
Geodesic-Based Properties in Complex Networks

by

Nasim Mobasheri

B.S., Sharif University of Technology, Tehran, Iran, 2012

Thesis submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Chicago, 2018

Chicago, Illinois

Defense Committee:

Bhaskar Dasgupta, Chair and Advisor

Robert Sloan

Reka Albert

Bing Liu

Piotr Gmytrasiewicz



Copyright by

Nasim Mobasheri

2018



To my parents,

and my husband.

iii



ACKNOWLEDGMENTS

I would like to express gratitude to my PhD advisor, Professor Bhaskar Dasgupta for guiding me through

past six years in my journey as a PhD student. Without his supervision the achievements and completion of

this thesis was not possible.

I would also like to thank the members of my defense committee, Professor Robert Sloan, Professor Reka

Albert from Pennsylvania State University, Professor Bing Liu, and Professor Piotr Gmytrasiewicz for their

valuable advice and support.

iv



PREFACE

This thesis is based on the following publications:
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SUMMARY

In the modern era and age of the Internet, complex networks are part of people’s everyday life. From

social networks revolutionizing social behavior, marketing, and information diffusion to biological networks

and their valuable influence in modern day medicine and biology, to traffic network and aviation paths, these

phenomena are playing increasingly important roles in our life. It is natural that the scientific community

study and analyze these networks to gain better understanding about their structure and behavior. As a re-

sult, network measures that reflect the most salient properties of complex large-scale networks are in high

demand in the network research community.

In this thesis, we look into three geodesic-based measures in complex networks. In the first part, we adapt

a combinatorial measure of negative curvature (also called hyperbolicity) to parameterized finite networks,

and show that a variety of biological and social networks are hyperbolic. This property has strong implica-

tions on the higher-order connectivity and other topological properties of these networks.

In the second part, we look into the complexity of another geodesic-based property known as strong met-

ric dimension. We show the problem of calculating the strong metric dimension of a graph with n nodes

admits polynomial-time 2-approximation, admits a O∗(20.287n)-time exact computation algorithm, admits a

O(1.2738k + nk)-time exact computation algorithm if the strong metric dimension is at most k. We also

prove three inapproximability results for calculating the strong metric dimension of a graph.

In the final part of this thesis, we investigate a geodesic-based property closely related to strong metric di-

mension, known as (k, ℓ)-anonymity which indicates the privacy violation in large–networks under active

attacks. Our theoretical result provides some insight regarding prevention of privacy violation and designing

topology of networks. Our empirical results shed light on privacy violation properties of real social networks

as well as a large number of synthetic networks generated by both the classical Erdös-Rényi model and the

scale-free random networks generated by the Barabasi-Albert preferential-attachment model.

xi



CHAPTER 1

INTRODUCTION

Graphs are the best and most powerful tools to model and study network-like systems. Graph theory,

introduced by Euler in 1736, is a branch of mathematics that studies the properties of pairwise relations

in network structures. Despite its continuous growth through the years, it was only bounded by limited

application and covered small group of graphs. Progress in different fields led to the discovery of larger and

more complicated networks, and the availability of computers and development in computational techniques

allowed scientists to gather and analyze large-scale networks in the real world. The demand for analyzing

the structure of these networks expanded the graph theory and tied it to statistical physics, while new models

were created to reflect the properties of these newly discovered networks. These networks with non-trivial

topological features became known as complex networks, and the field of network science was formed to

study and analyze these structures. Complex networks can demonstrate a wide variety of phenomenon for

different disciplines in natural and social sciences. Metabolic networks, signaling networks, food webs,

Internet, World Wide Web, power grids, neural networks, and social networks such as Facebook and Twitter

are all examples of complex networks. The importance of studying complex networks lies in the simple fact

that predicting network performance, behavior, robustness, and scalability requires an understanding of the

underlying structure of the network. Complex network analysis and networks science is an interdisciplinary

field of algorithms and methods developed based on graph theory and statistical physics which has received

a lot of attention recently. On one hand, the emergence of social networks like Facebook and Twitter caused

a revolution in the flow of information and news, and started to influence and shape users behavior and

actions. This led to concerns over privacy and information flow and how these networks are affecting our

behavior as humans on many aspects.

On the other hand, the successful mapping of many biological networks helped scientists to gain better

1
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understanding of many biological phenomena and diseases and opened a path for discovering new solutions

once deemed unsolvable problems in medical fields.

1.1 Study of Complex Networks

Since the 1950s, complex network were described by random graphs as the simplest and most straight-

forward model. Paul Erdös and Alfred Rènyi, who were the first mathematicians that studied random graphs,

introduced the ER model for displaying and analyzing complex networks. This model, which is still widely

in use today, starts with n nodes and connects every pair of nodes with probability p. The computerization

of data acquisition and a noticeable increase in computing power allowed us to study giant networks with

millions of nodes and build large databases on their topology. This spectacular progress in network science

in the past few years raised a lot of questions about the random nature of real world networks and enlight-

ened the fact that the ER model cannot capture many of the remarkable aspects of these networks.

These developments led to proposing new concepts, measures, and a fair amount of investigation on net-

works. Among them three concepts received the most attention: Watts and Strogatzs discovering small-

world phenomenon in real world networks that led to introducing the WS model (1), Barabasi and Alberts

investigating the preferential nature of network evolution which leads to scale-free real world networks (2)

and detection of community structures in real world networks (3). Based on the literature, the studies on

complex networks are mostly focused in two areas; analysis and structure. Of course there has been a sub-

stantial amount of research on the visualization and organization of complex networks, but for the most part

the popular criteria of structure and analysis remains the same.

Discovering metrics and measures to gain insight and investigate network’s behavior and statistical prop-

erties is the main focus of analysis. So far, metrics such as degree distribution, clustering coefficient, and

average path length have been extensively used to create network models and categorize them. More re-

search on non-trivial and combinatorial metrics can identify new properties and thus help the scientific
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community better understand, explain, and predict the behavior of networks.

The area of modeling real world networks is mostly known as structure. Properties like small world phe-

nomena and scale free networks inspired models that captured the nature of many real world networks.

These models will be discussed in details in the next chapter. These models help researchers understand the

structure and evolution of complex networks.

1.2 Thesis Outline

In this thesis, we look into several geodesic-based properties in complex real world networks and try to

resolve common problems with respect to properties in complex network analysis, and help further enriching

the research work in this new and interdisciplinary field.

This thesis consist of four chapters. In the next chapter, we look into the preliminaries of network science

and provide an overview of historical background and introduction to basic concepts and terminologies. The

chapter includes basics of graph theory, an overview of basic network properties, and a brief introduction to

most well known network models currently being used by research community.

Chapter 3 is dedicated to investigating an interesting topological property known as hyperbolicity in real

world complex networks. This geodesic-based property provides an interesting insight to the topology of

many biological and social networks and we discuss the implications of hyperbolicity on the behavior of

many real-world networks. In fact many interesting behavior we witness in networks can be discussed

through the scope of network hyperbolicity:

⊲ In biological networks, network motifs are often nested.

⊲ In biological regulatory networks, paths mediating up- or down-regulation of a target node starting from

the same regulator node often have many small cross-talk paths.

⊲ An eavesdropper with limited sensor ranges can often intercept communications between nodes very far

apart from it.
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⊲ In traffic networks, congestion can happen in a node that is not a hub.

Although each of these phenomena can be studied on its own, it is desirable to have a network measure

reflecting salient properties of complex large-scale networks that can explain all these phenomena at one

shot.

In chapter 4 we focus on another geodesic-based property known as strong metric dimension in networks

and look deeper into algorithmic aspect of calculating strong metric dimension. In particular, we show the

reduction of this problem to another well known problem within an additive logarithmic factor, thereby

settling the computational complexity questions for this measure completely.

Chapter 5’s focus is on a geodesic-based property known as (k, ℓ)-anonymity, which is an extension of

strong metric dimension. This property is a privacy measure in networks under active attacks and provides

insight into the robustness of a network against an attempted active attack. We describe our Investigation on

this property in real world networks, which leads to important insights about active attacks and privacy in

complex networks.



CHAPTER 2

PRELIMINARIES

In this chapter we discuss the preliminaries, terminologies, and mathematical models behind complex

network analysis. This will include a brief introduction to essential graph theory concepts and an overview

of important statistical properties and models for complex networks.

2.1 Mathematical Foundation

2.1.1 Graph Theory

The initial idea of graphs was presented by Leonard Euler the famous Swiss mathematician. He devel-

oped the idea of graphs in an attempt to solve the problem of crossing bridges in the town of Knigsberg. The

problem was whether it was possible to walk through town in such way that each bridge was passed once

and only once. He represented each land mass as a node (point) and each bridge as a line connecting two

points. The following figure shows the actual map of Knigsberg and Eulers representation of it as a graph

1. Euler argued that for every land mass there needs to be a way to get in and a way to get out. Thus each

land mass requires an even number of bridges as oppose to existing odd numbers. Therefore, not possible

to take a walk without passing a bridge more than once. This problem and Eulers approach to it shaped the

foundation of graph theory as one of the essentials of discrete mathematics. Below we will briefly look into

some key terminologies vital to graph theory.

Graph: A set of objects that are connected to each other through meaningful links. A graph G = (V, E)

contains a set of vertices V and set of edges E. It is useful to note that terms node and vertex and also

edge and link are often used interchangeably. Each edge connects two nodes creating an adjacent pair or

neighbors. An edge is usually depicted as pair of nodes it connects, (u, v) ∈ E where u belongs to V and v

1Source: History of Mathematics Archive http://www-history.mcs.st-andrews.ac.uk/Extras/Konigsberg.html

5
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Figure 1: Image of city of Konigsberg and its seven bridges

belongs to V . A degree of a node is number of neighbors it has and is shown by d(n).

Undirected and Directed Graphs: In an undirected graph orientation does not matter and there is no order

to pairs. In other words, (u, v) ∈ E ⇐⇒ (v, u) ∈ E. In an undirected graph each edge means both incom-

ing and outgoing link and thus there is no distinction between doutgoing(v) and dincoming(v). In contrast, in

a directed graph order matters as (u, v) ∈ E < (v, u) ∈ E, and each edge has a source and a target which

shows the flow and direction between two pairs. In a directed graph, nodes have two degrees, dincoming and

doutgoing. For a node v, the incoming degree (dincoming) is number of edges where v is the target and outgoing
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degree (doutgoing) is number of edges where v is the source.

Simple and Multigraph: If a graph allows multiple edges between two nodes or self-loops for nodes then

the graph is called a multigraph. A simple graph has one edge between each pair of nodes and self-loops are

not allowed.

Weighted and Unweighted Graphs: If there are values assigned to every edge then graph is a weighted.

These numbers can reflect different properties in a graph such as capacity, cost, or length. An unweighted

graph is a graph where values assigned to each edge is 1.

Complete Graph: a graph that has an edge between every distinct pair of nodes is called a complete graph

and shown by Kn where n is number of nodes.

Regular Graph: a graph where every node has the same number of neighbors and therefore degree. In a

regular directed graph, number of incoming and outgoing edges for every nodes should be equal.

Weakly and Strongly Connected Graph: A connected graph is an undirected graph where there exists a

path between every pair of nodes. For directed graphs, if for every (u, v) ∈ E we have (v, u) ∈ E then we call

the graph strongly connected. A directed graph is weekly connected if we remove all direction from edges

and end up with a connected undirected graph.

Bipartite Graph: A graph is bipartite if we can b divide the nodes into two disjoint sets U and V such that

every node in U is connected to a node in V . A bipartite graph does not contain any odd-length cycles.

Subgraph: A subgraph of graph G = (V, E) is a a graph G′ = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E.

Path: A finite or infinite sequence of edges that connects a set of distinct nodes.

If the start node in path is the same as the end node, we call it a cycle.

Connected Component: A subgraph of an undirected graph such that for every distinct pair of nodes there

exist a path in subgraph. In complex network analysis and network science, largest connected component is

usually a desirable focus of the study and investigation.

Tree: A tree is a graph without a cycle where every two node are connected by exactly one path.
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Cut: A partition of nodes into to disjoint sets is known as a cut. The set of edges whose end points are in

different subsets of the partition is called cutset. Weight of a cut is defined as the sum of weight of all edges

crossing the cut.

Clique: A subset of nodes in an undirected graph such that every two nodes in the subset are connected by

an edge.

2.2 Properties of Networks

In this section, we will introduce some of the most popular and important properties in a network. Un-

derstanding and analyzing these properties provide insight into network behavior and prediction. Moreover,

these properties are key factors in defining network models. Investigating such properties is important in

network classification and topology comparison.

Diameter: The diameter of a network is the length of the longest shortest path, or the longest geodesics.

Note that for disconnected networks, networks with more than one connected component, this definition

only applies to reachable nodes. In some cases, the diameter of a disconnected network is∞.

Density: Density measures the completeness of a network. In other words, it measures the ratio of the

number of existing edges in E with respect to number of all possible edges. Density of a simple undirected

network is

D =
2|E|

|V |(|V |−1)

Average Degree: Number of edges connected to a node is denoted by its degree k. The average degree of a

network is defined as

k =
∑N

i=1
ki

N
= 2E

N
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where ki is the degree of node i and N = |V | − 1.

The next two properties were proposed based on works of Watts and Strogatz (1) as intuitive and important

metrics. These two metrics known as Average path length L and Clustering Coefficient C, alongside degree

distribution are often the pillars of network modeling and analysis and provide gainful insight and informa-

tion about the structural behavior of a network.

Average Path Length: The average path length captures the idea of how far apart two nodes are, on average.

The metric was inspired by the work of Milgram (4), which we will discuss further in network modeling.

For a more formal definition, we need to get familiar with the notion of geodesic paths. Geodesic is the

shortest path between two nodes in a network. The average path length is the average of all geodesics.If

we show the geodesic between nodes i and j with di,j and define D = {di,j|i, j ∈ V, i , j} as the set of all

geodesics paths then we can define the average path length L of a network as follows:

L = 1
D

∑
i, j di,j

In real world networks, the possibility of disconnection and existence of multiple connected components

is high. Therefore, network science community mostly focuses on the largest connected component which

guarantees di,j < ∞ for every (ui, u j) ∈ V .

Clustering Coefficient: This property is very common in social networks, and it indicates the tendency

of a network to form cliques, a subset where everyone knows each other. Formally, the clustering coefficient

of a node is the ratio of existing links connected to its neighbors over the maximum number of links that

could possibly exist. This variation of clustering coefficient is a local property of a node i and is calculated

as follows:

ci =
2∗|ei, j |

ki(ki−1)
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The other variation of clustering coefficient is a global metric that counts for all possible cliques and is

shown as:

Cglob =
3∗numbero f triangles

numbero f alltriplets

2.3 Network Models

Across different fields, networks are emerging as complex relational data and depicted using graphs.

Network models establish a system to integrate and use mathematical and analytical tools and methods to

capture network properties. They also provide great insight for predicting network behavior. Below, we

take a look at three well-known models that gain a lot of attention and build the proper domain for extensive

research in network science.

2.3.1 Erdös Rènyi Model

One of the first models to study networks was random graphs proposed by Erdös and Rènyi (5). This

model describes a graph by a probability distribution that generates them. Due to their random nature, ER

modeled graphs gained a lot of popularity and have been extensively used in complex network analysis to

capture a typical graph. The model to generate a random graph with n nodes and m edges starts by having

all n nodes disconnected and separate, then randomly selecting two nodes and connecting them until the

desired number of edges is reached (6). It is obvious that there are
( n(n−1)

2
m

)
with this combination of nodes

and edges and the outcome graph is just one realization.

Another model for ER random graphs is a procedure where every pair of nodes are connected with the

probability 0 < p < 1. This approach makes the total number of edges a random variable, which makes the

probability of a graph like G0(n, p) as follows:

P(G0(n, p)) = pm(1p)
n(n−1)

2
m
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An interesting characteristic of ER graphs is graph evolution. By increasing p, obtained graphs evolve from

low density, tree-like graphs to high link density, fully connected graphs.

The degree distribution in a random ER model follows a binomial distribution so we can simply show that

degree distribution with parameters n and p as:

P(k) = Cn−1
k

pk(1 − p)n−1−k

In the above formula the probability of k edges existing is represented by pk, while the probability of absence

of other additional edges is (1 − p)n−1−k. If n is very large, as in many real networks,< k >≃ p.n and we can

simplify the degree distribution to a Poisson distribution:

P(k) ≃ k<k>

k!
e−<k>

For slightly large value of p, the diameter of random graphs tends to be small. Multiple studies on diameter

of random graphs show that for most graphs with same n and p, diameter remains the same and is usually

formulated by D = ln n
ln pn

. This is due to a general spread that takes place during the evolution step of the

random graph. This spread also causes the average path length to follow a similar pattern. In random graphs,

the average path length is Lrand =
ln n

ln pn
.

Considering the procedure random graph evolution, we can state that the probability that two neighboring

nodes of node i are connected is equal to the probability of connection between any two random nodes. In

other words, the probability for any edge is p, which means the probability that two neighbors of a node are

connected by an edge is p as well, so we can show the clustering coefficient with Crand = p = <k>
n

.

2.3.2 Watts Strogatz Model

Stanley Milgram, an American psychologist introduced the notion of small world in his work six degrees

of separation (4). He conducted series of experiments to find degree of separation in a network. In these

experiments, he gave number of letters to participants living in Boston and Omaha, with delivery instructions
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and target receiver. He asked the participant to mail the letters to another person they considered closest to

the target receiver. Milgram experiments showed that on average the chain of people the letters go through

to reach the target is about six. This groundbreaking research depicted a society far closer than what it was

previously expected with short path lengths among two random strangers. Recall, what we are discussing

here is a realization of average path length in a real world network. The phenomena captured in this study

was later introduced by Watts and Strogatz as small world property (1).

The small world property shows that most real world networks, in particular social networks, are highly

clustered despite their large sizes. In other words, most nodes are reachable from every other node through

few numbers of steps. Watts and Strogatz introduced the formal definition of small world concept in 1999

by proposing a model of graphs that share the small average shortest path length with random graphs, but

have relatively high clustering coefficient. This model which is a cross over between random graphs and

regular lattice, is obtained through following steps:

Start with n nodes where each node has a degree of k or k edges connected to it. In order to have a sparse

graph that is safe from the danger of becoming disconnected we need to insure that n ≫ k ≫ ln n ≫ 1. Build

a normal ring lattice with n nodes, where each node is connected to k neighbors, k
2

on each side. Reattach

each edge randomly with probability p, avoid self-loops and duplicate edges. By following the steps above,

we introduce non-lattice edges, that are long-range and reduce the average path length by connecting distant

nodes, resulting in small-world property, while the lattice structure keeps the locally clustered property.

It was observed (1) that for small values of p the rewired network display small path lengths and high

clustering.

In WS model if p = 0, the degree distribution is a Direc delta function centered at k. By increasing p we

introduce disturbance in the network, which change the degree distribution but keeps the average degree

equal to K (7). Although the existence of small world property has been discovered in many real world

networks such a food web, the World Wide Web, power grid networks, biological and social networks, the
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Figure 2: The process of random rewiring for interpolating between ring lattices and random graphs. The

initial state is a ring of n nodes, connected to k nearest neighbors.

other properties of Watts and Strogatz model like degree distribution display a considerable difference from

real world networks (7; 8). The limitation in evolution process of model and not accurate degree distribution,

motivated network scientists to work on a model that can better capture real world networks.

2.3.3 Scale-free Networks

The previously discussed models were successful attempts in formulating some properties of real world

networks but they failed to produce properties that capture two common aspects of real networks; network

growth and preferential attachment.

From very first cases of investigating real world networks, a power-law degree distribution was observed and

reported(9; 10; 11; 12). In 1999, Barabasi and Albert studied a portion of World Wide Web and discovered

some nodes, known as hubs, had far more connections compare to others and the network itself has a power

law degree distribution and therefore is free of scale. After discovering the same patterns in other networks,

they call this type of networks scale-free networks(2). In recent years, dramatic increase in computational

power and data collection have led to several large network datasets and simplified data analyzing, revealed
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that in many networks degree distribution follows a power law for large k, i.e. P(k) ∼ c.k−γ where c is a

constant and γ is a positive value between 2 and 3. In fact even the networks with exponential-tail P(k),

degree distribution does not fall within Poisson distribution category.

In both ER and WS models we assume that we have a fixed number of nodes n, and these nodes are randomly

connected or reconnected while n remains the same. However, most real world networks are open to adding

new nodes trough their life cycle. e.g. World Wide Web grows exponentially by adding new web pages, or

the research literature network that grows constantly by publication of new papers. Moreover, in both ER

and WS model it is assumed that the probability that connects (or reconnects in WS model) every pair of

nodes is independent from node degree, which means we randomly distribute new edges. On the contrary, in

real world network we observe preferential attachment; which means it is more likely for nodes with higher

degrees to receive new links. Consider our previous examples, the World Wide Web and research literature

network, a new web page will more likely contains links to popular and well known pages, and a newly

published paper is more likely to cite a well known paper.

In their 1999 paper Emergence of scaling in random networks , Barabasi and Albert took a new approach

that was different from previous modeling attempts. In previous approaches, all the efforts were concentrated

on building a graph that reflects correct topological features of the network. Barabasi and Albert proposed a

new method that captured network dynamics by following the construction/evolution process of a network.

Indeed, in dynamic networks it is assumed that by capturing the process that assembled the networks we see

today, one can obtain their topology correctly as well.

The Barabasi-Albert model includes network growth and preferential attachment ingredients, present a class

of networks known as Scale-free networks that are constructed as follows (7) start with m0 isolated nodes,

at each time step t = 1, 2, 3, .. a new node with m connections where m ≤ m0 is added to the network. .

The probability that a link will connect the new node to an existing node like i is linearly proportional to the

actual degree of i:
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∏
l→i =

ki∑
j k j

After tn time steps, the primary network evolves to a larger network with n = tn + m0 nodes and mtn edges.

Eventually, this network evolves into a network with a degree distribution P(k) ∼ k−γ.

Barabasi-Albert model was developed considering network growth and preferential attachment, to verify

this model they developed two variants: variant A contained growth attribute but it was assumed that every

new edge is assigned randomly (with equal probability for each node). In this case the probability that each

node has for getting the edge is constant and leads to a degree distribution of form P(k) = exp(−βk), which

indicates scale-free property has been eliminated. variant B had preferential attachment and fixed number of

nodes. This model started with n nodes and no edges, and at each time step a random node was selected and

connected to node i with preferential attachment. After n2 time steps the network evolves to a complete net-

work, where every pair of nodes is connected. The failure of these two variants shows that network growth

and preferential attachment are essential in power-law network development.

Barabasi-Albert model displays some limitations in capturing wide range of real-world networks. There

are some assumptions in baseline of the model that cause these limitations. First, the model assumes that

the preferential attachment is linear,
∏

k ∼ k. However, some networks show non-linear preferential at-

tachment, which introduces deviations from power law degree distribution by limiting the size of hubs for

(α < 1) or creating super hubs for (α > 1) (13). Second, empirical results showed γ obtained for different

networks is distributed between [2.14]. Finally, they assumed that a network evolves only by adding new

edges, while in some real networks the evolution process contains adding (or removing) links between al-

ready existed nodes.

Nevertheless, Barabasi-Albert model is one of the best and most used models in network science and com-

plex network analysis field.



CHAPTER 3

HYPERBOLICITY

3.1 Introduction

Complex systems, ranging from the World-Wide Web to metabolic networks, representation as a pa-

rameterized network and graph theoretical analysis of this network have led to many useful insights (14; 7).

Complex networks have been the center of much studies in recent years. In addition to established network

measures such as the average degree, clustering coefficient or diameter, the complicated and highly inter-

connected structure of these networks has led researchers to propose and evaluate number of novel network

measures (15; 16; 17; 18). We considered and studied a combinatorial measure of negative curvature known

as hyperbolicity in parameterized finite networks and the implications of negative curvature on the higher-

order connectivity and topological properties of these networks.

There are many ways in which the (positive or negative) curvature of a continuous surface or other similar

spaces can be defined depending on whether the measure is to reflect the local or global properties of the

underlying space. The specific notion of negative curvature that we use is an adoption of the hyperbolicity

measure for a infinite metric space with bounded local geometry as originally proposed by Gromov (19)

using a so-called “4-point condition”. We adopt this measure for parameterized finite discrete metric spaces

induced by a network via all-pairs shortest paths and apply it to biological and social networks. Recently,

there has been a surge of empirical works measuring and analyzing the hyperbolicity of networks defined

in this manner, and many real-world networks were observed to be hyperbolic in this sense. For example,

preferential attachment networks were shown to be scaled hyperbolic in (20; 21), networks of high power

transceivers in a wireless sensor network were empirically observed to have a tendency to be hyperbolic

in (22), communication networks at the IP layer and at other levels were empirically observed to be hy-

16
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perbolic in (23; 24), extreme congestion at a very limited number of nodes in a very large traffic network

was shown in (25) to be caused due to hyperbolicity of the network together with minimum length routing,

and the authors in (26) showed how to efficiently map the topology of the Internet to a hyperbolic space.

Gromov’s hyperbolicity measure adopted on a shortest-path metric of networks can also be visualized as

a measure of the “closeness” of the original network topology to a tree topology (27). Another popular

measure used in both the bioinformatics and theoretical computer science literature is the treewidth mea-

sure first introduced by Robertson and Seymour (28). Many NP-hard problems on general networks admit

efficient polynomial-time solutions if restricted to classes of networks with bounded treewidth (29), just as

several routing-related problems or the diameter estimation problem become easier if the network has small

hyperbolicity (30; 31; 32; 33). However, as observed in (27), the two measures are quite different in nature:

“the treewidth is more related to the least number of nodes whose removal changes the connectivity of the

graph in a significant manner whereas the hyperbolicity measure is related to comparing the geodesics of the

given network with that of a tree”. Other related research works on hyperbolic networks include estimating

the distortion necessary to map hyperbolic metrics to tree metrics (34) and studying the algorithmic aspects

of several combinatorial problems on points in a hyperbolic space (35).

3.2 Hyperbolicity-related Definitions and Measures

Let G = (V, E) be a connected undirected graph of n ≥ 4 nodes. Consider the following notations:

• u
P
! v denotes a path P ≡ (u = u0, u1, . . . , uk−1, uk = v) from node u to node v and ℓ(P) denotes the

length (number of edges) of such a path.

• ui

P
!u j denotes the sub-path

(
ui, ui+1, . . . , u j

)
of P from ui to u j.

• u
s

!v denotes a shortest path from node u to node v of length du,v = ℓ
(
u
s

!v
)
.
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Now we can introduce the hyperbolicity measures via the 4-node condition as originally proposed by Gro-

mov. Consider a quadruple of distinct nodes1 u1, u2, u3, u4, and let π = (π1, π2, π3, π4) be a permutation of

{1, 2, 3, 4} denoting a rearrangement of the indices of nodes such that

S u1,u2,u3,u4
= duπ1 ,uπ2

+ duπ3 ,uπ4
≤ Mu1,u2,u3,u4

= duπ1 ,uπ3
+ duπ2 ,uπ4

≤ Lu1,u2,u3,u4
= duπ1 ,uπ4

+ duπ2 ,uπ3

and let δ+u1,u2,u3,u4
=

Lu1 ,u2 ,u3 ,u4
−Mu1 ,u2 ,u3 ,u4

2
. Considering all combinations of four nodes in a graph one can

define a worst-case hyperbolicity(19) as

δ+worst(G) = max
u1 ,u2,u3,u4

{
δ+u1,u2,u3,u4

}

and an average hyperbolicity as

δ+ave(G) =
1(
n
4

)
∑

u1 ,u2,u3,u4

δ+u1 ,u2,u3,u4

Note that δ+ave(G) is the expected value of δ+u1 ,u2,u3,u4
when the four nodes u1, u2, u3, u4 are picked inde-

pendently and uniformly at random from the set of all nodes. Both δ+worst(G) and δ+ave(G) can be trivially

computed in O
(
n4) time for any graph G. A graph G is called δ-hyperbolic if δ+worst(G) ≤ δ. If δ is a small

constant independent of the parameters of the graph, a δ-hyperbolic graph is simply called a hyperbolic

graph. It is easy to see that if G is a tree then δ+worst(G) = δ+ave(G) = 0. Thus all trees are hyperbolic graphs.

The hyperbolicity measure δ+worst that was introduced for a metric space was originally used by Gromov

in the context of group theory (19) by observing that many results concerning the fundamental group of a

Riemann surface hold true in a more general context. δ+worst is trivially infinite in the standard (unbounded)

Euclidean space. Intuitively, a metric space has a finite value of δ+worst if it behaves metrically in the large

1If two or more nodes among u1, u2, u3, u4 are identical, then δ+u1,u2,u3,u4
= 0 due to the metric’s triangle inequality;

thus it suffices to assume that the four nodes are distinct.
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scale as a negatively curved Riemannian manifold, and thus the value of δ+worst can be related to the standard

scalar curvature of a Hyperbolic manifold. For example, a simply connected complete Riemannian manifold

whose sectional curvature is below α < 0 has a value of δ+worst that is O

((√
−α

)−1
)

(see (36)). We first show

that a variety of biological and social networks are hyperbolic. then, formulate and prove bounds on the

existence of path-chords and on the distance among shortest or approximately shortest paths in hyperbolic

networks. We determine the implications of these bounds on regulatory networks, i.e., directed networks

whose edges correspond to regulation or influence. This category includes all the biological networks that

we studied. We also discuss the implications of these results on the region of influence of nodes in social

networks. Some of the proofs of these theoretical results are adaptation of corresponding arguments in the

continuous hyperbolic space.

3.3 Hyperbolicity of Real Networks

We analyzed twenty well-known biological and social networks. The 11 biological networks shown in

Table XVI include 3 transcriptional regulatory, 5 signalling, 1 metabolic, 1 immune response and 1 oriented

protein-protein interaction networks. Similarly, the 9 social networks shown in Table XVIII range from

interactions in dolphin communities to the social network of jazz musicians. The hyperbolicity of the bi-

ological and directed social networks was computed by ignoring the direction of edges. The hyperbolicity

values were calculated by writing codes in C using standard algorithmic procedures. As shown on Ta-

ble XVI and Table XVIII, the hyperbolicity values of almost all networks are small. IfD = maxu,v
{
du,v

}
is

the diameter of the graph, then it is easy to see that δ+worst(G) ≤ D/2, and thus small diameter indeed implies

a small value of worst-case hyperbolicity. As can be seen on Table XVI and Table XVIII, δ+worst(G) varies

with respect to its worst-case bound of D/2 from 25% of D/2 to no more than 89% of D/2, and there does not

seem to be a systematic dependence of δ+worst(G) on the number of nodes (which ranges from 18 to 786),

edges (from 42 to 2742), or on the value of the diameterD. For all the networks δ+ave(G) is one or two orders

of magnitude smaller than δ+worst(G). Intuitively, this suggests that the value of δ+worst(G) may be a rare devi-
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ation from typical values of δ+u1 ,u2,u3,u4
that one would obtain for most combinations of nodes {u1, u2, u3, u4}.

We additionally performed the following rigorous tests for hyperbolicity of our networks.

3.3.1 Checking hyperbolicity via the scaled hyperbolicity approach

An approach for testing hyperbolicity for finite graphs was introduced and used via “scaled” Gromov

hyperbolicity in (21; 23) for hyperbolicity defined via thin triangles and in (53) for for hyperbolicity defined

via the four-point condition as used in this work. The basic idea is to “scale” the values of δ+u1 ,u2,u3,u4
by a

suitable scaling factor, say µu1,u2,u3,u4
, such that there exists a constant 0 < ε < 1 with the following property:

• the maximum achievable value of
δ+u1 ,u2 ,u3 ,u4

µu1,u2 ,u3 ,u4

is ε in the standard hyperbolic space or in the Euclidean

space, and

• δ
+
u1,u2 ,u3 ,u4

µu1 ,u2 ,u3 ,u4

goes beyond ε in positively curved spaces.

We use the notation Du1 ,u2,u3,u4
= max

i, j∈{1,2,3,4}

{
dui ,u j

}
to indicate the diameter of the subset of four nodes

u1, u2, u3 and u4. By using theoretical or empirical calculations, the authors in (53) provide the bounds

shown in Table III.

We adapt the criterion proposed by Jonckheere, Lohsoonthorn and Ariaei (53) to designate a given finite

graph as hyperbolic by requiring a significant percentage of all possible subset of four nodes to satisfy

the ε bound. More formally, suppose that G has t connected components containing n1, n2, . . . , nt nodes,

respectively (
∑t

j=1 n j = n). Let 0 < η < 1 be a sufficiently high value indicating the confidence level in

declaring the graph G to be hyperbolic. Then, we call our given graph G to be (scaled) hyperbolic if and

only if
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TABLE I: Hyperbolicity and diameter values for biological networks.

Network id reference
Average

degree
δ+ave(G) δ+worst(G) D

δ+worst(G)

D/2

1. E. coli transcriptional (37) 1.45 0.132 2 10 0.400

2. Mammalian Signaling (38) 2.04 0.013 3 11 0.545

3. E. Coli transcriptional ♯♯♯ 1.30 0.043 2 13 0.308

4. T LGL signaling (39) 2.32 0.297 2 7 0.571

5. S. cerevisiae transcriptional (40) 1.56 0.004 3 15 0.400

6. C. elegans Metabolic (9) 4.50 0.010 1.5 7 0.429

7. Drosophila segment polarity (41) 1.69 0.676 4 9 0.889

8. ABA signaling (42) 1.60 0.302 2 7 0.571

9. Immune Response Network (43) 2.33 0.286 1.5 4 0.750

10. T Cell Receptor Signalling (44) 1.46 0.323 3 13 0.462

11. Oriented yeast PPI (45) 3.11 0.001 2 6 0.667

♯♯♯ (37, updated version)

see www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/coli1 1Inter st.txt

TABLE II: Hyperbolicity and diameter values for social networks.

Network id reference
Average

degree
δ+ave(G) δ+worst(G) D

δ+worst(G)

D/2

1. Dolphins social network (46) 5.16 0.262 2 8 0.750

2. American College Football (47) 10.64 0.312 2 5 0.800

3. Zachary Karate Club (48) 4.58 0.170 1 5 0.400

4. Books about US Politics ‡‡‡ 8.41 0.247 2 7 0.571

5. Sawmill communication (49) 3.44 0.162 1 8 0.250

6. Jazz musician (50) 27.69 0.140 1.5 6 0.500

7. Visiting ties in San Juan (51) 3.84 0.422 3 9 0.667

8. World Soccer data, 1998 ††† 3.37 0.270 2.5 12 0.286

9. Les Miserable (52) 6.51 0.278 2 14 0.417

‡‡‡ V. Krebs, www.orgnet.com,

†††Dagstuhl seminar: Link Analysis and Visualization, Dagstuhl 1-6, 2001;

vlado.fmf.uni-lj.si/pub/networks/data/sport/football.htm
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TABLE III: Various scaled Gromov hyperbolicities.

Name Notation µu1,u2,u3,u4
ε

Method for

determining ε

diameter-scaled

hyperbolicity
δD Du1 ,u2,u3,u4

0.2929 empirical

L-scaled

hyperbolicity
δL Lu1,u2,u3,u4

√
2−1

2
√

2

≈0.1464
mathematical

(L + M + S )-scaled

hyperbolicity
δL+M+S

Lu1,u2,u3,u4

+Mu1,u2,u3,u4

+ S u1,u2,u3,u4

0.0607 mathematical

∆Y(G) =

number of subset of four nodes
{
ui, u j, uk, uℓ

}

such that δY
ui,u j ,uk ,uℓ

> ε

number of all possible combinations of four nodes

that contribute to hyperbolicity

=

number of subset of four nodes
{
ui, u j, uk, uℓ

}

such that δY
ui ,u j,uk ,uℓ

> ε

∑
1≤ j≤t : n j>3

(
n j

4

) < 1 − η

The values of ∆Y(G) for our networks are shown in Table IV and Table V. It can be seen that, for all

scaled hyperbolicity measures and for all networks, the value of 1 − η is very close to zero.

We next tested the statistical significance of the ∆Y(G) values by computing the statistical significance

values (commonly called p-values) of these ∆Y(G) values for each network G with respect to a null hy-

pothesis model of the networks. We use a standard method used in the network science literature (e.g.

see (17; 37)) for such purpose. For each network G, we generated 100 randomized versions of the network

using a Markov-chain algorithm (54) by swapping the endpoints of randomly selected pairs of edges until

20% of the edges was changed. We computed the values of ∆Y (
Grand1

)
, ∆Y (

Grand2

)
, . . . , ∆Y (

Grand100

)
. We
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TABLE IV: ∆Y(G) values for biological networks for Y ∈ {D, L, L + M + S }.

Network id ∆D(G) ∆L(G) ∆L+M+S(G)

1. E. coli transcriptional 0.0014 0.0018 0.0015

2. Mammalian Signaling 0.0021 0.0018 0.0022

3. E. Coli transcriptional 0.0006 0.0006 0.0007

4. T LGL signaling 0.0228 0.0221 0.0318

5. S. cerevisiae transcriptional 0.0031 0.0032 0.0033

6. C. elegans Metabolic 0.0020 0.0018 0.0019

7. Drosophila segment polarity 0.0374 0.0558 0.0750

8. ABA signaling 0.0343 0.0285 0.0425

9. Immune Response Network 0.0461 0.0552 0.0781

10. T Cell Receptor Signalling 0.0034 0.0045 0.0056

11. Oriented yeast PPI 0.0013 0.0009 0.0012

maximum 0.0461 0.0558 0.0781

TABLE V: ∆Y(G) values for social networks for Y ∈ {D, L, L + M + S }.

Network id ∆D(G) ∆L(G) ∆L+M+S(G)

1. Dolphins social network 0.0115 0.0120 0.0168

2. American College Football 0.0435 0.0395 0.0577

3. Zachary Karate Club 0.0195 0.0249 0.0284

4. Books about US Politics 0.0106 0.0074 0.0116

5. Sawmill communication 0.0069 0.0068 0.0085

6. Jazz musician 0.0097 0.0117 0.0124

7. Visiting ties in San Juan 0.0221 0.0242 0.0275

8. World Soccer data, 1998 0.0145 0.0155 0.0212

9. Les Miserable 0.0032 0.0034 0.0049

maximum 0.0435 0.0395 0.0577rigorous tests

then used an (unpaired) one-sample student’s t-test to determine the probability that ∆Y(G) belongs to the

same distribution as ∆Y (
Grand1

)
, ∆Y (

Grand2

)
, . . . , ∆Y (

Grand100

)
. The p-values, tabulated in Table VI and

Table VII, clearly show that all social networks and all except two biological networks can be classified
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TABLE VI: p-values for the ∆Y(G) values for biological networks for Y ∈ {D, L, L + M + S }. In general, a

p-value less than 0.05 (shown in boldface) is considered to be statistically significant, and a p-value above

0.05 is considered to be not statistically significant.

Network id

1.

E. coli

2.

Mammalian

Signaling

3.

E. Coli

transcriptional

4.

T LGL

signaling

5.

S. cerevisiae

transcriptional

6.

C. elegans

Metabolic

7.

Drosophila

segment

polarity

8.

ABA

signaling

9.

Immune

Response

Network

10.

T Cell

Receptor

Signalling

11.

Oriented

yeast

PPI

p

values

∆D 0.0018 < 0.0001 < 0.0001 < 0.0001 0.3321 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

∆L < 0.0001 < 0.0001 < 0.0001 0.011 0.3434 < 0.0001 < 0.0001 0.9145 < 0.0001 < 0.0001 < 0.0001

∆L+M+S 0.5226 < 0.0001 < 0.0001 < 0.0001 0.3424 < 0.0001 < 0.0001 0.3342 < 0.0001 < 0.0001 < 0.0001

as hyperbolic in a statistically significant manner, implying that the topologies of these networks are close

to a “tree topology”. Indeed, for biological networks, the assumption of chain-like or tree-like topology is

frequently made in the traditional molecular biology literature (55). Independent current observations also

provide evidence of tree-like topologies for various biological networks, e.g. the average in/out degree of

transcriptional regulatory networks (37; 56) and of a mammalian signal transduction network (38) is close

to 1, so cycles are very rare.

TABLE VII: p-values for the ∆Y(G) values for social networks for Y ∈ {D, L, L + M + S }. In general, a

p-value less than 0.05 (shown in boldface) is considered to be statistically significant, and a p-value above

0.05 is considered to be not statistically significant.

Network id

1.

Dolphins

social

network

2.

American

College

Football

3.

Zachary

Karate

Club

4.

Books

about

US Politics

5.

Sawmill

communication

6.

Jazz

musician

7.

Visiting ties

in San Juan

8.

World Soccer

data, 1998

9.

Les

Miserable

p

values

∆D < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

∆L < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0779 < 0.0001 < 0.0001

∆L+M+S < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
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p a t h - c h o r d

v
u4

u5

u3

u0

u2

u1

Figure 3: Path-chord of a cycle C = (u0.u1, u2, u3, u4, u5, u0).

3.3.2 Hyperbolicity and crosstalk in regulatory networks

Let C = (u0, u1, . . . , uk−1, u0) be a cycle of k ≥ 4 nodes. A path-chord of C is defined to be a path

ui

P
! u j between two distinct nodes ui, u j ∈ C such that the length of P is less than (i − j) (mod k) (see

Fig. Figure 3). A path-chord of length 1 is simply called a chord. We find that large cycles without a path-

chord imply large lower bounds on hyperbolicity (see Theorem 3 in Section A.1 of the Appendices). In

particular, G does not have a cycle of more than 4 δ+worst(G) nodes that does not have a path-chord. Thus, for

example, if δ+worst(G) < 1 then G has no chordless cycle, i.e., G is a chordal graph. The intuition behind the

proof of Theorem 3 is that if G contains a long cycle without a path-chord then we can select four almost

equidistant nodes on the cycle and these nodes give a large hyperbolicity value. This general result has the

following implications for regulatory networks:

• If a node regulates itself through a long feedback loop (e.g. of length at least 6 if δ+worst(G) = 3/2) then

this loop must have a path-chord. Thus it follows that there exists a shorter feedback cycle through

the same node.

• A chord or short path-chord can be interpreted as crosstalk between two paths between a pair of

nodes. With this interpretation, the following conclusion follows. If one node in a regulatory network

regulates another node through two sufficiently long paths, then there must be a crosstalk path between
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these two paths. For example, assuming δ+worst(G) = 3/2, there must be a crosstalk path if the sum of

lengths of the two paths is at least 6. In general, the number of crosstalk paths between two paths

increases at least linearly with the total length of the two paths. The general conclusion that can

be drawn is that independent linear pathways that connect a signal to the same output node (e.g.

transcription factor) are rare, and if multiple pathways exist then they are interconnected through

cross-talks.

3.3.3 Shortest-path triangles and crosstalk paths in regulatory networks

(a) Result related to triplets of shortest paths Originally, the hyperbolicity measure was introduced for

infinite continuous metric spaces with negative curvature via the concept of the “thin” and “slim” triangles

(e.g. see (57)). For finite discrete metric spaces as induced by an undirected graph, one can analogously

define a shortest-path triangle (or, simply a triangle) ∆{u0,u1,u2} as a set of three distinct nodes u0, u1, u2 with

a set of three shortest paths P∆ (u0, u1), P∆ (u0, u2), P∆ (u1, u2) between u0 and u1, u0 and u2, and u1 and u2,

respectively. As illustrated on Fig. Figure 4, in hyperbolic networks we are guaranteed to find short paths1

between the nodes that make up P∆ (u0, u1), P∆ (u0, u2), P∆ (u1, u2). This is formally stated in Theorem 5

in Section A.2 of the Appendices. Moreover, as Corollary 6 (in Section A.2 of the Appendices) states, we

can have a small Hausdorff distance between these shortest paths. This result is a proper generalization of

our previous result on path-cords. Indeed, in the special case when u1 and u2 are the same node the triangle

becomes a shortest-path cycle involving the shortest paths between u0 and u1 and the short-cord result

is obtained. A proof of Theorem 5 is obtained by appropriate modification of a known similar bound for

infinite continuous metric spaces. The implications of this result for regulatory networks can be summarized

as follows:

1By a short path here, we mean a path whose length is at most a constant times δ+
∆{u0 ,u1 ,u2 }

(note that δ+
∆{u0 ,u1 ,u2 }

≤
δ+worst(G)).
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u0 u2

u1

d
v,v′

d
v
,
v
′ d

v
,v

′

∀v in one path ∃v′ in the other path such that

dv,v′ ≤ max
{

6 δ+
∆{u0,u1,u2}

, 2
}

≤ max
{

6 δ+worst(G), 2
}

Figure 4: An informal and simplified pictorial illustration of the claims in Section 3.3.3(a).

If we consider a feedback loop (cycle) or feed-forward loop formed by the shortest paths among

three nodes, we can expect short cross-talk paths between these shortest paths. Consequently,

the feedback or feed-forward loop will be nested with “additional” feed-back or feed-forward

loops in which one of the paths will be slightly longer.

The above finding is empirically supported by the observation that network motifs (e.g. feed-forward or

feed-back loops composed of three nodes and three edges) are often nested (58).

u0 u1v

shortest path P1

P2

v′

dv,v′

Figure 5: An informal and simplified pictorial illustration of the claims in Section 3.3.3(b).
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(b) Results related to the distance between two exact or approximate shortest paths between the same

pair of nodes It is reasonable to assume that, when up- or down-regulation of a target node is mediated

by two or more short paths 1 starting from the same regulator node, additional very long paths between the

same regulator and target node do not contribute significantly to the target node’s regulation. We refer to the

short paths as relevant, and to the long paths as irrelevant. Then, our finding can be summarized by saying

that:

almost all relevant paths between two nodes have crosstalk paths between each other.

Formal Justifications and Intuitions (see Theorem 7 and Corollary 8 in Section A.2.1 and Theorem 9 and

Corollary 10 in Section A.2.2 of the Appendices)

We use the following two quantifications of “approximately” short paths:

• A path u0
P
! uk =

(
u0, u1, . . . , uk

)
is µ-approximate short provided ℓ

(
ui

P
! u j

) ≤ µ dui,u j
for all

0 ≤ i < j ≤ k,

• A path u0
P
!uk is ε-additive-approximate short provided ℓ (P) ≤ du0 ,uk

+ ε.

A mathematical justification for the claim then is provided by two separate theorems and their corollaries:

• Let P1 and P2 be a shortest path and an arbitrary path, respectively, between two nodes u0 and u1.

Then, Theorem 7 and Corollary 8 implies that, for every node v on P1, there exists a node v′ on P2

such that dv,v′ depends linearly on δ+worst(G), only logarithmically on the length of P2 and does not

depend on the size or any other parameter of the network.

1Here by short paths we mean either a shortest path or an approximately shortest path whose length is not too much

above the length of a shortest path, i.e., a µ-approximate short path or a ε-additive-approximate short path, as defined

in the subsequent “Formal Justifications and Intuitions” subsection, for small µ or small ε, respectively.
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r

α

α

Q

very
long
path

u0

u1

u2

u3

u4

Figure 6: An informal and simplified pictorial illustration of claim (⋆) in Section 3.3.4. As the nodes u3 and

u4 move further away from the center node u0, the shortest path between them bends more towards u0 and

any path between them that does not involve a node in the ball ∪r′≤rBr′ (u0) is long enough.

To obtain this type of bound, one needs to apply Theorem 5 on u0, u1 and the middle node of the path

P2 and then use the same approach recursively on a part of the path P2 containing at most ⌈(P2)/2⌉

edges. The depth of the level of recursion provides the logarithmic factor in the bound.

• If P1 and P2 are two short paths between u0 and u1 then Theorem 9 and Corollary 10 imply that the

Hausdorff distance between P1 and P2 depends on δ+worst(G) only and does not depend on the size or

any other parameter of the network.

Intuitively, Theorem 9 and Corollary 10 can be thought of as generalizing and improving the bound

in Theorem 7 for approximately short paths.
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3.3.4 Identifying essential edges in the regulation between two nodes

For a given ξ > 0 and a node u, let Bξ (u) =
{
v | du,v = ξ

}
denote the “boundary of the ξ-neighborhood”

of u, i.e., the set of all nodes at a distance of precisely ξ from u. Our two findings in the present context are

as stated in (I) and (II) below.

(I) Identifying relevant paths between a source and a target node Suppose that we pick a node v and

consider the strict ξ-neighborhood of v

N+ξ (v) =
⋃

r≤ξ
Br′ (v) \ {u | degree of u is one

}

(i.e., the set of all nodes, excluding nodes of degree 1, that are at a distance at most ξ from u) for a sufficiently

large ξ. Consider two nodes u1 and u2 on the boundary of this neighborhood, i.e., at a distance ξ from v.

Then, the following holds:

(⋆) the relevant (short) regulatory paths between u1 and u2 do not leave the neighborhood, i.e.,

all the edges in the relevant regulatory paths are in the neighborhood.

Thus, only the edges inside the neighborhood are relevant to the regulation among this pair of nodes. This

result can be adapted to find the most relevant paths between the input node usource and output node utarget

of a signal transduction network. In many situations, for example when the signal transduction network

is inferred from undirected protein-protein interaction data, a large number of paths can potentially be in-

cluded in the signal transduction network as the protein-protein interaction network has a large connected

component with a small average path length (58). There is usually no prior knowledge on which of the

existing paths are relevant to the signal transduction network. A hyperbolicity-based method is to first find

a central node ucentral which is at equal distance between usource and utarget, and is on the shortest, or close

to shortest, path between usource and utarget. Then one constructs the neighborhood around ucentral such that
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usource utarget
ucentral

short path short pa
th

short p
ath short path

ve

ry
long path

Figure 7: An informal and simplified pictorial illustration of claim (⋆⋆) in Section 3.3.4. Knocking out the

nodes in a small neighborhood of ucentral cuts off all relevant (short) regulation between usource and utarget.

usource and utarget are on the boundary of this neighborhood. Applying this result, the paths relevant to the

signal transduction network are inside the neighborhood, and the paths that go out of the neighborhood are

irrelevant. See Fig. Figure 6 for a pictorial illustration of this implication.

(II) Finding essential nodes Again, consider an input node usource and output node utarget of a signal trans-

duction network, and let ucentral be a central node which is on the shortest path between them and at approx-

imately equal distance between usource and utarget. Our results show that1

(⋆⋆) if one constructs a small ξ-neighbourhood around ucentral with ξ = O
(
δ+worst(G)

)
, then all

relevant (short or approximately short) paths between usource and utarget must include a node in

this ξ-neighborhood. Therefore, “knocking out” the nodes in this ξ-neighborhood cuts off all

relevant regulatory paths between usource and utarget.

1O and Ω are the standard notations used in analyzing asymptotic upper and lower bounds in the computer science

literature: given two functions f (n) and g(n) of a variable n, f (n) = O(g(n)) (respectively, f (n) = Ω(g(n)) provided

there exists two constants n0, c > 0 such that f (n) ≤ c g(n) (respectively, f (n) ≥ c g(n)) for n ≥ n0.
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See Fig. Figure 7 for a pictorial illustration of this implication. Note that the size ξ of the neighborhood

depends only on δ+worst(G) which, as our empirical results indicate, is usually a small constant for real net-

works.

Formal Justifications and Intuitions for (⋆) and (⋆⋆) (see Theorem 12 and Corollary 13 in Section A.2.3

of the Appendices)

Suppose that we are given the following:

• three integers κ ≥ 4, α > 0,

r >
(
κ
2
− 1

) (
6 δ+worst(G) + 2

)
,

• five nodes u0, u1, u2, u3, u4 such that

– u1, u2 ∈ Br (u0) with du1 ,u2
≥ κ

2

(
6 δ+worst(G) + 2

)
,

– du1 ,u4
= du2 ,u3

= α.

Then, (⋆) and (⋆⋆) are implied by following type of asymptotic bounds provided by Theorem 12 and Corol-

lary 13:

For a suitable positive value λ = O
(
δ+worst(G)

)
, if du1 ,u4

= du2,u3
= α > λ then one of the

following is true for any path Q between u3 and u4 that does not involve a node in ∪r′≤rBr′ (u0):

• Q does not exist (i.e., ℓ(Q) ≥ n), or

• Q is much longer than a shortest path between the two nodes, i.e., if Q is a µ-approximate

short path or a ε-additive-approximate short path then µ or ε is large.

A pessimistic estimate shows that a value of λ that is about 6 δ+worst(G) + 2 suffices. As we

subsequently observe, for real networks the bound is much better, about λ ≈ δ+worst(G).
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TABLE VIII: Effect of the prescribed neighborhood in claim (⋆) on all edges in relevant paths.

SP : shortest path between usource and utarget

SP+1 : paths between usource and utarget with one extra edge than SP (1-additive-approximate short path)

SP+2 : paths between usource and utarget with two extra edges than SP (2-additive-approximate short path)

N+ξ (u central) : strict ξ = du source , u target
neighborhood of ucentral

n : size (number of nodes) of the network
N+ξ (u central)/n : fraction of strict ξ = du source , u target

neighborhood of ucentral with respect to the size of the network

Network

name
usource utarget du source , u target

ucentral

N+ξ (u central)

n

% of SP
with every

edge in the

neighborhood

of claim (⋆)

% of SP+1

with every

edge in the

neighborhood

of claim (⋆)

% of SP+2

with every

edge in the

neighborhood

of claim (⋆)

Network 1:

E. coli

transcriptional

fliAZY arcA 4
CaiF 0.20 100% 100% 18%

crp 0.27 100% 100% 70%

fecA aspA 6
crp 0.43 100% 100% 100%

sodA 0.28 100% 100% 62%

Network 4:

T-LGL

signaling

IL15 Apoptosis 4 GZMB 0.37 100% 66% 40%

PDGF Apoptosis 6

IL2, NKFB 0.72,0.59 100% 100% 100%

Ceramide 0.60 80% 64% 36%

MCL1 0.59 80% 88% 93%

stimuli Apoptosis 4 GZMB 0.37 100% 100% 100%

Empirical evaluation of (⋆)

We empirically investigated the claim in (⋆) on relevant paths passing through a neighborhood of a central

node for the following two biological networks:

Network 1: E. coli transcriptional, and

Network 4: T-LGL signaling.

For each network we selected a few biologically relevant source-target pairs. For each such pair usource and

utarget, we found the shortest path(s) between them. For each such shortest path, a central node ucentral was

identified. We then considered the ξ-neighborhood of ucentral such that both both usource and utarget are on the

boundary of the neighborhood, and for each such neighborhood we determined what percentage of shortest
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TABLE IX: The effect of the size of the neighborhood in mediating short paths.

SP : shortest path between usource and utarget

SP+1: paths between usource and utarget with one extra edge than SP (1-additive-approximate short path)

SP+2: paths between usource and utarget with two extra edges than SP (2-additive-approximate short path)

Network

name
usource utarget du source , u target

ucentral
% of SP with a node

in ξ-neighborhood

% of SP+1 with a node

in ξ-neighborhood

% of SP+2 with a node

in ξ-neighborhood

Network 1:

E. coli

transcriptional

δ+worst(G) = 2

fliAZY arcA 4
CaiF ξ = 1 100% ξ = 1 71% ξ = 1 59%

crp ξ = 1 100% ξ = 1 100% ξ = 1 100%

fecA aspA 6
crp ξ = 1 100% ξ = 1 100% ξ = 1 100%

sodA ξ = 1 100% ξ = 1 100% ξ = 1 100%

Network 4:

T-LGL

signaling

δ+worst(G) = 2

IL15 apoptosis 4 GZMB ξ = 1 100% ξ = 1 100% ξ = 1 100%

PDGF apoptosis 6

IL2
ξ = 1 80% ξ = 1 82% ξ = 1 93%

ξ = 2 100% ξ = 2 100% ξ = 2 100%

NFKB
ξ = 1 80% ξ = 1 86% ξ = 1 76%

ξ = 2 100% ξ = 2 100% ξ = 2 100%

Ceramide
ξ = 1 40% ξ = 1 23% ξ = 1 40%

ξ = 2 100% ξ = 2 100% ξ = 2 100%

MCL1
ξ = 1 60% ξ = 1 47% ξ = 1 73%

ξ = 2 100% ξ = 2 100% ξ = 2 100%

Stimuli apoptosis 4 GZMB ξ = 1 100% ξ = 1 100% ξ = 1 100%

or approximately short path (with one or two extra edges compared to shortest paths) between usource and

utarget had all edges in this neighborhood. The results, tabulated in Table VIII, support (⋆).

Empirical evaluation of (⋆⋆)

We empirically investigated the size ξ of the neighborhood in claim (⋆⋆) for the same two biological net-

works and the same combinations of source, target and central nodes as in claim (⋆). We considered the

ξ-neighborhood of ucentral for ξ = 1, 2, . . . , and for each such neighborhood we determined what percentage

of shortest or approximately short path (with one or two extra edges compared to shortest paths) between

usource and utarget involved a node in this neighborhood (not counting usource and utarget). The results, tabu-

lated in Table IX, show that removing the nodes in a ξ ≤ δ+worst(G) neighborhood around the central nodes

disrupts all the relevant paths of the selected networks. As δ+worst(G) is a small constant for all of our biolog-

ical networks, this implies that the central node and its neighbors within a small distance are the essential

nodes in the signal propagation between usource and utarget.
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3.3.5 Effect of hyperbolicity on structural holes in social networks

For a node u ∈ V , let Nbr(u) = { v | {u, v} ∈ E } be the set of neighbors of (i.e., nodes adjacent to) u. To

quantify the useful information in a social network, Ron Burt in (59) defined a measure of the structural

holes of a network. For an undirected unweighted connected graph G = (V, E) and a node u ∈ V with degree

larger than 1, this measureMu of the structural hole at u is defined as (59; 60):

Mu
def
==

∑

v∈V


au,v + av,u

max
x,u

{
au,x + ax,u

} [ 1−
∑

y∈V
y,u,v


au,y + ay,u∑

x,u

(
au,x + ax,u

)




av,y + ay,v

max
z,y

{
av,z + az,v

}






where ap,q =



1, if {p, q} ∈ E

0, otherwise

are the entries in the standard adjacency matrix of G. By observing that

ap,q = aq,p and max
x,u

{
au,x + ax,u

}
= max

z,y

{
av,z + az,v

}
= 2, the above equation forMu can be simplified to

Mu =
∣∣∣ Nbr(u)

∣∣∣ −

∑

v,y∈Nbr(u)

av,y

∣∣∣ Nbr(u)
∣∣∣ (3.1)

Thus high-degree nodes whose neighbors are not connected to each other have high Mu values. For an

intuitive interpretation and generalization of (Equation 3.1), the following definition of weak and strong

dominance will prove useful (cf. dominating set problem for graphs (61) and point domination problems

in geometry (62)). A pair of distinct nodes v, y is weakly (ρ, λ)-dominated (respectively, strongly (ρ, λ)-

dominated) by a node u provided (see Fig. Figure 8):

(a) ρ < du,v, du,y ≤ ρ + λ, and

(b) for at least one shortest path P (respectively, for every shortest path P) between v and y, P contains

a node z such that du,z ≤ ρ.
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ρ=1

λ=2

u Bρ

y

v

(a)

ρ=1

λ=2

u Bρ

y

v
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Figure 8: Illustration of weak and strong domination. (a) v, y is weakly (ρ, λ)-dominated by u since only one

shortest path between v and y intersects Bρ(u). (b) v, y is strongly (ρ, λ)-dominated by u since all the shortest

path between v and y intersect Bρ(u).

Let {v, y} ≺ ρ,λ
weak

u (respectively, {v, y} ≺ ρ,λstrong u)

=



1,
if v, y is weakly (respectively, strongly)

(ρ, λ)-dominated by u

0, otherwise

Since B1(u) =
⋃

0< j≤ 1B j(u) = Nbr(u), it follows that

Mu =
∣∣∣∪0< j≤ 1B j(u)

∣∣∣ −
∑

v,y ∈⋃ 0< j≤ 1 B j(u)

(
1 − {v, y} ≺ 0,1

weak
u
)

∣∣∣∪0< j≤ 1B j(u)
∣∣∣

= E



number of pairs of nodes

v, y such that v, y is

weakly (0, 1)-dominated

by u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v is selected uni-

formly randomly from

⋃
0< j≤ 1 B j(u)


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≥ E



number of pairs of

nodes v, y such that

v, y is strongly (0, 1)-

dominated by u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v is selected uni-

formly randomly from

⋃
0< j≤ 1 B j(u)



and a generalization ofMu is given by (replacing 0, 1 by ρ, λ):

Mu,ρ,λ =
∣∣∣∪ρ< j≤ λB j(u)

∣∣∣ −
∑

v,y ∈⋃ ρ< j≤ λ B j(u)

(
1 − {v, y} ≺ ρ,λ

weak
u
)

∣∣∣⋃ρ< j≤ λB j(u)
∣∣∣

= E



number of pairs of nodes

v, y such that v, y is

weakly (ρ, λ)-dominated

by u

∣∣∣∣∣∣

v is selected uni-

formly randomly from

∪ρ< j≤ λB j(u)



≥ E



number of pairs of

nodes v, y such that

v, y is strongly (ρ, λ)-

dominated by u

∣∣∣∣∣∣

v is selected uni-

formly randomly from

∪ρ< j≤ λB j(u)



When the graph is hyperbolic (e.g δ+worst(G) is a constant), for moderately large λ, weak and strong domi-

nance are essentially identical and therefore weak domination has a much stronger implication. Recall that

n denotes the number of nodes in the graph G.

Our finding can be succinctly summarized as (see Fig. Figure 9 for a visual illustration):

(⋆⋆⋆) If λ ≥
(
6 δ+worst(G) + 2

)
log2 n then, assuming v is selected uniformly randomly from

∪ρ < j≤ λB j(u) for any node u, the expected number of pair of nodes v, y that are weakly (ρ, λ)-

dominated by u is precisely the same as the expected number of pair of nodes that are strongly

(ρ, λ)-dominated by u.
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λ

u
Bρ(u) ρ

v1

y1

v2
y2

Figure 9: Visual illustration: either all the shortest paths are completely inside or all the shortest paths are

completely outside of Bρ+λ(u).

A mathematical justification for the claim (⋆⋆⋆) is provided by Lemma 14 in Section A.2.4 of the Appen-

dices.

An implication of (⋆⋆⋆)

λ2

λ
1

u

Bρ(u)

ρ

Figure 10: For hyperbolic graphs, the further we move from the central (black) node, the more a shortest

path bends inward towards the central node.
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TABLE X: Weak domination leads to strong domination for social networks. u is the index of the central

node and

ν =
n2

n1

=

∣∣∣∣
{
(v, y) ∈ Bρ+λ(u)

∣∣∣ {v, y} ≺ ρ,λstrong u = 1
} ∣∣∣∣

∣∣∣∣
{
(v, y) ∈ Bρ+λ(u)

∣∣∣ {v, y} ≺ ρ,λ
weak

u = 1
} ∣∣∣∣

Network name u ρ λ
∣∣∣Bρ+λ(u)

∣∣∣ ν

Network 1: Dolphin social network
14 4 1 5 80%

37 4 1 3 100%

Network 4: Books about US politics
8 4 1 4 83%

3 3 1 5 90%

Network 7: Visiting ties in San Juan
34 4 1 4 50%

9 3 1 5 90%

If λ ≥
(
6 δ+worst(G) + 2

)
log2 n andMu,ρ,λ ≈

∣∣∣Bρ+λ(u)
∣∣∣, then almost all pairs of nodes are strongly

(ρ, λ)-dominated by u, i.e., for almost all pairs of nodes v, y ∈ Bρ+λ(u), every shortest path

between v and y contains a node in Bρ(u).

A visual illustration of this implication is in Fig. Figure 10 showing that as λ increases the shortest paths

tend to bend more and more towards the central node u for a hyperbolic network.

Empirical verification of (⋆⋆⋆)

We empirically investigated the claim in (⋆⋆⋆) for the following three social networks from Table XVIII:

Network 1 Dolphin social network,

Network 4 Books about US politics, and

Network 7 Visiting ties in San Juan.

For each network we selected a (central) node u such that there are sufficiently many nodes in the boundary

of the ξ-neighborhood Bξ (u) of u for an appropriate ξ = ρ+ λ. We then set λ to a very small value of 1, and

calculated the following quantities.
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• We computed the number n1 of all pairs of nodes from Bξ (u) that are weakly (ρ, λ)-dominated by u.

• We computed the number n2 of all pairs of nodes from Bξ (u) that are strongly (ρ, λ)-dominated by u.

Table X tabulates the ratio ν = n2/n1, and shows that a large percentage of the pair of nodes that were weakly

dominated were also strongly dominated by u.



CHAPTER 4

STRONG METRIC DIMENSION

4.1 Introduction

Generators of metric spaces are sets of points that every point of the space is uniquely determined by

the distances from their elements. Motivated by the problem of uniquely determining the position of an

intruder in a network, the concept of metric generator was introduced independently by Slater (63) and

Harary and Melter (64), and has been widely investigated afterwards. It arises in many diverse areas includ-

ing network discovery and verification, geographical routing protocols, robot navigation,connected joints in

graphs, chemistry, etc. In this chapter we investigate a more restrictive variant of this geodesic-based prop-

erty known as strong metric dimension. The strong metric dimension of graph was introduced in (65), and

has been investigated in several research papers such as (66; 67; 68). The strong metric generator of a graph

G can uniquely determine it by building distances between all nodes in G with respect to corresponding

vectors of metric coordinates.

4.2 Strong Metric Dimension Definitions and Notations

Let G = (V, E) be a given undirected graph of n nodes. To define the strong metric dimension, we will

use the following notations and terminologies:

• Nbr(u) = { v | {u, v} ∈ E } is the set of neighbors of (i.e., nodes adjacent to) a node u.

• u
P
!v denotes a shortest path from between nodes u and v of length (number of edges). du,v = ℓ

(
u
s

!

v
)
.

• diam(G)= maxu,v∈V
{
du,v

}
denotes the diameter of a graph G.

41
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• A shortest path u
P
!v is maximal if and only if it is not properly included inside another shortest path,

i.e., if and only if

(∀x ∈ Nbr(u) d(x, v) ≤ d(u, v)) ∧ (∀y ∈ Nbr(v) d(y, u) ≤ d(u, v))

• A node x strongly resolves a pair of nodes u and v, denoted by x � u, v if and only if either v is on a

shortest path between x and u or either u is on a shortest path between x and v.

• A set of nodes V ′ ⊆ V is a strongly resolving set for G, denoted by V ′�G, if and only if every distinct

pair of nodes of G is strongly resolved by some node in V ′ , i.e., if and only if

∀(u, v ∈ V, u , v)∃x ∈ V ′ : x� u, v

Then, the problem of computing the string metric dimension of a graph is defined as follows:

For an undirected graph G = (V, E), the strong metric set is the smallest set of nodes V ′ ⊆ V such that

V ′ �G. The strong metric dimension (sdim(G)) is |V ′|.

4.3 Overview of Basic Concepts

First let us start with some standard definitions and assumptions for familiarizing readers with analysis

of approximation algorithms.

An algorithm for a minimization problem is said to have an approximation ratio of ρ (or simply called a

ρ-approximation) provided the algorithm runs in polynomial time in the size of the input and produces a

solution with an objective value no larger than ρ times the value of the optimum. A computational problem

P is said to be ρ-inapproximable under a complexity-theoretic assumption of A provided, assuming A to

be true, there exists no ρ-approximation for P. The (standard) Boolean satisfiability problem when every

clause has exactly k literals will be denoted by k-Sat. Finally, for two functions f (n) and g(n) of n, we say
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f (n) = O∗(g(n)) if f (n) = O(g(n)nc) for some positive constant c.

There are three well known complexity-theoretic assumptions that we will use in this chapter, here we pro-

vide a brief introduction to these assumptions:

The P , NP assumption Starting with the famous Cooks theorem (69) in 1971 and Karps subsequent

paper in 1972 (70), the P , NP assumption is the central assumption in structural complexity theory and

algorithmic complexity analysis.

The Unique Games Conjecture (UGC) The Unique Games Conjecture, formulated by Khot in (71), is

one of the most important open question in computational complexity theory. Informally speaking, the con-

jecture states that, assuming P , NP, a type of constraint satisfaction problems does not admit a polynomial

time algorithm to distinguish between instances that are almost satisfiable from instances that are almost

completely unsatisfiable. There is a large body of research works showing that the conjecture has many

interesting implications and many researchers routinely assume UGC to prove non-trivial inapproximability

results.

The Exponential Time Hypothesis (ET H) In an attempt to provide a rigorous evidence that the complex-

ity of k-Sat increases with increasing k, Impagliazzo and Paturi in (72) formulated the Exponential Time

Hypothesis (ET H) in the following manner. Letting sk = infδ : there existsO∗(2δn)algorithm for solving

k-Sat, ET H states that sk > 0 for all k ≥ 3, i.e., k-Sat does not admit a sub-exponential time (i.e., of time

O∗(2O(n))) algorithm1 . Eth has significant implications for worst-case time-complexity of exact solutions

of search problems.

1For two functions f (x) and g(x) of x, f = O(g) provided limx→∞ f (x)/g(x) = 0



44

4.4 Results and Discussion

Let G = (V, E) be the given graph. It is easy to see following the approach in Khuller etal. (73) that

the problem of computing the strong metric dimension sdim(G) can be reduced to an instance of the (un-

weighted) set-cover problem giving a O(log |V |)-approximation. In this chapter, we show further improved

results as summarized by the following theorems:

4.4.1 Theorem 1

Theorem 1 (a) STR-MET-DIM admits the following type of algorithms:

• polynomial time 2-approximation,

• O∗(20.287n)-time exact computation algorithm, and

• O(1.2738k + nk)-time exact computation algorithm where sdim(G) ≤ k.

(b) Assuming the unique games conjecture 1 (UGC)is true, STR-MET-DIM does not admit any polynomial

time (2-ǫ)-approximation for any constant 0 < ǫ ≤ 1 even if the given graph is restricted in the sense

that

(i) diam(G) ≤ 2, or

(ii) G is bipartite and diam(G) ≤ 4.

(c) Assuming P , NP, STR-MET-DIM does not admit any polynomial time (10
√

5−21−ǫ)-approximation

for any constant 0 < ǫ ≤ 10
√

5 − 22 even if the given graph is restricted in the sense that

1See (71) for further information on the unique games conjecture.
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(i) diam(G) ≤ 2, or

(ii) G is bipartite and diam(G) ≤ 4.

(d) ) Assuming the exponential time hypothesis (Eth) is true, the following results hold for a graph G of n

nodes:

(i) ) there is no O∗(2O(n))-time algorithm for exactly computing sdim(G), and

(ii) i) if sdim(G) ≤ k then there is no O∗(nO(k))-time algorithm for exactly computing sdim(G)

4.4.2 Proof of Theorem 1

This proof uses Theorem 2 whose proof is implicit in (66). However, it is not the case that Theorem

2 can be simply plugged in to get a proof of our inapproximability results. Just because a problem can be

written as a node cover problem does not necessarily mean that it has the same inapproximability property

for node cover since, for example, non-trivial special cases of node cover do admit efficient polynomial time

solution. To show inapproximability we need to reduce appropriate hard instances of the node cover problem

to that of computing sdim(G) (i.e., a reduction in the opposite direction) and moreover such a polynomial-

time reduction must be gap-preserving in an appropriate way.

The standard minimum node cover (MNC) problem for a graph is defined as follows:

Instance: an undirected graph G = (V, E).

Valid Solution: a set of nodes V ′ ⊆ V such that V ′ ∩ u, v , ∅ for every edge u, v ∈ E.

Goal: minimize |V ′|.

Related notation: MNC(G) = min
∀u,v∈E:V ′∩u,v,∅

|V ′|
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Let G = (V, E) denote the input graph of n nodes. Let Ĝ and G̃ be two graphs obtained from G in the

following manner:

• Ĝ = (V, Ê) where

{u, v} ∈ Ê ≡ u , v and their distance is a maximal shortest path in G

• G̃ = (Ṽ , Ẽ) be the graph from G built in the following manner:

– Let u1, u2, ..., uκ be the nodes in G such that, for every ui (1 ≤ i ≤ κ), there is a node vi , ui in G

with the property that Nbr(ui) = Nbr(vi)

– Let Ḡ = (V, Ē) be the (edge) of G, i.e., {u, v} ∈ Ē ≡ {u, v} < E Then G̃ is constructed as follows:

– Ṽ = V ∪ {x1, x2, ..., xk, y} where x1, x2, ..., xk, y < V

– Ẽ = Ē
⋃

(∪k
j=1

{
xi, x j

}
)
⋃

(∪ȳ∈Ṽ/{y} {y′, y})

We recall the following result from (66)

4.4.2.1 Theorem 2

Theorem 2 (a) sdim(G) = MNC(Ĝ) and V ′ ⊆ V is a valid solution of STR-MET-DIM on G if and only if V ′

is a valid solution of MNC on Ĝ.

(b) diam(G̃)=2 and sdim(G̃)= κ + MNC(G)

For further information regarding proof of Theorem 2, please read the Appendix.

4.4.2.2 Proof of Theorem 1(a)

Since sdim(G) = MNC(Ĝ), and both G and Ĝ have the same number of nodes, the claim follows by

applying known algorithms for node cover on Ĝ. More precisely,

• the 2-approximation follows from a well known 2-approximation algorithm for MNC (74),
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• the O∗(20.287n)-time exact solution algorithm follows from the O∗(20.287n)-time exact algorithm for

maximum independent set4 problem in (75), and

• the O∗(1.2738k + nk)-time exact computation algorithm follows from the O∗(1.2738k + nk)-time exact

algorithm for minimum node cover of Ĝ provided MNC(Ĝ) ≤ k(76).

4.4.2.3 Proof of Theorem 1(b)

Consider the standard Boolean satisfiability problem (SAT) and let φ be an input instance of SAT. Our

starting point is the following inapproximability result proved Khot and Regev (77):

[setting k=2] Assuming UGC is true, there exists a polynomial time algorithm that transforms

a given instance φ of SAT to an input instance graph G = (V,E) of MNC with n nodes such that,

for any arbitrarily small constant 0 < ǫ < 1
4

, the following holds:

(⋆)

(YES case) if φ is satisfiable then MNC(G)≤ ( 1
2
+ ǫ)n, and

(NO case) if φ is not satisfiable then MNC(G)≥ (1 - ǫ)n.

Consider such an instance G of MNC as generated by the above transformation.We first construct the follow-

ing graph G+ = (V+, E+) from G. Let k = 1 + ⌊logn
2
⌋ and let b(j) = bk−1( j)bk−2( j)...b1( j)b0( j) be the binary

representation of an integer j ∈ {1, 2, ..., n} using exactly k bits (e.g., if n = 5 then b(3) = (
b2(3)

0
b1(3)

1
b0(3)

1 ).Let

u1, u2, ..., un be an arbitrary ordering of the nodes in V. Then,

• V+ = V
⋃

V+
1

where V+
1
= {v1, v2, ..., vk−1, y} is a set of k new nodes, and

• E+ = E
⋃

(∪n
j=1

{
u j, vl

}
|bl( j) = 1)

⋃
(∪k−1

j=1

{
y, v j

}
)

Thus |V+|= n+k and |E+|¡|E|+ nk
2
+k. Now, note that if V ′ ⊂ V is a solution of MNC on G, then V ′ ∪ V ′+ is

a solution of MNC on G+, implying MNC(G+)≤ MNC(G) +k, and, conversely, if V ′ ⊂ V+ is a solution of

MNC on G+, then V ′ \ V+
1

is a solution of MNC on G, implying MNC(G) ≤ MNC(G+). Combining the

above inequalities with that in (⋆), we have
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(⋆⋆)

(YES case) if φ is satisfiable then MNC(G+)≤ ( 1
2
+ ǫ)n + logn

2
+1, and

(NO case) if φ is not satisfiable then MNC(G+)≥ (1 - ǫ)n.

We now build the graph G̃+ = (Ṽ+, Ẽ+) from G using the construction in Theorem 2(b).

Claim 1. No two nodes in G̃+ have the same neighborhood.

Proof. The following careful case analysis proves the claim:

• For any i , j, since b(i) , b( j), there exists an index t such that bt(i) , bt( j), say bt(i)=0 and bt( j) =

1. Thus,Nbr(ui) , Nbr(u j) since vt ∈ Nbr(ui) but vt < Nbr(u j)

• Since b(i) , 0 for any i and b(1),b(2),... ,b(n) are distinct binary numbers each of exactly k bits,for

any t , t′ there is an index i such that bt(i) , bt′ (i), say bt(i)=0 and bt′(i)=1. Thus,Nbr(vt) , Nbr(vt′ )

since ui ∈ Nbr(vt′ ) but ui < Nbr(vt)

• For any i and j,Nbr(ui) , Nbr(v j) since y ∈ Nbr(v j) but y < Nbr(ui)

• For any i,b(i , 0) and thus there exists an index j such that b j(i) = 1.This implies u j ∈ Nbr(vi) but

u j < Nbr(y) and therefore Nbr(vi) , Nbr(y)

• Since G is a connected graph, for every node ui there exists a node u j such that
{
ui, u j

}
∈ E+.Thus,u j ∈

Nbr(ui) but u j < Nbr(y)), implying Nbr(ui) , Nbr(y)

Thus,no two nodes in G+ have the same neighborhood, implying κ = 0 and sdim(G̃+)=MNC(G+). Thus,setting

ǫ′ = ǫ +
logn

2
+1

n
> ǫ to be any arbitrarily small constant, it follows from (⋆⋆) that

(⋆ ⋆ ⋆)

(YES case) if φ is satisfiable then MNC(G+)< ( 1
2
+ ǫ′)n, and

(NO case) if φ is not satisfiable then MNC(G+)≥ (1 - ǫ′)n.

This proves Theorem 1(b)(i) since diam(G̃+) =2 by Theorem 2(b).

To prove Theorem 1(b)(ii), we modify the graph G̃+ to a new graph G′ = (V ′, E′) by splitting every edge
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into a sequence of two edges, i.e., for every edge {u, v} in G̃+ we add a new node xuv in G′ and replace the

edge u,v by the two edges {u, xuv} and {v, xuv}. Clearly G′ is bipartite since all its cycles are of even length

and diam(G′)≤ 2 + diam(G̃+)=4.

Claim 2. sdim(G̃+) =MNC(
̂̃
G+) =MNC(Ĝ′)= sdim(G′).

Proof. No maximal shortest path in G′ ends at a node xuv for any distinct pair of nodes u and v. Indeed, if a

maximal shortest path ℘ from some node z ends at xuv,it must use one of the two edges {u, xuv} or {v, xuv},

say {u, xuv}. Then adding the edge {v, xuv} to the path provide a shortest path between v and z and thus ℘ was

not maximal. Using this and the construction in Theorem 2(a), we have
̂̃
G+ = Ĝ′ and therefore sdim(G̃+) =

MNC(
̂̃
G+) =MNC(Ĝ′)= sdim(G′) As a result, the inapproximability result for G̃+ directly translates to that

for G′ and concludes the proof.

4.4.2.4 Proof of Theorem 1(c)

The same proof as in (b) works provided, instead of the result in (77), our starting point is the following

result shown by Dinur and Safra (78):

Assuming P , NP, there exists a polynomial time algorithm that transforms a given instance φ

of Sat to an input instance graph G = (V, E) of MNC with n nodes such that, for any constant

0 < ǫ < 168
√

5 and for some 0 < α < 2n, the following holds:

(⋆)

(YES case) if φ is satisfiable then MNC(G)≤ (
√

5−1
2
+ ǫ′)α, and

(NO case) if φ is not satisfiable then MNC(G)≥ ( 71−31
√

5
2

- ǫ′)α.
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4.4.2.5 Proof of Theorem 1(d)

We first show how to prove Theorem 1(d)(i). Suppose, for the sake of contradiction, that there does

exist a O∗(2O(n))-time algorithm that exactly computes sdim(G). We start with an instance φ of 3-Sat having

n variables and m clauses. The sparsification lemma in (79) proves the following result:

for every constant ǫ > 0, there is a constant c > 0 such that there exists a O∗(2ǫn)-time algorithm

that produces from φ a set of t instances φ1, ..., φt of 3-Sat on these n variables with the following

properties:

• t ≤ 2ǫn,

• each φ j is an instance of 3-Sat with n j ≤ n variables and m j ≤ cn clauses, and

• φ is satisfiable if and only if at least one of φ1, ..., φt is satisfiable.

For each such above-produced 3-Sat instance φ j, we now use the classical textbook reduction from 3-Sat to

the node cover problem producing an instance G = (V, E) of MNC of |V | = 3n j + 2m j ≤ (3 + 2c)n nodes

and |E| = n j + m j ≤ (1 + c)n edges such that φ j is satisfiable if and only if MNC(G) = n j + 2m j. Moreover,

it is also easy to check that this classical reduction does not produce two nodes in V that have the same

neighborhood. Thus, setting κ = 0 in Theorem 2(b) we get sdim(G̃) = MNC(G) where G̃ is a graph with

ñ = |Ṽ | = |V | + 1 ≤ (3 + 2c)n + 1 nodes. By assumption, we can compute sdim(G̃) in O∗(2O(̃n)) time, and

and consequently MNC(G) in O∗(2O(n)) time, which leads us to decide in O∗(2O(n)) time if φ j is satisfiable.

Since t ≤ 2ǫn for any constant ǫ > 0, this provides a O∗(2O(n))-time algorithm for 3-Sat, contradicting ET H.

To prove Theorem 1(d)(ii) suppose again, for the sake of contradiction, that there exists a O∗(nO(k))-time

algorithm for exactly computing sdim(G) if sdim(G) ≤ k. Our proof is very similar to the previous one,

but this time we start with the following lower bound result on parameterized complexity (e.g., see [(80),

Theorem 14.21]):
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assuming ET H to be true, if Mnc(G) ≤ k then there is no O∗(nO(k))-time algorithm for exactly

computing Mnc(G).

Using the encoding as described in part (b) of this proof with the corresponding Claim 2, we can set κ =

0 in Theorem 2(b) to obtain the graph G̃+ = (Ṽ+, Ẽ+) such that ñ+ = |Ṽ+| =|V | + (1 + ⌊log2 n⌋ + 1)=

n + ⌊log2 n⌋ + 2 and sdim(G̃+) = MNC(G). By our assumption, we can compute sdim(G̃+) in O∗(ñ+
O(k)

)-

time algorithm if sdim(G) ≤ k. This then provides an algorithm running in O∗(ñ+
O(k)

) = O∗(nO(k)) time if

MNC(G) = sdim(G) ≤ k, contradicting ET H.

Although, the ability of strong metric set to uniquely identify a graph through a subset of nodes is quite

useful in many applications as we discussed, it also raises concerns over privacy. In the next chapter, we

look into another property in complex networks that has been inspired by and derived from strong metric

dimension and measures the privacy in networks.



CHAPTER 5

PRIVACY IN SOCIAL NETWORKS AND (K, ℓ)-ANONYMITY

5.1 Introduction

Due to a significant growth of applications of graph-theoretic methods to the field of social sciences in

recent days, it is by now a standard practice to use the concepts and terminologies of network science to those

social networks that focus on interconnections between people. However, social networks in general may

represent much more than just networks of interconnections between people. Rapid evolution of popular

social networks such as Facebook, Twitter and LinkedIn have rendered modern society heavily dependent

on such virtual platforms for their day-to-day operation. The powers and implications of social network

analysis are indeed indisputable; for example, such analysis may uncover previously unknown knowledge

on community-based involvements, media usages and individual engagements. However, all these benefits

are not necessarily cost-free since a malicious individual could compromise privacy of users of these so-

cial networks for harmful purposes that may result in the disclosure of sensitive data (attributes) that may

be linked to its users, such as node degrees, inter-node distances or network connectivity. A natural way

to avoid this consists of an “anonymization process” of the relevant social network in question. However,

since such anonymization processes may not always succeed, an important research goal is to be able to

quantify and measure how much privacy a given social network can achieve. Towards this goal, the recent

work in (81) aimed at evaluating the resistance of a social network against active privacy-violating attacks

by introducing and studying theoretically a new and meaningful privacy measure for social networks. This

privacy measure arises from the concept of the so-called k-metric antidimension of graphs.

Given a connected simple graph G = (V, E), and an ordered sequence of nodes S = (v1, . . . , vt), the met-

ric representation of a node u that is not in S with respect to S is the vector (of t components) du,−S =

52
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(distu,v1
, . . . , distu,vt

), where distu,v represents the length of a shortest path between nodes u and v. The set S

is then a k-antiresolving set if k is the largest positive integer such that for every node v not in S there also

exist at least other k − 1 different nodes v j1 , . . . , v jk−1
not in S such that v, v j1 , . . . , v jk−1

have the same metric

representation with respect to S (i.e., dv,−S = dv j1
,−S = · · · = dv jk−1

,−S ). The k-metric antidimension of G

is defined to be value of the minimum cardinality among all the k-antiresolving sets of G (81). If a set of

attacker nodes S represents a k-antiresolving set in a graph G, then an adversary controlling the nodes in S

cannot uniquely re-identify other nodes in the network (based on the metric representation) with probability

higher than 1/k. However, given that S is unknown, any privacy measure for a social network should quantify

over all possible subsets S of nodes. In this sense, a social network G meets (k, ℓ)-anonymity with respect

to active attacks to its privacy if k is the smallest positive integer such that the k-metric antidimension of

G is no more than ℓ. In this definition of (k, ℓ)-anonymity the parameter k is used for a privacy threshold,

while the parameter ℓ represents an upper bound on the expected number of attacker nodes in the network.

Since attacker nodes are in general difficult to inject without being detected, the value ℓ could be estimated

based on some statistical analysis of other known networks. A simple example that explains the role of k

and ℓ is as follows: Consider a complete network Kn on n nodes in which every node is connected with

every other node. It is readily seen that for any 0 < ℓ < n, this network meets (n − ℓ, ℓ)-anonymity. In

other words, this means that a social network Kn guarantees that a user cannot be re-identified (based on the

metric representation) with a probability higher than 1/(n − ℓ) by an adversary controlling at most ℓ attacker

nodes. Chatterjee et al. in (82) (see also (83)) formalized and analyzed the computational complexities of

several optimization problemsmotivated by the (k, ℓ)(k, ℓ)(k, ℓ)-anonymity of a network as described in (81). In this

chapter, we consider three of these optimization problems from (82), namely Problems 1–3 as defined in

Section 5.2.



54

To avoid any possible misgivings or confusions regarding the technical content of this chapter as well

as to help the reader towards understanding the remaining content, we believe the following comments and

explanations may be relevant.

• The computational complexity investigations in this chapter has nothing to do with the model in the

paper by Backstrom et al. (84). The notion of active attack is very different in that paper, and therefore

the computational problems that arise in that paper are very different from those in the current work

and in fact incomparable. Finally, the goal of this work is not to compare various network privacy

models but to investigate, theoretically and empirically, the model in (81).

• This chapter does not introduce any new privacy model or measure, but simply investigates, both

theoretically and empirically, computational problems for a model that is published in “Information

Sciences, 328, 403–417, 2016” (reference (81)).

• The network privacy model we investigate was introduced in (81) and therefore the best option for

clarification of any confusion regarding the model would be to look at that reference. However, we

provide the following clarification just in case. In this model, nobody is trying to prevent adversaries.

Informally, the privacy measure only gives a “measure” on how much secure a graph is against active

attacks, i.e., a probability with which we can assert that, if there are controlled nodes in a graph, then

we can in some sense know which is the probability to be reidentified in such graph (for details please

see the texts preceding and following the statements of Problems 1–3 in Section 5.2). No new nodes

are added at all. This is not a problem that involves dynamic graphs.

5.2 Basic notations, relevant background and problem formulations

Let G = (V, E) be the undirected input network over n nodes v1, . . . , vn. The authors in (82) formal-

ized and analyzed the computational complexities of several optimization problems motivated by the (k, ℓ)-
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Figure 11: An example for illustration of some basic definitions and notations in Section 5.2.

anonymity of a network as described in (81). The notations and terminologies from (82) relevant for this

chapter are as follows (see Figure 11 for an illustration)

• dvi
=

(
distvi,v1

, distvi,v2
, . . . , distvi,vn

)
denotes the metric representation of a node vi. For example, in

Figure 11, dv1
= (0, 1, 3, 2, 3, 2).

• Nbr (vℓ) =
{

v j |
{
vℓ, v j

}
∈ E

}
is the (open) neighborhood of node vℓ in G = (V, E). For example, in

Figure 11, Nbr (v2) = { v1, v4, v6 }.

• For a subset of nodes V ′ =
{
v j1 , v j2 , . . . , v jt

}
⊂ V with j1 < j2 < · · · < jt and any other node vi ∈ V \V ′,

dvi,−V ′ =
(
distvi,v j1

, distvi ,v j2
, . . . , distvi ,v jt

)
denotes the metric representation of vi with respect to V ′.

The notation is further generalized by defining DV ′′,−V ′ =
{
dvi,−V ′ | vi ∈ V ′′

}
for any V ′′ ⊆ V \ V ′. For

example, in Figure 11, dv3,−{v1,v5,v6} =
(
3
v1

, 1
v5

, 3
v6

)
and D{v2 ,v3},−{v1 ,v5,v6} =

{
(

from v2︷ ︸︸ ︷
1
v1

, 2
v5

, 1
v6

), (

from v3︷ ︸︸ ︷
3
v1

, 1
v5

, 3
v6

)
}
.

• A partition Π′ =
{
V ′

1
,V ′

2
, . . . ,V ′

ℓ

}
of S ′ ⊆ V is called a refinement of a partition Π = {V1,V2, . . . ,Vk}

of S ⊇ S ′, denoted by Π′ ≺r Π, provided Π′ can be obtained from Π in the following manner:

⊲ For every node vi ∈
(
∪k

t=1
Vt

)
\
(
∪ℓ

t=1
V ′t

)
, remove vi from the set in Π that contains it.

⊲ Optionally, for every set Vℓ in Π, replace Vℓ by a partition of Vℓ.

⊲ Remove empty sets, if any.

For example, for Figure 11, {{v2}, {v3}, {v4, v5}} ≺r {{v1, v2, v3}, {v4, v5}}.
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• The following notations pertain to the equality relation (an equivalence relation) over the set of (same

length) vectors DV\V ′,−V ′ for some ∅ ⊂ V ′ ⊂ V:

⊲ The set of equivalence classes, which forms a partition of DV\V ′,−V ′ , is denoted by Π=
V\V ′,−V ′ . For

example, in Figure 11,D{v2 ,v3,v4,v5},−{v1,v6} =
{
(

from v2︷︸︸︷
1
v1

, 1
v6

), (

from v3︷︸︸︷
3
v1

, 3
v6

), (

from v4︷︸︸︷
2
v1

, 2
v6

), (

from v5︷︸︸︷
3
v1

, 3
v6

)
}

and

Π={v2 ,v3,v4,v5},−{v1,v6} =
{ {

(

from v2︷︸︸︷
1
v1

, 1
v6

)
}
,
{
(

from v4︷︸︸︷
2
v1

, 2
v6

)
}
,
{
(

from v3︷︸︸︷
3
v1

, 3
v6

), (

from v5︷︸︸︷
3
v1

, 3
v6

)
} }

.

⊲ Abusing terminologies slightly, two nodes vi, v j ∈ V \ V ′ will be said to belong to the same equiva-

lence class if dvi,−V ′ and dv j ,−V ′ belong to the same equivalence class inΠ=
V\V ′,−V ′ , and thusΠ=

V\V ′,−V ′

also defines a partition into equivalence classes of V \ V ′. For example, in Figure 11, v3 and v5

belong to the same equivalence class in Π={v2,v3,v4,v5},−{v1 ,v6} and Π={v2 ,v3,v4,v5},−{v1,v6} also defines the

partition
{{v2}, {v4}, {v3, v5}

}
.

⊲ The measure of the equivalence relation is defined as µ
(DV\V ′,−V ′

) def
= minY∈Π=

V\V′ ,−V′

{ | Y | }. Thus,

if a set S is a k-antiresolving set, then DV\S ,−S defines a partition into equivalence classes whose

measure is k. For example, in Figure 11, µ
(
Π={v2 ,v3,v4,v5},−{v1,v6}

)
= 1.

By using the terminologies mentioned above, the following three optimization problems were formalized

and studied in (82). We need to stress that one really needs to study the three different problems and conse-

quently the three objectives (namely, kopt, L
≥k
opt and L

=k
opt) separately because they are motivated by different

considerations as explained before and after the problem definitions and as stated in (⋆⋆⋆), (⊲⊳) and (♠). In-

formally and briefly, Problem 1 and kopt are used to provide an absolute privacy violation bound assuming

the attacker can control as many nodes as it needs, restricting the number of attacker nodes employed by

the adversary leads to Problem 2, and Problem 3 is motivated by a type of trade-off question between (k, ℓ)-

anonymity vs. (k′, ℓ′)-anonymity. Thus, it is simply not possible to combine them into fewer than three

problems.
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Problem 1 (metric anti-dimension or Adim)) Find a subset of nodes V ′ such that kopt = µ
(DV\V ′,−V ′

)
=

max
∅⊂S⊂V

{
µ
(DV\S ,−S

) }
.

A solution of Problem 1 asserts the following:

(⋆) Assuming that there is no restriction on the number of nodes that can be controlled by an

adversary, the following statements hold:

(a) The network administrator cannot guarantee that an adversary will not be able to

uniquely re-identify any node in the network (based on the metric representation)

with probability 1/kopt or less.

(b) It is possible for an adversary to uniquely re-identify kopt nodes in the network (based

on the metric representation) with probability 1/kopt.

Thus, informally, Problem 1 and kopt give an absolute privacy violation bound assuming the attacker can

control as many nodes as it needs. In practice, however, the number of attacker nodes employed by the

adversary may be restricted. This leads us to Problem 2.

Problem 2 (k≥-metric anti-dimension or Adim≥k) Given a positive integer k, find a subset V≥k
opt of nodes of

minimum cardinality L
≥k
opt =

∣∣∣V≥k
opt

∣∣∣, if one such subset at all exists, such that µ
(DV\V≥k

opt,−V≥k
opt

) ≥ k.

Similar to (⋆), a solution of Problem 2 (if it exists) asserts the following:

(⊲⊳) Assuming that an adversary may control up to α nodes, the following statements hold:

(a) If α < L
≥k
opt then the network administrator can guarantee that an adversary will not be

able to uniquely re-identify any node in the network (based on the metric representa-

tion) with probability 1/k or less.

(b) If α ≥ L
≥k
opt then the network administrator cannot guarantee that an adversary will

not be able to uniquely re-identify any node in the network (based on the metric

representation) with probability 1/k or less.
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(c) If α ≥ L
≥k
opt then it is possible for an adversary to uniquely re-identify a subset of

β nodes in the network (based on the metric representation) with probability 1/β for

some β ≥ k (note that β may be much larger compared to k).

The remaining third problem is motivated by the following trade-off question between (k, ℓ)-anonymity vs.

(k′, ℓ′)-anonymity: if k′ > k but ℓ′ < ℓ then (k′, ℓ′)-anonymity has smaller privacy violation probability

1/k′ < 1/k compared to (k, ℓ)-anonymity but can only tolerate attack on fewer ℓ′ < ℓ number of nodes.

Problem 3 (k=-metric antidimension or Adim=k) Given a positive integer k, find a subset V=k
opt of nodes of

minimum cardinality L
=k
opt =

∣∣∣V=k
opt

∣∣∣, if one such subset at all exists, such that µ
(DV\V=k

opt,−V=k
opt

)
= k.

One can describe assertions to a solution of Problem 2 (if it exists) in a manner similar to that in (⋆) and

(⊲⊳). Chatterjee et al. in (82) studied the computational complexity aspects of Problems 1–3. They provided

efficient (polynomial-time) algorithms to solve Problems 1 and 2 and showed that Problem 3 is provably

computationally hard for exact solution but admits an efficient approximation for the particular case of

k = 1 (see Algorithm II). Since we use this approximation algorithm for k = 1, we explicitly state below

the implication of a solution of Adim=1 (note that a solution of Adim=1 always exists and L
=1
opt is trivially at

most n − 1):

(♠) It suffices for an adversary to control a suitable subset of L
=1
opt nodes in the network to

uniquely re-identify at least one node in the network (based on the metric representation)

with absolute certainty (i.e., with a probability of one).

5.3 Theoretical and Empirical Results

5.3.1 Theoretical Result

Suppose that a given graph G is a “k′-metric antidimensional” graph, i.e., k′ is the largest positive integer

such that G has at least one k′-antiresolving set. Then obviously G does not contain any k′′-antiresolving set
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for every k′′ > k′. In contrast, it is not a priori clear if G contains k-metric antiresolving sets for any k < k′.

For instance, a complete graph Kn on n nodes is (n − 1)-metric antidimensional and moreover, for every

1 ≤ k ≤ n − 1, there exists a set of nodes in Kn which is a k-antiresolving set. Au contraire, if we consider

the wheel graph W1,n (see Figure 12 for an illustration for n = 16), it is easy to see that the central node

vn is the unique n-antiresolving set, 1-antiresolving and 2-antiresolving sets exist, 3-antiresolving sets also

exist (if n is larger than 5), but no k-antiresolving set exists for 4 ≤ k ≤ n − 1. This motivates the following

research question:

For a given class of k′-metric antidimensional networks, can we decide if they also have k-

antiresolving sets for all 1 ≤ k ≤ k′ − 1?

Figure 12: The wheel graph W1,n for n = 16.

The following theorem answers the question affirmatively for all networks without a cycle.

Theorem 1 If T is a k′-metric antidimensional tree, then for every 1 ≤ k ≤ k′ there exists a k-antiresolving

set for T .
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Some consequences of Theorem 1

Some consequences of the above result in relation to the (k, ℓ)-anonymity measure are as follows.

Clearly, since trees have nodes of degree one (called leaves), it is always possible to identify at least one

node of the tree (85). However, if the network manager introduces some “fake” nodes as leaves, then this

advantage for the adversary is avoided. In this sense, the result above asserts that an adversary will never

be sure that the set of nodes which it could control will always identify at least one node of the given tree.

Another related interesting observation is that for this to happen, the tree must be k-metric antidimensional

for some k ≥ 2, otherwise the tree is completely insecure. A characterization of that trees which are 1-metric

antidimensional (graphs that contain only 1-antiresolving sets) was given in (86). The topology need not be

“fully” controlled by a network manager, but can be influenced by adding extra nodes.

Proof of Theorem 1

We will use the following result from (86) in our proof.

Lemma 2(86) Any k-antiresolving set S in a tree T with k ≥ 2 induces a connected subgraph of T .

Since Problem 1 was shown to be solvable in polynomial time in (82), we may assume that we know the

value k′ for which the tree T is k′-metric antidimensional. If k = 1 or k = k′ then a k-antiresolving set for T

clearly exists. We may also assume k > 1, since otherwise our result follows trivially. Suppose that k = k′−1

and let S be a k′-antiresolving set of minimum cardinality for T . By Lemma 2, S induces a connected

subgraph of T . Moreover, according to the definition of a k-antiresolving set, there exists an equivalence

class Q ∈ Π=
V\S ,−S

such that |Q| = k′. Select v ∈ S such that Nbr(v) \ S , ∅ and let v1, v2, . . . , vr ∈ Nbr(v) \ S

for some r ≥ 1. Clearly, the set A1 = {v1, v2, . . . , vr} forms an equivalence class of Π=
V\S ,−S

. Moreover, the

set A2 =
⋃r

i=1 Nbr(vi) \ {v}, if not empty, also forms an equivalence class of Π=
V\S ,−S

. Figure 13 shows two

examples which are useful to clarify all the notations of this proof (recall that the eccentricity of a node v is

the maximum over the set of distances between v to all other nodes in the graph).
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Figure 13: Two auxiliary trees. Notice that eccentricity of v in the subtrees is three in both cases. The set S

is a 4-antiresolving set. The nodes of the subtree T2 are shown in bold in both trees.

Assume that T is rooted at node v and, for every vi ∈ A1, let Ti be the subtree of T with node set V(Ti)

formed by v, vi, and the set of descendants of vi. Let ei be the eccentricity of v in Ti for 1 ≤ i ≤ r. Moreover,

let A j be the subset of nodes x in
⋃ r

i=1 V(Ti) such that distv,x = j for every 1 ≤ j ≤ max{ei : 1 ≤ i ≤ r}.

Observe that each A j, with 1 ≤ j ≤ max{ei : 1 ≤ i ≤ r}, is an equivalence class of Π=
V\S ,−S

and thus,

|A j| ≥ k′ since otherwise S is not a k′-antiresolving set. Moreover, without loss of generality, we can assume

there exists a set Aq such that |Aq| = k′ (e.g., in Figure 13 the sets A1 and A4). If there is no such set, then

we choose another node v′ of T for which this situation happen. If there is no such node v′ at all, then the

cardinality of every equivalence class of Π=
V\S ,−S

is strictly larger than k′, which contradicts the definition of

a k′-antiresolving set. We now consider the following situations.

Case 1: e1 = e2 = · · · = er (e.g., in Figure 13(I) all the eccentricities are equal to 3). Notice that in this case

A j ∩ V(Ti) , ∅ for every 1 ≤ j ≤ max{ei : 1 ≤ i ≤ r} and every 1 ≤ i ≤ r. Moreover, there exist α, β such

that |Aα ∩ V(Tβ)| = 1 (e.g., in Figure 13(I) α = 1 and β can take any value between 1 and 4). Thus, for the

set S ′ = S ∪V(Tβ) it follows that Aα \V(Tβ) is an equivalence class of the equivalence relation Π=
V\S ′,−S ′ and
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|Aα − V(Tβ)| = k′ − 1. Moreover, for every other equivalence class X of Π=
V\S ′,−S ′ it follows |X| ≥ k′ − 1 = k.

Thus, X is a (k′ − 1)-antiresolving set. Clearly, X could not be of minimum cardinality.

Case 2: There are at least two subtrees Ti and T j such that ei , e j. Without loss of generality, assume that

e1 ≤ e2 ≤ · · · ≤ er. As in Case 1, there exist γ such that |Aγ | = k′ (e.g., in Figure 13(II) α = 3). Let

S 1 = S ∪V(T1) (note that T1 is the subtree in which v has the minimum eccentricity). If |A(1)
j
| ≥ k′ for every

A
(1)
j
= A j \V(T1) with 1 ≤ j ≤ e1, then γ > e1 and thus S 1 is also a k′-antiresolving set. Hence, we consider

S 2 = S 1 ∪ V(T2) (note that T2 is the subtree in which v has the second minimum eccentricity). If |A(2)
j
| ≥ k′

for every A
(2)

j
= A

(1)

j
\ V(T2) with 1 ≤ j ≤ e2, then γ > e2. Repeating this procedure, we shall find a set

S q = S q−1 ∪ V(Tq) such that γ ≤ eq and moreover, |Aα′ ∩ V(Tβ′)| = 1 for some 1 ≤ α′ ≤ er and q ≤ β′ ≤ r.

Thus, the set A
(q+1)

j
= A

(q)

j
\ V(Tq+1) satisfies |A(q)

j
| = k′ − 1 and consequently S q+1 = S q ∪ V(Tq+1) is a

(k′ − 1)-antiresolving set (e.g., in Figure 13(II) the process must be done two times, first we remove the

nodes in the set V(T1) \ {v} and next we remove the nodes in the set V(T2) \ {v}, thereby getting the required

(k′ − 1)-antiresolving set).

Thus, in both cases we obtain a (k′ − 1)-antiresolving set. By using the same procedure and a (k′ −

1)-antiresolving set of minimum cardinality, we can find a (k′ − 2)-antiresolving set and in general a k-

antiresolving set for every 2 ≤ k ≤ k′ − 1, which completes the proof.

5.3.2 Empirical Results

We remind the readers about the assertions in (⋆), (⊲⊳) and (♠) while we report our empirical results and

related conclusions.

5.3.2.1 Algorithms for Problems 1–3 (Algorithms I and II)

We obtain an exact solution for Problem 2 by implementing the following algorithm (Algorithm I)

devised in (82) by Chatterjee et al.. In this algorithm, an absence of a valid solution is indicated by L
≥k
opt ←∞

and V≥k
opt ← ∅.
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(* Algorithm I *)

1. Compute dvi
for all i = 1, . . . , n using any algorithm that solves all-pairs-shortest-path problem (87).

2. L̂
≥k
opt ← ∞ ; V̂≥k

opt ← ∅

3. for each vi ∈ V do

3.1 V ′ = {vi} ; done← FALSE

3.2 while
(

(V \ V ′ , ∅) AND (NOT done)
)

do

3.2.1 compute µ
(DV\V ′,−V ′

)

3.2.2 if
( (
µ
(DV\V ′,−V ′

) ≥ k
)

and
( |V ′| < L̂

≥k
opt

) )

3.2.3 then L̂
≥k
opt ← |V ′| ; V̂≥k

opt ← V ′ ; done← TRUE

3.2.4 else let V1,V2, . . . ,Vℓ be the only ℓ > 0 equivalence classes

in Π=
V\V ′,−V ′ such that |V1| = · · · = |Vℓ| = µ

(DV\V ′,−V ′
)

3.2.5 V ′ ← V ′ ∪
(
∪ℓ

t=1
Vt

)

4. return L̂
≥k
opt and V̂≥k

opt as our solution

We obtain exact solutions for Problem 1 and find kopt by using Algorithm I in the following straightfor-

ward manner:

1. k ← n − 1 ; done← FALSE

2. while
(

(k ≥ 1) AND (NOT done)
)

do

2.1 execute Algorithm I

2.2 if (V≥k
opt , ∅) then kopt ← k ; done← TRUE

Although Adim=k is NP-hard for almost all k, for k = 1 we implement the following logarithmic-

approximation algorithm devised in (82) by Chatterjee et al. for Adim=1 computing L
=1
opt and V=1

opt.

(* Algorithm II *)
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1. Compute dvi
for all i = 1, . . . , n using any algorithm that solves all-pairs-shortest-path problem (87).

2. L̂
=1
opt ← ∞ ; V̂=1

opt ← ∅

3. for each node vi ∈ V do

3.1 create the following instance of the set-cover problem (88)

containing n − 1 elements and n − 1 sets:

U =
{

av j
| v j ∈ V \ {vi}

}
,

S v j
=

{
av j

}
∪

{
avℓ | distvi ,v j

, distvℓ ,v j

}
for j ∈ {1, 2, . . . , n} \ {i}

3.2 if ∪ j∈{1,2,...,n}\{i}S v j
= U then

3.2.1 run the algorithm of Johnson in (88) for this instance of set-cover

giving a solution I ⊆ {1, 2, . . . , n} \ {i}

3.2.2 V ′ =
{

v j | j ∈ I
}

3.2.3 if
( |V ′| < L̂

=1
opt

)
then L̂

=1
opt ← |V ′| ; V̂=1

opt ← V ′

4. return L̂
=1
opt and V̂=1

opt as our solution

Remarks on the implementations of algorithms

Both Algorithm I and Algorithm II use the all-pairs-shortest-path computation. Just like the measures

in this chapter, the all-pairs-shortest-path computation is unavoidable for a large variety of other geodesic-

based network properties that are often used for real networks such as the betweenness centrality, closeness

centrality or Gromov-hyperbolic curvature measure (89; 90; 8; 91). In practice, for larger networks the

running time of the Floyd-Warshall algorithm of all-pairs-shortest-path (87) can often be improved by using

algorithmic engineering tricks such as early termination criteria that are known in the algorithms community.

Moreover, for specific networks under consideration, practitioners also consider using other algorithmic

approaches, such as repeated use of Dijkstra’s single-source shortest path or Johnson’s algorithm (87), if they

are run faster. For our networks, we found the Floyd-Warshall algorithm with appropriate data structures and
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algorithmic engineering techniques to be sufficient. For increasing the efficiency and speed of the algorithms

we used various data structures such as STL nested maps and vectors to improve comparisons and lookup

operations. Furthermore, for Algorithm I, we prematurely terminate the algorithm if |Vopt| reaches 1 as 1 is

the smallest value of the size of attacker nodes.

5.3.3 Synthetic networks: models and algorithmic generations

We use two major types of synthetic networks, namely the Erdös-Rényi random networks and the scale-

free random networks generated by the Barábasi-Albert preferential-attachment model (2). Although the

Erdös-Rényi network model has been used by prior network researchers as a real-network model in several

application domains (e.g., see (92; 93; 94; 95)) it is also known that this particular model is probably not

very good a model for real networks in many other application domains. Thus, we also consider networks

generated by the scale-free random network model which is more widely considered to be a real-network

model in many network applications (e.g, see (2; 96; 97; 98; 7)).

Erdös-Rényi model This is the classical undirected Erdös-Rényi model G(n, p), where n is the number of

nodes and every possible edge in the network is selected independently with a probability of p. The average

degree of any node in G(n, p) is (n−1)p ≈ np, leading to
n(n−1)p

2
≈ n2 p

2
as the average number of edges in the

network. Our privacy measures assume that the given graph is connected since one connected component

has no influence on the privacy of another connected component. Thus, it is imperative to select only those

combinations of n and p that keeps the graph connected by keeping the average degree of every node to be

at least 1. However, we actually need to make sure that the average degree is at least 2 since, for example,

L
=1
opt is trivially equal to 1 otherwise. This implies that at the very least we must ensure that (n − 1)p ≥ 2, or

roughly np ≥ 2. However, in practice, while generating the actual random networks one may need to select

a p that is slightly higher (in our case, np ≥ 2.5). Note that the giant-component formation in ER networks

happens around np ≈ 1, so we are indeed further away from this phenomenon where slight variations in p

cause abrupt changes in topological behavior of the network. We used the following four combinations of n
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and p to generate our synthetic networks to capture the smaller average degree of 2.5 and the larger average

degree of 5:

n = 500

p = 0.005

np = 2.5

n = 500

p = 0.01

np = 5

n = 1000

p = 0.005

np = 2.5

n = 1000

p = 0.01

np = 5

For n = 500 (respectively, for n = 1000) we generated 1000 random networks (respectively, 100 random

networks) for each corresponding value of p, and then calculated relevant statistics using Algorithms I and II.

Scale-free model We use the Barábasi-Albert preferential-attachment model (2) to generate random scale-

free networks. The algorithm for generating a random scale-free G(n, q),where n is number of nodes and

q ≪ n is the number of connections each new node makes, is as follows:

• Initialize G to have q nodes and no edges. Add these nodes to a “list of repeated nodes”.

• Repeat the following steps till G has n nodes:

– Randomly select q distinct nodes, say u1, . . . , uq, from the list of repeated nodes.

– Add a new node w and undirected edges {w, u1}, . . . , {w, uq} in G.

– Add w and u1, . . . , uq to the current list of repeated nodes.

The larger the q is, the more dense is the network G(n, q). We used the following four combinations of n

and q to generate our synthetic scale-free networks:

n = 500

q = 5

n = 500

q = 10

n = 1000

q = 5

n = 1000

q = 10

For n = 500 (respectively, for n = 1000) we generated 1000 random networks (respectively, 100 random

networks) for each corresponding value of q, and then calculated relevant statistics using Algorithms I and II.
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TABLE XIV: List of real social networks studied in this study.

Name # of Description

nodes edges

(A) Zachary Karate Club (48) 34 78 Network of friendships between 34 members of a

karate club at a US university in the 1970s

(B) San Juan Community (51) 75 144 Network for visiting relations between families

living in farms in the neighborhood San Juan Sur,

Costa Rica, 1948

(C) Jazz Musician Network (50) 198 2842 A social network of Jazz musicians

(D) University Rovira i Virgili

emails (99)

1133 10903 the network of e-mail interchanges between

members of the University Rovira i Virgili

(E) Enron Email Data set (100) 1088 1767 Enron email network

(F) Email Eu core (101) 986 24989 Emails from a large European research institution

(G) UC Irvine College Message plat-

form (102)

1896 59835 Messages on a Facebook-like platform at UC-

Irvine

(H) Hamsterster friendships (103) 1788 12476 This Network contains friendships between users

of the website hamsterster.com

5.3.3.1 Real networks

Table XXI shows the list of eight well-known unweighted social networks that we investigated. All the

networks except one were undirected; for the only directed UC Irvine College Message platform network,

we ignored the direction of edges. For each network the largest connected component was selected and

tested.

5.3.3.2 Results for real networks in Table XXI

Results for Adim and Adim≥k Table XXII shows the results for Adim via applying Algorithm I to these

networks. From these results we may conclude:

① For all networks except the “Enron Email Data” network, an attacker needs to control only

one suitable node of the network to uniquely re-identify (based on the metric representa-
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tion) a significant percentage of nodes in the network (ranging from 2.6% of nodes for the

“University Rovira i Virgili emails” network to 26.5% of nodes for the “Zachary Karate

Club” network).

② For all networks except the “Enron Email Data” network, the minimum privacy violation

probability guarantee is significantly further from zero (ranging from 0.019 for the “UC

Irvine College Message platform” network to 0.25 for the “Hamsterster friendships” net-

work). The minimum privacy violation probability guarantee for the “Hamsterster friend-

ships” network is significantly higher than all other networks.

③ The “Zachary Karate Club” and the “San Juan Community” networks are more vulnerable

to privacy attacks in terms of the percentage of nodes in the networks whose privacy can

be violated by the adversary.

TABLE XV: Results for Adim using Algorithm I. n is the number of nodes and kopt is the largest value of k

such that V≥k
opt , ∅ (cf. Problem 1).

Name n kopt popt = 1/kopt L
≥kopt

opt = L
=kopt

opt

kopt

n

(A) Zachary Karate Club 34 9 0.111 1 26.5%

(B) San Juan Community 75 7 0.143 1 9.3%

(C) Jazz Musician Network 198 12 0.084 1 6.0%

(D) University Rovira i Virgili emails 1133 29 0.035 1 2.6%

(E) Enron Email Data set 1088 153 0.007 935 14.1%

(F) Email Eu core 986 39 0.026 1 3.4%

(G) UC Irvine College Message platform 1896 55 0.019 1 2.9%

(H) Hamsterster friendships 1788 4 0.25 1 0.22%
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For the “Enron Email Data” network, L
≥kopt

opt = 935 implies that even to achieve a modest value of

popt = 0.007 an adversary needs to control a large percentage (at least 935×100
1088

% ≈ 86%) of its nodes, a

possibility unlikely to happen in practice. Thus, we continue further investigation about this network to

check if a value of k somewhat smaller than kopt may allow a sufficiently steep decline in the number of

nodes that the attacker need to control, and report the values of L
≥k
opt corresponding to relevant values of

k > 1 in Table XVI. As can be seen, the values of L
≥k
opt does not decline unless k is really further away from

kopt, leading us to conclude the following:

④ For the “Enron Email Data” network, privacy violation of a large number of nodes of the

network by an attacker cannot be guaranteed in a practical sense (i.e., without gaining

control of a large number of nodes).

TABLE XVI: Values of L
≥k
opt corresponding to values for k > 1 for “Enron Email Data” network. Only those

values of k > 1 for which L
≥k
opt , L

≥k−1
opt are shown.

(E) Enron Email Data set

k 4 5 10 20 40 60 100 120 153

pk = 1/k 0.25 0.2 0.1 0.05 0.025 0.017 0.01 0.009 0.007

L
≥k
opt 1 334 463 567 683 842 935 935 935

Results for Adim=1 Algorithm II returns L
=1
opt = 1 for all of our networks except the “Hamsterster friend-

ships” network. For the “Hamsterster friendships” network, Algorithm II returns L
=1
opt = 2. Thus, we

conclude:

⑤ For all the real networks except the “Hamsterster friendships” network, an adversary con-

trolling just one suitable node may uniquely re-identify (based on the metric represen-
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tation) one other node in the network with certainty (i.e., with a probability of 1). For

the “Hamsterster friendships” network, the same conclusion holds provided the adversary

controls two suitable nodes.

5.3.3.3 Results for Erdös-Rényi synthetic networks

Results for Adim≥k Table XVII shows the results for Adim≥k via applying Algorithm I to these networks.

From these results we may conclude:

⑥ For most synthetic Erdös-Rényi networks, kopt is a value that is much smaller compared to

the number of nodes n. Thus, for our synthetic Erdös-Rényi networks, with high proba-

bility privacy violation of a large number of nodes of the network by an attacker cannot

be achieved.

⑦ The values of
kopt

n
for denser Erdös-Rényi networks (corresponding to p = 0.01) is about

75% higher that those for sparser Erdös-Rényi networks (corresponding to p = 0.005)

irrespective of the number of nodes. Thus, we conclude that our sparser synthetic Erdös-

Rényi networks are more privacy-secure compared to their denser counter-parts.

Results for Adim=1 Table XVIII shows the result of our experiments of computation of L
=1
opt using Algo-

rithm II. From these results, we conclude:

⑧ For our synthetic Erdös-Rényi networks, with high probability an adversary controlling at

most two nodes may uniquely re-identify (based on the metric representation) at least one

other node in the network.

5.3.3.4 Results for scale-free synthetic networks

Results for Adim≥k Table XIX shows the results for Adim≥k via applying Algorithm I to these networks.

From these results we may conclude:
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TABLE XVII: Results for Adim≥k using Algorithm I for classical Erdös-Rényi model G(n, p). kopt is the

largest value of k such that V≥k
opt , ∅ (cf. Problem 1). The %-values indicate the percentage of the generated

networks for those particular values of kopt (e.g., for n = 500 and p = 0.005, 980 out of the 1000 networks

have kopt ≥ 5).

Network

parameters

n p

500 0.005

kopt ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10 > 10

popt = 1/kopt ≤ 0.25 ≤ 0.2 ≤ 0.166 ≤ 0.142 ≤ 0.125 ≤ 0.111 ≤ 0.1 < 0.1

% of networks 100% 98% 81.8% 54.6% 21.5% 8% 3% 1%

At least 90% of networks have kopt ≤ 8 and
kopt

n
≤ 0.016

500 0.010

kopt ≥ 9 ≥ 10 ≥ 11 ≥ 12 ≥ 13 ≥ 14 ≥ 15 > 15

popt = 1/kopt ≤ 0.11 ≤ 0.1 ≤ 0.09 ≤ 0.083 ≤ 0.077 ≤ 0.071 ≤ 0.066 < 0.066

% of networks 100% 98% 94% 81.4% 49.4% 21.4% 6.8% 0.6%

At least 90% of networks have kopt ≤ 14 and
kopt

n
≤ 0.028

1000 0.005

kopt ≥ 10 ≥ 11 ≥ 12 ≥ 13 ≥ 14 > 14

popt = 1/kopt ≤ 0.1 ≤ 0.09 ≤ 0.083 ≤ 0.077 ≤ 0.071 < 0.066

% of networks 100% 99% 65% 16% 7% 1%

At least 90% of networks have kopt ≤ 13 and
kopt

n
≤ 0.013

1000 0.010

kopt ≥ 18 ≥ 19 ≥ 20 ≥ 21 ≥ 22 ≥ 23 ≥ 24 > 24

popt = 1/kopt ≤ 0.055 ≤ 0.052 ≤ 0.05 ≤ 0.047 ≤ 0.045 ≤ 0.043 ≤ 0.041 < 0.041

% of networks 100% 99% 90% 75% 47% 26% 9% 1%

At least 90% of networks have kopt ≤ 23 and
kopt

n
≤ 0.023

⑨ The value of kopt relative to the size n of the network is much larger for synthetic scale-free

networks compared to those for the synthetic Erdös-Rényi networks. Thus, compared to

synthetic Erdös-Rényi networks, synthetic scale-free networks may allow privacy viola-

tion of a largeer number of nodes of the network by an attacker.
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TABLE XVIII: Results for Adim=1 using Algorithm II for classical Erdös-Rényi model G(n, p). The %-

values indicate the percentage of the generated networks that have the corresponding value of L
=1
opt (e.g., for

n = 500 and p = 0.01, 920 out of the 1000 networks have L
=1
opt = 1).

Network parameters L
=1
opt

n p 1 2 > 2

500 0.01 92% 7% 1%

500 0.005 5.9% 89.3% 4.8%

1000 0.01 8% 90% 2%

1000 0.005 5% 93% 1%

⑩ Unlike the synthetic Erdös-Rényi networks, the values of
kopt

n
for denser scale-free net-

works (corresponding to q = 10) may be smaller or larger than those for sparser scale-free

networks (corresponding to q = 5). Thus, density of scale-free networks does not seem to

be well-correlated to privacy-security of these networks.

Results for Adim=1 Table XX shows the result of our experiments of computation of L
=1
opt using Algo-

rithm II. From these results, we conclude:

111111 Similar to synthetic synthetic Erdös-Rényi networks, for synthetic scale-free networks

also with high probability an adversary controlling at most two nodes may uniquely re-

identify (based on the metric representation) at least one other node in the network.
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TABLE XIX: Results for Adim≥k using Algorithm I for the Barábasi-Albert preferential-attachment scale-

free model G(n, q). kopt is the largest value of k such that V≥k
opt , ∅ (cf. Problem 1). The %-values indicate

the percentage of the generated networks for those particular values of kopt (e.g., for n = 500 and q = 5, 990

out of the 1000 networks have kopt ≥ 50).

Network

parameters

n q

500 5

kopt ≥ 49 ≥ 50 ≥ 55 ≥ 60 ≥ 65 ≥ 70 > 70

popt = 1/kopt ≤ 0.0204 ≤ 0.02 ≤ 0.018 ≤ 0.016 ≤ 0.015 ≤ 0.014 < 0.014

% of networks 100% 99% 97% 89% 42% 10% 6%

At least 90% of networks have kopt ≤ 65 and
kopt

n
≤ 0.13

500 10

kopt ≥ 45 ≥ 60 ≥ 80 ≥ 100 ≥ 120 ≥ 140 > 140

popt = 1/kopt ≤ 0.022 ≤ 0.016 ≤ 0.0125 ≤ 0.001 ≤ 0.008 ≤ 0.007 < 0.007

% of networks 100% 50% 48% 47% 27% 5% 4%

At least 95% of networks have kopt ≤ 120 and
kopt

n
≤ 0.24

1000 5

kopt ≥ 88 ≥ 90 ≥ 100 ≥ 110 ≥ 120 ≥ 130 ≥ 135

popt = 1/kopt ≤ 0.011 ≤ 0.010 ≤ 0.001 ≤ 0.009 ≤ 0.008 ≤ 0.007 ≤ 0.0074

% of networks 100% 98% 94% 66% 32% 11% 1%

At least 89% of networks have kopt ≤ 120 and
kopt

n
≤ 0.12

1000 10

kopt ≥ 86 ≥ 88 ≥ 90 ≥ 92 ≥ 94 ≥ 96 ≥ 98 > 100

popt = 1/kopt ≤ 0.0116 ≤ 0.0113 ≤ 0.0111 ≤ 0.0108 ≤ 0.0106 ≤ 0.0104 ≤ 0.0102 < 0.001

% of networks 100% 77% 67% 56% 43% 30% 13% 3%

At least 87% of networks have kopt ≤ 96 and
kopt

n
≤ 0.096
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TABLE XX: Results for Adim=1 using Algorithm II for the Barábasi-Albert preferential-attachment scale-

free model G(n, q). The %-values indicate the percentage of the generated networks that have the corre-

sponding value of L
=1
opt (e.g., for n = 500 and q = 5, 990 out of the 1000 networks have L

=1
opt = 2).

Network parameters L
=1
opt

n q 2 > 2

500 5 99% 1%

500 10 99.5% 0.5%

1000 5 99% 1%

1000 10 99% 1%



CHAPTER 6

CONCLUSIONS

In this thesis, we examined various geodesic-based metrics in complex networks and investigated the

algorithmic perspective related to these measures as well as their implications on network behavior.

In first part, Our empirical results showed that many biological and social networks are hyperbolic. We

showed that hyperbolicity in real-world networks has some interesting implications on the shortest and

approximately shortest paths. Our theoretical results led to methodologies for determining relevant paths

between a source and a target in a signal transduction network, and identifying the most important nodes that

mediate these paths. We also described the interesting impact of hyperbolicity on existence of cross-talks in

regulatory networks. This raise a question about the interplay between hyperbolicity and cross-talk in these

networks, that can be studied in order to obtain a better understanding of this phenomenon:

• Are these cross-talks the reason that biological networks are hyperbolic? or does the hyperbolicity

results in cross-talks? For answering this question one can consider a time-varying nature of the

networks and study the changes in hyperbolicity over time.

In second part, we discussed another geodesic-based property known as strong metric dimension and showed

that the problem of computing the strong metric dimension of a graph can be reduced to a simpler problem

known as Minimum Vertex Cover in a transformed graph. Our results led to both a 2-approximation algo-

rithm and a (2-ǫ)-inapproximability for the problem of computing the strong metric dimension of a graph.

There are still several interesting computational complexity questions still remain open:

• Does the (2 ǫ)-inapproximability result for computing sdim(G) hold even when G is bipartite and

diam(G) ≤ 3 ?

75
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• Are there interesting non-trivial classes of graphs for which sdim(G) can be computed in polynomial

time?

In the last chapter, we examined (k, ℓ)-anonymity, a privacy measure for complex networks which has a

similar nature to strong metric dimension. We investigated, both theoretically and empirically, quantifica-

tions of privacy violation measures of large networks under active attacks. Our empirical results shed light

on privacy violation properties of eight real social networks as well as synthetic networks generated by the

classical Erdös Rènyi model.



77

APPENDIX

PROOF OF THEOREMS IN CHAPTER 3

A.1 Theorem 3

Theorem 3 Suppose that G has a cycle of k ≥ 4 nodes which has no path-chord. Then, δ+worst(G) ≥ ⌈k/4⌉.

Proof. In our proofs we will use the consequences of the 4-node condition when the 4 nodes are chosen in

a specific manner as stated below in Lemma 4.

Lemma 4 Let u0, u1, u2, u3 be four nodes such that u3 is on a shortest path between u1 and u2. Suppose also

that all the inter-node distances are strictly positive except for du1,u3
and du1 ,u3

=

⌈
du1 ,u2

+du0 ,u1
−du0 ,u2

2

⌉
. Then,

⌈
du0 ,u1

+ du0 ,u2
+ du1 ,u2

2

⌉
≤ du0 ,u3

+ du1,u2
≤

⌈
du0 ,u1

+ du0 ,u2
+ du1 ,u2

2

⌉
+ 2 δ+u0 ,u1,u2,u3

Proof. Note that due to triangle inequality 0 ≤
⌈

du1 ,u2
+du0 ,u1

−du0 ,u2

2

⌉
≤ du1,u2

and thus node u3 always exists.

u0 u2

u1

v = u0,1

u0,2

u1,2 = v′

Figure 14: Case 1 of Theorem 5: v = u0,1, v′ = u1,2.
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APPENDIX (Continued)

First, consider the case when 0 < du1,u3
< du1,u2

. Consider the three quantities involved in the 4-node

condition for the nodes u0, u1, u2, u3, namely the quantities du0 ,u3
+ du1 ,u2

, du0 ,u2
+ du1,u3

and du0 ,u1
+ du2,u3

.

Note that

2
(
du0 ,u3

+ du1,u2

)
=

(
du0 ,u3

+ du1 ,u3

)
+

(
du0 ,u3

+ du2 ,u3

)
+ du1,u2

≥ du0,u1
+ du0,u2

+ du1,u2

⇒ du0 ,u3
+ du1 ,u2

≥
⌈
du0,u1

+ du0,u2
+ du1,u2

2

⌉

du0 ,u2
+ du1 ,u3

= du0 ,u2
+

⌊
du1 ,u2

+ du0 ,u1
− du0 ,u2

2

⌋
=

⌊
du0,u1

+ du0,u2
+ du1,u2

2

⌋

du0 ,u1
+ du2 ,u3

= du0 ,u1
+

⌈
du1 ,u2

+ du0 ,u2
− du0 ,u1

2

⌉
=

⌈
du0,u1

+ du0,u2
+ du1,u2

2

⌉

Thus, du0 ,u3
+ du1 ,u2

≥ max
{
du0 ,u2

+ du1 ,u3
, du0,u1

+ du2,u3

}
and using the definition of δ+u0 ,u1,u2,u3

we have

⌈
du0 ,u1

+ du0 ,u2
+ du1 ,u2

2

⌉
≤ du0 ,u3

+ du1,u2
≤

⌈
du0 ,u1

+ du0 ,u2
+ du1 ,u2

2

⌉
+ 2 δ+u0 ,u1,u2,u3

Next, consider the case when du1 ,u3
= 0. This implies

du0 ,u1
+ du1 ,u3

= du0,u1
+ du1,u2

= du0 ,u2
=

du0,u1
+ du0,u2

+ du1,u2

2
≤

⌈
du0,u1

+ du0,u2
+ du1,u2

2

⌉

Finally, consider the case when du1,u3
= du1,u2

. This implies

du1 ,u2
−

du1,u2
+ du0,u1

− du0,u2

2
< 1 ≡ du0 ,u2

+ du1 ,u2
= du0,u1

+ 2 − 2 ε for some 0 < ε ≤ 1
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Thus, it easily follows that

du0 ,u3
+ du1 ,u2

= du0 ,u2
+ du1 ,u2

=
du0 ,u2

+ du1 ,u2
+ du0 ,u1

+ 2 − 2 ε

2
=

du0 ,u2
+ du1 ,u2

+ du0 ,u1

2
+ 1 − ε

⇒ du0 ,u3
+ du1 ,u2

≤
⌈
du0,u1

+ du0,u2
+ du1,u2

2

⌉

❑

We can now prove Theorem 3 as follows. Let C = (
u0, u1, . . . , uk−1, u0

)
be the cycle of k = 4r + r′ nodes

for some integers r and 0 ≤ r′ < 4. Consider the four nodes u0, ur+⌈r′/2⌉, u2r+⌊ ( r′+⌈r′/2⌉ ) / 2 ⌋ and u3r+r′ . Since

C has no path-chord, we have du0,ur+⌈r′/2⌉ = r + ⌈r′/2⌉, du0 ,u2r+⌊( r′+⌈r′/2⌉) / 2⌋ = 2r +

⌊
r′+⌈r′/2⌉

2

⌋
dur+⌈r′/2⌉,u3r+r′ =

2r + r′ − ⌈r′/2⌉ ≤ 2r + ⌈r′/2⌉, du0,u3r+r′ = r and u2r+⌊ ( r′+⌈r′/2⌉ ) / 2 ⌋ is on a shortest path between ur and u3r+r′ .

Thus, applying the bound of Lemma 4, we get

δ+worst(G) ≥ δ+u0, ur+⌈r′/2⌉, u2r+⌊ ( r′+⌈r′/2⌉) / 2⌋, u3r+r′
≥

du0,u
2r+


r′+⌈r′/2⌉

2



+ du
r+

⌈
r′
2

⌉,u3r+r
−



du0 ,u
r+

⌈
r′
2

⌉+du
r+

⌈
r′
2

⌉ ,u3r+r′ +du3r+r ,u0

2



2

=

4r +

⌊
r′+⌈r′/2⌉

2

⌋
− r′ + ⌈r′/2⌉ −

⌈
4r + r′

2

⌉

2
= r +

⌊
r′+⌈r′/2⌉

2

⌋
− r′

2
≥ r − 1/4 ⇒ δ+worst(G) ≥ r = ⌈k/4⌉

❑

A.2 Theorem 5 and Corollary 6

The Gromov product nodes u0,1, u0,2, u1,2 of a shortest-path triangle ∆{u0,u1,u2} are three nodes satisfying

the following1:

1To simplify exposition, we assume that du0,u1
+ du1,u2

+ du0,u2
is an even number. Otherwise, the definition will

require minor changes.
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u0 u2

u1

u0,1=u1,0

v

u0,2=u2,0

u1,2=u2,1

v′

du1,u0,1

du0,u0,1

dv,v ′

du1,v′ = du1,v

du0,u0,1
=

⌊

du0,u1
+ du0,u2

− du1,u2

2

⌋

du1,u0,1
=

⌈

du1,u2
+ du1,u0

− du2,u0

2

⌉

du1,u0,1
= du1,u1,2

du0,u0,1
= du0,u0,2

du2,u0,2
= du2,u1,2

δ+∆{u0,u1,u2}
≤ δ+worst(G) dv,v′ ≤ max

{

6 δ+∆{u0,u1,u2}
, 2

}

Figure 15: A pictorial illustration of the claim in Theorem 5.

• u0,1, u0,2 and u1,2 are located on the paths P∆ (u0, u1), P∆ (u0, u2) and P∆ (u1, u2), respectively, and

• the distances of these three nodes from u0, u1 and u2 satisfy the following constraints:

du0,u0,1 + du1 ,u0,1 = du0 ,u1
, du0,u0,2 + du2 ,u0,2 = du0 ,u2

du1 ,u1,2 + du2 ,u1,2 = du1 ,u2
, du1 ,u0,1 = du1,u1,2

du0 ,u0,1 = du0,u0,2 =

⌊
du0,u1

+ du0,u2
− du1,u2

2

⌋

It is not difficult to see that a set of such three nodes always exists. For convenience, the nodes u1,0, u2,0 and

u2,1 are assumed to be the same as the nodes u0,1, u0,2 and u1,2, respectively.

Theorem 5 (see Fig. Figure 15 for a visual illustration) For a shortest-path triangle ∆{u0,u1,u2} and for 0 ≤

i ≤ 2, let v and v′ be two nodes on the paths ui

P∆(ui ,ui+2 (mod 3))
! ui, i+2 (mod 3) and ui

P∆(ui,ui+1 (mod 3))
! ui, i+1 (mod 3),

respectively, such that dui ,v = dui,v′ . Then,

dv,v′ ≤ 6 δ+∆{u0 ,u1 ,u2 }
+ 2
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where δ+
∆{u0 ,u1 ,u2}

≤ δ+worst(G) is the largest worst-case hyperbolicity among all combinations of four nodes in

the three shortest paths defining the triangle.

Corollary 6 (Hausdorff distance between shortest paths) Suppose that P1 and P2 are two shortest paths

between two nodes u0 and u1. Then, the Hausdorff distance dH (P1,P2) between these two paths can be

bounded as:

dH (P1,P2)
def
= max

{
max

v1 ∈P1

min
v2 ∈P2

{
dv1 ,v2

}
, max

v2 ∈P2

min
v1 ∈P1

{
dv1 ,v2

} }
≤ 6 δ+∆{u0 ,u1 ,u2 }

+ 2

where u2 is any node on the path P2.

Proof of Theorem 5. To simplify exposition, we assume that du0 ,u1
+du1,u2

+du0,u2
is even and prove a slightly

improve bound of dv,v′ ≤ 6 δ+
∆{u0 ,u1 ,u2}

+ 1. It is easy to modify the proof to show that dv,v′ ≤ 6 δ+
∆{u0 ,u1 ,u2}

+ 2 if

du0 ,u1
+ du1 ,u2

+ du0 ,u2
is odd.

We will prove the result for i = 1 only; similar arguments will hold for i = 0 and i = 2. If du1,u0,1 = 0

then v = v′ = u1 and the claim holds trivially, Thus, we assume that du1 ,u0,1 > 0.

Case 1: v = u0,1 and v′ = u1,2. In this case we need to prove that du0,1 ,u1,2 ≤ 6 δ+
∆{u0 ,u1 ,u2 }

+ 1 (see Fig. Fig-

ure 14). Assume that du0,1 ,u1,2 > 0 since otherwise the claim is trivially true. Using Lemma 4 for the four

nodes u0, u1, u2, u1,2, we get

du0,u1,2 + du1 ,u2
≤

⌈
du0,u1

+ du1,u2
+ du0,u2

2

⌉
+ 2 δ+u0 ,u1,u2,u1,2

(A.1)

Now, we note that

du1 ,u2
+ du0 ,u0,2 = du1 ,u2

+

⌊
du0 ,u1

+ du0 ,u2
− du1 ,u2

2

⌋
=

⌊
du0 ,u1

+ du0 ,u2
+ du1 ,u2

2

⌋
(A.2)



82

APPENDIX (Continued)

which in turn implies

∣∣∣ du0 ,u1,2 − du0,u0,2

∣∣∣ =
∣∣∣∣
(
du0 ,u1,2 + du1 ,u2

)
−

(
du1 ,u2

+ du0 ,u0,2

) ∣∣∣∣ ≤
∣∣∣∣∣∣

⌈
du0 ,u1

+ du1 ,u2
+ du0 ,u2

2

⌉
+ 2 δ+u0 ,u1,u2,u1,2

︸                                             ︷︷                                             ︸
(by inequality (Equation A.1))

−
⌊
du0 ,u1

+ du0 ,u2
+ du1 ,u2

2

⌋

︸                        ︷︷                        ︸
(by equality (Equation A.2))

∣∣∣∣∣∣ ≤ 2 δ+u0 ,u1,u2,u1,2
+ 1 (A.3)

In a similar manner, we can prove the following analog of inequality (Equation A.3):

∣∣∣ du2 ,u0,1 − du2 ,u0,2

∣∣∣ ≤ 2 δ+u0 ,u1,u2,u0,1
(A.4)

Using inequalities (Equation A.3) and (Equation A.4), it follows that

∣∣∣∣
(
du0,u1,2 + du2 ,u0,1

)
− du0 ,u2

∣∣∣∣ =
∣∣∣∣
(
du0,u1,2 + du2 ,u0,1

)
−

(
du0 ,u0,2 + du2 ,u0,2

) ∣∣∣∣ =
∣∣∣∣
(
du0 ,u1,2 − du0 ,u0,2

)
+

(
du2 ,u0,1 − du2,u0,2

) ∣∣∣∣

≤
∣∣∣ du0,u1,2 − du0 ,u0,2

∣∣∣ +
∣∣∣ du2 ,u0,1 − du2,u0,2

∣∣∣ ≤ 2 δ+u0 ,u1,u2,u1,2
+ 2 δ+u0 ,u1,u2,u0,1

+ 1 (A.5)

Now, consider the three quantities involved in the 4-node condition for the nodes u0, u2, u0,1, u1,2, namely

the quantities: du0 ,u2
+ du0,1 ,u1,2 , du0,u1,2 + du0,1 ,u2

and du0 ,u0,1 + du2 ,u1,2 . Note that

du0,u0,1+ du2,u1,2 = du0 ,u0,2+ du2 ,u0,2 = du0 ,u2
< du0 ,u2

+ du0,1 ,u1,2 (A.6)

If du0 ,u1,2 + du0,1 ,u2
≤ du0 ,u0,1 + du2 ,u1,2 then by the definition of δ+u0,u2,u0,1,u1,2

we have

du0,1 ,u1,2 =
(
du0 ,u2

+ du0,1 ,u1,2

)
− du0 ,u2

=
(
du0,u2

+ du0,1 ,u1,2

)
−

(
du0 ,u0,1 + du2 ,u1,2

)
≤ 2 δ+u0 ,u2,u0,1 ,u1,2
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u0 u2=v14

u1 = v1

u0,1

v

u1,2=v10

v′=v6

v13
v12

v11

v7 v8
v9

v5
v4

v3
v2

Figure 16: Case 2 of Theorem 5: v , u0,1, v′ , u1,2.

Otherwise, du0 ,u1,2 + du0,1 ,u2
> du0 ,u0,1 + du2 ,u1,2 and then again by the definition of 2 δ+u0 ,u2,u0,1,u1,2

we have

∣∣∣ du0 ,u1,2 + du0,1 ,u2
− du0,u2

− du0,1 ,u1,2

∣∣∣ ≤ 2 δ+u0 ,u2,u0,1,u1,2

and now using inequality (Equation A.5) gives

du0,1 ,u1,2 =
(
du0,u1,2 + du2 ,u0,1 − du0 ,u2

)
−

(
du0 ,u1,2 + du0,1 ,u2

− du0,u2
− du0,1 ,u1,2

)

≤
∣∣∣∣du0,u1,2 + du2 ,u0,1 − du0 ,u2

∣∣∣∣ +
∣∣∣∣du0,u1,2 + du0,1 ,u2

− du0 ,u2
− du0,1 ,u1,2

∣∣∣∣

≤ 2 δ+u0 ,u1,u2,u1,2
+ 2 δ+u0 ,u1,u2,u0,1

+ 2 δ+u0 ,u2,u0,1 ,u1,2
+ 1 ≤ 6 δ+∆{u0 ,u1 ,u2 }

+ 1

Case 2: v , u0,1 and v′ , u1,2. The claim trivially holds if dv,v′ ≤ 1, thus we assume that dv,v′ > 1. Let

(
v1 = u1, v2 = u3, v3, . . . , vh = v′, . . . , vs = u1,2, . . . , vr = u2

)
be the ordered sequence of nodes in the

given shortest path from u1 to u2 (see Fig. Figure 16). Consider the sequence of shortest-path triangles

∆{u0 ,u1,v2},∆{u0,u1,v3}, . . . ,∆{u0 ,u1,vr}, where each such triangle ∆{u0,u1,v j} is obtained by taking the shortest path

P∆ (u0, u1), the sub-path P∆
(
u1, v j

)
of the shortest path P∆ (u1, u2), from u1 to v j, and a shortest path u0

s

!v j



84

APPENDIX (Continued)

u0 u1v

shortest path P1

P2

v′

dv,v′

dv,v′ ≤ min
{ (

6 δ+worst(G) + 1
)(

⌊ log2 ℓ (P2) ⌋ − 1
)

,
⌊

du0,u1

2

⌋ }

Figure 17: Illustration of the bound in Theorem 7.

from u0 to v j. Let v1, j be the Gromov product node on the side (shortest path) P∆
(
u1, v j

)
for the shortest-path

triangle ∆{u0,u1,v j}.

We claim that if v1, j = vp and v1, j+1 = vq then q is either p or p+ 1. Indeed, if du1 ,vp
=

⌊
du0 ,u1

+du1 ,u j
−du0 ,v j

2

⌋

and du1 ,vq
=

⌊
du0 ,u1

+du1 ,u j+1
−du0 ,v j+1

2

⌋
then

du1,vq
− du1,vp

=

⌊
du0,u1

+ du1 ,v j+1
− du0,v j+1

2

⌋
−

⌊
du0 ,u1

+ du1 ,v j
− du0 ,v j

2

⌋

≤


du0,u1

+
(
1 + du1,v j

)
−

(
du0 ,v j+1

− 1
)

2

 −
⌊
du0 ,u1

+ du1 ,v j
− du0,v j

2

⌋

=

⌊
du0 ,u1

+ du1 ,v j
− du0,v j

2
+ 1

⌋
−

⌊
du0 ,u1

+ du1 ,v j
− du0 ,v j

2

⌋
≤ 1

and a similar proof of du1 ,vq
− du1 ,vp

≤ 1 can be obtained if du1 ,vp
=

⌈
du0 ,u1

+du1 ,u j
−du0 ,v j

2

⌉
and du1,vq

=

⌈
du0 ,u1

+du1 ,u j+1
−du0 ,v j+1

2

⌉
. Thus, the ordered sequence of nodes v1,1, v1,2, . . . , v1,r cover the ordered sequence

of nodes v2, v3, . . . , vs in a consecutive manner without skipping over any node. Since v1,1 is either v1 or v2,

and v1,r = vs = u1,2, there must be an index t such that v1,t = v′ = vh. Since du1,v = du1,v′ , v and v′ are the

two Gromov product nodes for the shortest-path triangle ∆{u0,u1,vt} and thus applying Case 1.1 on ∆{u0,u1,vt}

we have dv,v′ ≤ 6 δ+
∆{u0 ,u1 ,u2 }

+ 1. ❑
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A.2.1 Theorem 7 and Corollary 8

Theorem 7 (see Fig. Figure 17 for a visual illustration) Let P1 ≡ u0
s

!u1 and P2 be a shortest path and

an arbitrary path, respectively, between two nodes u0 and u1. Then, for every node v on P1, there exists a

node v′ on P2 such that

dv,v′ ≤ min

{ (
6 δ+worst(G) + 2

) ( ⌊
log2 ℓ (P2)

⌋ − 1
)
,
⌊

du0 ,u1

2

⌋ }

= O
(
δ+worst(G) log ℓ (P2)

)

Since ℓ (P2) ≤ n, the above bound also implies that

dv,v′ ≤
(
6 δ+worst(G) + 2

) ( ⌊
log2 n

⌋ − 1
)
= O

(
δ+worst(G) log n

)

Corollary 8 Suppose that there exists a node v on the shortest path between u0 and u1 such that minv′∈P2

{
dv,v′

} ≥

γ. Then, ℓ (P2) ≥ 2

γ
6 δ+worst(G)+2

+ 1
− 1 = Ω

(
2
γ / δ+worst(G))

.

Proof of Theorem 7. First, note that by selecting v′ to be one of u0 or u1 appropriately we have dv,v′ ≤

⌊du0 ,u1/2⌋. Now, assume that ℓ (P2) > 2. Let u2 be the node on the path P2 such that ℓ
(
u0

P2
! u2

)
= ⌈ ℓ(P2)/2 ⌉.

and consider the shortest-path triangle ∆{u0,u1,u2}. By Theorem 5 there exists a node v′ either on a shortest

path between u0 and u2 or on a shortest path between u1 and u2 such that dv,v′ ≤ 6 δ+worst(G) + 2. We move

from v to v′ and recursively solve the problem of finding a shortest path from v′ to a node on a part of the

path P2 containing at most ⌈(P2)/2⌉ edges. Let D(y) denote the minimum distance from v to a node in a path

of length y between u0 and u1. Thus, the worst-case recurrence for D(y) is given by

D(y) ≤ D
( ⌈

y

2

⌉ )
+ 6 δ+worst(G) + 2, if y > 2

D(2) = 1
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A solution to the above recurrence satisfies D (ℓ (P2) ) ≤
(
6 δ+worst(G) + 2

) ( ⌈
log2 ℓ (P2)

⌉ − 1
)
. ❑

A.2.2 Theorem 9 and Corollary 10

For easy of display of long mathematical equations, we will denote δ+worst(G) simply as δ+.

Theorem 9 Let P1 and P2 be a shortest path and another path, respectively, between two nodes. Define

ηP1,P2
as

ηP1,P2

=

(
6 δ+ + 2

)
log2

( (
6µ + 2

) (
6 δ+ + 2

)
log2

[
(6 δ+ + 2)

(
3µ + 1

)
µ
]
+ µ

)

= O
(
δ+ log ( µ δ+ )

)
, if P2 is µ-approximate short

ηP1,P2

=

(
6 δ+ + 2

)
log2

(
8

(
6 δ+ + 2

)
log2

[
(6 δ+ + 2) (4 + 2ε)

]
+ 1 +

ε

2

)

= O
(
δ+ log

(
ε + δ+ log ε

) )
, if P2 is ε-additive-approximate short

Then, the following statements are true.

(a) For every node v on P1, there exists a node v′ on P2 such that dv,v′ ≤
⌊
ηP1,P2

⌋
.

(b) For every node v′ on P2, there exists a node v on P1 such that dv,v′ ≤ ζP1 ,P2
where

ζP1,P2
=



min

{ ⌊(
µ + 1

)
ηP1 ,P2

+
µ

2

⌋
,

⌊
µ du0,u1

2

⌋ }

= O
(
µ δ+ log ( µ δ+ )

)
, if P2 is µ-approximate short

min

{ ⌊
2 ηP1,P2

+
1 + ε

2

⌋
,

⌊
du0,u1

+ ε

2

⌋ }

= O
(
ε + δ+ log

(
ε + δ+ log ε

) )
,

if P2 is ε-additive-approximate short
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Corollary 10 (Hausdorff distance between approximate short paths) Suppose that P1 and P2 are two

paths between two nodes. Then, the Hausdorff distance dH (P1,P2) between these two paths can be bounded

as follows:

dH (P1,P2)
def
= max

{
max

v1 ∈P1

min
v2 ∈P2

{
dv1 ,v2

}
, max

v2 ∈P2

min
v1 ∈P1

{
dv1 ,v2

} }
≤ η

P1, u0

s

! u1

+ ζ
P2, u0

s

! u1

Corollary 11 Suppose that there exists a node v on the shortest path between u0 and u1 such that min v′ ∈P2

{
dv,v′

} ≥

γ. Then, the following is true.

• If P2 is a µ-approximate short path then

µ >
2
γ

6 δ++1

12 γ −
(

24 + o(1)
) (

6 δ+ + 1
) − 1

3
⇒ µ = Ω


2
γ/δ+

γ



• If P2 is a ε-additive-approximate short path then

ε >
2

γ

6 δ++1

(
48 δ+ + 17

2

) − log2

(
48 δ+ + 8

) ⇒ ε = Ω


2
γ/δ+

δ+
− log δ+



In particular, assuming real world networks have small constant values of δ+, the asymptotic dependence of

µ and ε on γ can be summarized as:

both µ and ε are Ω
(
2 c γ ) for some constant 0 < c < 1

Proof of Theorem 9. Let P1 and P2 be a shortest path and another path, respectively, between two nodes u0

and u1. Note that any “sub-path” of a µ-approximate short path is also a µ-approximately short path, i.e.,

ui

P
! u j is also a µ-approximate short path, and similarly any sub-path of a ε-additive-approximate short
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path is also a ε-additive-approximate short path. µ-approximate shortest paths also restrict the “span” of a

path-chord of the path, i.e., if
(
u0, u1, . . . , uk

)
is a µ-approximate short path and

{
ui, u j

}
∈ E then | j − i | ≤ µ.

(a) Let v and v′ be two nodes on P1 and P2, respectively, such that α = dv,v′ = max
v′′∈P1

min
v′′′∈P2

{
dv′′ ,v′′′

}
. Let

vℓ ∈ u0

P1
!v and vr ∈ u1

P1
!v be two nodes defined by

dvℓ ,v =
2α + 1, if du0 ,v > 2α + 1

du0,v, otherwise

dvr ,v =
2α + 1, if du1 ,v > 2α + 1

du1 ,v, otherwise

By definition of α, there exists two nodes ṽℓ and ṽr on the path P2 such that dvℓ ,ṽℓ , dvr ,ṽr
≤ α. Consider the

P3 = ṽℓ
P2
! ṽr that is the part of path P2 from ṽℓ to ṽr. Note that

dṽℓ ,ṽr
≤ dṽℓ ,vℓ + dvℓ ,vr

+ dvr ,ṽr
≤ 6α + 2

Thus, we arrive at the following inequalities

ℓ (P3) ≤
(
6α + 2

)
µ, if P2 is µ-approximate short

6α + 2 + ε, if P2 is ε-additive-approximate short

Now consider the path P4 = vℓ
s

! ṽℓ
P2
! ṽr

s

!vr obtained by taking a shortest path from vℓ to ṽℓ followed by

the path P3 followed by a shortest path from vr to ṽr. Note that

ℓ (P4) ≤



(
6α + 2

)
µ + 2α, if P2 is µ-approximate short

6α + 2 + ε + 2α = 8α + 2 + ε,

if P2 is ε-additive-approximate short
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We claim that min ṽ ∈P4
{dv,̃v} = α. Indeed, if ṽ ∈ P3 then, by definition of α, min ṽ {dv,̃v} = α. Otherwise, if ṽ ∈

vℓ
s

! ṽℓ, then by triangle inequality dvℓ ,v ≤ dv,̃v +d ṽ,vℓ ⇒ dv,̃v ≥ 2α+1−d ṽ,vℓ > α. Similarly, if ṽ ∈ ṽr

s

!vr,

then by triangle inequality dvr ,v ≤ dv,̃v + d ṽ,vr
⇒ dv,̃v ≥ 2α + 1 − d ṽ,vr

> α. Since vℓ
P1
!vr is a shortest path

between vℓ and vr and v is a node on this path, by Theorem 7, α ≤ (
6 δ+ + 2

) ( ⌊
log2 ℓ (P4)

⌋ − 1
)
. Thus, we

have the following inequalities:

• If P2 is a µ-approximate short path then

ℓ (P4)

≤ (
6α + 2

)
µ + 2α

=
(
6µ + 2

)
α + 2µ

≤ (
6µ + 2

) (
6 δ+ + 2

) (
log2 ℓ (P4) − 1

)
+ 2µ

≤ (
6µ + 2

) (
6 δ+ + 2

) (
log2

((
6µ + 2

)
α + 2µ

) − 1
)
+ 2µ

⇒ α ≤ (
6 δ+ + 2

) (
log2

((
3µ + 1

)
α + µ

) )

(A.7)

• If P2 is a ε-additive-approximate short path then

ℓ (P4) ≤ 8α + 2 + ε

≤ 8
(
6 δ+ + 2

) (
log2 ℓ (P4) − 1

)
+ 2 + ε

≤ 8
(
6 δ+ + 2

) (
log2 (8α + 2 + ε) − 1

)
+ 2 + ε

⇒ 8α + 2 + ε

≤ 8
(
6 δ+ + 2

) (
log2 (8α + 2 + ε) − 1

)
+ 2 + ε

≡ α ≤ (
6 δ+ + 2

) (
log2

(
4α + 1 + ε

2

) )

(A.8)
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Both (Equation A.7) and (Equation A.8) are of the form α ≤ a log2

(
bα + c

) ≡ 2
α/a ≤ bα + c where

a = 6 δ+ + 2 ≥ 1 for both (Equation A.7) and (Equation A.8)

b =



3µ + 1 ≥ 4 for (Equation A.7)

4 for (Equation A.8)

c =



µ ≥ 1 for (Equation A.7)

1 + ε
2
≥ 1 for (Equation A.8)

Thus, α is at most z0 where z0 is the largest positive integer value of z that satisfies the equation:

2
z/a ≤ b z + c

In the sequel, we will use the fact that log2

(
x y + 1

) ≥ log2

(
x + y

)
for x, y ≥ 1. This holds since

x ≥ 1 & y ≥ 1 ⇒ y (x − 1) ≥ x − 1 ≡ x y + 1 ≥ x + y

We claim that z0 ≤ η = a log2

(
2 a b log2

(
a b c

)
+ c

)
. This is verified by showing that 2

η/a ≥ b η + c as

follows:

2
η/a = 2log2

(
2 a b log2

(
a b c

)
+c

)
= 2 a b log2

(
a b c

)
+ c

b η + c = a b
(
log2

(
2 a b log2

(
a b c

)
+ c

) )
+ c
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2
η/a > b η + c

≡ 2 a b log2

(
a b c

)
+ c ≥ a b

(
log2

(
2 a b log2

(
a b c

)
+ c

) )
+ c

≡ 2 log2

(
a b c

) ≥ log2

(
2 a b log2

(
a b c

)
+ c

)

⇐ 2 log2

(
a b c

) ≥ log2

(
2 a b c log2

(
a b c

)
+ 1

)

since 2 a b log2

(
a b c

) ≥ 1 and c ≥ 1

≡ (
a b c

)2 ≥ 2 a b c log2

(
a b c

)
+ 1

⇐ a b c ≥ log2

(
a b c

)
+ 1

and the very last inequality holds since a b c ≥ 4. Thus, we arrive at the at the following bounds:

• If P2 is a µ-approximate short path then

η =

(
6 δ+ + 2

)
log2

( (
6 µ + 2

) (
6 δ+ + 2

)
log2

[ (
6 δ+ + 2

) (
3 µ + 1

)
µ
]
+ µ

)

• If P2 is a ε-additive-approximate short path then

η =

(
6 δ+ + 2

)
log2

(
8

(
6 δ+ + 2

)
log2

[ (
6 δ+ + 2

)
(4 + 2ε)

]
+ 1 +

ε

2

)

(b) Let the ordered sequence of nodes in the path P3 = v1

P2
! v′

1
be a (length) maximal sequence of nodes

such that:

∀ v′ ∈ P3 : min
v ∈P1

{
dv,v′

}
> ZP1,P2

Consider the following set of nodes belonging to the two paths u0

P2
!v1 and v′

1

P2
!u1:

Sℓ =
⋃{

v′ ∈ u0

P2
!v1

∣∣∣∃ v ∈ P1 : dv,v′ =minv′′ ∈P2

{
dv,v′′

}}

Sr =
⋃{

v′∈ v′
1

P2
!u1

∣∣∣∃ v ∈ P1 : dv,v′ =minv′′ ∈P2

{
dv,v′′

}}
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Since u0 ∈ Sℓ and u1 ∈ Sr, it follows that Sℓ , ∅ and Sr , ∅. Note that

⋃{
v ∈ u0

P1
!u1

∣∣∣∃ v′ ∈ Sℓ ∪ Sr : dv,v′ = min
v′′ ∈P2

{
dv,v′′

}}
=

⋃

v ∈ u0

P1
! u1

{
v
}

Thus, there exists two adjacent nodes v4 and v′
4

on P1 such that both dv4 ,v3
and dv′

4
,v′

3
is at most ZP1,P2

. Using

triangle inequality it follows that

dv3 ,v
′
3
≤ dv3 ,v4

+ dv4 ,v
′
4
+ dv′

4
,v′

3
= 2 ZP1 ,P2

+ 1

giving the following bounds

ℓ
(
v3

P2
!v′3

)
≤



µ dv3 ,v
′
3
≤ 2µ ZP1,P2

+ µ,

if P2 is µ-approximate short

dv3 ,v
′
3
+ ε ≤ 2 ZP1 ,P2

+ 1 + ε,

if P2 is ε-additive-approximate short

For any node v′ on P3, we can always use the following path to reach a node on P1:

• if dv′,v3
≤ dv′,v′

3
then we take the path v′

P2
! v3

s

! v4 of length at most

⌊ ℓ
(
v3

P2
!v′

3

)

2

⌋
+ ZP1,P2

to reach the

node v = v4 on P1;

• otherwise we take the path v′
P2
!v′

3

s

!v′
4

of length at most

⌊ ℓ
(
v3

P2
!v′

3

)

2

⌋
+ZP1,P2

to reach the node v = v′
4

on P1.

This gives the following worst-case bounds for dv,v′ :

dv,v′ ≤



⌊(
µ + 1

)
ZP1,P2

+
µ
2

⌋
, if P2 is µ-approximate short

⌊
2 ZP1,P2

+ 1+ε
2

⌋
, if P2 is ε-additive-approximate short
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r
+
α

u0
r

u1

u2

u3

u4

u3,4

α

α

γ

Q

very
long
path

Figure 18: Illustration of the claims in Theorem 12 and Corollary 13.

❑

A.2.3 Theorem 12 and Corollary 13

Theorem 12 (see Fig. Figure 18 for a visual illustration) Suppose that we are given the following:

• three integers κ ≥ 4, α > 0, r >
(
κ
2
− 1

) (
6 δ+worst(G) + 2

)
,

• five nodes u0, u1, u2, u3, u4 such that

• u1, u2 ∈ Br (u0) with du1 ,u2
≥ κ

2

(
6 δ+worst(G) + 2

)
,

• du1 ,u4
= du2 ,u3

= α.

Then, the following statements are true for any shortest path P between u3 and u4:

(a) there exists a node v on P such that

du0 ,v ≤ r −
(
3κ − 2

12

) (
6 δ+worst(G) + 2

)
= r − O

(
κ δ+worst(G)

)

(b) ℓ (P) ≥
(

3κ−2
6

) (
6 δ+worst(G) + 2

)
+ 2α = Ω

(
κ δ+worst(G) + α

)
.

Corollary 13 (see Fig. Figure 18 for a visual illustration) Consider any path Q between u3 and u4 that

does not involve a node in ∪r′≤rBr′ (u0). Then, the following statements hold:
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(i) ℓ (Q) ≥ 2

α
6 δ+worst(G)+2

+ κ
4
+ 5

6 − 1 = 2
Ω

(
α

δ+worst(G)
+ κ

)

. In particular, if δ+worst(G) is a constant then

ℓ (Q) = 2Ω (α + κ) and thus ℓ (Q) increases at least exponentially with both α and κ.

(ii) if Q is a µ-approximate short path then

µ ≥ 2
α

6 δ+worst(G)+2
+ κ

4
− 1

6

12α +
(
3 κ − 26 − o(1)

) (
6 δ+worst(G) + 2

) − 1

3
= Ω


2
Θ

(
α

δ+
worst

(G)
+ κ

)

α + κ δ+worst(G)



In particular, if δ+worst(G) is a constant then µ = Ω
(

2Θ (α+κ)

α+κ

)
and thus µ increases at least exponentially

with both α and κ.

(iii) if Q is a ε-additive-approximate short path then

ε >
2

α
6 δ+worst(G)+2

+ κ
4
− 1

6

48 δ+worst(G) + 17
2

− log2

(
48 δ+worst(G) + 16

)

In particular, if δ+worst(G) is a constant then ε = Ω
(
2Θ (α+κ)

)
and thus ε increases at least exponentially

with both α and κ.

A.2.3.1 Proof of Theorem 12

Consider the shortest-path triangle ∆{u0,u3,u4} and let u0,3, u0,4 and u3,4 be the Gromov product nodes of

∆{u0 ,u3,u4} on the sides (shortest paths) u0 to u3, u0 to u4 and u3 to u4, respectively. Thus, du0 ,u0,3 = du0 ,u0,4 ,

and β = du3,u3,4 =

⌊
du0 ,u3

+du3 ,u4
−du0 ,u4

2

⌋
=

⌊
du3 ,u4

2

⌋
since du0 ,u3

= du0 ,u4
= r + α.

We first claim that du0 ,u0,3 < r = du0 ,u2
. Suppose for the sake of contradiction that du0,u0,3 = du0,u0,4 ≥

r. Then, by Theorem 5 we get du1 ,u2
≤ 6 δ+worst(G) + 2 which contradicts the assumption that du1 ,u2

≥

κ
2

(
6 δ+worst(G) + 2

)
since κ ≥ 4.

Thus, assume that du0 ,u0,3 = du0,u0,4 = r−x for some integer x > 0. By Theorem 5, du0,3 ,u0,4 ≤ 6 δ+worst(G)+2.

Let du0,3 ,u0,4 = 6 δ+worst(G) + 2 − y for some integer 0 < y ≤ 6 δ+worst(G) + 2 and du1 ,u2
= κ

2

(
6 δ+worst(G) + 2

)
+ z



95

APPENDIX (Continued)

for some integer z ≥ 0. Consider the 4-node condition for the four nodes u1, u2, u0,3, u0,4. The three relevant

quantities for comparison are:

q‖ = du1 ,u2
+ du0,3 ,u0,4 =

(
κ
2
+ 1

) (
6 δ+worst(G) + 1

)
+ z − y

q= = du0,3 ,u2
+ du0,4 ,u1

=
(
du0 ,u2

− du0 ,u0,3

)
+

(
du0 ,u1

− du0 ,u0,4

)
= 2x

q
 = du0,3 ,u1
+ du0,4 ,u2

≤
(
du0,3 ,u0,4 + du0,4 ,u1

)
+

(
du0,3 ,u0,4 + du0,3 ,u2

)

= 12 δ+worst(G) + 4 − 2y + 2x

We now show that x >
(

3κ−2
12

) (
6 δ+worst(G) + 2

)
. We have the following cases.

• Assume that q
 ≤ min
{
q‖, q=

}
. This implies

∣∣∣q‖ − q=
∣∣∣ ≤ 2 δ+worst(G)

≡
∣∣∣∣
(
κ
2
+ 1

) (
6 δ+worst(G) + 2

)
+ z − y − 2x

∣∣∣∣ ≤ 2 δ+worst(G)

⇒ x ≥

(
κ
2
+ 1

) (
6 δ+worst(G) + 2

)
+ z − y − 2 δ+worst(G)

2

≥
(

3κ−2
12

) (
6 δ+worst(G) + 2

)
+ 1

6
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• Otherwise, assume that q= ≤ min
{
q‖, q


}
. This implies

∣∣∣q‖ − q

∣∣∣ ≤ 2 δ+worst(G)

⇒ q
 ≥ q‖ − 2 δ+worst(G)

⇒ du0,3 ,u1
+ du0,4 ,u2

≥
(
κ
2
+ 1

) (
6 δ+worst(G) + 2

)
+ z − y − 2 δ+worst(G)

⇒ (
du0,3 ,u0,4 + du0,4 ,u1

)
+

(
du0,3 ,u0,4 + du0,3 ,u2

) ≥ du0,3 ,u1
+ du0,4 ,u2

≥
(
κ
2
+ 1

) (
6 δ+worst(G) + 2

)
+ z − y − 2 δ+worst(G)

⇒ 2x + 2
(
6 δ+worst(G) + 2 − y

)

≥
(
κ
2
+ 1

) (
6 δ+worst(G) + 2

)
+ z − y − 2 δ+worst(G)

⇒ x ≥
(

3κ−2
12

) (
6 δ+worst(G) + 2

)
+ 1

6

• Otherwise, assume that q‖ ≤ min
{
q=, q


}
. This implies

∣∣∣q= − q

∣∣∣ ≤ 2 δ+worst(G)

≡
∣∣∣ 2x − (

du0,3 ,u1
+ du0,4 ,u2

) ∣∣∣ ≤ 2 δ+worst(G)

⇒ 2x ≥ du0,3 ,u1
+ du0,4 ,u2

− 2 δ+worst(G)

≥ (
du1 ,u2

− du0,4 ,u1

)
+

(
du1,u2

− du0,3 ,u1

) − 2 δ+worst(G)

≡ 2x ≥ κ
(
6 δ+worst(G) + 2

)
+ 2z − 2x − 2 δ+worst(G)

⇒ x ≥
(

3κ−2
12

) (
6 δ+worst(G) + 2

)
+
δ+worst(G)

2
+ 1

6

Using Theorem 5, it now follows that

du0 ,u3,4 ≤ du0 ,u0,3 + du0,3 ,u0,4 ≤ (
r − x

)
+

(
6 δ+worst(G) + 2

)
< r −

(
3κ − 2

12

) (
6 δ+worst(G) + 2

)
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This proves part (a) with u3,4 being the node in question. To prove part (b), note that

|P| = 2 β ≥ 2(r + α) − 2du0 ,u3,4 ≥ 2α +

(
3κ − 2

6

) (
6 δ+worst(G) + 2

)

A.2.3.2 Proof of Corollary 13

Consider such a path Q and consider the node u3,4 on the shortest path between u3 and u4. Since every

node of Q is at a distance strictly larger than r + α from u0, by Theorem 12 the following holds for every

node v ∈ Q

du3,4 ,v ≥
(
r + α

) − du0 ,u3,4 =
(
r + α

) −
(
r −

(
3κ − 2

12

) (
6 δ+worst(G) + 2

))
= α +

(
3κ − 2

12

) (
6 δ+worst(G) + 2

)

Thus, by Corollary 8 (with γ = α +
(

3κ−2
12

) (
6 δ+worst(G) + 2

)
), we get

ℓ (Q) ≥ 2

γ

6 δ+worst(G)+2
+1

− 1 = 2

α
6 δ+worst(G)+2

+ κ
4
+ 5

6
− 1

If Q is a µ-approximate short path, then by Corollary 11:

µ >
2

γ
6 δ+worst(G)+2

12 γ −
(

24 + o(1)
) (

6 δ+worst(G) + 2
) − 1

3
=

2
α

6 δ+worst(G)+2
+ κ

4
− 1

6

12α +
(
3 κ − 26 − o(1)

) (
6 δ+worst(G) + 2

) − 1

3

If Q is a ε-additive-approximate short path, then by Corollary 11:

ε >
2

γ

6 δ+worst(G)+2

48 δ+worst(G) + 17
2

− log2

(
48 δ+worst(G) + 16

)
=

2
α

6 δ+worst(G)+2
+ κ

4
− 1

6

48 δ+worst(G) + 17
2

− log2

(
48 δ+worst(G) + 16

)
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A.2.4 Lemma 14

Lemma 14 (equivalence of strong and weak domination; see Fig. Figure 9 for a visual illustration) If λ ≥
(
6 δ+worst(G) + 2

)
log2 n then

Mu,ρ,λ
def
== E



number of pairs of nodes

v, y such that v, y is

weakly (ρ, λ)-dominated

by u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v is selected

uniformly ran-

domly from

∪ρ< j≤ λB j(u)



=== E



number of pairs of

nodes v, y such that

v, y is strongly (ρ, λ)-

dominated by u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v is selected

uniformly ran-

domly from

∪ρ< j≤ λB j(u)



Proof. Suppose that v, y is weakly (ρ, λ)-dominated by u, i.e., there exists a shortest path v
P
! y between

v, y ∈ Bρ+λ(u) such that for some node v′ ∈ v
P
!y we have v′ ∈ Bρ(u). Let v

Q
!y be any other path between

v and y that does not contain a node from Bρ(u). Then, by Corollary 13(i) (with κ = 4) we have

ℓ (Q) ≥ 2

λ
6 δ+worst(G)+2

+ 11
6
− 1 ≥ 2log2 n+ 11

6 − 1 > n − 1

which contradicts the obvious bound ℓ (Q) < n. Thus, no such path Q exists and v, y is strongly (ρ, λ)-

dominated by u. ❑
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PROOF OF THEOREMS IN CHAPTER 4

B.1 Theorem 2

A proof of Theorem 2 is implicit in [18]. For the benefit of the reader, we provide a selfcontained proof

of Theorem 2 here using elementary graph theory.

(a) Let u
s
!v be a maximal shortest path in G. Suppose that we select neither u nor v in a solution of solution

of Str-Met-Dim on G. Then there exists no node x in our solution of Str-Met-Dim on G such that x ◮ {u, v},

implying our solution of Str-Met-Dim on G is not a valid solution and thereby showing sdim(G) ≥ MNC(Ĝ).

To prove sdim(G) ≤ MNC(Ĝ), suppose that we select at least one end-point of every maximal shortest path

in G. Consider any pair of nodes u and v. If at least one of u or v, say u, is selected in a solution of

Str-Met-Dim on G, then u ◮ {u, v}. Otherwise, u
s
! v is not a maximal shortest path, and let x

s
! y be a

maximal shortest path containing u and v. Then, we have selected at least one of x or y, say x, in a solution

of Str-Met-Dim on G, and x ◮ {u, v}.

(b) It follows from the construction of G̃ that diam(G̃) = 2 since any pair of nodes has a shortest path of

length at most 2 between them via y. Note that, for any pair of nodes u and v, Nbr(u) = Nbr(v) in G if and

only if Nbr(u) = Nbr(v) in G. To show sdim(G̃) ≤ κ + MNC(G), let S ⊂ V be the set of nodes in a minimum

node cover of G of cardinality MNC(G). Consider the set of κ + MNC(G) nodes in S = S ∪ {x1, x2, ..., xκ}

as a possible solution of Str-Met-Dim on G̃. To show that this is indeed a valid solution, consider any pair

of nodes u and v in G̃. Then the following simple case analysis suffices:

• Suppose that at least one of u and v is xi for some i. Then,S ′ ∋ xi ◮ {u, v}.
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• Otherwise, suppose that one of u and v, say u, is y (and thus v ∈ V). Select a node xi ∈ S ′ such that

{xi, v} < Ẽ. Then the shortest path of length 2 from xi to v formed by the edges {xi, y} and {y, v} shows

that S ∋ xi ◮ {u, v}.

• Otherwise, if {u, v} ∈ E then at least one of u and v, say u, is in S and u ◮ {u, v}.

• Otherwise, {u, v} < E. Thus, {u, v} ∈ Ẽ. If at least one of u and v, say u, is in S then u ∈ S and

u ◮ {u, v}. Otherwise, both of u and v are not in S , and there are the following two sub-cases to

consider.

– At least one of u and v, say u, is ui for some i. Then the shortest path of length 2 from xi to v

formed by the edges {xi, ui} and {ui, v} shows that S ∋ xi ◮ {u, v}.

– Otherwise, Nbr(u) , Nbr(v) in G, which implies that there exists a node u′ ∈ V such that u is

adjacent to exactly one of u and v, say u. Thus, {u, u} < Ẽ but {v, u} ∈ Ẽ. Note that u < S and

{u, u} ∈ E implies u is in S . Then the shortest path of length 2 from u to u formed by the edges

{u, v} and {v, u} shows that S ∋ u ◮ {u, v}.

To show sdim(G̃) ≥ κ + MNC(G), let S ⊂ Ṽ be the set of sdim(G̃) nodes in an optimal solution of Str-Met-

Dim on G̃. Consider the set of nodes in S = S {x1, x2, ..., xκ, y} as a possible solution of the node cover

problem of G. We first show that S is in fact a valid node cover of G. Since diam(G̃) = 2, any shortest path

in G is of length at most 2. Consider an edge {u, v} ∈ E and suppose that both u and v are not in S (and

thus also not in S ). Since {u, v} < Ẽ, the length of any shortest path between u and v is exactly 2, and thus

no node x ∈ Ṽ {u, v} can strongly resolve the pair of nodes u and v, resulting in a contradiction that S is a

solution of Str-Met-Dim on G̃. Thus, S is a node cover of G and MNC(G) ≤ |S |. To show that |S | = |S |κ,

note that:

• Every xi must belong to S since otherwise no node in S can strongly resolve the pair of nodes xi and

x j for any j , i.
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• Since every xi belongs to S , the node y does not need to belong to S .
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SUPPLEMENTAL INFORMATION

TABLE XXI: Details of 11 biological networks studied

name brief description # nodes # edges reference

1. E. coli transcriptional
E. coli transcriptional regulatory network of
direct regulatory interactions between transcription
factors and the genes or operons they regulate

311 451 (37)

2. Mammalian signaling
Mammalian network of signaling pathways and
cellular machines in the hippocampal CA1 neuron 512 1047 (38)

3. E. coli transcriptional
E. coli transcriptional regulatory network of
direct regulatory interactions between transcription
factors and the genes or operons they regulate

418 544 ♯♯♯

4. T-LGL signaling
Signaling network inside cytotoxic T cells in the context of
the disease T cell large granular lymphocyte leukemia 58 135 (39)

5. S. cerevisiae
transcriptional

S. cerevisiae transcriptional regulatory network
showing interactions between transcription factor
proteins and genes

690 1082 (40)

6. C. elegans metabolic Network of biochemical reactions (C. elegans metabolism) 453 2040 (9)

7. Drosophila
segment polarity
(6 cells)

1-dimensional 6-cell version of the gene regulatory
network among products of the segment polarity
gene family that plays an important role in the
embryonic development of Drosophila melanogaster

78 132 (41)

8. ABA signaling
Guard cell signal transduction network for
abscisic acid (ABA) induced stomatal closure in plants 55 88 (42)

9. Immune response
network

Network of interactions among immune cells and pathogens
in the mammalian immune response against two bacterial species 18 42 (43)

10. T cell receptor
signaling

Network for T cell activation mechanisms after engagement
of the TCR, the CD4/CD8 co-receptors and CD28. 94 138 (44)

11. Oriented yeast PPI
An oriented version of an unweighted PPI network constructed
from S. cerevisiae interactions in the BioGRID database 786 2445 (45)

♯♯♯Updated version of the network in (37); see www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/coli1_1Inter_st.txt.
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TABLE XXII: Details of 9 social networks studied

name brief description type # nodes # edges reference

1. Dolphin social
network

Social network of frequent associations between
62 dolphins in a community living off Doubtful
Sound in New Zealand

undirected,
unweighted

62 160 (46)

2. American
College Football

Network of American football games between
Division IA colleges during the regular Fall 2000 season

undirected,
unweighted

115 612 (47)

3. Zachary Karate
Club

Network of friendships between 34 members
of a karate club at a US university in the 1970s

undirected,
unweighted

34 78 (48)

4. Books about
US politics

Network of books about US politics published
around the time of the 2004 presidential
election and sold by the online bookseller
amazon.com; edges between books represent
frequent copurchasing of books by the same buyers.

undirected,
unweighted

105 442 ‡‡‡

5. Sawmill
communication
network

A communication network within a small enterprise:
a sawmill. All employees were asked to indicate the
frequency with which they discussed work matters
with each of their colleagues on a five-point scale
ranging from less than once a week to several times
a day. Two employees were linked in the network
if they rated their contact as three or more.

undirected,
unweighted

36 62 (49)

6. Jazz Musician
network

A social network of Jazz musicians
undirected,
unweighted

198 2742 (50)

7. Visiting ties
in San Juan

Network for visiting relations between families living
in farms in the neighborhood San Juan Sur,
Costa Rica, 1948

undirected,
unweighted

75 144 (51)

8. World Soccer
Data,
Paris 1998

Members of the 22 soccer teams which participated
in the World Championship in Paris in 1998 had
contracts in 35 countries. Counts of which team
exports how many players to which country are
used to generate this network.

directed,
weighted

35 118 †††

9. Les Miserables

Network of co-appearances of characters in Victor
Hugo’s novel “Les Miserables”. Nodes represent
characters as indicated by the labels and edges
connect any pair of characters that appear in the
same chapter of the book. The weights on the
edges are the number of such coappearances.

undirected,
weighted

77 251 (52)

‡‡‡V. Krebs, unpublished manuscript, found on Krebs’ website www.orgnet.com.

†††Dagstuhl seminar: Link Analysis and Visualization, Dagstuhl 1-6, 2001.
(see http://vlado.fmf.uni-lj.si/pub/networks/data/sport/football.htm)
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Biological details of source, target and central nodes (usource, utarget and ucentral) used in

Table VIII and Table IX

Network 1: E. coli transcriptional

Node name Node type Details

fliAZY usource Contains fliA gene (sigma factor), fliZ (possible cell-density re-

sponsive regulator of sigma) and fliY (periplasmic cystine-binding

protein)

fecA usource Ferric citrate, outer membrane receptor

arcA utarget Aerobic respiration control, transcriptional dual regulator

aspA utarget Component of aspartate ammonia-lyase

crp ucentral Component of CRP transcriptional dual regulator (DNA-binding

transcriptional dual regulator)

CaiF ucentral DNA-binding transcriptional activator

sodA ucentral Component of superoxide dismutases that catalyzes the dismuta-

tion of superoxide into oxygen and hydrogen peroxide
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APPENDIX (Continued)

Network 4: T-LGL signaling network

Node name Node type Details

PDGF usource Platelet-derived growth factor is one of the numerous growth fac-

tors, or proteins that regulates cell growth and division.

IL15 usource Interleukin 15 is a cytokine.

Stimuli usource Antigen Stimulation

apoptosis utarget process of programmed cell death

IL2 ucentral Interleukin 2 is a cytokine signaling molecule in the immune

system

Ceramide ucentral A waxy lipid molecule within the cell membrane which can partic-

ipate in variety of cellular signaling like proliferation and apoptosis

GZMB ucentral A serine proteases that is released within cytotoxic T cells and

natural killer cells to induce apoptosis within virus-infected cells,

thus destroying them

NFKB ucentral nuclear factor kappa-light-chain-enhancer of activated B cells, a

protein complex that controls the transcription of DNA

MCL1 ucentral Induced myeloid leukemia cell differentiation protein Mcl-1
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