July 2013.

[62] McAfee. McAfee Site Advisor. http://www.siteadvisor.com, Sep

2013.

[63] Trend Micro. Web Threats. http://apac.trendmicro.com/apac/

threats/enterprise/web-threats/, November 2012.

[64] MITRE. The MITRE HoneyClient Project. http://search.cpan.

org/~mitrehc, November 2011.

[65] Alexander Moshchuk, Tanya Bragin, Damien Deville, Steven D. Grib-

ble, and Henry M. Levy. SpyProxy: Execution-Based Detection of

Malicious Web Content. In Proceedings of 16th USENIX Security

Symposium on USENIX Security Symposium, SS’07, pages 3:1–3:16,

Berkeley, CA, USA, 2007. USENIX Association.

[66] Mozilla. SpiderMonkey. https://developer.mozilla.org/en-US/

docs/Mozilla/Projects/SpiderMonkey, October 2013.

[67] NetCraft. December 2012 Web Server Survey.

http://news.netcraft.com/archives/2012/12/04/

december-2012-web-server-survey.html, December 2012.

[68] PhishTank. PhishTank Developer Information. http://www.

phishtank.com/developer_info.php, September 2011.



142 Bibliography

[69] Niels Provos. Safe Browsing: Protecting Web Users for 5 Years and

Counting. http://googleonlinesecurity.blogspot.it/2012/06/

safe-browsing-protecting-web-users-for.html, June 2012.

[70] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang,

and Nagendra Modadugu. The Ghost in the Browser: Analysis of

Web-Based Malware. In Proceedings of the first conference on First

Workshop on Hot Topics in Understanding Botnets, HotBots’07,

pages 4–4. USENIX Association, 2007.

[71] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and

Fabian Monrose. All your iFRAMEs point to Us. In Proceedings

of the 17th conference on Security symposium, SS’08, Berkeley, CA,

USA, 2008. USENIX Association.

[72] Mahmoud Qassrawi and Hongli Zhang. Detecting Malicious Web

Servers with Honeyclients. Journal of Networks, 6(1), 2011.

[73] Moheeb Abu Rajab, Lucas Ballard, Nav Jagpal, Panayiotis Mavrom-

matis, Daisuke Nojiri, Niels Provos, and Ludwig Schmidt. Trends in

Circumventing Web-Malware Detection. Technical report, Google

Inc., July 2011.

[74] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn.

NOZZLE: A Defense Against Heap-Spraying Code Injection Attacks.

In Proceedings of the 18th conference on USENIX security sympo-

sium, SSYM’09, pages 169–186, Berkeley, CA, USA, 2009. USENIX

Association.

[75] Konrad Rieck, Tammo Krueger, and Andreas Dewald. Cujo: Efficient

Detection and Prevention of Drive-by-Download Attacks. In Proceed-

ings of the 26th Annual Computer Security Applications Conference,

ACSAC ’10, pages 31–39, New York, NY, USA, 2010. ACM.



Bibliography 143

[76] Toby Segaran. Programming Collective Intelligence. O’Reilly, first

edition, 2007.

[77] C. Seifert, I. Welch, and P. Komisarczuk. Identification of Malicious

Web Pages with Static Heuristics. In Proceedings of the Australasian

Telecommunication Networks and Applications Conference, pages 91–

96, 2008.

[78] C. Seifert, B. Zorn, B. Livshits, and C. Kolbitsch. Rozzle: De-

cloaking Internet Malware. 2012 IEEE Symposium on Security and

Privacy, 0:443–457, 2012.

[79] Christian Seifert, Ian Welch, Peter Komisarczuk, Chiraag Uday Aval,

and Barbara Endicott-Popovsky. Identification of Malicious Web

Pages Through Analysis of Underlying DNS and Web Server Rela-

tionships. In Local Computer Networks LCN, pages 935–941. IEEE,

2008.

[80] Daily SEO. Facebook and Twitter’s Influence on

Google’s Search Rankings. http://www.seomoz.org/blog/

facebook-twitters-influence-google-search-rankings, May

2012.

[81] Gargoyle Software. HTMLUnit. http://htmlunit.sourceforge.

net/, March 2012.

[82] Aditya K. Sood and Richard J. Enbody. Crimeware-as-a-ServiceA

Survey of Commoditized Crimeware in the Underground Market. In-

ternational Journal of Critical Infrastructure Protection, 06(1):28–38,

March 2013.

[83] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert,

Martin Szydlowski, Richard Kemmerer, Christopher Kruegel, and



144 Bibliography

Giovanni Vigna. Your Botnet is My Botnet: Analysis of a Botnet

Takeover. In Proceedings of the 16th ACM conference on Computer

and communications security, CCS ’09, pages 635–647, New York,

NY, USA, 2009. ACM.

[84] Santosh Surgihalli and Varadharajan Krishnasamy.

Styx Exploit Kit Takes Advantage of Vulnera-

bilities. http://blogs.mcafee.com/mcafee-labs/

styx-exploit-kit-takes-advantage-of-vulnerabilities,

June 2013.

[85] Symantec. Symantec Report on Attack Kits and Malicious

Websites. http://symantec.com/content/en/us/enterprise/

other_resources/b-symantec_report_on_attack_kits_and_

malicious_websites_21169171_WP.en-us.pdf, July 2011.

[86] Symantec. Symantec Web based Attack Prevalence Report. http:

//www.symantec.com/business/threatreport/topic.jsp?id=

threat_activity_trends&aid=web_based_attack_prevalence,

July 2011.

[87] Symantec. Internet Security Threat Report. http://www.

symantec.com/content/en/us/enterprise/other_resources/

b-istr_main_report_v18_2012_21291018.en-us.pdf, April 2013.

[88] The HoneyClient Project. Capture-hpc. https://projects.

honeynet.org/capture-hpc, October 2011.

[89] Kurt Thomas, Chris Grier, Justin Ma, Vern Paxson, and Dawn Song.

Design and Evaluation of a Real-Time URL Spam Filtering Service.

In Proceedings of the IEEE Symposium on Security and Privacy.

IEEE, 2011.



Bibliography 145

[90] Spy Eye Tracker. Spy Eye Tracker. https://spyeyetracker.abuse.

ch/monitor.php?browse=binaries, June 2013.

[91] Zues Tracker. Zues Tracker. https://zeustracker.abuse.ch/

monitor.php?browse=binaries, June 2013.

[92] Twitter. Twitter URL API. http://urls.api.twitter.com/1/

urls/, March 2012.

[93] UCSB. Wepawet. http://wepawet.cs.ucsb.edu, Sep 2013.

[94] Blase E. Ur and Vinod Ganapathy. Evaluating Attack Amplification

in Online Social Networks. In W2SP’09: 2009 Web 2.0 Security and

Privacy Workshop, Oakland, California, May 2009.

[95] Ashlee Vance. Times Web Ads Show Security Breach.

http://www.nytimes.com/2009/09/15/technology/internet/

15adco.html?_r=0, Sep 2009.

[96] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[97] VxVault. Vx Vault. http://vxvault.siri-urz.net/ViriList.

php, June 2013.

[98] Gang Wang, Jack W. Stokes, Cormac Herley, and David Felstead. De-

tecting Malicious Landing Pages in Malware Distribution Networks.

In DSN, pages 1–11. IEEE, 2013.

[99] Yi Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Ver-

bowski, Shuo Chen, and Sam King. Automated Web Patrol with

Strider HoneyMonkeys: Finding Web Sites that Exploit Browser Vul-

nerabilities. In Proceedings of the Network and Distributed System

Security Symposium, NDSS’06, 2006.



146 Bibliography

[100] WebSense. eWeek Web Site Leads Users to Rogue Anti-Virus

(AV) Application. http://securitylabs.websense.com/content/

alerts/3310.aspx, February 2009.

[101] WebSense. Websense 2010 Threat Report. http://www.websense.

com/content/threat-report-2010-highlights.aspx/, July 2011.

[102] Yi wei Chen and Chih jen Lin. Combining SVMs with Various

Feature Selection Strategies. In Taiwan University. Springer-Verlag,

2005.

[103] Aaron Weiss. Top 5 Security Threats in HTML5. http:

//www.esecurityplanet.com/trends/article.php/3916381/

Top-5-Security-Threats-in-HTML5.htm, October 2011.

[104] Darrell Whitley. A Genetic Algorithm Tutorial. Statistics and Com-

puting, 4:65–85, 1993.

[105] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-Scale Auto-

matic Classification of Phishing Pages. In Network and Distributed

Systems Security. The Internet Society, 2010.

[106] Li Xu, Zhenxin Zhan, Shouhuai Xu, and Keying Ye. Cross-Layer

Detection of Malicious Websites. In Proceedings of the third ACM

conference on Data and application security and privacy, CODASPY

’13, pages 141–152, New York, NY, USA, 2013. ACM.

[107] Wei Xu, Fangfang Zhang, and Sencun Zhu. JStill: Mostly Static

Detection of Obfuscated Malicious JavaScript Code. In Proceedings

of the third ACM conference on Data and application security and

privacy, CODASPY ’13, pages 117–128, New York, NY, USA, 2013.

ACM.



Appendix A

Supervised Learning Algorithms

A.1 Decision Tree

A decision tree is a tree with internal nodes corresponding to feature names,

branches corresponding to feature values, and leaf nodes corresponding to

class labels. The learning, i.e., building the decision tree, is done by select-

ing the attribute that best splits the training examples into their proper

classes, i.e., benign and malicious. At each stage of building the deci-

sion tree, the algorithm chooses the attribute that could split the training

examples into their classes in the best possible manner.

Most implementations of decision tree use the information gain ratio

[56], which is a measure based on entropy. Intuitively, entropy is the mea-

sure of disorder in a set —meaning a low value of entropy in a set entails the

homogeneity of the set and a zero entropy value means the set is composed

of entirely one type of items. Once the splitting attribute is identified, the

splitting criteria is used to push the rest of the training examples down

the tree. Examples that satisfy the splitting criteria are pushed down the

“Yes” branch, while examples that do not pass the splitting criteria are

pushed down the “No” branch of the tree. This process repeats recursively

until each node contains examples of the same class, at which point it stores

the class label.

147



148 Appendix A. Supervised Learning Algorithms

During classification, a decision tree classifier predicts the class of an

unknown example by checking the attribute value against the criteria at

each node, beginning at the root node. If the attribute matches the crite-

ria, the classifier follows the “Yes” branch; otherwise, it follows the “No”

branch. This process is repeated until an endpoint (a leaf node) is reached,

which is the predicted class [76].

A.2 Random Forest

Random Forest builds many decision trees during training. To classify an

unknown sample, the input feature vector is queried agains each tree in the

forest. Each tree predicts the class of the unknown sample. The overall

output of detection is the class label with the highest number of votes over

all the trees in the forest. Each tree in the forest is built as follows [9]:

1. If the number of cases in the training set is N , sample N cases at

random, but with replacement, from the original data. This sample

will be the training set for growing the tree.

2. If there are M input variables, a number m << M is specified such

that at each node, m variables are selected at random out of the M

and the best split on these m is used to split the node. The value of

m is held constant during the forest growing.

3. Each tree is grown to the largest extent possible,without pruning.

A.3 Naive Bayes

A Naive Bayes classifier is a simple probabilistic classifier based on apply-

ing Bayes’ theorem with strong (naive) independence assumptions. Quite



A.4. Logistic Regression 149

widely used in text classification and spam filters, the fundamental as-

sumption in this model is that, for a given label (e.g., 1 = malicious and

0 = benign), the individual features of instances (e.g., web pages) are dis-

tributed independently of the values of other features [7, 76].

Supposing that P (x|y) denotes the conditional probability of the feature

vector x given its label y, the model assumes P (x|y) =
∏d

j=1 P (xj|y),

where xj is the jth feature and d is the number of features. Then, from

Bayes rule, assuming that malicious and benign web pages occur with equal

probability, a posterior probability that the feature vector x belongs to the

class of malicious web pages is computed as:

P (y = 1|x) =
P (x|y = 1)

P (x|y = 1) + P (x|y = 0)
(A.1)

Finally, the right hand side of Equation A.1 can be thresholded to pre-

dict a binary label (0 or 1) for the feature vector x.

A.4 Logistic Regression

Logistic Regression is a parametric model for binary classification. In this

model, examples are classified based on their distance from a hyperplane

decision boundary [7]. The decision rule is expressed in terms of the sigmoid

function σ(z) = [1 + e−z]−1, which converts these distances into probabili-

ties that feature vectors have positive or negative labels. The conditional

probability that feature vector x has a positive label y = 1 is computed

using the following equation:

P (y = 1|x) = σ(wx+ b) (A.2)

where the weight vector w ∈ Rd and scalar bias b are parameters to be

estimated from training data. In practice, the right hand side of Equation



150 Appendix A. Supervised Learning Algorithms

A.2 is thresholded to obtain a binary prediction for the label of the feature

vector x.

A widely used training scheme for logistic regression models is using a

regularized form of the maximum likelihood estimation. More precisely,

one can choose the weight vector w and bias b to maximize the following

objective function:

L(w, b) =
n∑
i=1

logP (yi|xi)− γ
d∑

α=1

|wα| (A.3)

In Equation A.3, the purpose of the first term is to compute the con-

ditional log-likelihood that the model correctly labels all the examples in

the training set. The second term in Equation A.3 is used to penalize large

values (in magnitude) of the elements in the weight vector w. This penalty

scheme is called l1-norm regularization.

The main advantage of this regularization that it serves as a measure

against over-fitting. In addition, it also encourages sparse solutions in

which many elements of the weight vector are precisely zero. The relative

weight of the second term in Equation A.3 is determined by the regular-

ization parameter. The value of γ is usually determined by applying cross

validation.

A.5 Support Vector Machine

A Support Vector Machine (SVM) model is a representation of the exam-

ples as points in space, mapped so that positive and negative examples

are divided by a clear gap that is as wide as possible. New examples are

then mapped into that same space and predicted to belong to a class based

on which side of the gap they fall on. SVMs are widely acknowledged as

effective models for binary classification of high dimensional data due to



A.5. Support Vector Machine 151

the kernel trick, which applies different functions, called kernel functions,

to transform a linearly inseparable data into a higher dimensional space in

pursuit of one or more dividing lines between the data.

The principal objective in training SVMs is to maximize the margin

of correct classification [96]. The decision rule in SVMs is expressed in

terms of a kernel function K(x, x′) that computes the similarity between

two feature vectors and non-negative coefficients {αi}ni=1 (n is the size of

the training set) that indicate which training examples lie close to the

decision boundary. SVM finds the hyperplane with the largest distance

to the nearest training data points of positive (e.g., malicious web pages)

and negative (e.g., benign web pages) examples, called functional mar-

gin. Functional margin optimization is done by maximizing the following

equation:

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjK(xi, xj) (A.4)

subject to:

n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2, ..., n (A.5)

where αi and αj are coefficients assigned to training samples xi and xj.

K(xi, xj) is a kernel function used to measure similarity between the two

samples. After specifying the kernel function, SVM computes the coeffi-

cients which maximize the margin of correct classification on the training

set. C is a regularization parameter used for controlling the trade-off be-

tween training error and margin size.



152 Appendix A. Supervised Learning Algorithms



Appendix B

Publications

1. Birhanu Eshete, Venkat Venkatakrishnan. WebWinnow: Leverag-

ing Exploit Kit Workflows to Detect Malicious URLs. ACM

Conference on Data and Application Security and Privacy (CODASPY),

2014 (to appear).

2. Birhanu Eshete, Adolfo Villafiorita, Komminist Weldemariam, Mo-

hammad Zulkernine. EINSPECT: Evolution-Guided Analysis

and Detection of Malicious Web Pages. In Proceedings of the In-

ternational Conference on Computer Software and Applications (COMP-

SAC), pages 375-380, IEEE, 2013.

3. Birhanu Eshete, Adolfo Villafiorita, Komminist Weldemariam, Mo-

hammad Zulkernine. Confeagle: Automated Analysis of Secu-

rity Configuration Vulnerabilities in Web Applications. In

Proceedings of the International Conference on Security and Reliabil-

ity (SERE), pages 188-197, IEEE, 2013.

4. Birhanu Eshete, Adolfo Villafiorita. Effective Analysis, Charac-

terization, and Detection of Malicious Web Pages. In Proceed-

ings of the International Conference on World Wide Web (WWW)

Campanion, pages 355-360, ACM, 2013.

153



154 Appendix B. Publications

5. Birhanu Eshete, Adolfo Villafiorita, Komminist Weldemariam. BIN-

SPECT: Holistic Analysis and Detection of Malicious Web

Pages. In Proceedings of the International Conference on Security

and Privacy in Communication Networks (SECURECOMM), pages

149-166, Springer-Verlag, 2012.

6. Birhanu Eshete, Adolfo Villafiorita, Komminist Weldemariam. Mali-

cious Website Detection : Effectiveness and Efficiency Issues,

In Proceedings of the System Security Workshop (SysSec), pages 123-

126, IEEE, 2011.

7. Birhanu Eshete, Komminist Weldemariam, Adolfo Villafiorita. Early

Detection of Security Misconfiguration Vulnerabilities in Web

Applications. In Proceedings of the International Conference on

Availability, Reliability and Security (ARES), pages 169-174, IEEE,

2011.

8. Valentino Sartori, Birhanu Eshete, Adolfo Villafiorita. Measuring

the Impact of Different Metrics on Software Quality: a Case

Study in the Open Source Domain. In Proceedings of the Inter-

national Conference on Digital Society (ICDS), 2011.

9. Birhanu Eshete, Dawit Bekele, Komminist Weldemariam, Adolfo Vil-

lafiorita. Context Information Refinement for Pervasive Med-

ical Systems. In Proceedings of the International Conference on

Digital Society (ICDS), pages 210-215, IEEE, 2010.

10. Biniyam Asfaw, Dawit Bekele, Birhanu Eshete, Komminist Welde-

mariam, Adolfo Villafiorita. Host-based Anomaly Detection for

Pervasive Medical Systems. In Proceedings of the International

Conference on Risks and Security of Internet and Systems (CRiSIS),

pages 1-8, IEEE, 2010.


