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Abstract 

Here we present a novel computational method, and related software, to synthesize signal 

transduction networks from single and double causal evidences. This is a significant and 

topical problem because there are currently no high-throughput experimental methods for 

constructing signal transduction networks, and because the understanding of many 

signaling processes is limited to the knowledge of the signal(s) and of key mediators' 

positive or negative effects on the whole process. Our software NET-SYNTHESIS is 

freely downloadable from http://www.cs.uic.edu/~dasgupta/network-synthesis/.  

 

Our methodology serves as an important first step in formalizing the logical substrate of a 

signal transduction network, allowing biologists to simultaneously synthesize their 

knowledge and formalize their hypotheses regarding a signal transduction network. 

Therefore we expect that our work will appeal to a broad audience of biologists. The 

novelty of our algorithmic methodology based on non-trivial combinatorial optimization 

techniques makes it appealing to computational biologists as well. 
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1. Introduction 

Most biological characteristics of a cell involve complex interactions between its 

numerous constituents such as DNA, RNA, proteins and small molecules (1). Cells use 

signaling pathways and regulatory mechanisms to coordinate multiple functions, allowing 

them to respond to and acclimate to an ever-changing environment. In a signal 

transduction network (pathway), there is typically an input, perceived by a receptor, 

followed by a series of elements through which the signal percolates to the output node, 

which represents the final outcome of the signal transduction process. For a cellular 

signal transduction pathway not involving alterations in gene expression, elements often 

consist of proteinaceous receptors, intermediary signaling proteins and metabolites, 

effector proteins, and a final output which represents the ultimate combined effect of the 

effector proteins. If the signal transduction process includes regulation of the transcript 

level of a particular gene, the intermediate signaling elements will also include the gene 

itself and the transcription factors that regulate it, as well any small RNAs that regulate 

the transcript’s abundance, with the final output being presence or absence of transcript. 

Genome-wide experimental methods now identify interactions among thousands of 

proteins (2,3,4,5). However, the state of the art understanding of many signaling 

processes is limited to the knowledge of key mediators and of their positive or negative 

effects on the whole process.  

 



 

The experimental evidence about the involvement of specific components in a given 

signal transduction network frequently belongs to one of these three categories: 

 

a) Biochemical evidence. This type of evidence provides information on enzymatic 

activity or protein-protein interactions. These are “direct”, physical interactions. 

Examples include:  

• binding of two proteins, 

• a transcription factor activating the transcription of a gene, or 

• a simple chemical reaction with a single reactant and single product. 

b) Pharmacological evidence. This type of experimental evidence is generated by 

processes in which a chemical is used either to mimic the elimination of a particular 

component, or to exogenously provide a certain component, leading to observed 

relationships that are not direct interactions but indirect causal relationships most 

probably resulting from a chain of direct interactions and/or reactions.  

c) Genetic evidence of differential responses to a stimulus. Such evidence in a wild-

type organism versus a mutant organism implicates the product of the mutated gene 

in the signal transduction process. This category is a three-component inference as it 

involves the stimulus, the mutated gene product and the response. We will call this 

category a double causal inference. 

 

In this chapter, we describe a method for synthesizing single and double causal 

information into a consistent network. Our method significantly expands the capability 

for incorporating indirect (pathway-level) information. Previous methods of synthesizing 



 

signal transduction networks only include direct biochemical interactions, and are 

therefore restricted by the incompleteness of the experimental knowledge on pair-wise 

interactions. Figure 1 shows a schematic diagram of our overall goal. Mathematical and 

more technical details about our method are available in our publications (6,7,8,9). 

 

A starting point in applying our method involves distilling experimental conclusions into 

qualitative regulatory relations between cellular components. We differentiate between 

positive and negative regulation by using the verbs “promote” and “inhibit” and 

representing them graphically as → and ┤(see Figure 2). Biochemical and 

pharmacological evidence is represented as a component-to-component relationship, such 

as “A promotes B”, and is incorporated as a directed edge (also called link) from vertex 

(also called node) A to B (see Figure 2). Edges corresponding to “known” (documented) 

direct interactions are marked as “critical”. Genetic evidence leads to double causal 

inferences of the type “C promotes the process through which A promotes B”. We 

assume that a three-node double causal inference corresponds to an intersection of two 

paths (one path from A to B and another path from C to B) in the interaction network; in 

other words, we assume that C activates an unknown intermediary (pseudo)-vertex of the 

AB path; see Figure 2 for a pictorial illustration. 

 

The main idea of our method is in finding a minimal graph, both in terms of pseudo-

vertex numbers and non-critical edge numbers, that is consistent with all reachability 

relationships between non-pseudo (“real”) vertices. A schematic diagram of an overall 

high-level view of our method is shown in Figure 3 and a detailed diagram appears in 



 

Figure 4. Two main computational steps involved are: (i) binary transitive reduction 

(BTR) of a resulting graph subject to the constraints that no edges flagged as direct are 

eliminated and (ii) pseudo-vertex collapse (PVC) subject to the constraints that real 

vertices are not eliminated. In the next two subsections, we discuss these two 

computational sub-steps in more detail. 

 

1.1. Pseudo-vertex collapse (PVC) 

Intuitively, the PVC problem is useful for reducing the pseudo-vertex set to the minimal 

set that maintains the graph consistent with all double causal experimental observations. 

Computationally, an exact solution of this problem can be obtained in polynomial time. 

 

The PVC operation is shown schematically in Figure 5. Mathematically, the PVC 

computational problem can be defined as follows. Our input is a signal transduction 

network G=(V,E) with vertex set V and edge set E in which a subset of  vertices are 

pseudo-vertices. For any vertex v, define the vertex sets 

             

                      in(v) = { (u,x) | u has a path to v of type x with x∈{→,┤} } 

                      out(v) = { (u,x) | v has a path to u of type x with x∈{→,┤} }. 

                                              

Collapsing two vertices u and v is permissible provided both are not real vertices, 

in(u)=in(v) and out(u)=out(v). A PVC operation is as follows: if permissible, collapse 

two vertices u and v to create a new vertex w, make every incoming (respectively, 

outgoing) edge to (respectively, from) either u or v an incoming (respectively, outgoing) 



 

edge from w, remove any parallel edges that may result from the collapse operation and 

also remove both vertices u and v. A valid solution consists of a network G’=(V’,E’) 

obtained from G by a sequence of permissible collapse operations; the goal is to minimize 

the number of edges in E’. 

 

1.2 Binary transitive reduction (BTR) 

Intuitively, the BTR problem is useful for determining a sparsest graph consistent with a 

set of experimental observations. Computationally, in contrast to the PVC problem, an 

exact solution of this problem is hard. 

 

The BTR operation is shown schematically in Figure 6.  Mathematically, the BTR 

computational problem can be defined as follows. Our input is a signal transduction 

network G=(V,E) with a subset Ec ⊆ E of edges marked as critical. A valid solution is a 

subset of edges E’, with Ec ⊆ E’⊆E, that maintains the same “reachability”: u has a path 

to v in G of nature x (x∈{→,┤})  if and only if u has a path to v in G’=(V,E’) of the same 

nature. The goal is to minimize the size of E’. 

 

The BTR problem is known to be NP-hard as a consequence of the results in (12). A few 

results were obtained for certain versions of BTR (10,11) before our work in (6,7,8,9), 

but they were either special cases or biologically more restrictive versions. A special case 

of the BTR problem, called the minimum-equivalent-digraph problem, has been of 

special interest to computer scientists for a long time in regard to optimizing computer 

networks with connectivity requirements (13,14,15,16,17) and has also found applications 



 

in the context of visualization of social networks (18). Our theoretical results (6) resulted 

in efficient 2-approximation algorithms for BTR, which has been recently further 

improved further to a 1.5-approximation (19,20). 

 

The final product of our method led to a custom software package NET-SYNTHESIS 

(available at http://www.cs.uic.edu/~dasgupta/network-synthesis/) that can be simply 

downloaded and run in almost any machine running Microsoft windows system (for 

LINUX users, source C/C++ codes for a non-graphic version of the software can be 

provided on request). The input to NET-SYNTHESIS is a list of relationships among 

biological components (single causal and double causal) and its output is a network 

diagram and a text file with the edges of the signal transduction network.  

 

Below is a summary of the standard steps necessary for carrying out the network 

synthesis and simplification task using NET-SYNTHESIS: 

 

1. Gather the direct interactions, single causal inferences and double causal    

inferences regarding your signal transduction network. 

2.  Read the single inferences into NET-SYNTHESIS to form a graph. Perform 

binary transitive reduction on the graph. 

3. Integrate the double causal inferences into the graph. 

4. Perform pseudo-vertex collapse. 

5. Perform a follow-up round of binary transitive reduction and vertex collapse 

until the graph cannot be reduced further. 



 

6. If warranted, simplify the graph further by designating known vertices as 

pseudo-vertices and performing pseudo-vertex collapses. 

 

2. Materials 

 

2.1. Information and Data Sources 

Large-scale repositories such as Many Microbe Microarrays (http://m3d.bu.edu/cgi-

bin/web/array/index.pl?read=aboutM3D), NASCArrays (http://affymetrix. 

arabidopsis.info/narrays/experimentbrowse.pl) and Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/) contain expression information for thousands of 

genes under tens to hundreds of experimental conditions. In addition, information about 

differentially expressed genes responding to a combination of two experimental 

perturbations, e.g. the presence of a signal in normal versus mutant organisms, can be 

expressed as double causal inferences. Signal transduction pathway repositories such as 

TRANSPATH (http://www.gene-regulation.com/pub/databases.html#transpath) and 

protein interaction databases such as the Search Tool for the Retrieval of Interacting 

Proteins (http://string.embl.de/) contain up to thousands of interactions, a large number of 

which are not supported by direct physical evidence and thus are best treated as single 

causal inferences. 

 

2.2 Software 

The input to the NET-SYNTHESIS software package is a list of relationships among 

biological components (single causal and double causal) and its output is a network 



 

diagram and a text file with the edges of the signal transduction network. We note that 

“nodes” and “vertices” are used interchangeably in the software and in this chapter. In the 

following we explain a few menu options for NET-SYNTHESIS; a user manual is 

available at the software’s webpage, http://www.cs.uic.edu/~dasgupta/network-

synthesis/help.html 

 

File menu: 

• Read: reads an input file from your local directory. After reading, it builds a 

network for single causal inferences (i.e., edges) only. 

• Write: writes the current result to a text file in your local directory.  

Action menu: 

• Redundant edges: finds out and removes if there are duplicates edges in your file 

or the current graph. 

• Add pseudonodes: adds the double causal (i.e., three-vertex) inferences in the 

input file to the network via introducing pseudo-nodes if necessary. 

• Collapse pseudonodes: collapses pseudo-nodes using the PVC algorithm. 

• Reduction (slower): performs binary transitive reduction on the current network. 

Recommended for networks of no more than 150 nodes. 

• Reduction (faster): performs binary transitive reduction on the current network. 

Recommended for networks of more than 150 nodes. 

• Collapse degree-2 pseudonodes: collapses pseudo-nodes that have a single 

incoming edge and a single outgoing edge. 



 

• Randomize before reduction: the transitive reduction algorithm has steps where 

ties are broken arbitrarily. If you turn on this action, then such tie-breaking steps 

will be randomized, thus potentially giving different solutions at different runs of 

the transitive reduction. This option may be useful if you wanted to check out 

more than one solution for the transitive reduction step.  

View menu:  

• Info: shows basic information about the current graph such as the number of 

vertices and edges. 

• Edge handle: displays the edges more visibly (and, hopefully more nicely). 

• Show critical: shows critical edges with a different color.  

Other functions: 

• You can right click on a vertex on the canvas to change the name of that node. 

This may be especially useful in changing a real node to a pseudo-node or vice 

versa since the program assumes that nodes whose names start with an asterisk (*) 

are pseudo-nodes. 

• You can right click on the edge handle to change the nature of an edge (e.g., from 

excitatory to inhibitory or vice versa). 

 

3. Methods 

 

3.1. Gather the direct interactions, single causal inferences and double causal 

inferences regarding your signal transduction network. 



 

First, thoroughly read the relevant literature concerning the signal transduction pathway 

of interest. After reading all available literature on the topic, assess whether sufficient 

information is on hand such that network synthesis is necessary. For example, if all that is 

known about a system is that component/process X activates component Y which in turn 

activates component Z, one can draw a simple linear network and deduce that knockout 

of Y will eliminate signaling, but a formal analysis is hardly required. 

 

In assessing the literature, the modeler should especially focus on experiments that 

provide information of the type relevant to network construction. Experiments that 

identify nodes belonging to a signaling pathway and the relationships between them 

include: 1)  in vivo or in vitro experiments which show that the properties (e.g. activity or 

subcellular localization) of a protein change upon application of the input signal or upon 

modulation of components already definitively known to be associated with the input 

signal; 2) experiments that directly assay a small molecule or metabolite (e.g. imaging of 

cytosolic Ca2+ concentrations) and show that the concentration of that metabolite changes 

upon application of the input signal or modulation of its associated elements; 3) 

experiments that demonstrate physical interaction between two nodes, such as protein-

protein interaction observed from yeast two-hybrid assays or in vitro or in vivo 

coimmunoprecipitation; 4)  pharmacological experiments which demonstrate that the 

output of the pathway of interest is altered in the presence of an inhibitory agent that 

blocks signaling from the candidate intermediary node (e.g. a pharmacological inhibitor 

of an enzyme or strong buffering of an ionic species); 5) experiments which show that 

artificial addition of the candidate intermediary node (e.g. exogenous provision of a 



 

metabolite) alters the output of the signaling pathway; 6) experiments in which genetic 

knockout or overexpression of a candidate node is shown to affect the output of the 

signaling pathway. The first three types of experiments correspond to single causal 

inferences which will become edges of the network; the third also corresponds to direct 

interactions that will become critical edges of the network. The fourth to sixth types of 

experiments correspond to double causal inferences.  

 

The experimental conclusions need to be distilled into two kinds of regulation: positive 

(usually described by the verbs “promotes”, “activates”, “enhances”) and negative 

(usually described by the verbs “inhibits”, “reduces”, “deactivates”),  and represented 

graphically as →  and ┤(see Figure 2).  Since the input to NET-SYNTHESIS is simple 

text files, the graphical symbols are replaced by “->” and “-|”.  Component-to-component 

relationships are represented such as “A → B”.  Double causal inferences are of the type 

“C promotes the process through which A activates B”. The only way this statement can 

correspond to a direct interaction is if C is an enzyme catalyzing a reaction in which A is 

transformed into B. We represent supported enzyme-catalyzed reactions as both A (the 

substrate) and C (the enzyme) activating B (the product). If the interaction between A and 

B is direct and C is not a catalyst of the A-B interaction, we assume that C activates A. In 

all other cases we represent the double causal inference such as “C → (A→ B)”. 

 

Note that some choices may have to be made in distilling the relationships, especially in 

the case where there are two conflicting reports in the literature. For example, imagine 

that in one report it is stated that proteins X and Y do not physically interact based on 



 

yeast two-hybrid analysis, while in a second report, it is described that proteins X and Y 

do interact, based on co-immunoprecipitation from the native tissue. The modeler will 

need to decide which information is more reliable, and proceed accordingly. Such aspects 

dictate that human intervention will inevitably be an important component of the 

literature curation process, even as automated text search engines such as GENIES 

(21,22,23) grow in sophistication.  

 

We will illustrate the five analysis steps following the data-gathering phase on a sample 

collection of single and double causal inferences. This sample is a small subset of the 

evidence gathered for the signal transduction network responsible of abscicic acid 

induced closure of plant stomata (24). The vertices correspond to the signal, denoted 

“ABA”, the output, denoted “Closure” and seven mediators of ABA induced closure, the 

heterotrimeric G protein α subunit (GPA1), the small molecules NO and phosphatidic 

acid (PA), the enzymes Phospholipase C (PLC) and Phospholipase D (PLD), K+
 efflux 

through slowly activating outwardly-rectifying K+ channels at the plasma membrane 

(KOUT). The compilation includes nine single causal inferences, two of which 

correspond to direct interactions, and two double causal inferences. 

 

The input to NET-SYNTHESIS looks the following: 

 

ABA  -| NO 

ABA -> PLD  

ABA -> GPA1 



 

ABA -> PLC 

GPA1  -> PLD Y 

PLD -> PA   

NO -| KOUT  

KOUT -> Closure Y 

PA -> Closure   

PLC -> (ABA -> KOUT) 

PLD -> (ABA -> Closure) 

 

The single inferences need to precede the double inferences. The direct interactions are 

marked by the letter “Y” following the component-to-component relationship. 

 

3.2. Read the single inferences into NET-SYNTHESIS to form a graph. 

Perform binary transitive reduction on the graph. 

To use NET-SYNTHESIS on this example, it needs to be saved into a text file, e.g. 

“example.txt”. After starting NET-SYNTHESIS, select the command “Read” from the 

File menu, and open the input file “example.txt”. This will display the vertices and edges 

corresponding to the single inferences. You can move the nodes by clicking and holding 

your left mouse button on them. Try to arrange the nodes so the edges do not cross each 

other. Note that the small circles correspond to edge handles (if you have the option of 

edge handles chosen in the View menu) which can also be moved to make the graph 

clearer. Clicking on Info in the View menu indicates that currently the network contains 

eight vertices and nine edges. To perform BTR, select “Reduction (slower)” from the 



 

Action menu. This reduction method is the better choice for networks smaller than 150 

vertices. A pop-up window will indicate that one edge was removed. Indeed, the edge 

from ABA to PLD was superfluous as it did not indicate a direct interaction and had no 

effect on the reachability of any node in the network.   

 

3.2. Integrate the double causal inferences into the graph. 

To read in the double causal inferences, select “Add pseudonodes” from the Action menu. 

The popup window will indicate that two pseudo-vertices and six edges were added to 

account for the two double causal inferences. Rearrange the nodes to see what is new. 

Indeed, the PLD -> (ABA -> Closure) inference created a new pseudo-vertex, indicated 

by a circle with a star in it, and three new edges, one from PLD to the pseudo-vertex, one 

from ABA to the pseudo-node, and one from the pseudo-node to Closure. The second 

inference was incorporated in a similar manner. The newly added edges created new 

redundancies in the network. For example, the newly introduced pseudo-node connecting 

ABA and PLD to Closure has the same in and out-reachability as the node PA, i.e. it can 

be reached from ABA, GPA1, and PLD and it can reach Closure. Therefore the pseudo-

vertex is a candidate for PVC. 

 

3.3. Perform pseudo-vertex collapse. 

To perform PVC, select “Collapse pseudonodes” from the Action menu. The popup 

window will indicate that one pseudo-node was removed. An inspection of the network 

will tell you that indeed the pseudo-vertex indicated above was collapsed with the real 

node PA. This decreased the number of vertices by one and the number of edges by two. 



 

As an effect of the collapse, ABA is now directly connected to PA in addition to being 

connected by the chain GPA1 – PLD. The ABA-> PA edge is redundant with the path, 

thus it is a candidate for BTR. In addition, an edge among the three that connect ABA, 

PLC and the remaining pseudo-vertex is also redundant. Thus we should try to simplify 

the network further. 

 

3.4. Perform a follow-up round of binary transitive reduction and vertex 

collapse until the graph cannot be reduced further. 

Select “Reduction (slower)” again and you will see that indeed the two edges have been 

removed. The remaining pseudo-vertex is now simply a mediator between PLC and 

KOUT. But since its existence does not add any further information, it should be 

removed. You can do that by selecting “Collapse degree-2 pseudonodes” from the action 

menu. Now the network has eight vertices and nine edges. Select “Reduction (slower)” to 

make sure no more reduction is possible.  

 

3.5. If warranted, simplify the graph further by designating known vertices 

as pseudo-vertices and performing pseudo-vertex collapse. 

In the example above we succeeded in integrating single and double causal inferences 

into a signal transduction network whose nodes are all known (i.e. they are not pseudo-

nodes). For a real situation, as opposed to an illustrative example, the resulting network 

can be quite large and complex. In cases when some of the nodes are clearly more 

documented, more important, or more interesting than others, it may be beneficial to 

focus on the reachability among these more important nodes and disregard the others 



 

without explicitly removing them. One can do this by designating the less important 

nodes as pseudo-nodes and then simplifying the network by using PVC and BTR. 

 

Let’s designate the node NO as a pseudo-node. We can do this by right-clicking on the 

node, prepending a * to the node name that appears in a pop-up window, and pressing 

Enter. The node will now become a pseudo-node, indicated by the fact that the symbol 

corresponding to the node becomes a small circle with a star in the middle. Selecting 

“Collapse degree-2 pseudonodes” will remove the pseudo-node and connect ABA and 

KOUT with a positive edge. This is because a path with an even number of negative 

edges is positive. The new edge is redundant with the path going through PLC and 

“Reduction (slower)” will delete it. 

 

4. Conclusion 

We have previously successfully illustrated the usefulness of our software by applying it 

to synthesize an improved version of a previously published signal transduction network 

(7,24) and by using it to simplify a novel network corresponding to activation induced 

cell death of T cells in large granular lymphocyte leukemia (7,25).  It is our hope that this 

method, in assistance with interactive human intervention as discussed before, will be 

useful in the future in synthesizing and analyzing networks in a broader context. 
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Figure Legends 

Figure 1. Overall goal of our method. A schematic diagram of the overall goal of our 

method 

Figure 2. Direct and double-causal interactions. Illustration of graph-theoretic 

interpretations of various types of interactions. 

Figure 3. High level description of the network synthesis process. PVC and BTR refer 

to the pseudo-vertex collapse and the binary transitive reduction computational steps, 

respectively.  

Figure 4. Algorithmic details of the basic network synthesis procedure (8). In this 

diagram, a right-arrow → labeled by 0 denotes a “promotes” relation and a right-arrow 

→ labeled by 1 denotes an “inhibits” relation. Similarly, a right-double-arrow ⇒ labeled 

by 0 denotes a “promotes” path and a right-double-arrow ⇒ labeled by 1 denotes an 

“inhibits” path. Ecritical denotes the set of critical edges. The mathematical notation like 

a+b=c (mod 2) indicates that a+b has the same remainder as c when divided by 2. 

Figure 5. Pictorial illustration of a PVC operation. Repeatedly performing this 

operation results in a graph with fewer nodes and edges. 

Figure 6. Pictorial illustration of a BTR operation. The lighter edge is a critical edge 

and thus cannot ever be removed. The indicated inhibitory edge can be removed since 

there is an alternate inhibitory path from the beginning node of the edge to the end node 

of the edge. 
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Figure 4 

1. [encode single causal relationships] 
1.1 Build networks for connections like A→B and A┤B noting each critical edge.
1.2 Apply BTR

2. [encode double causal reltionships] 
2.1 For each double causal relationship of the form A → (B → C) with x,y∈{0,1}, add new nodes 

and/or edges as follows:
• if   B → C ∈ Ecritical then add A → (B → C) 
• if  no subgraph of the form (for some node D with b = a+b = y (mod 2) )

then add the subgraph (where P is a new pseudo-node and b = a+b = y (mod 2) ) 

2.2 Apply PVC
3. [final reduction] Apply BTR
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Figure 6 
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