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Abstract Alignment of protein structures can help to infer protein functions and
can reveal ancient evolutionary relationship. We discuss computational methods we
developed for structural alignment of both global backbones and local surfaces of
proteins that do not depend on the ordering of residues in theprimary sequences.
The algorithm for global structural alignment is based on fragment assembly, and
takes advantage of an approximation algorithm for solving the maximum weight in-
dependent set problem. We show how this algorithm can be applied to discover pro-
teins related by complex topological rearrangement, including circularly permuted
proteins as well as proteins related by complex higher orderpermutations. The algo-
rithm for local surface alignment is based on solving the bi-partite graph matching
problem through comparison of surface pockets and voids, such as those computed
from the underlying alpha complex of the protein structure.We also describe how
multiple matched surfaces can be used to automatically generate signature pock-
ets and basis set that represents the ensemble of conformations of protein binding
surfaces with a specific biological function of binding activity. This is followed by
illustrative examples of signature pockets and basis set computed for NAD bind-
ing proteins, along with a discussion on how they can be used for discriminating
NAD-binding enzymes from other enzymes.
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1 Introduction

To understand the molecular basis of cellular processes, itis important to gain a
comprehensive understanding of the biological functions of protein molecules. Al-
though an increasing number of sequences and structures of proteins become avail-
able, there are many proteins whose biological functions are not known, or knowl-
edge of their biological roles is incomplete. This is evidenced by the existence of a
large number of partially annotated proteins, as well as theaccumulation of a large
number of protein structures from structural genomics whose biological functions
are not well characterized [9, 54]. Researchers have turnedto in silico methods to
gain biological insight into the functional roles of these uncharacterized proteins,
and there has been a number of studies addressing the problemof computationally
predicting the biological function of proteins [4, 36, 53, 40, 17, 62].

A relatively straightforward method for inferring proteinfunction is to transfer
annotation based on homology analysis of shared characteristics between proteins.
If a protein shares a high level of sequence similarity to a well characterized fam-
ily of proteins, frequently the biological functions of thefamily can be accurately
transferred onto that protein [57, 3, 2]. At lower levels of sequence similarity, prob-
abilistic models such as profiles can be constructed using local regions of high se-
quence similarity [2, 37, 34]. The large amount of information of protein such as
those deposited in the SWISS-PROT database [12] provides rich information for
constructing such probabilistic models.

However, limitations to sequence-based homology transferfor function predic-
tion arise when sequence identity between a pair of proteinsis less than 60% [73].
An alternative to sequence analysis is to infer protein based on structural similarity.
It is now well known that protein structures are much more conserved than protein
sequences, as proteins with little sequence identity oftenfold into similar three-
dimensional structures [56].

Protein structure and protein function are strongly correlated [29]. Conceptually,
knowledge of three-dimensional structures of proteins should enable inference of
protein function. Computational tools and databases for structural analysis are in-
dispensable for establishing the relationship between protein function and structure.
Among databases of protein structures, the SCOP [49] and CATH [51] databases
organizes protein structures hierarchically into different classes and folds based on
their overall similarity in topology and fold. Such classification of protein structures
based on structure generally depends on a reliable structural comparison method.
Although there are several widely used methods, including Dali [32] and CE [58],
current structural alignment methods cannot guarantee to give optimal results and
structural alignment methods do not have the reliability and interpretability compa-
rable to that of sequence alignment methods.

Comparing protein structures is challenging. First, it is difficult to obtain a quan-
titative measure of structural similarity that is generally applicable to different types
of problems. Similar to sequence alignment methods, one cansearch for global
structural similarity between overall folds or focus on local similarity between sur-
face regions of interest. Defining a quantitative measure ofsimilarity is not straight-
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forward as illustrated by the variety of proposed structural alignment scoring meth-
ods [28]. Unlike sequence alignment, in which the scoring systems are largely based
on evolutionary models of how protein sequence evolve [16, 30], scoring systems
of structural alignment must take into account both the three-dimensional positional
deviations between the aligned residues or atoms, as well asother characteristics
that are biologically important. Second, many alignment methods assume the order-
ing of the residues follows that of the primary sequence whenseeking to optimize
structure similarity [58, 64]. This assumption can be problematic, as similar three-
dimensional placement of residues may arise from residues with different sequential
ordering. This problem is frequently encountered when comparing local regions on
proteins structures. When comparing global structures of proteins, the existence of
circular and higher ordered permutations [45, 19] also poses significant problems .
Third, proteins may undergo minor residue side chain structural fluctuations as well
as large backbone conformational changesin vivo. These structural fluctuations are
not represented in a static snapshot of a crystallized structures in the Protein Data
Bank (PDB) [8]. Many structural alignment methods assume rigid bodies and can-
not account for structural changes that may occur.

In this chapter, we will first discuss several overall issuesimportant for protein
structural alignment. We then discuss a method we have developed for sequence
order independent structural alignment at both the global and local level of protein
structure. This is followed by discussion on how this methodcan be used to detect
protein pairs that appear to be related by simple and complexbackbone permuta-
tions. We will then describe the use of local structural alignment in automatic con-
struction ofsignature pocketsof binding surfaces, which can be used to construct
basis setfor a specific biological function. These constructs can detect structurally
conserved surface regions and can be used to improve the accuracy of protein func-
tion prediction.

2 Structural Alignment

Protein structural alignment is an important problem [28].It is particularly use-
ful when comparing two proteins with low sequence identity between them. A
widely used measure of protein structural similarity is theroot mean squared dis-
tance (RMSD) between the equivalent atoms or residues of thetwo proteins. When
the equivalence relationship between structural elementsare known, a superposition
described by a rotation matrixR and a translation vectorT that minimizes the root
mean squared distances (RMSD) between the two proteins can be found by solving
the minimization problem:

min
NB

∑
i=1

NA

∑
j=1

|T +RBi −A j |
2, (1)



4 Joe Dundas, Bhaskar DasGupta, and Jie Liang

whereNA is the number of points in structureA andNB is the number of points
in structureB and it is assumed thatNA = NB. The least-squares estimation of the
transformation parametersR andT in Equation 1 can be found using the technique
of singular value decomposition [66].

However, it is often the case that the equivalences between the structural ele-
ments are not knowna priori. For example, when two proteins have diverged sig-
nificantly. In this case, one must use heuristics to determine the equivalence rela-
tionship, and the problem of protein structural alignment becomes a multi-objective
problem. That is, we are interested in finding the maximum number of equivalent
elements as well as in minimizing the RMSD upon superposition of the equivalent
elements of the two proteins.

A number of methods that are heuristic in nature have been developed for align-
ing protein strutres [69, 1, 60, 59, 55, 65, 27, 75]. These methods can be divided
into two categories.Global structural alignment methods are suited for detecting
similarities between the overall backbones of two proteins, while local structural
alignment methods are suited for detecting similarities between local regions or
sub-structures within the two proteins. As discussed earlier, many structural align-
ment algorithms are constrained to find only structural similarities where the order
of the structural elements follows their order in the primary sequence. Sequence or-
der independent methods ignore the sequential ordering of the structural elements
and are better suited to find more complex global structural similarities. They are
also very effective for all atom comparison of protein sub-structures, as in the case
of binding surface alignment. Below we discuss methods for both global and local
structural alignment.

3 Global Sequence Order Independent Structural Alignment

Global sequence order independent structural alignment isa powerful tool that can
be used to detect similarities between two proteins that have complex topological re-
arrangements, including permuted structures. Permuted proteins can be described as
two proteins with similar three-dimensional spatial arrangement of secondary struc-
tures, but with a different backbone connection topology. An example of permuted
proteins are proteins with circular permutations. It can bethought of as ligation
of the N- and C-termini of a protein, and cleavage somewhere else on the protein.
Circular permutations are interesting not only because they tend to have similar
three-dimensional structure but also because they often maintain the same biologi-
cal function [45]. Circularly permuted proteins may provide a generic mechanism
for introducing protein diversity that is widely used in evolution. Detecting circular
permutations is also important for homology modeling, for studying protein folding,
and for designing protein.
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3.1 A fragment assembly based approach to sequence order
independent structural alignment

We have developed a sequence order independent structural alignment method that
is well-suited for detecting circular permutation and morecomplex topological re-
arrangement relationship among proteins [19]. Our algorithm is capable of aligning
two protein backbone structures independent of the secondary structure element
connectivity. Briefly, the two proteins to be aligned are first separately and exhaus-
tively fragmented. Each fragmentλ A

i,k from protein structureSA is then pair-wise

superimposed onto each fragmentλ B
j ,k from protein structureSB, forming a set of

fragment pairsχi, j ,k, wherei ∈SA and j ∈SB are the indices in the primary sequence
of the first residue of the two fragment, respectively. Herek∈ {5,6,7} is the length
of the fragment. For each fragment, we assign a similarity score,

σ(χi, j ,k) = α[C−s(χi, j ,k) ·
cRMSD

k2 ]+SCS, (2)

wherecRMSDis the measured RMSD value after optimal superposition,α andC
are two constants,s(χi, j ,k) is a scaling factor to the measured RMSD values that
depends on the secondary structure of this fragment, andSCSis a BLOSSUM-like
measure of similarity in sequence of the matched fragments [30]. Details of the
similarity score and the parametersα andC can be found in [19].

The goal of structural alignment for the moment seeks to find aconsistent set of
fragment pairs∆ = {χi1, j1,k1,χi2, j2,k2, ...,χit , jt ,kt} that minimize the global RMSD.
Finding the optimal combination of fragment pairs is a special case of the well
known maximum weight independent set problem in graph theory. This problem
is MAX-SNP-hard. We employ an approximation algorithm thatwas originally de-
scribed for scheduling split-interval graphs [6] and is itself based on a fractional
version of the local-ratio approach.

Our method begins by creating a conflict graphG = (V,E), where a vertex is
defined for each aligned fragment pair. Two vertices are connected by an edge if
any of the fragments (λ A

i,k,λ
A
i′,k′ ) or (λ B

j ,k,λ
B
j ′,′k′ ) from the aligned pair is not disjoint,

that is, if both fragments from the same protein share one or more residues. For
each vertex representing aligned fragment pair, we assign three indicator variables
xχ , yχλA

, andyχλB
∈ {0,1} and a closed neighborhoodNbr[χ ]. xχ indicates whether

the fragment pair should be used (xχ = 1) or not (xχ = 0) in the final alignment.
yχλA

, andyχλB
are artificial indicator values forλA andλB, which allow us to encode

consistency in the selected fragments. The closed neighborhood of a vertexχ of G
is {χ ′|{χ ,χ ′} ∈ E}∪{χ}, which is simplyχ and all vertices that are connected to
χ by and edge.

Our algorithm for sequence order independent structural alignment can now be
described as follows. To begin, we initialize the structural alignment∆ equal to the
entire set of aligned fragment pairs. We then:
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1. Solve a linear programming (LP) formulation of the problem:
maximize

∑
χ∈∆

σ(χ) ·xχ (3)

subject to

∑
at∈λ A

yχλA
≤ 1 ∀at ∈ SA (4)

∑
bt∈λ B

yχλB
≤ 1 ∀bt ∈ SB (5)

yχλA
−xχ ≥ 0 ∀χ ∈ ∆ (6)

yχλB
−xχ ≥ 0 ∀χ ∈ ∆ (7)

xχ ,yχλA
,yχλB

≥ 0 ∀χ ∈ ∆ (8)

2. For every vertexχ ∈V∆ of G∆ , compute itslocal conflict numberαχ = ∑χ ′∈Nbr∆ [χ ] xχ ′ .
Let χmin be the vertex with theminimumlocal conflict number. Define a new sim-
ilarity functionσnew from σ as follows:

σnew(χ) =











σ(χ), if χ /∈ Nbr∆ [χmin]

σ(χ)−σ(χmin), otherwise

3. Create∆new ⊆ ∆ by removing from∆ every substructure pairχ such that
σnew(χ) ≤ 0. Push each removed substructure on to a stack in arbitrary order.

4. If ∆new 6= /0 then repeat from step 1, setting∆ = ∆new andσ = σnew. Otherwise,
continue to step 5.

5. Repeatedly pop the stack, adding the substructure pair tothe alignment as long
as the following conditions are met:

a. The substructure pair is consistent with all other substructure pairs that already
exist in the selection.

b. ThecRMSDof the alignment does not change beyond a threshold. This condi-
tion bridges the gap between optimizing a local similarity between substruc-
tures and optimizing the tertiary similarity of the alignment. It guarantes that
each substructure from a substructure pair is in the same spatial arrangement
in the global alignment.
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3.2 Detecting Permuted Proteins

This algorithm is used in a large scale study, where a subset with 3,336 protein struc-
tures taken from the PDBSELECT 90 data set % [31] are structurally aligned in a
pair-wise fashion. Our goal is to determine if we could detect structural similarities
with complex topological rearrangements such as circular permutations. From this
subset of 3,336 proteins, we aligned two proteins if they metthe following condi-
tions: the difference in their lengths was no more than 75 residues, and they had
approximately the same secondary structure content (see [19] for details). Within
the approximately 200,000 alignments, we found many known circular permuta-
tions, and three novel circular permutations previously unknown, as well as a pair
of non-cyclic complex permuted proteins. Below we describein some details the cir-
cular permutations we found between a neucleoplasmin-coreand an auxin binding
protein, as well as details of the more complex non-cyclic permutation.

Nucleoplasmin-core and auxin binding protein

A novel circular permutation was detected between the nucleoplasmin-core protein
in Xenopu laevis(PDB ID 1k5j, chain E) [22] and the auxin binding protein in
maize (PDB ID1lrh, chain A, residues 37 through 127) [72]. The structural align-
ment between1k5jE (Figure 1a, top) and1lrhA (Figure 1a, bottom) consisted
of 68 equivalent residues superimposed with an RMSD of 1.36Å. This alignment is
statistically significant with ap-value of 2.7×10−5 after Bonferroni correction. De-
tails of p-value calculation can be found in reference [19]. The shortloop connecting
two antiparallel strands in nucleoplasmin-core protein (in circle, top of Fig 1b) be-
comes disconnected in auxin binding protein 1 (in circle, bottom of Fig 1b), and
the N- and C- termini of the nucleoplasmin-core protein (in square, top of Fig 1b)
are connected in auxin binding protein 1 (square, bottom of Fig 1b). For details
of other circular permutations we discovered, including permutations between as-
partate racemase and type II 3-dehydrogenase and between microphage migration
inhibition factor and the C-terminal domain of arginine repressor, please see [19].

Beyond circular permutation

Because of its relevance in understanding the functional and folding mechanism
of proteins, circular permutations have received much attention [45, 67]. A more
challenging class of permuted proteins is that of the non-cyclic permutation with
more complex topological changes. Very little is known about this class of permuted
proteins, and the detection of non-cyclic permutations is challenging task [26, 18,
24, 68].

Non-cyclic permutations of the Arc repressor were created artificially were found
to be thermodynamically stable. It can refold on the sub-millisecond time scale,
and can bind operator DNA with nanomolar affinity [63], indicating that naturally
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Fig. 1 A newly discovered circular permutation between nucleoplasmin-core (1k5j, chain E, top
panel), and a fragment of auxin binding protein 1 (residues 37–127) (1lrh, chain A, bottom
panel). a) These two proteins align well with a RMSD value of 1.36Å over 68 residues, with a
significant p-value of 2.7× 10−5 after Bonferroni correction. b) The loop connecting strand4
and strand 5 of nucleoplasmin-core (in rectangle, top) becomes disconnected in auxin binding
protein 1. The N- and C- termini of nucleoplasmin-core (in rectangle, top) become connected in
auxin binding protein 1 (in rectangle, bottom). To aide in visualization of the circular permutation,
residues in the N-to-C direction before the cut in the nucleoplasmin-core protein are colored red,
and residues after the cut are colored blue. c) The topology diagram of these two proteins. In the
original structure of nucleoplasmin-core, the electron density of the loop connecting strand 4 and
strand 5 is missing in the PDB structure file. This figure is modified from [19].

occurring non-cyclic permutations may be as rich as the cyclic permutations. Our
database search uncovered a naturally occurring non-cyclic permutation between
chain F of AML1/Core Binding Factor (AML1/CBF, PDB ID1e50, Figure 2a,
top) and chain A of riboflavin synthase (PDB ID1pkv, Figure 2a, bottom) [71, 46].
The two structures align well with an RMSD of 1.23Å, at an alignment length of
42 residues, with a significantp-value of 2.8×10−4 after Bonferroni correction.

The topology diagram of AML1/CBF (Figure 2b) can be transformed into that
of riboflavin synthase (Figure 2f) by the following steps: Remove the the loops
connecting strand 1 to helix 2, strand 4 to strand 5, and strand 5 to strand 6 (Figure
2c). Connect the C-terminal end of strand 4 to the original N-termini (Figure 2d).
Connect the C-terminal end of strand 5 to the N-terminal end of helix 2 (Figure 2e).
Connect the original C-termini to the N-terminal end of strand 5. The N-terminal end
of strand 6 becomes the new N-termini and the C-terminal end of strand 1 becomes
the new C-termini (Figure 2f).
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a) b) c)

d)

e)f )g)

Fig. 2 A non-cyclic permutation discovered between AML1/Core Binding Factor (AML1/CBF,
PDB ID 1e50, Chain F, top) and riboflavin synthase (PDBID1pkv, chain A, bottom) a) These
two proteins structurally align with an RMSD of 1.23̊A over 42 residues , and has a significantp-
value of 2.8×10−4 after Bonferroni correction. The residues that were assigned equivalences from
the structural alignment are colored blue. b) These proteins are related by a complex permutation.
The steps to transform the topology of AML1/CBF (top) to riboflavin (bottom) are as follows: c)
Remove the the loops connecting strand 1 to helix 2, strand 4 to strand 5, and strand 5 to helix 6; d)
Connect the C-terminal end of strand 4 to the original N-termini; e) Connect the C-terminal end of
strand 5 to the N-terminal end of helix 2; f) Connect the original C-termini to the N-terminal end
of strand 5. The N-terminal end of strand 6 becomes the new N-termini and the C-terminal end of
strand 1 becomes the new C-termini. We now have the topology diagram of riboflavin synthase.
This figure was modified from [19].

4 Local Sequence Order Independent Structural Alignment

The comparison of overall structural folds regardless of topological reconnections
can lead to insight into distant evolutionary relationship. However, similarity in
overall fold is not a reliable indicator of similar function[44, 50, 25]. Several stud-
ies suggest that structural similarities between local surface regions where biologi-
cal function occurs, such as substrate binding sites, are a better predictor of shared
biological function [47, 52, 10, 35, 61, 62].

Substrate binding usually occurs at concave surface regions, commonly referred
to assurface pockets[43, 23, 10, 20]. A typical protein has many surface pockets,
but only a few of them present a specific three-dimensional arrangement of chemical
properties conducive to the binding of a substrate. This protein must maintain this
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physiochemical environment throughout evolution in orderto maintain its biological
function. For this reason, shared structural similaritiesbetweenfunctional surfaces
among proteins may be a strong indicator of shared biological function. This has
lead to a number of promising studies, in which protein functions can be inferred by
similarity comparison of local binding surfaces [10, 39, 11, 5, 48].

A challenging problem with the structural comparison of protein pockets lies in
the inherent flexibility of the protein structure. A proteinis not a static structure
represented by a Protein Data Bank entry. The whole protein as well as the local
functional surface may undergo large structural fluctuations. The use of a single
surface pocket structure as a representative template for aspecific protein function
will often result in many false negatives. This is due to the inability of a single
representative to capture the full functional characteristics across all conformations
of the protein.

To address this problem, we have developed a method that can automatically
identify the structurally preserved atoms across a family of protein structures that
are functionally related. Based on sequence-order independent surface alignments
across the functional pockets of a family of protein structure, our method creates
signature pocketswith structurally conserved atoms identified and their fluctuation
measured. As more than one signature pocket may result for a single functional
class, the signature pockets can be organized into abasis setof pockets for that
functional family. These signature pockets of the binding surfaces then can be used
for scanning a protein structure database for function inferrence.

4.1 Bi-partite graph matching approach to structural alignment

Our method for surface alignment is sequence order independent. It is based on a
maximum weight bi-partite graph matching formulation of [13] with further mod-
ifications. This alignment method is a two step iterative process. First, an optimal
set of equivalent atoms under the current superposition arefound using a bi-partite
graph representation. Second, a new superposition of the two proteins is determined
using the new equivalent atoms from the previous step. The two steps are repeated
until a stopping condition has been met.

To establish the equivalence relationship, two protein functional pocket surfaces
SA andSB are represented as a graph, in which a node on the graph represent an atom
from one of the two functional pockets. The graph is bi-partite if edges only connect
nodes from proteinSA to nodes from proteinSB. In our implementation, directed
edges are only drawn from nodes ofSA to nodes ofSB if a similarity threshold is met.
The similarity threshold used in our implementation is a function of spatial distances
and chemical differences between the corresponding atoms (see [21] for details).
Each edgeei, j connecting nodei to nodej is assigned a weightw(i, j) equal to the
similarity score between the two corresponding atoms. A setof equivalence relations
between atoms ofSA and atoms ofSB can be found by selecting a sub-set of the edges
connecting nodes ofSA to SB, with maximized total edge weight, where at most one
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edge can be selected for each atom [14]. A solution to the maximum weight bi-
partite graph matching problem can be found using the Hungarian algorithm [38].

The Hungarian method works as follows. To begin, an overall scoreFall = 0 is
initialized, and an artificial source nodes and an artificial destination noded are
added to the bi-partite graph. Directed edges with 0-weightfrom the source node
s to each node ofSA and from each node ofSB to the destination noded are also
added. The algorithm then proceeds as follows:

1. Find the shortest distanceF(i) from the source nodes to every other nodei using
the Bellman-Ford [7] algorithm.

2. Assign a new weightw′(i, j) to each edge that does not originate from the source
nodesas follows,

w′(i, j) = w(i, j)+ [F(i)−F( j)]. (9)

3. UpdateFall asF ′
all = Fall −F(d)

4. Reverse the direction of the edges along the shortest pathfrom s to d.
5. If Fall > F(d) and a path exists betweensandd then start again at step 1.

The Hungarian algorithm terminates when either there is no path from s to d
or when the shortest distance from the source node to the destination nodeF(d)
is greater than the current overall scoreFall . The bi-partite graph will now consist
of directed edges that have been reversed (point from nodes of SB to nodes ofSA).
These flipped edges represent the current equivalence relationships between atoms
of SA and atoms ofSB.

The equivalence relations can then be used to superimpose the two proteins. After
superposition, a new bi-partite graph is created and the maximum weight bi-partite
matching algorithm is called again. This process is repeated iteratively until the
change in RMSD upon superposition falls below a threshold.

4.2 Signature pockets and basis set of binding surface for a
functional family of proteins

Based on the pocket surface alignment algorithm, we have developed a method that
automatically generate structural templates of local surfaces, calledsignature pock-
ets, which can be used to represent an enzyme function or a binding activity. These
signature pockets contain broad structural information aswell as discriminating
ability.

A signature pocket is derived from an optimal alignment of precomputed sur-
face pockets in a sequence-order-independent fashion, in which atoms and residues
are aligned based on their spatial correspondence when maximal similarity is ob-
tained, regardless how they are ordered in the underlying primary sequences. Our
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method does not require the atoms of the signature pocket to be present in all mem-
ber structures. Instead, signature pockets can be created at varying degrees of partial
structural similarity, and can be organized hierarchically at different level of binding
surface similarity.

The input to the signature pocket algorithm is a set of functional pockets from a
pre-calculated database of surface pockets and voids on proteins, such as those con-
tained in the CASTp database [20]. The algorithms begins by performing all vs all
pair-wise sequence order independent structural alignment on the input functional
surface pockets. A distance score, which is a function of theRMSD and the chem-
istry of the paired atoms from the structural alignment, is recorded for each aligned
pair of functional pockets (see [21] for details). The resulting distance matrix is
then used by an agglomerative clustering method, which generates a hierarchical
tree. The signature of the functional pockets can then be computed using a recursive
process following the hierarchical tree.

The process begins by finding the two closest siblings (pockets SA andSB), and
combining them into a single surface pocket structureSAB. Because of the recursive
nature of this algorithm, either of the two structures beingcombined may themselves
already be a combination of several structures. When combining the two structures,
we follow the criteria listed below:

1. If two atoms were considered equivalent in a structural alignment, a single coor-
dinate is created in the new structure to represent both atoms. The new coordinate
is calculated by averaging the coordinates of all underlying atoms that are cur-
rently represented by the two coordinates to be averaged.

2. If no equivalence was found for an atom during the structural alignment, the co-
ordinates of that atom are transferred directly into the newpocket structure.

During each step in combining two surface pockets, a count ofthe number of
times that an atom at the positioni was present in the underlying set of pockets is
recorded, which is then divided by the number of the constituent pockets. This is
thepreservation ratioρ(i). In addition, the mean distance of the coordinates of the
aligned atoms to their geometric center is recorded as thelocation variation v. At
the end of each step, the new structureSAB replaces the two structuresSA andSB in
the hierarchical tree, and the process is repeated on the updated hierarchical tree. At
a specific height of the hierarchical tree, different signature pockets can be created
with different extents of structural preservation by selecting aρ threshold value.

The signature pocket algorithm can be terminated at any point during its traversal
of the hierarchical tree. Figure 3 illustrates this point byshowing three different stop-
ping thresholds (horizontal dashed lines). Depending on the choice of the threshold,
one or multiple signature pockets may result. Figure 3a shows a low threshold which
results in a set of 3 signature pockets. Raising the threshold can produce fewer sig-
nature pockets (Figure 3b). A single signature pocket that represents all surface
pockets in the data set can be generated by raising the threshold even further (Fig-
ure 3c). Since clusters from the hierarchical tree represent a set of surface pockets
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a.) c.)b.)

Fig. 3 Different basis sets of signature pockets can be produced atdifferent levels of structural
similarity by raising or lowering the similarity threshold(vertical dashed line). a.) A low threshold
will produce more signature pockets. b.) As the threshold israised, fewer signature pockets will
be created. c.) A single signature pocket can in principle becreated to represent the full surface
pocket data set by raising the threshold.

that are similar within certain threshold, if a stopping threshold is chosen such that
there exist multiple clusters in the hierarchical tree, a signature pocket will be cre-
ated for each cluster. The set of signature pockets from different clusters collectively
form a basis setof signature pockets, which represent the ensemble of differently
sampled conformations for a functional family of proteins.As a basis set of signa-
tures can represent many possible variations in shapes and chemical textures, it can
represent structural features of an enzyme function with complex binding activities,
and can also be used to accurately predict enzymes function.

4.3 Signature pockets of NAD binding proteins

To illustrate how signature pockets and basis set help to identify key structural ele-
ments important for binding and how they can facilitate function inference, we dis-
cuss a study of the nicotinamide adenine dinucucleotide (NAD) binding proteins.
NAD consists of two nucleotides, nicotinamide and adenine,which are joined by
two phosphate groups. NAD plays essential roles in metabolism where it acts as a
coenzyme in redox reactions, including glycolysis and the citric acid cycle.

Using a set of 457 NAD binding proteins of diverse fold structures and diverse
evolutionary origin, we first extracted the NAD binding surfaces from precomputed
CASTp database of protein pockets and voids [20]. Based on similarity values from
a comprehensive all-against-all sequence order independent surface alignment, we
obtain a hierarchical tree of NAD binding surfaces. The resulting 9 signature pockets
of the NAD binding pocket form a basis set, which are shown in Figure 4.

These signature pockets contain rich biological information. Among the NAD-
binding oxioreductase, three signature pockets (Fig 4E, H,and I) are for clusters of
oxioreductases that act on the CH-OH group of donors (alcohol oxioreductases), one
signature pocket (Fig 4J) is for a cluster that act on the aldehyde group of donors, and
the remaining two signature pockets (Fig 4F and G) are for oxioreductases that act
on the CH-CH group of donors. For NAD-binding lyase, one of the two signature
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Signature Pocket Inhibitor

Lyase

E.C. #: 4.2.1.46 & 4.1.1.35

SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

Isomerase

E.C. #: 5.1.3.2

SCOP ID: c.2.1.2

SCOP Fold:  NAD(P)-binding Rossman fold

Lyase

E.C. #: 4.2.3.4 & 4.6.1.3

SCOP ID: e.22.1.1

SCOP Fold:  Dehydroquinate synthase-like

Note: Rossman fold topology binds NAD

CH-OH oxioreductase

E.C. #: 1.1.1.37 & 1.1.1.27

SCOP ID: d.162.1.1

SCOP Fold:  LDH C-terminal domain-like 

Note: Rossman fold domain

CH-CH oxioreductase

E.C. #: 1.3.1.9

SCOP ID: c.2.1.2

SCOP Fold:  NAD(P)-binding Rossman fold

CH-CH oxioreductase

E.C. #: 1.3.1.9

SCOP ID: c.2.1.2

SCOP Fold:  NAD(P)-binding Rossman fold

CH-OH oxioreductase

E.C. #: 1.1.1.35 & 1.1.1.141 & 1.1.1.178

SCOP ID: c.2.1.2

SCOP Fold:  NAD(P)-binding Rossman fold

CH-OH oxioreductase

E.C. #: 1.1.1.1

SCOP ID: c.2.1.2

SCOP Fold:  NAD(P)-binding Rossman fold

Aldehyde oxioreductase

E.C. #: 1.2.1.12

SCOP ID: d.81.1.1

SCOP Fold:  FwdE/GAPDH domain-like

Note: Rossman fold domain

Description
A.)

C

C

C

C

C

C

X

X

X

Fig. 4 The topology of the hierarchical tree and signature pocketsof the NAD binding pockets.
a.) The resulting hierarchical tree topology. b-j.) The resulting signature pockets of the NAD bind-
ing proteins, along with the superimposed NAD molecules that were bound in the pockets of the
member proteins of the respective clusters. The NAD coenzymes have two distinct conformations.
Those in an extended conformation are marked with an X and those in a compact conformation are
marked with a C.
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pockets (Fig 4D) represent lyase that cleave both C-O and P-Obonds. The other
signature pocket (Fig 4B) represent lyases that cleave bothC-O and C-C bonds.
These two signatures come from two clusters of lyase conformations, each with a
very different class of conformations of the bound NAD cofactor.

We found that the structural fold and the conformation of thebound NAD co-
factor are the two major determinants of the formation of theclusters of the NAD
binding pockets (Figure 4A). It can be seen in Figure 4B-J that there are two general
conformations of the NAD coenzyme. The NAD coenzymes labeled C (Fig 4B,
C, F, G, H, and J) have a closed conformation, while the coenzymes labeled X
(Fig 4D, E, and I) have an extended conformation. This indicates that the binding
pocket may take multiple conformations yet bind the same substrate in the same
general structure. For example, the two structurally distinct signature pockets shown
in Figure 4F, G are derived from proteins that have the same biological function and
SCOP fold. All of these proteins bind to the same NAD conformation.

We have further evaluated the effectiveness of the NAD binding site basis set by
determining its accuracy in correctly classifying enzymesas either NAD-binding or
non-NAD-binding. We constructed a test data set of 576 surface pockets from the
CASTp database [20] independent of the training set of 457 NAD binding proteins.
These 576 surface pockets were selected by taking the top 3 largest pockets in vol-
ume from 142 randomly chosen proteins and 50 proteins that have NAD bound in
the PDB structure, with the further constraint that they were not in our training data
set. We then structurally aligned all 576 pockets in our testdata set against each of
the nine NAD signature pockets in the resulting basis set. The testing pocket was
assigned to be an NAD binding pocket if it structurally aligned to one of the nine
NAD signature pockets, with its distance under a predefined threshold. Otherwise it
was classified as non-NAD binding. The results show that the basis set of 9 signature
pockets can classify the correct NAD binding pocket with sensitivity and specificity
of 0.91 and 0.89, respectively.

We performed further testing to determine whether a single representative NAD
binding pocket, as opposed to a basis set, is sufficient for identifying NAD-binding
enzymes. We chose a pocket representative pocket from one ofthe 9 clusters that
were used to construct the 9 signature pockets. Here, a testing pockets was classi-
fied as NAD-binding if its structural similarity to the single representative pocket
was above the same pre-defined threshold used in the basis setstudy. We repeat
this exercise nine times, each time using a different representative from a different
cluster. We found that the results deteriorated significantly, with an average sensitiv-
ity and specificity of only 0.36 and 0.23, respectively. Thisstudy strongly indicates
that the construction of a basis set of signatures as a structural template provides
significant improvement for a set of proteins binding the same co-factor but with di-
verse evolutionary origin. Further details of the NAD-binding protein study can be
found in [21], along with an in-depth study of the metalloendopeptidase, including
the construction of its signatures and basis set, as well as their utility in function
prediction.
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5 Conclusion

In this chapter, we have discussed methods that provide solutions to the problem of
aligning protein global structures as well as aligning protein local surface pockets.
Both methods disregard the ordering of residues in the protein primary sequences.
For global alignment of protein structures, such a method can be used to address
the challenging problem of identifying proteins that are topologically permuted but
are spatially similar. The approach of fragment assembly based on the formulation
of a relaxed integer programming problem and an algorithm based on scheduling
split-interval graphs works well, and is characterized by aguaranteed approximation
ratio. In a scaled up study, we showed that this method works well in discovery
of circularly permuted proteins, including several previously unrecognized protein
pairs. It also uncovered a case of two proteins related by higher order permutations.

We also described a method for order-independent alignmentof local spatial sur-
faces that is based on bi-partite graph matching. By assessing surface similarity
for a group of protein structures of the same function, this method can be used to
automatically construct signatures and basis set of binding surfaces characteristic
of a specific biological function. We showed that such signatures can reveal use-
ful mechanistic insight on enzyme function, and can correlate well with substrate
binding specificity.

In this chapter, we neglect an important issue in our discussion of comparing
protein local surfaces for inferring biochemical functions, namely, how to detect
evolutionary signals and how to employ such information forprotein function pre-
diction. Instead of going into details, we first point readers to the general approach of
constructing continuous time Markovian models to study protein evolution [74, 33].
In addition, a Bayesian Monte Carlo method that can separateselection pressure due
to biological function from selection pressure due to the constraints of protein fold-
ing stability and folding dynamics can be found in [61] and in[42] . The Bayesian
Monte Carlo approach can be used to construct customized scoring matrices that are
specific to a particular class of proteins of the same function. Details of how such
method works and how it can be used to accurately predict enzyme functions from
structure with good sensitivity and specificity for 100 enzyme families can be found
in a recent review [42] and original publications [61, 62]. The task of computing
surface pockets and voids using alpha shape is discussed in arecent review [41].
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