
On the Computational Complexities of Three Problems
Related to a Privacy Measure for Large Networks

Under Active Attack

Tanima Chatterjeea,1, Bhaskar DasGuptaa,1,∗, Nasim Mobasheria,1,
Venkatkumar Srinivasana,1, Ismael G. Yerob,2

aDepartment of Computer Science, University of Illinois at Chicago, Chicago, IL 60607,
USA

bDepartamento de Matemáticas, Escuela Politécnica Superior, Universidad de Cádiz, 11202
Algeciras, Spain

Abstract

With the arrival of modern internet era, large public networks of various types

have come to existence to benefit the society as a whole and several research

areas such as sociology, economics and geography in particular. However, the

societal and research benefits of these networks have also given rise to poten-

tially significant privacy issues in the sense that malicious entities may violate

the privacy of the users of such a network by analyzing the network and deliber-

ately using such privacy violations for deleterious purposes. Such considerations

have given rise to a new active research area that deals with the quantification of

privacy of users in large networks and the corresponding investigation of com-

putational complexity issues of computing such quantified privacy measures.

In this paper, we formalize three natural problems related to such a privacy

measure for large networks and provide non-trivial theoretical computational

complexity results for solving these problems. Our results show the first two

problems can be solved efficiently, whereas the third problem is provably hard to

∗Corresponding author
Email addresses: tchatt2@uic.edu (Tanima Chatterjee), bdasgup@uic.edu (Bhaskar

DasGupta), nmobas2@uic.edu (Nasim Mobasheri), vsrini7@uic.edu (Venkatkumar
Srinivasan), ismael.gonzalez@uca.es (Ismael G. Yero)

1Research partially supported by NSF grant IIS-1160995.
2This research was done while the author was visiting the University of Illinois at Chicago,

USA, supported by “Ministerio de Educación, Cultura y Deporte”, Spain, under the “José
Castillejo” program for young researchers (reference number: CAS15/00007)

Preprint submitted to Theoretical Computer Science July 7, 2018

solve within a logarithmic approximation factor. Furthermore, we also provide

computational complexity results for the case when the privacy requirement of

the network is severely restricted, including an efficient logarithmic approxima-

tion.

Keywords: Privacy measure, social networks, active attack, computational

complexity

2010 MSC: 68Q25, 68W25, 05C85

1. Introduction

Social networks have become an important center of attention in our modern

information society by transforming human relationships into a huge interchange

of, very often, sensitive data. There are many truly beneficial consequences

when social network data are released for justified mining and analytical pur-5

poses. For example, researchers in sociology, economics and geography, as well

as vendors in service-oriented systems and internet advertisers can benefit and

improve their performances by a fair study of the social network data. But,

such benefits are not free of cost as dishonest individuals or organizations may

compromise the privacy of its users while scrutinizing a public social network10

and may deliberately use such privacy violations for harmful or other unfair

commercial purposes. A common way to handle this kind of unwelcome intru-

sion on the user’s privacy is to somehow anonymize the data by removing most

potentially identifying attributes. However, even after such anonymization, of-

ten it may still be possible to infer many sensitive attributes of a social network15

that may be linked to its users, such as node degrees, inter-node distances or

network connectivity, and therefore further privacy-preserving methods need to

be investigated and analyzed. These additional privacy-preserving methods of

social networks are based on the concept of k-anonymity introduced for micro-

data in [16], aiming to ensure that no record in a database can be re-identified20

with a probability higher than 1/k.

Crucial to modelling a social network anonymization process are the ad-

2

versary’s background knowledge of any object and the structural information

about the network that is available. For example, assuming the involved so-

cial network as a simple graph in which individuals are represented by nodes25

and relationships between pairs of individuals are represented by edges, the

adversary’s background knowledge about a target (a node) could be the node

degree [12], the node neighborhood [24], etc. In such scenarios, it frequently

suffices to develop attacks to re-identify the individuals and their relationships.

Such attacks are usually called passive (see [14] for more information). Some30

examples of passive attacks and the corresponding privacy-preserving methods

for social networks can be found in references [12, 24, 25].

In contrast, Backstrom et al. introduced the concept of the active attacks

in [1]. Such attacks are mainly based on creating and inserting in a network some

nodes (the “attacker nodes”) under control by the adversary. These attacker35

nodes could be newly created accounts with pseudonymous or spoofed identities

(commonly called Sybil nodes), or existing legitimate individuals in the network

which are in the adversary’s proximity. The goal is to establish links with some

other nodes in the network (or even links between other nodes) in order to create

some sort of “fingerprints” in the network that will be further released. Clearly,40

once the releasing action has been achieved, the adversary could retrieve the

fingerprints already introduced, and use them to re-identify other nodes in the

network. Backstrom et al. in [1] showed that O(
√

log n) attacker nodes in a

network could in fact seriously compromise the privacy of any arbitrary node.

In recent years, several research works have appeared that deal with decreasing45

the impact of these active attacks (see, for instance, [20]). For other related

publications on privacy-preserving methods in social networks, see [15, 21, 24].

There are already many well-known active attack strategies for social net-

works in order to find all possible vulnerabilities. However, somewhat surpris-

ingly, not many prior research works have addressed the goal of measuring how50

resistant is a given social network against these kinds of active attacks to the pri-

vacy. Very recently a novel privacy measure for social networks was introduced

in [18]. The privacy measure proposed there was called the (k, `)-anonymity,

3

where k is a number indicating a privacy threshold and ` is the maximum num-

ber of attacker nodes that can be inserted into the network; ` may be estimated55

through some statistical methods3. As claimed by Trujillo-Rasua and Yero

in [18], graphs satisfying (k, `)-anonymity can prevent adversaries who control

at most ` nodes in the network from re-identifying individuals with probability

higher than 1/k. This privacy measure relies on a graph parameter called the

k-metric anti-dimension.60

Consider a simple connected unweighted graph G = (V,E) and let distu,v

be the length (number of edges) of a shortest path between two nodes u, v ∈ V .

For an ordered set S = u1, . . . , ut of nodes of G and a node v ∈ V , the vector

dv,−S = (distv,u1
, . . . ,distv,ut) is called the metric representation of v with

respect to S. Based on the above definition, an ordered set S ⊂ V of nodes is65

called a k-anti-resolving set for G if k is the largest positive integer such that for

every node v ∈ V \S there exist at least k−1 different nodes v1, . . . , vk−1 ∈ V \S
such that dv,−S = dv1,−S = · · · = dvk−1,−S , i.e., v and v1, . . . , vk−1 have the

same metric representation with respect to S. The k-metric anti-dimension of

G, denoted by adimk(G), is the minimum cardinality of any k-anti-resolving set70

in G. Note that k-anti-resolving sets may not exist in a graph for every k.

The connection between (k, `)-anonymity privacy measure and the k-metric

anti-dimension can be understood in the following way. Suppose that an ad-

versary takes control of a set of nodes S of the graph (i.e., S plays the role of

attacker nodes), and the background knowledge of such an adversary regarding75

a target node v is the metric representation of the node v with respect to S. The

(k, `)-anonymity privacy measure is a privacy metric that naturally evolves from

the adversary’s background knowledge. Intuitively, if S (the attacker nodes of

an adversary) is a k-anti-resolving set then the adversary cannot uniquely re-

identify other nodes in the network (based on the metric representation) from80

3Note that other different privacy notions with the same name also exists, e.g., Feder

and Nabar in [6] investigated (k, `)-anonymity where ` represented the number of common

neighbors of two nodes.

4

these attacker nodes with a probability higher than 1/k (based on uniform sam-

pling of other nodes), and if the k-metric anti-dimension of the graph is ` then

the adversary must use at least ` attacker nodes to get the probability of privacy

violation down to 1/k.

1.1. Organization of the Paper85

It is desirable to know how secure a given social network is against active

attacks. This necessitates the study of computational complexity issues for com-

puting (k, `)-anonymity. Currently known results only include some heuristic

algorithms with no provable guarantee on performances such as in [18], or al-

gorithms for very special cases. In fact, it is not even known if any version of90

the related computational problems is NP-hard. We formalize three computa-

tional problems related to measuring the (k, `)-anonymity of graphs and present

non-trivial computational complexity results for these problems. The rest of the

paper is organized as follows:

. In Section 2 we review some basic terminologies and notations and present95

the three computational problems that we consider in this paper. For the

benefit of the reader, we also briefly review some standard algorithmic

complexity concepts and results that will be used later.

. In Section 3, we state the results in this paper mathematically precisely

along with some informal remarks. We group our results based on the100

problem definitions and the expected size of the attacker nodes.

. Sections 4–6 are devoted to the proofs of the results stated in Section 3.

. We finally conclude in Section 8 with some possible future research direc-

tions.

Historical note on the results of this paper While our paper was still105

under submission/review, Zhang and Gao in [23] independently and without

knowing our results provided an alternate proof to the NP-completeness result

reported in Theorem 2(a) using a different reduction.

5

2. Basic Terminologies, Notations and Problem Definitions

In this section, we first describe the terminologies and notations required to110

describe our computational problems, and subsequently describe several versions

of the problems we consider.

2.1. Basic Terminologies and Notations

v5v4v3v2v1

distvi,vj values

n = 5

G = (V,E)

v1 v2 v3 v4 v5
v1 0 1 3 2 3
v2 1 0 2 1 2
v3 3 2 0 1 1
v4 2 1 1 0 1
v5 3 2 1 1 0

Figure 1: An example to illustrate the notations in Section 2.1.

Let G = (V,E) be our undirected unweighted input graph over n nodes

v1, v2, . . . , vn. We use distvi,vj to denote the distance (number of edges in a115

shortest path) between nodes vi and vj . For illustrating various notations, we

use the example in Fig. 1.

I dvi = (distvi,v1 ,distvi,v2 , . . . ,distvi,vn). For example, dv2 = (1, 0, 2, 1, 2).

I diam(G) = max
vi,vj∈V

{
distvi,vj

}
is the diameter (length of a longest shortest

path) of the graph G = (V,E). For example, diam(G) = 3.120

I Nbr (v`) = { vj | {v`, vj} ∈ E } is the (open) neighborhood of node v` in G =

(V,E). For example, Nbr (v2) = {v1, v4}.

I For a subset of nodes V ′ ⊂ V and any vi ∈ V \ V ′, dvi,−V ′ denotes the

metric representation of vi with respect to V ′, i.e., the vector of |V ′| elements

obtained from dvi by deleting distvi,vj for every vj ∈ V \ V ′. For example,125

dv2,−{v1,v3} = (1, 2).

I DV ′′,−V ′ = {dvi,−V ′ | vi ∈ V ′′ } for any V ′′ ⊆ V \ V ′. For example, if V ′′ =

{v2, v4} then DV ′′,−{v1,v3} =
{

(1, 2), (2, 1)
}

.

6

I Π = {V1, V2, . . . , Vk} is a partition of V ′ ⊆ V if and only if ∪kt=1Vt = V ′ and

Vi ∩ Vj = ∅ for i 6= j.130

. Partition Π′ = {V ′1 , V ′2 , . . . , V ′` } is called a refinement4 of partition Π,

denoted by Π′ ≺r Π, provided ∪`t=1V
′
t ⊂ ∪kt=1Vt and the following two

conditions are satisfied:

i. All the sets in Π′ are pairwise disjoint.

ii. There exists a total and surjective function f : {1, . . . , `} 7→ {1, . . . , t}135

such that ∀j ∈ {1, . . . , `} : V ′j ⊆ Vf(j).

For example, if Π =
{
{v1, v2} , {v3, v4, v5}

}
and Π′ =

{
{v1, v2} , {v3} , {v4}

}

then Π′ ≺r Π.

I The equality relation over a set of vectors, all of same length, defines an

equivalence relation. The following notations are used for such an equivalence140

relation over the set of vectors DV \V ′,−V ′ for some ∅ ⊂ V ′ ⊂ V .

. The set of equivalence classes, which forms a partition of DV \V ′,−V ′ , is

denoted by Π=
V \V ′,−V ′ . For example,

Π=
{v1,v2,v3},−{v4,v5} =

{{
(2, 3)

}
,
{

(1, 2)
}
,
{

(1, 1)
}}

.

. Abusing terminologies slightly, two nodes vi, vj ∈ V \ V ′ will be said to145

belong to the same equivalence class if dvi,−V ′ and dvj ,−V ′ belong to the

same equivalence class in Π=
V \V ′,−V ′ , and thus Π=

V \V ′,−V ′ also defines a

partition into equivalence classes of V \V ′. For example, Π=
{v1,v2,v3},−{v4,v5}

will also denote
{{

v1

}
,
{
v2

}
,
{
v3

}}
.

. The measure of the equivalence relation is defined as µ
(
DV \V ′,−V ′

) def
=150

min
Y∈Π=

V \V ′,−V ′

{
| Y |

}
. Thus, if a set S is a k-anti-resolving set thenDV \S,−S

defines a partition into equivalence classes whose measure is exactly k. For

example, µ
(
D{v1,v2,v3},−{v4,v5}

)
= 1 and {v4, v5} is a 1-anti-resolving set.

4Our definition is slightly different from the standard definition of refinement since we

allow ∪`t=1V
′
t ⊂ ∪kt=1Vt.

7

2.2. Problem Definitions

It is desirable to know how secure a given social network is against active155

attacks. This necessitates the study of computational complexity issues for com-

puting (k, `)-anonymity. We formalize three computational problems related to

measuring the (k, `)-anonymity of graphs. For all the problem versions, let

G = (V,E) be the (connected undirected unweighted) input graph representing

the social network under study.160

Problem 1 (metric anti-dimension or Adim)). Given G, find a subset of

nodes V ′ that maximizes µ
(
DV \V ′,−V ′

)
.

Notation related to Problem 1 kopt = max
∅⊂V ′⊂V

{
µ
(
DV \V ′,−V ′

)}
.

Problem 1 simply finds a k-anti-resolving set for the largest possible k. In-

tuitively, it sets an absolute bound on the privacy violation probability of an165

adversary assuming that the adversary can use any number of attacker nodes.

In practice, however, the number of attacker nodes employed by the adversary

may be limited, which leads us to the second problem formulation stated below.

Problem 2 (k≥-metric anti-dimension or Adim≥k). Given G and a pos-

itive integer k, find a subset of nodes V ′ of minimum cardinality such that170

µ
(
DV \V ′,−V ′

)
≥ k, if such a V ′ exists.

Notation and assumption related to Problem 2

L≥kopt =
∣∣∣V ≥kopt

∣∣∣ = min
{
|V ′|

∣∣∣ µ
(
DV \V ′,−V ′

)
≥ k

}
for some ∅ ⊂ V ≥kopt ⊂ V . If

µ
(
DV \V ′,−V ′

)
≥ k for no V ′ then we set L≥kopt =∞ and V ≥kopt = ∅.

Problem 2 finds a k-anti-resolving set for a given k while simultaneously175

minimizing the number of attacker nodes.

The remaining third version of our problem formulation relates to a trade-off

between privacy violation probability and the corresponding minimum number

of attacker nodes needed to achieve such a violation. To understand this mo-

tivation, suppose that G has a k-metric anti-dimension of `, a k′-metric anti-180

dimension of `′, k′ > k and `′ < `. This provides a trade-off between privacy

8

and number of attacker nodes, namely we may allow a smaller privacy violation

probability 1/k′ but the network can tolerate adversarial control of a fewer num-

ber `′ of nodes or we may allow a larger privacy violation probability 1/k but

the network can tolerate adversarial control of a larger number ` of nodes. Such185

a trade-off may be crucial for a network administrator in administering privacy

of a network or for an individual in its decision to join a network. Clearly, this

necessitates solving a problem of the following type.

Problem 3 (k=-metric antidimension or Adim=k). Given G and a posi-

tive integer k, find a subset of nodes V ′ of minimum cardinality such that190

µ
(
DV \V ′,−V ′

)
= k, if such a V ′ exists.

Notation and assumption related to Problem 3

L=k
opt =

∣∣V =k
opt

∣∣ = min
{
|V ′|

∣∣∣ µ
(
DV \V ′,−V ′

)
= k

}
for some ∅ ⊂ V =k

opt ⊂ V . If

µ
(
DV \V ′,−V ′

)
= k for no V ′ then we set L=k

opt =∞ and V =k
opt = ∅

2.3. Standard Algorithmic Complexity Concepts and Results195

For the benefit of the reader, we summarize the following concepts and results

from the computational complexity theory domain. We assume that the reader

is familiar with standard O, Ω, o and ω notations used in asymptotic analysis

of algorithms (e.g., see [4]).

An algorithm A for a minimization (resp., maximization) problem is said to200

have an approximation ratio of ε (or is simply an ε-approximation) [19] provided

A runs in polynomial time in the size of its input and produces a solution with

an objective value no larger than ε times (resp., no smaller than 1/ε times) the

value of the optimum. DTIME
(
nlog logn

)
refers to the class of problem that can

be solved by a deterministic algorithm running in (nlog logn) time when n is the205

size of the input instance; it is widely believed that NP 6⊂DTIME(nlog logn).

The minimum set-cover problem (Sc) is a well-known combinatorial problem

that is defined as follows [4, 9]. Our input is an universe U = {a1, a2, . . . , an}
of n elements, and a collection of m sets S1, S2, . . . , Sm ⊆ U over this universe

with ∪mj=1Sj = U . A valid solution of Sc is a subset of indices I ⊆ {1, 2, . . . ,m}210

9

such that every element in U is “covered” by a set whose index is in I, i.e.,

∀ aj ∈ U ∃ i ∈ I : aj ∈ Si. The objective of Sc is to minimize the number

|I| of selected sets. We use the notation optSc to denote the size (number of

sets) in an optimal solution of an instance of Sc. On the inapproximability side,

Sc is NP-hard [9] and, assuming NP 6⊆DTIME
(
nlog logn

)
, Sc does not admit215

a (1− ε) lnn-approximation for any constant 0 < ε < 1 [7]. On the algorithmic

side, Sc admits a (1 + lnn)-approximation using a simple greedy algorithm [10]

that can be easily implemented to run in O
(∑m

i=1 |Si|
)

time [4].

Finally, in the context of proving NP-completeness, a “decision version”

of an optimization problem by the standard method of using an additional220

parameter and formulating a decision (i.e., yes/no) question on the value of

the objective function with respect to this new parameter (e.g., see [9]). For

reader’s convenience we explicitly write down these decision versions below.

Problem 4 (decision version of metric anti-dimension or Adim)). Given

G and a positive integer ζ, is there a subset of nodes V ′ such that µ
(
DV \V ′,−V ′

)
≥225

ζ?

Problem 5 (decision version of k≥-metric anti-dimension or Adim≥k).

Given G and two positive integers k and ζ, is there a subset of nodes V ′ such

that |V ′| ≤ ζ and µ
(
DV \V ′,−V ′

)
≥ k?

Problem 6 (decision version of k=-metric antidimension or Adim=k).230

Given G and two positive integers k and ζ, is there a subset of nodes V ′ such

that |V ′| ≤ ζ and µ
(
DV \V ′,−V ′

)
= k?

It is also standard to state that an optimization problem is NP-complete to

mean that the decision versions of the optimization problem is NP-complete,

and therefore we will follow the same practice in this paper.235

3. Our Results

In this section we provide precise statements of our results, leaving their

proofs in Sections 4–6.

10

3.1. Polynomial Time Solvability of Adim and Adim≥k

Theorem 1.240

(a) Both Adim and Adim≥k can be solved in O
(
n4
)

time.

(b) Both Adim and Adim≥k can also be solved in O
(
n4 logn

k

)
time “with high

probability” (i.e., with a probability of at least 1−n−c for some constant c > 0).

Remark 1. The randomized algorithm in Theorem 1(b) runs faster that the

deterministic algorithm in Theorem 1(a) provided k = ω(log n).245

3.2. Computational Complexity of Adim=k

3.2.1. The Case of Arbitrary k

Theorem 2.

(a) Adim=k is NP-complete for any integer k in the range 1 ≤ k ≤ nε where

0 ≤ ε < 1
2 is any arbitrary constant, even if the diameter of the input graph is250

2.

(b) Assuming NP 6⊆ DTIME (nlog logn), there exists a universal constant δ > 0

such that Adim=k does not admit a
(

1
δ lnn

)
-approximation for any integer k in

the range 1 ≤ k ≤ nε where 0 ≤ ε < 1
2 is any arbitrary constant, even if the

diameter of the input graph is 2.255

(c) If k = n − c for some constant c then L=k
opt = c if a solution exists and

Adim=k can be solved in polynomial time.

Remark 2.

(a) For k = 1, the inapproximability ratio in Theorem 2(b) is asymptotically

optimal up to a constant factor because of the (1 + ln(n− 1))-approximation of260

Adim=1 in Theorem 3(a).

(b) The result in Theorem 2(b) provides a much stronger inapproximability

result compared to that in Theorem 2(a) at the expense of a slightly weaker

complexity-theoretic assumption (i.e., NP 6⊆ DTIME (nlog logn) vs. P 6= NP).

11

3.2.2. The Case of k = 1265

Note that even when k = 1 Adim=k is NP-hard and even hard to approx-

imate within a logarithmic factor due to Theorem 2. We show the following

algorithmic results for Adim=k when k = 1.

Theorem 3.

(a) Adim=1 admits a (1 + ln(n− 1))-approximation in O
(
n3
)

time.270

(b) If G has at least one node of degree 1 then L=1
opt = 1 and thus Adim=1 can

be solved in O
(
n3
)

time.

(c) If G does not contain a cycle of 4 edges then L=1
opt ≤ 2 and thus Adim=1 can

be solved in O
(
n3
)

time.

4. Proof of Theorem 1275

(a) We first consider the claim for Adim≥k. We begin by proving some struc-

tural properties of valid solutions for Adim≥k.

Proposition 1. Consider two subsets of nodes ∅ ⊂ V1 ⊂ V2 ⊂ V . Let vi, vj ∈
V2 be two nodes such that they do not belong to the same equivalence class in

Π=
V \V1,−V1

. In this case vi and vj do not belong to the same equivalence class280

in Π=
V \V2,−V2

also, and thus Π=
V \V2,−V2

≺r Π=
V \V1,−V1

.

Proof. Since vi and vj are not in the same equivalence class in Π=
V \V1,−V1

, we

have dvi,−V1 6= dvj ,−V1 which in turn implies (since V1 ⊂ V2) dvi,−V2 6= dvj ,−V2

which implies vi and vj are not in the same equivalence class in Π=
V \V2,−V2

. q

Note that Π=
V \V2,−V2

≺r Π=
V \V1,−V1

in Proposition 1 implies does not nec-285

essarily imply that µ
(
DV \V2,−V2

)
< µ

(
DV \V1,−V1

)
. For example, for the ex-

ample in Fig. 1 Π=
{v1,v2},−{v3,v4,v5} =

{{
v1

}
,
{
v2

}}
≺r Π=

{v1,v2,v3},−{v4,v5} =
{{

v1

}
,
{
v2

}
,
{
v3

}}
but µ

(
D{v1,v2,v3},−{v4,v5}

)
= µ

(
D{v1,v2},−{v3,v4,v5}

)
= 1.

The following proposition gives some condition for this to happen.

12

Proposition 2. Consider two subsets of nodes ∅ ⊂ V1 ⊂ V2 ⊂ V , let S1, . . . , S` ⊆290

V \ V1 be all equivalence classes (subsets of nodes) in Π=
V \V1,−V1

such that

|S1| = |S2| = · · · = |S`| = µ
(
DV \V1,−V1

)
, and assume that ∅ ⊂ V2 ∩ Sj ⊂ Sj for

some j ∈ {1, . . . , `}. In this case µ
(
DV \V2,−V2

)
< µ

(
DV \V1,−V1

)
.

Proof. By Proposition 1, Π=
V \V2,−V2

≺r Π=
V \V1,−V1

. If there exists a Sj such

that ∅ ⊂ V2∩Sj ⊂ Sj then Π=
V \V2,−V2

contains an equivalence class ∅ ⊂ Sj′ ⊂ Sj .295

This implies µ
(
DV \V2,−V2

)
≤ |Sj′ | < |Sj | = µ

(
DV \V1,−V1

)
. q

Based on the above structural properties, we design Algorithm I for Adim≥k

as shown below.

Algorithm I: O
(
n4
)

time deterministic algorithm for Adim≥k.

1. Compute di for all i = 1, 2, . . . , n in O
(
n3
)

time using

the Floyd-Warshall algorithm [4, p. 629]

2. L̂≥kopt ←∞ ; V̂ ≥kopt ← ∅

3. for each vi ∈ V do (∗ we guess vi to belong to V ≥kopt ∗)

3.1 V ′ = {vi} ; done← FALSE

3.2 while
(

(V \ V ′ 6= ∅) AND (NOT done)
)

do

3.2.1 compute µ
(
DV \V ′,−V ′

)

3.2.2 if
((

µ
(
DV \V ′,−V ′

)
≥ k

)
and

(
|V ′| < L̂≥kopt

))

3.2.3 then L̂≥kopt ← |V ′| ; V̂ ≥kopt ← V ′ ; done← TRUE

3.2.4 else let V1, . . . , V` be all equivalence classes in Π=
V \V ′,−V ′

such that |V1| = · · · = |V`| = µ
(
DV \V ′,−V ′

)

3.2.5 V ′ ← V ′ ∪
(
∪`t=1Vt

)

4. return L̂≥kopt and V̂ ≥kopt as our solution

Lemma 4 (Proof of correctness). Algorithm I returns an optimal solution

13

for Adim≥k.300

Proof. Assume that V ≥kopt 6= ∅ since otherwise our returned solution is correct.

Fix any optimal solution (subset of nodes) V ≥kopt of measure µ
(
D
V \V ≥kopt ,−V

≥k
opt

)
≥

k and select any arbitrary node v` ∈ V ≥kopt . Consider the iteration of the for

loop in Step 3 when vi is equal to v`. We now analyze the run of this particular

iteration.305

Let {v`} = V1 ⊂ V2 ⊂ · · · ⊂ Vκ be the κ subsets of nodes that were assigned

to V ′ in successive iterations of the while loop in Step 3.2. We have the following

cases to consider.

Case 1: V ≥kopt = Vt for some t ∈ {1, 2, . . . , κ}. Our solution is a set V̂ ≥kopt such

that µ

(
D
V \V̂ ≥kopt ,−V̂

≥k
opt

)
≥ k and L̂≥kopt ≤ L≥kopt.310

Case 2: V ≥kopt 6= Vt for any t ∈ {1, 2, . . . , κ}. Since V1 = {v`} ⊂ V ≥kopt and Vt 6=
V ≥kopt for any t ∈ {1, 2, . . . , κ}, only one of the following cases is possible:

Case 2.1: there exists r ∈ {1, . . . , κ − 1} such that Vr ⊂ V ≥kopt but

Vr+1 6⊆ V ≥kopt . Let Vr,1, Vr,2, . . . , Vr,p ⊆ V \ Vr be all the p > 0

equivalence classes (subsets of nodes) in Π=
V \Vr,−Vr such that |Vr,1| =315

|Vr,2| = · · · = |Vr,p| = µ
(
DV \Vr,−Vr

)
. Now we note the following:

• By Step 3.2.5, Vr+1 = Vr ∪ Vr,1 ∪ Vr,2 ∪ · · · ∪ Vr,p.

• Thus, Vr ⊂ V ≥kopt and Vr+1 6⊆ V ≥kopt implies Vr,1∪Vr,2∪· · ·∪Vr,p 6⊆
V ≥kopt , and therefore there exists an index 1 ≤ s ≤ p such that

Z = Vr,s \ V ≥kopt 6= ∅. Let Z ′ = Vr,s \ Z (Z ′ could be empty). For

this case, for some ∅ ⊂ Z ′′ ⊆ Z, Z ′′ is an equivalence class in

Π=
V \(Vr∪Z′),−(Vr∪Z′) implying

µ
(
DV \(Vr∪Z′),−(Vr∪Z′)

)
≤ |Z ′′| ≤ |Z| (1)

Since Vr ∪ Z ′ ⊆ V ≥kopt , we have

Π=
V \V ≥kopt ,−V

≥k
opt

≺r Π=
V \(Vr∪Z′),−(Vr∪Z′)

(in Proposition 1, set V2 = V ≥kopt and V1 = Vr ∪ Z′)

14

⇒ k≤µ
(
D
V \V ≥kopt ,−V

≥k
opt

)
≤ µ

(
DV \(Vr∪Z′),−(Vr∪Z′)

)

≤
by (1)

|Z| ≤ |Vr,s| = µ
(
DV \Vr,−Vr

)

Thus, µ
(
DV \Vr,−Vr

)
≥ k and |Vr| <

∣∣∣V ≥kopt

∣∣∣ = L≥kopt, contradicting the

optimality of L≥kopt.

Case 2.2: Vκ ⊂ V ≥kopt . If done was set to TRUE at the last iteration of

the while loop, then µ
(
DV \Vκ,−Vκ

)
≥ k and |Vκ| <

∣∣∣V ≥kopt

∣∣∣ = L≥kopt,

contradicting the optimality of L≥kopt. Thus, done must have remained

FALSE after the last iteration of the while loop, implying µ
(
DV \Vκ,−Vκ

)
<

k. Let Vκ,1, Vκ,2, . . . , Vκ,p ⊆ V \ Vκ be all the p > 0 equivalence

classes (subsets of nodes) in Π=
V \Vκ,−Vκ such that |Vκ,1| = |Vκ,2| =

· · · = |Vκ,p| = µ
(
DV \Vκ,−Vκ

)
. Since Vκ ⊂ Vopt, we have

Π=
V \Vopt,−Vopt

≺r Π=
V \Vκ,−Vκ

(in Proposition 1, set V2 = Vopt and V1 = Vκ)

⇒ k≤µ
(
DV \Vopt,−Vopt

)
≤ µ

(
DV \Vκ,−Vκ

)
≤

by (1)

|Z| ≤ |Vκ,p| = µ
(
DV \Vκ,−Vκ

)

Thus, µ
(
DV \Vκ,−Vκ

)
≥ k contradicting our assumption of µ

(
DV \Vκ,−Vκ

)
<320

k.

q

Lemma 5 (Proof of time complexity). Algorithm I runs in O
(
n4
)

time.

Proof. There are n choices for the for loop in Step 3. For each such choice,

we analyze the execution of the while loop in Step 3.2. The running time

in each iteration of the while loop is dominated by the time taken to com-

pute Π=
V \(V ′∪ (∪`t=1Vt)),−V ′∪ (∪`t=1Vt)

from Π=
V \V ′,−V ′ . Suppose that ∪`t=1Vt =

{
vi1 , vi2 , . . . , vip

}
. By Proposition 1,

Π=
V \(V ′∪{vi1 ,vi2 ,...,vip−1,vip}),−V ′∪{vi1 ,vi2 ,...,vip−1,vip}

≺r Π=
V \(V ′∪{vi1 ,vi2 ,...,vip−1}),−V ′∪{vi1 ,vi2 ,...,vip−1} ≺r . . .

15

≺r Π=
V \(V ′∪{vi1 ,vi2}),−V ′∪{vi1 ,vi2} ≺r Π=

V \(V ′∪{vi1}),−V ′∪{vi1} ≺r Π=
V \V ′,−V ′

Thus, it follows that the total time to execute all iterations of the while loop

for a specific choice of vi in Step 3 is of the order of n times the time taken to325

solve a problem of the following kind:

for a subset of nodes ∅ ⊂ V1 ⊂ V , given Π=
V \V1,−V1

and a node

vj ∈ V \ V1, compute Π=
V \(V1∪{vj}),−(V1∪{vj}).

Since Π=
V \(V1∪{vj}),−(V1∪{vj}) is a refinement of Π=

V \V1,−V1
by Proposition 1,

we can use the following simple strategy. For every set S ∈ Π=
V \V ′,−V ′ , we330

split S \ {vj} = {vi1 , vi2 , . . . , vis} into two or more parts, if needed, by do-

ing a bucket-sort (with n bins) in O(n |S|) time on the sequence of values

distvi1 ,vj , . . . ,distvis ,vj . The total time taken for all sets in Π=
V \V ′,−V ′ is thus

∑
S∈Π=

V \V ′,−V ′
O (n |S|) = O

(
n2
)
. q

This completes the proof for Adim≥k. Now we consider the claim for Adim.335

Note that Adim can be solved in O
(
n5
)

time by solving Adim≥k for k =

n − 1, n − 2, . . . , 1 in this order and selecting the largest k as kopt for which

L≥kopt < ∞. However, we can modify the steps of Algorithm I directly to solve

Adim in O
(
n4
)

time, as shown in Algorithm II.

Algorithm II: O
(
n4
)

time deterministic algorithm for Adim

(changes from Algorithm-I are shown enclosed in)

1. Compute di for all i = 1, 2, . . . , n in O
(
n3
)

time using

the Floyd-Warshall algorithm [4, p. 629]

2. V̂ ≥kopt ← ∅ ; k̂opt ← 0

3. for each vi ∈ V do (∗ we guess vi to belong to V ≥kopt ∗)

3.1 V ′ = {vi}

3.2 while
(
V \ V ′ 6= ∅

)
do

3.2.1 compute µ
(
DV \V ′,−V ′

)

16

3.2.2 if
(
µ
(
DV \V ′,−V ′

)
> k̂opt

)

3.2.3 then k̂opt ← µ
(
DV \V ′,−V ′

)
; V̂ ≥kopt ← V ′

3.2.4 else let V1, . . . , V` be all equivalence classes in Π=
V \V ′,−V ′

such that |V1| = · · · = |V`| = µ
(
DV \V ′,−V ′

)

3.2.5 V ′ ← V ′ ∪
(
∪`t=1Vt

)

4. return k̂opt and V̂ ≥kopt as our solution

The proof of correctness is very similar (and, in fact simpler due to elimina-340

tion of some cases) to that of Adim≥k.

(b) Our solution is the obvious randomization of Algorithm II (for Adim≥k) or

Algorithm-II (for Adim) as shown below.

Algorithm III (resp. Algorithm-IV): O
(
n4 logn

k

)
time randomized algorithm

for Adim≥k (resp. Adim)

1. Compute di for all i = 1, 2, . . . , n in O
(
n3
)

time using

the Floyd-Warshall algorithm [4, p. 629]

2. L̂≥kopt ←∞ ; V̂ ≥kopt ← ∅ (for Adim≥k)

or

V̂ ≥kopt ← ∅ ; k̂opt ← 0 (for Adim)

3. repeat
⌈

2n lnn
k

⌉
times

3.1 select a node vi uniformly at random from the n nodes

3.2 execute Step 3.1 and Step 3.2 (and its sub-steps)

of Algorithm I (for Adim≥k)

or

execute Step 3.1 and Step 3.2 (and its sub-steps)

of Algorithm II (for Adim)

4. return the best of all solutions found in Step 3

17

The success probability p is given by

p = Pr
[
vi ∈ V ≥kopt in at least one of the

⌈
2n lnn
k

⌉
iterations

]

= 1− Pr
[
vi /∈ V ≥kopt in each of the

⌈
2n lnn
k

⌉
iterations

]

≥ 1−
(

1− k

n

)d 2n lnn
k e

> 1− 1

e2 lnn
= 1− 1

n2

5. Proof of Theorem 2

The standard NP-complete minimum dominating set (Mds) problem for a345

graph is defined as follows [9]. Our input is a connected undirected unweighted

graph G = (V,E). A subset of nodes V ′ ⊂ V is called a dominating set if and

only if every node in V \ V ′ is adjacent to some node in V ′. The objective of

Mds is to find a dominating set of nodes of minimum cardinality. Let ν(G)

denote the cardinality of a minimum dominating set for a graph G. It is well-350

known that the Mds and Sc problems have precisely the same approximability

via approximation-preserving reductions in both directions and, in particular,

there exists a standard reduction from Sc to Mds as follows. Given an instance

U = {a1, a2, . . . , an} and S1, S2, . . . , Sm ⊆ U of Sc, we create the following

instance G1 = (V1, E1) of Mds. V1 has an element node vai for every element355

ai ∈ U and a set node vSj for every set Sj with j ∈ {1, 2, . . . ,m}. There are two

types of edges in E1. Every set node vSj has an edge to every other set node

vS` and the collection of these edges is called the set of clique edges. Moreover,

a set node vSj is connected to an element node vai if and only if ai ∈ Sj and

the collection of these edges is called the set of membership edges. A standard360

straightforward argument shows that I ⊂ {1, 2, . . . ,m} is a solution of Sc if

and only if the collection of set nodes { vSi | i ∈ I } is a solution of Mds on G1

and thus optSc = ν (G1).

(a) Adim=k belongs to NP for any k since given any solution V ′ it is straight-

forward to verify if |V ′| ≤ ζ and µ
(
DV \V ′,−V ′

)
= k. Thus we need to show that365

it is also NP-hard.

18

For the purpose of our NP-hardness reduction, it would be more convenient

to work with a restricted version of Sc known as the exact cover by 3-sets

(X3c) problem. Here we have exactly n elements and exactly n sets where n

is a multiple of three, every set contains exactly 3 elements and every element370

occurs in exactly 3 sets. Note that we need at least n
3 sets to cover all the n

elements. Letting optX3c to denote the number of sets in an optimal solution of

X3c, it is well-known that problem of deciding whether optX3c = n
3 is in fact

NP-complete (e.g., see [9, p. 221]).

Let n1 =
−6k+

√
36k2+24(n−k)

4 be the real-valued solution of the quadratic375

equation n1

(
2k + 2n1

3

)
+ k = n. Note that since k ≤ nε for some constant

ε < 1
2 , we have n1 = Θ (

√
n), i.e., n and n1 are “polynomially related”.

X3c

Mds

G1 = (V1, E1)

⇒⇒⇒

va1 va2 va3 va4 va5 va6

vS1 vS2 vS3 vS4 vS5 vS6

U = {a1, a2, a3, a4, a5, a6}
S1 = {a1, a2, a3} S2 = {a4, a5, a6}
S3 = {a1, a2, a5} S4 = {a3, a4, a6}
S5 = {a1, a5, a6} S6 = {a2, a3, a4}

n1

2 = 6

u1
part of

G = (V,E)

︷ ︸︸ ︷
element-clones of va2 ︷ ︸︸ ︷

element-clones of va3 ︷ ︸︸ ︷
element-clones of va4

︸ ︷︷ ︸
set-clones of vS2

︸ ︷︷ ︸
set-clones of vS3

︸ ︷︷ ︸
set-clones of vS4

⇓⇓⇓
Adim=1

Figure 2: Illustration of the NP-hardness reduction in Theorem 2(a). Only a part of the graph

G is shown for visual clarity (for example, non-member edges are not shown).

We assume without loss of generality that n1 is an even integer, and start

with an instance of X3c of n1

2 elements and transform it to an instance graph

19

G1 = (V1, E1) having n1 nodes of Mds via the reduction outlined before. Since380

n1

2 is polynomially related to n, such an instance of X3c is NP-complete with

respect to n being the input size. We reduce G1 to an instance G = (V,E) of

Adim=k in polynomial time as follows (see Fig. 2 for an illustration):

• We “clone” each element node vaj ∈ V1 to get 2k + 2n1

3 copies, i.e., every

node vaj is replaced by 2k+ 2n1

3 new nodes vaj ,1, vaj ,2, . . . , vaj ,2k+
2n1
3
,. We385

refer to these nodes as clones of the element node vaj (or, sometimes sim-

ply as element-clone nodes). There are precisely n1

(
k + n1

3

)
such nodes.

• We “clone” each set node vSj ∈ V1 to get 2k+ 2n1

3 copies, i.e., every node

vSj is replaced by 2k + 2n1

3 new nodes vSj ,1, vSj ,2, . . . , vSj ,2k+
2n1
3
,. We

refer to these nodes as clones of the set node vSj (or, sometimes simply390

as set-clone nodes). There are precisely n1

(
k + n1

3

)
such nodes.

• We add k new nodes u1, u2, . . . , uk. We refer to these nodes as clique

nodes.

• We add an edge between every pair of clique nodes ui and uj . We refer

to these edges as clique edges. There are precisely
(
k
2

)
such edges.395

• We add an edge between every clique node and every non-clique node,

i.e., we add every edge in the set

{{
ui, vaj ,`

}
| 1 ≤ i ≤ k, 1 ≤ j ≤ n1

2
, 1 ≤ ` ≤ 2k +

2n1

3

}

⋃ {{
ui, vSj ,`

}
| 1 ≤ i ≤ k, 1 ≤ j ≤ n1

2
, 1 ≤ ` ≤ 2k +

2n1

3

}

We refer to these edges as the partition-fixing edges. There are precisely

kn1

(
k + n1

3

)
such edges.

• We add an edge between every pair of distinct element-clone nodes vaj ,`

and vaj′ ,`′ . We refer to these as the element-clone edges. There are pre-

cisely
(

2k+(2n1)/3
2

)
such edges.400

20

• For every element ai and every set Sj such that ai /∈ Sj , we add the

following
(
2k + 2n1

3

)2
edges:

{
vSj ,`, vai,p

}
for 1 ≤ `, p ≤ 2k +

2n1

3

We refer to these edges as the non-member edges corresponding to the

element node ai and the set node Sj . There are precisely 3n1

2

(
2k + 2n1

3

)2

such edges.

Note that G has precisely n1

(
2k + 2n1

3

)
+ k = n nodes and thus our reduction

is polynomial time in n. Since any clique node is adjacent to every other node

in G, it follows that diam(G) = 2. We now show the validity of our reduction

by showing that

(?) ν (G1) =
n1

3
if and only if L=k

opt ≤
n1

3

Proof of ν (G1) = n1

3 ⇒ L=k
opt ≤ n1

3

Consider an optimal solution V ′1 ⊂
{
vS1 , vS2 , . . . , vSn1

}
of Mds on G1 with405

ν (G1) = |V ′1 | = n1

3 . We now construct a solution V ′ ⊂ V of Adim=k on G by

setting V ′ =
{
vSj ,1 | vSj ∈ V ′1

}
. Note that |V ′| = |V ′1 | = n1

3 . We claim that V ′

is a valid solution of Adim=k by showing that

(a) {u1, u2, . . . , uk} ∈ Π=
V \V ′,−V ′ and

(b) any other equivalence class in Π=
V \V ′,−V ′ has at least k nodes.410

To prove (a), consider a clique node ui and any other non-clique node. Then,

the following cases apply:

• Suppose that the non-clique node is a element-clone node vaj ,` ∈ V \V ′ for

some j and `. Since V ′1 is a solution of Mds on G1, there exists a set node

vSp ∈ V ′1 such that
{
vSp , vaj

}
∈ E1 and consequently

{
vSp,1, vaj ,`

}
/∈ E.415

This implies that there exists a node vSp,1 ∈ V ′ such that 1 = distui,vaj,` 6=
distvSp,1,vaj,` , and therefore vaj ,` cannot be in the same equivalence class

with ui.

21

• Suppose that the non-clique node is a set-clone node vSj ,p ∈ V \ V ′. Pick

any set-clone node vS`,1 ∈ V ′. Then, 1 = distui,vSj,p 6= distvSj,p,vS`,1 , and420

therefore vSj ,p cannot be in the same equivalence class with ui.

To prove (b), note the following:

• Since diam(G) = 2, distvSi,p,vSj,q = 2 for any two distinct set-clone nodes

vSi,p and vSj ,q, and thus all the set nodes in V \V ′ belong together in the

same equivalence class in Π=
V \V ′,−V ′ . There are at least n1

(
k + n1

3

)
−n1

3 >425

k such nodes in V \ V ′. Thus, any equivalence class that contains these

set-clone nodes cannot have less than k nodes.

• Consider now an equivalence class in Π=
V \V ′,−V ′ that contains a copy vai,j

of the element node vai for some i and j. Consider another copy vai,`

of the element node vai for some ` 6= j. For any set node vSp,1 ∈ V ′, if430

ai /∈ Sp then distvSp,1,vai,j = distvSp,1,vai,` = 1, whereas if ai ∈ Sp then,

since diam(G) = 2, it follows that distvSp,1,vai,j = distvSp,1,vai,` = 2. Thus,

any equivalence class that contains at least one clone of an element node

must contain all the 2k + 2n1

3 > k clones of that element node and thus

such an equivalence class cannot have a number of nodes that is less than435

k.

Proof of L=k
opt ≤ n1

3 ⇒ ν (G1) = n1

3

Since we know that ν (G1) is always at least n1

3 , it suffices to show that

L=k
opt ≤ n1

3 ⇒ ν (G1) ≤ n1

3 . Consider an optimal solution V =k
opt ⊂ V with

L=k
opt =

∣∣V =k
opt

∣∣ = n1

3 . Since V =k
opt is a solution of Adim=k on G, there exists a440

subset of nodes, say V̂ ⊂ V \ V =k
opt , such that |V̂ | = k and V̂ ∈ Π=

V \V =k
opt ,−V =k

opt
.

Proposition 3. V̂ does not contain any set-clone or element-clone nodes and

thus V̂ = {u1, u2, . . . , uk}.

Proof. Suppose that V̂ contains at least one element-clone node vai,j for some

i and j. But, V \ V =k
opt contains at least 2k + 2n1

3 − n1

3 − 1 > k other clones of445

22

the element node ai and all these clones must belong together with vai,j in the

same equivalence class. This implies |V̂ | ≥ 2k + 2n1

3 − n1

3 > k, a contradiction.

Similarly, suppose that V̂ contains at least one set-clone node vSi,j for some

i and j. But, V \ V =k
opt contains at least 2k + 2n1

3 − n1

3 − 1 > k other clones of

the set node Si and all these clones must belong together with vSi,j in the same450

equivalence class. This implies |V̂ | ≥ 2k + 2n1

3 − n1

3 > k, a contradiction. q

Proposition 4. V =k
opt does not contain two or more clones of the same set node.

Proof. Suppose that V =k
opt contains two set-clone nodes vSj ,p and vSj ,q of the

same set node vSj . But, V \ V =k
opt contains at least 2k + 2n1

3 − n1

3 − 1 > k other

clones of the element node ai and all these clones must belong together in the455

same equivalence class S. If we remove vSj ,p from V =k
opt then vSj ,p gets added

to this equivalence class. Thus, such a removal produced another valid solution

but with one node less than Lopt, contradicting the optimality of L=k
opt. q

Proposition 5. V =k
opt does not contain any element-clone node.

Proof. Suppose that V =k
opt contains at least one element-clone node and thus at460

most n1

3 − 1 set-clone nodes. Note that V \V =k
opt contains at least 2k+ 2n1

3 − n1

3

clones of every element node ai. Consider an element-clone node vai,p ∈ V \V =k
opt

and a clique node uj . Since V̂ = {u1, u2, . . . , uk} ∈ Π=
V \V =k

opt ,−V =k
opt

, there must

be a node in V =k
opt such that the distance of this node to uj is different from the

distance to vai,p. Such a node in V =k
opt cannot be an element-clone node, say465

va`,q since distvai,p,va`,q = distuj ,va`,q = 1. Since there is an edge between every

set-clone node and every clique node, such a node must be a set-clone node, say

vSr,s for some r and s, such that distvai,p,vSr,s = 2, i.e., ai ∈ Sr. Since every

set in X3c contains exactly 3 elements and 3×
(
n1

3 − 1
)
< n1, there must exist

an element-clone node vai,p such that the distance of vai,p to any node in V =k
opt470

is exactly the same as the distance of uj to that node in V =k
opt . This implies

vai,p ∈ V̂ , contradicting Proposition 3. q

23

By Proposition 4 and Proposition 5, V =k
opt contains exactly one clone of a sub-

set of set nodes. Without loss of generality, assume that V =k
opt =

{
vSj ,1 | j ∈ J, J ⊂

{
1, 2, . . . , n1

2

}}

and let V ′1 =
{
vSj | vSj ,1 ∈ V =k

opt

}
. Note that |V ′1 | =

∣∣V =k
opt

∣∣. We are now ready to

finish our proof by showing V ′1 is indeed a valid solution of Mds on G1. Suppose

not, and let vai be an element-node that is not adjacent to any node in V ′1 . For

this case,

∀ vSj ∈ V ′1 :
{
vai , vSj

}
/∈ E1 ⇒ ∀ vSj ,1 ∈ V =k

opt :
{
vai,1, vSj ,1

}
∈ E

⇒ ∀ vSj ,1 ∈ V =k
opt : distvai,1,vSj,1 = 1 ⇒ vai,1 ∈ V̂

which contradicts Proposition 3.

(b) The proof is similar to that of (a) but this time we start with a general

version of Sc as opposed to the restricted X3c version, and show that the re-475

duction is approximation-preserving in an appropriate sense. In the sequel, we

use the standard notation poly(n) to denote a polynomial nc of n (for some

constant c > 0). We recall the following details of the inapproximability re-

duction of Feige in [7]. Given an instance formula φ of the standard Boolean

satisfiability problem (Sat), Feige reduces φ to an instance U , S1, S2, . . . , Sm of480

Sc (with m = poly(n)) in O(nlog logn) time such that the following properties

are satisfied for any constant 0 < ε < 1:

• For some Q > 0, either optSc = n
Q or optSc >

(
n
Q

)
(1− ε) lnn.

• The reduction satisfies the following completeness and soundness proper-

ties:485

(completeness) If φ is satisfiable then optSc = n
Q .

(soundness) If φ is not satisfiable then optSc >
(
n
Q

)
(1−ε) lnn.

Since m = poly(n), by adding duplicate copies of a set, if necessary, we can

ensure that m = nc − n for some constant c ≥ 1. Our reduction from Sc to

Mds to Adim=k is same as in (a) except that some details are different, which490

we show here.

24

• We start with an instance of Sc as given by Feige in [7] with n1 elements

and m = (n1)c − n1 sets, where n1 =

(
−k+
√
k2+2(n−k)

2

)1/c

is a real-valued

solution of the equation (n1) 2c + k(n1)c − n−k
2 = 0. Note that since k ≤

nε for some constant ε < 1
2 , we have n1 = Θ

(
n1/(2 c)

)
, i.e., n and n1 are495

polynomially related.

• We make 2(n1)c+2k copies of each element node and each set node as opposed

to 2k + 2n1

3 copies that we made in the proof of (a). Note that G has again

precisely (n1)c (2k + 2(n1)c) + k = n nodes.

• Let δ > 0 be the constant given by δ = lnn
(1−ε) lnn1

. Our claim (?) in the proof500

of (a) is now modified to

(?)

(completeness) if ν (G1) = n1

Q then L=k
opt ≤ n1

Q

(soundness) if ν (G1) >
(
n1

Q

)
(1− ε) lnn1

then L=k
opt >

(
n1

Q

)
(1− ε) lnn1 =

(
n1

Q

)
1
δ lnn

• Our proof of the completeness claim follows the “Proof of ν (G1) = n1

3 ⇒
L=k

opt ≤ n1

3 ” in the proof of (a) with the obvious replacement of n1

3 by n1

Q .

• Note that our soundness claim is equivalent to its contra-positive

if L=k
opt ≤

(
n1

Q

)
(1− ε) lnn1 then ν (G1) ≤

(
n1

Q

)
(1− ε) lnn1

and the proof of this contra-positive follows the “Proof of L=k
opt ≤ n1

3 ⇒505

ν (G1) = n1

3 ” in the proof of (a). In the proof, the quantity 2k + 2n1

3 corre-

sponding to the number of copies for each set and element node needs to be

replaced by 2(n1)c + 2k; note that (2(n1)c + 2k)− n1 � k.

(c) Since k = n− c for some constant c, Π=
V \V =k

opt ,−V =k
opt

contains a single equiva-

lence class V ′ ⊂ V such that |V ′| = k. Thus, we can employ the straightforward510

exhaustive method of selecting every possible subset V ′ of k nodes to be in

Π=
V \V ′,−V ′ and checking if the chosen subset of nodes provide a valid solution.

There are
(
n
k

)
< nc such possible subsets and therefore the asymptotic running

time is O
(
nc + n3

)
which is polynomial in n. Note that for this case L=k

opt = c

if a solution exists.515

25

6. Proof of Theorem 3

(a) Note that L=1
opt ≤ n − 1 and thus V =1

opt 6= ∅. Our algorithm, shown as

Algorithm V, uses the greedy logarithmic approximation of Johnson [10] for Sc

that selects, at each successive step, a set that contains the maximum number

of elements that are still not covered.520

Algorithm V: O
(
n3
)
-time (1 + ln(n− 1))-approximation algorithm

for Adim=1.

1. Compute di for all i = 1, 2, . . . , n in O
(
n3
)

time

using Floyd-Warshall algorithm.

2. L̂=1
opt ←∞ ; V̂ =1

opt ← ∅

3. for each node vi ∈ V do (∗ we guess the set {vi} to belong to Π=
V \V =1

opt ,−V =1
opt
∗)

3.1 create the following instance of Sc containing n− 1 elements and n− 1 sets:

U =
{
avj | vj ∈ V \ {vi}

}
,

Svj =
{
avj
}
∪
{
av` |distvi,vj 6= distv`,vj

}
for j ∈ {1, 2, . . . , n} \ {i}

3.2 if ∪j∈{1,2,...,n}\{i}Svj = U then

3.2.1 run the greedy approximation algorithm [10] for this instance of Sc

giving a solution I ⊆ {1, 2, . . . , n} \ {i}

3.2.2 V ′ = { vj | j ∈ I }

3.2.3 if
(
|V ′| < L̂=1

opt

)
then L̂=1

opt ← |V ′| ; V̂ =1
opt ← V ′

4. return L̂=1
opt and V̂ =1

opt as our solution

Lemma 6 (Proof of correctness). Algorithm V returns a valid solution for

Adim=1.

Proof. Suppose that our algorithm returns an invalid solution in the iteration

of the for loop in Step 3 when vi is equal to v` for some v` ∈ V . We claim

that this cannot be the case since {v`} ∈ Π=
V \V ′,−V ′ . Indeed, since I is a valid

26

solution of the Sc instance, for every j /∈ {`} ∪ I, the following holds:

∃ t ∈ I : avj ∈ Svt ⇒ ∃ vt ∈ V ′ : distv`,vt 6= distvj ,vt

and thus v` cannot be together with any other node in any equivalence class in

Π=
V \V ′,−V ′ . q

Lemma 7 (Proof of approximation bound). Algorithm V solves Adim=1525

with an approximation ratio of 1 + ln(n− 1).

Proof. Fix any optimal solution V =1
opt . Since µ

(
DV \V =1

opt ,−V =1
opt

)
= 1, {v`} ∈

Π=
V \V =1

opt ,−V =1
opt

for some v` ∈ V . Consider the iteration of the for loop in Step 3

when vi is equal to v`. We now analyze the run of this particular iteration, and

claim that the set-cover instance created during this iteration satisfies optSc ≤∣∣V =1
opt

∣∣ = L=1
opt. To see this, construct the following solution of the set-cover

instance from Vopt containing exactly Lopt sets:

vi ∈ V =1
opt ≡ i ∈ I

To see that this is indeed a valid solution of the set-cover instance, consider any

avj ∈ U = {av1 , av2 , . . . , avn} \ {av`}. Then, the following cases apply showing

that avj belongs to some set selected in our solution of Sc:

• if j ∈ I then avj ∈ Svj and Svj is a selected set in the solution.530

• if j /∈ I then vj ∈ V \ Vopt ⇒ ∃ vt ∈ Vopt : distv`,vt 6= distvj ,vt ⇒ ∃ t ∈
I : avj ∈ Svt .

Using the approximation bound of the algorithm of [10] it now follows that the

quality of our solution L̂=1
opt satisfies

L̂=1
opt =

∣∣∣V̂ =1
opt

∣∣∣ = |I| < (1 + ln(n− 1))optSc ≤ (1 + ln(n− 1))L=1
opt

q

Lemma 8 (Proof of time complexity). Algorithm V runs in O
(
n3
)

time.

27

Proof. There are a total of n instances of set cover that we need to build in535

Step 3.1 and solve by the greedy heuristic in Step 3.2.1. Building the set-cover

instance can be done in O
(
n2
)

time by comparing distvi,vj for all appropriate

pairs of nodes vi and vj . Since the set-cover instance in Step 3.1 has n− 1 sets

each having no more than n − 1 elements, each implementation of the greedy

heuristic in Step 3.2.1 takes O
(
n2
)

time. q540

(b) Let vi be the node of degree 1. Let v` be the unique node adjacent to vi

(i.e., {vi, v`} ∈ E). Consider the following solution of Adim=1: V ′ = {vi}. We

claim that is a valid solution of Adim=1 by showing that {v`} ∈ Π=
V \V ′,−V ′ .

Consider any node vj ∈ V \ {vi, v`}, Then, 1 = distv`,vi 6= distvj ,vi .

vi vjvℓ

Nbr (vi) \ {vℓ} Nbr (vj) \ {vℓ}

Nbr (vℓ) \ {vi, vj}

××× ×××

V ′

Figure 3: Illustration of the proof of Theorem 3(c). Edges marked by ××× cannot exist. No

node in Nbr (v`) \ {vi, vj} can have an edge to both vi and vj .

(c) Since G does not contain a 4-cycle, diam(G) ≥ 2. Thus, there exists two545

nodes vi, vj ∈ V such that distvi,vj = 2. Let v` be a node at a distance of 1 from

both vi and vj on a shortest path between vi and vj (see Fig. 3). Consider the

following solution of Adim=1: V ′ = {vi, vj}. Note that v` ∈ V \ V ′. We claim

that this is a valid solution of Adim=1 by showing that {v`} ∈ Π=
V \V ′,−V ′ (i.e.,

no node vp ∈ V \{vi, vj , v`} can belong together with v` in the same equivalence550

class of Π=
V \V ′,−V ′) in the following manner:

28

• If vp ∈ Nbr (vi) \ {v`} then distv`,vj = 1 but distvp,vj 6= 1 since G has no

4-cycle (see the edges marked ××× in Fig. 3).

• If vp ∈ Nbr (vj) \ {v`} then distv`,vi = 1 but distvp,vi 6= 1 since G has no

4-cycle (see the edges marked ××× in Fig. 3).555

• If vp ∈ Nbr (v`)\{vi, vj} then vp cannot be adjacent to both vi and vj since

G does not contain a 4-cycle. This implies that distv`,vi = distv`,vj = 1

but at least one of distvp,vi and distvp,vj is not equal to 1.

• If vp is any node not covered by the above cases, we have distvp,vi > 1 but

distv`,vi = 1.560

7. Related Works: Other Privacy Concepts and Measures

There is a rich literature on theoretical investigations of privacy measures

and privacy preserving computational models in several other application areas

such as multi-party communications, distributed computing and game-theoretic

settings (e.g., see [2, 11, 22, 8, 3]). However, none of these settings apply directly565

to our application scenario of active attack model for social networks. The

differential privacy model, introduced by Dwork [5] in the context of privacy

preservation in statistical databases against malicious database queries, works

by computing the correct answer to a query and adding a noise drawn from

a specific distribution, and is quite different from the anonymization approach570

studied in this paper.

8. Concluding Remarks

Prior to our work, known results for the three problems considered in this

paper only included some heuristic algorithms with no provable guarantee on

performances such as in [18], or algorithms for very special cases. In fact, it was575

not even known if any version of these computational problems is NP-hard. Our

work provides the first non-trivial computational complexity results for effec-

tive solution of these problems. Theorem 1 shows that both Adim and Adim≥k

29

are provably computationally easier problems than Adim=k. In contrast, The-

orem 2(a)–(b) and Theorem 3 show that Adim=k is in general computationally580

hard but admits approximations or exact solution for specific choices of k or

graph topology. We believe that our results will stimulate further research on

quantifying and computing privacy measures for networks. In particular, our

results raise the following interesting research questions:

I We have only provided a logarithmic approximation algorithm for Adim=1.585

Is it possible to design a non-trivial approximation algorithm for Adim=k

for k > 1 ?

I We have provided a logarithmic inapproximability result for Adim=k for

every k roughly up to
√
n. Can this approximability result be further

improved when k is not a constant ?590

References

[1] L. Backstrom, C. Dwork and J. Kleinberg. Wherefore art thou r3579x?:

anonymized social networks, hidden patterns, and structural steganography,

Proc. 16th International Conference on World Wide Web, 181-190, New

York, NY, USA, 2007.595

[2] R. Bar-Yehuda, B. Chor, E. Kushilevitz and A. Orlitsky. Privacy, addi-

tional information, and communication, IEEE Transactions on Information

Theory, 39, 55-65, 1993.

[3] M. Comi, B. DasGupta, M. Schapira and V. Srinivasan. On Communication

Protocols that Compute Almost Privately, Theoretical Computer Science,600

457, 45-58, 2012.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to

Algorithms, 2nd edition, The MIT Press, 2001.

[5] C. Dwork. Differential Privacy, Proc. 33rd International Colloquium on

Automata, Languages and Programming, 1-12, 2006.605

30

[6] T. Feder, S. U. Nabar and E. Terzi. Anonymizing graphs, CoRR,

abs/0810.5578, 2008.

[7] U. Feige. A threshold for approximating set cover, Journal of the ACM, 45,

634-652, 1998.

[8] J. Feigenbaum, A. Jaggard and M. Schapira. Approximate Privacy: Foun-610

dations and Quantification, Proc. ACM Conference on Electronic Com-

merce, 167-178, 2010.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide

to the Theory of NP-Completeness, W. H. Freeman & Co., 1979.

[10] D. S. Johnson. Approximation Algorithms for Combinatorial Problems,615

Journal of Computer and System Sciences, 9, 256-278, 1974.

[11] E. Kushilevitz. Privacy and communication complexity, SIAM Journal on

Discrete Mathematics, 5(2), 273-284, 1992.

[12] K. Liu and E. Terzi. Towards identity anonymization on graphs, Proc. 2008

ACM SIGMOD International Conference on Management of Data, 93-106,620

New York, NY, USA, 2008.

[13] S. Mauw, R. Trujillo-Rasua and B. Xuan. Counteracting active attacks in

social network graphs, 30th Annual IFIP WG 11.3 Working Conference on

Data and Applications Security and Privacy, Trento, Italy, 2016.

[14] A. Narayanan and V. Shmatikov. De-anonymizing social networks, 30th
625

IEEE Symposium on Security and Privacy, 173-187, 2009.

[15] M. Netter, S. Herbst and G. Pernul. Analyzing privacy in social networks–

an interdisciplinary approach, IEEE 3rd International Conference on Pri-

vacy, Security, Risk and Trust and IEEE 3rd International Conference on

Social Computing, 1327-1334, 2011.630

31

[16] P. Samarati and L. Sweeney. Protecting privacy when disclosing informa-

tion: k-anonymity and its enforcement through generalization and suppres-

sion, Technical report, 1998.

[17] R. Trujillo-Rasua and I. G. Yero. Characterizing 1-metric antidimensional

trees and unicyclic graphs, The Computer Journal, 59(8), 1264-1273, 2016.635

[18] R. Trujillo-Rasua and I. G. Yero. k-Metric antidimension: A privacy mea-

sure for social graphs, Information Sciences, 328, 403-417, 2016.

[19] V. Vazirani. Approximation Algorithms, Springer-Verlag, 2001.

[20] B. Viswanath, M. Mondal, K. P. Gummadi, A. Mislove and A. Post. Canal:

Scaling social network-based sybil tolerance schemes, Proc. 7th ACM Eu-640

ropean Conference on Computer Systems, 309-322, New York, NY, USA,

2012.

[21] X. Wu, X. Ying, K. Liu and L. Chen. A survey of privacy-preservation of

graphs and social networks, in C. C. Aggarwal and H. Wang (eds.), Man-

aging and Mining Graph Data, Vol. 40 of Advances in Database Systems,645

421-453. Springer, 2010.

[22] A. C. Yao. Some complexity questions related to distributive computing (pre-

liminary report), Proc. 11th ACM Symposium on Theory of Computing,

209-213, 1979.

[23] C. Zhang and Y. Gao. On the Complexity of k-Metric Antidimension Prob-650

lem and the Size of k-Antiresolving Sets in Random Graphs, Y. Cao and J.

Chen (Eds.), COCOON 2017, LNCS 10392, 555-567, Springer, 2017.

[24] B. Zhou, J. Pei and W. S. Luk. A brief survey on anonymization tech-

niques for privacy preserving publishing of social network data, SIGKDD

Explorations Newsletter, 10(2), 12-22, 2008.655

[25] L. Zou, L. Chen and M. T. Özsu. K-automorphism: A general framework

for privacy preserving network publication, Proc. VLDB Endowment, 2(1),

946-957, 2009.

32

	Introduction
	Organization of the Paper

	Basic Terminologies, Notations and Problem Definitions
	Basic Terminologies and Notations
	Problem Definitions
	Standard Algorithmic Complexity Concepts and Results

	Our Results
	Polynomial Time Solvability of Adim and Adimk
	Computational Complexity of Adim= k
	The Case of Arbitrary k
	The Case of k=1

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Related Works: Other Privacy Concepts and Measures
	Concluding Remarks

