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Abstract Alignment of protein structures can help to infer proteimdtions and
can reveal ancient evolutionary relationship. We discassputational methods we
developed for structural alignment of both global backizaed local surfaces of
proteins that do not depend on the ordering of residues irptimeary sequences.
The algorithm for global structural alignment is based @gfment assembly, and
takes advantage of an approximation algorithm for solviregrhaximum weight in-
dependent set problem. We show how this algorithm can béeapial discover pro-
teins related by complex topological rearrangement, uhiclg circularly permuted
proteins as well as proteins related by complex higher gedenutations. The algo-
rithm for local surface alignment is based on solving the@itite graph matching
problem through comparison of surface pockets and voids) as those computed
from the underlying alpha complex of the protein structWi. also describe how
multiple matched surfaces can be used to automaticallyrgensignature pock-
ets and basis set that represents the ensemble of confonsati protein binding
surfaces with a specific biological function of binding ait$i. This is followed by
illustrative examples of signature pockets and basis sefpabted for NAD bind-
ing proteins, along with a discussion on how they can be usedi§criminating
NAD-binding enzymes from other enzymes.
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1 Introduction

To understand the molecular basis of cellular processés,iitportant to gain a
comprehensive understanding of the biological functionsrotein molecules. Al-
though an increasing number of sequences and structurestefis become avail-
able, there are many proteins whose biological functioesat known, or knowl-
edge of their biological roles is incomplete. This is evidet by the existence of a
large number of partially annotated proteins, as well asatwimulation of a large
number of protein structures from structural genomics vehloislogical functions
are not well characterized [9, 54]. Researchers have tumedsilico methods to
gain biological insight into the functional roles of thesecharacterized proteins,
and there has been a number of studies addressing the problmmputationally
predicting the biological function of proteins [4, 36, 58,47, 62].

A relatively straightforward method for inferring protefanction is to transfer
annotation based on homology analysis of shared charstitsrbetween proteins.
If a protein shares a high level of sequence similarity to d aearacterized fam-
ily of proteins, frequently the biological functions of tlfemily can be accurately
transferred onto that protein [57, 3, 2]. At lower levels efisence similarity, prob-
abilistic models such as profiles can be constructed usica kegions of high se-
quence similarity [2, 37, 34]. The large amount of inforroatof protein such as
those deposited in the SWISS-PROT database [12] providasnformation for
constructing such probabilistic models.

However, limitations to sequence-based homology trarfefeiunction predic-
tion arise when sequence identity between a pair of protsiless than 60% [73].
An alternative to sequence analysis is to infer protein asestructural similarity.
It is now well known that protein structures are much moresaswed than protein
sequences, as proteins with little sequence identity dftéchinto similar three-
dimensional structures [56].

Protein structure and protein function are strongly cated [29]. Conceptually,
knowledge of three-dimensional structures of proteinsukhenable inference of
protein function. Computational tools and databases foicgiral analysis are in-
dispensable for establishing the relationship betweeteprdunction and structure.
Among databases of protein structures, the SCOP [49] andHJAI] databases
organizes protein structures hierarchically into diffgrelasses and folds based on
their overall similarity in topology and fold. Such classétion of protein structures
based on structure generally depends on a reliable stalatamparison method.
Although there are several widely used methods, includiafi [32] and CE [58],
current structural alignment methods cannot guaranteéveoaptimal results and
structural alignment methods do not have the reliabilitgt amerpretability compa-
rable to that of sequence alignment methods.

Comparing protein structures is challenging. First, itificllt to obtain a quan-
titative measure of structural similarity that is generalpplicable to different types
of problems. Similar to sequence alignment methods, onesearch for global
structural similarity between overall folds or focus onabsimilarity between sur-
face regions of interest. Defining a quantitative measusgoflarity is not straight-
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forward as illustrated by the variety of proposed strudtat@nment scoring meth-
ods [28]. Unlike sequence alignment, in which the scorirgieans are largely based
on evolutionary models of how protein sequence evolve [D§, &oring systems
of structural alignment must take into account both thegtde#nensional positional
deviations between the aligned residues or atoms, as welth&s characteristics
that are biologically important. Second, many alignmentods assume the order-
ing of the residues follows that of the primary sequence wdemking to optimize
structure similarity [58, 64]. This assumption can be peobétic, as similar three-
dimensional placement of residues may arise from residitegifferent sequential
ordering. This problem is frequently encountered when catimg local regions on
proteins structures. When comparing global structuresatgins, the existence of
circular and higher ordered permutations [45, 19] also pa$gnificant problems .
Third, proteins may undergo minor residue side chain stina¢fluctuations as well
as large backbone conformational chanigegvo. These structural fluctuations are
not represented in a static snapshot of a crystallized tstres in the Protein Data
Bank (PDB) [8]. Many structural alignment methods assurgl fhodies and can-
not account for structural changes that may occur.

In this chapter, we will first discuss several overall issimegortant for protein
structural alignment. We then discuss a method we have desdlfor sequence
order independent structural alignment at both the globdllacal level of protein
structure. This is followed by discussion on how this methad be used to detect
protein pairs that appear to be related by simple and comntpdekbone permuta-
tions. We will then describe the use of local structural mfigent in automatic con-
struction ofsignature pocketsf binding surfaces, which can be used to construct
basis sefor a specific biological function. These constructs caredestructurally
conserved surface regions and can be used to improve theaagaf protein func-
tion prediction.

2 Structural Alignment

Protein structural alignment is an important problem [28]is particularly use-
ful when comparing two proteins with low sequence identigtvieen them. A
widely used measure of protein structural similarity is tbet mean squared dis-
tance (RMSD) between the equivalent atoms or residues dgivin@roteins. When
the equivalence relationship between structural elensstknown, a superposition
described by a rotation matriR and a translation vectdr that minimizes the root
mean squared distances (RMSD) between the two proteinsectubd by solving
the minimization problem:

Ng Na

minzl > IT+RB-Aj%, (1)
i=1j=1
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whereN, is the number of points in structu# and Ng is the number of points
in structureB and it is assumed th&tx = Ng. The least-squares estimation of the
transformation parameteRsandT in Equation 1 can be found using the technique
of singular value decomposition [66].

However, it is often the case that the equivalences betweemsttuctural ele-
ments are not knowa priori. For example, when two proteins have diverged sig-
nificantly. In this case, one must use heuristics to detezrttie equivalence rela-
tionship, and the problem of protein structural alignmestdmes a multi-objective
problem. That is, we are interested in finding the maximum Inemof equivalent
elements as well as in minimizing the RMSD upon superpasiticthe equivalent
elements of the two proteins.

A number of methods that are heuristic in nature have beeeloped for align-
ing protein strutres [69, 1, 60, 59, 55, 65, 27, 75]. Thesehoad can be divided
into two categoriesGlobal structural alignment methods are suited for detecting
similarities between the overall backbones of two proteivisile local structural
alignment methods are suited for detecting similaritiesveen local regions or
sub-structures within the two proteins. As discussed earinany structural align-
ment algorithms are constrained to find only structural kirities where the order
of the structural elements follows their order in the prisnsequence. Sequence or-
der independent methods ignore the sequential orderinigeotructural elements
and are better suited to find more complex global structunailarities. They are
also very effective for all atom comparison of protein stinstures, as in the case
of binding surface alignment. Below we discuss methods &th lglobal and local
structural alignment.

3 Global Sequence Order Independent Structural Alignment

Global sequence order independent structural alignmenp@werful tool that can
be used to detect similarities between two proteins that bamplex topological re-
arrangements, including permuted structures. Permutetdips can be described as
two proteins with similar three-dimensional spatial agement of secondary struc-
tures, but with a different backbone connection topology.ekample of permuted
proteins are proteins with circular permutations. It cantli@ught of as ligation
of the N- and C-termini of a protein, and cleavage somewhise @ the protein.
Circular permutations are interesting not only becausg thad to have similar
three-dimensional structure but also because they ofteéntaiathe same biologi-
cal function [45]. Circularly permuted proteins may pro¥id generic mechanism
for introducing protein diversity that is widely used in éwtion. Detecting circular
permutations is also important for homology modeling, tadying protein folding,
and for designing protein.
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3.1 A fragment assembly based approach to sequence order
independent structural alignment

We have developed a sequence order independent strudigrahant method that
is well-suited for detecting circular permutation and mooenplex topological re-
arrangement relationship among proteins [19]. Our alpaorits capable of aligning
two protein backbone structures independent of the secgrefaicture element
connectivity. Briefly, the two proteins to be aligned aretfgsparately and exhaus-
tively fragmented. Each fragmev\ﬁk from protein structureSa is then pair-wise
superimposed onto each fragme\rﬁ( from protein structuresg, forming a set of
fragment pairg; j k, wherei € Sy andj € Sg are the indices in the primary sequence
of the first residue of the two fragment, respectively. Heee{5,6, 7} is the length
of the fragment. For each fragment, we assign a similarityesc

o(Xi.jk) = a[C—s(Xijk) CRMS% +SCS (2

wherecRMSDis the measured RMSD value after optimal superpositioandC

are two constantss(x; j «) is a scaling factor to the measured RMSD values that
depends on the secondary structure of this fragmentS@fals a BLOSSUM-like
measure of similarity in sequence of the matched fragmed@k Details of the
similarity score and the parametersandC can be found in [19].

The goal of structural alignment for the moment seeks to findresistent set of
fragment pairsA = {Xi, j; kys Xiz.jo.ko» - Xit,juke s that minimize the global RMSD.
Finding the optimal combination of fragment pairs is a specase of the well
known maximum weight independent set problem in graph thehis problem
is MAX-SNP-hard. We employ an approximation algorithm thais originally de-
scribed for scheduling split-interval graphs [6] and i€itdased on a fractional
version of the local-ratio approach.

Our method begins by creating a conflict graph= (V,E), where a vertex is
defined for each aligned fragment pair Two vertices are eotad by an edge if
any of the fragmentsA( ko A k,) or ()\J W ,,k/) from the aligned pair is not disjoint,
that is, if both fragments from the same protein share one amemesidues. For
each vertex representing aligned fragment pair, we ashige tindicator variables
X Yxy, o @ndyy, € {0,1} and a closed neighborhodtbr[x]. xy indicates whether
the fragment pair should be used, (= 1) or not &, = 0) in the final alignment.
Yx,,» @ndyy,  are artificial indicator values foka andAg, which allow us to encode
consistency in the selected fragments. The closed neigbbdrof a vertexy of G
is {X'"{x,x'} € E}U{x}, which is simplyx and all vertices that are connected to
X by and edge.

Our algorithm for sequence order independent structuighaient can now be
described as follows. To begin, we initialize the strucktafgnmentA equal to the
entire set of aligned fragment pairs. We then:
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1. Solve a linear programming (LP) formulation of the prable
maximize

> (X)X 3)
X€EA
subject to
Z YXon <1 Vo € S (4)
aeAP
> Yu. <1 VbheSs (5)
bieAB
Yo, — X >0 vxea (6)
Yxng — Xx >0 vxea (7
anyx,\AvaAB ZO VXEA (8)

2. Foreveryvertex €V of Ga, compute itdocal conflict numbeny =3 yrcnpr, [x) Xy
Let Xmin be the vertex with theninimumlocal conflict number. Define a new sim-
ilarity function gnew from o as follows:

o(X), if x ¢ Nbra[Xmin)
Onew(X) =
o(X) — 0(Xmin), otherwise

3. Creatednew € A by removing fromA every substructure paix such that
Onew(X) < 0. Push each removed substructure on to a stack in arbitreey.o

4. If Anew# 0 then repeat from step 1, settidg= Anewando = new. Otherwise,
continue to step 5.

5. Repeatedly pop the stack, adding the substructure p#ietalignment as long
as the following conditions are met:

a. The substructure pair is consistent with all other suicstire pairs that already
exist in the selection.

b. ThecRMSDof the alignment does not change beyond a threshold. Thidicon
tion bridges the gap between optimizing a local similarigivieen substruc-
tures and optimizing the tertiary similarity of the alignntelt guarantes that
each substructure from a substructure pair is in the santeabperangement
in the global alignment.
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3.2 Detecting Permuted Proteins

This algorithm is used in a large scale study, where a suliieBy836 protein struc-
tures taken from the PDBSELECT 90 data set % [31] are straltyualigned in a
pair-wise fashion. Our goal is to determine if we could desdaictural similarities
with complex topological rearrangements such as circutamupitations. From this
subset of 3,336 proteins, we aligned two proteins if they thetfollowing condi-
tions: the difference in their lengths was no more than 7&wes, and they had
approximately the same secondary structure content ($ddd details). Within
the approximately 200,000 alignments, we found many knoircular permuta-
tions, and three novel circular permutations previouslignown, as well as a pair
of non-cyclic complex permuted proteins. Below we desciisme details the cir-
cular permutations we found between a neucleoplasminamaiean auxin binding
protein, as well as details of the more complex non-cyclicpéation.

Nucleoplasmin-core and auxin binding protein

A novel circular permutation was detected between the optésmin-core protein
in Xenopu laevigPDB ID 1k5j , chain E) [22] and the auxin binding protein in
maize (PDB ID1I r h, chain A, residues 37 through 127) [72]. The structuralralig
ment betweerik5j E (Figure 1a, top) andl r hA (Figure 1a, bottom) consisted
of 68 equivalent residues superimposed with an RMSD ofA. 3®is alignment is
statistically significant with g@-value of 27 x 10-° after Bonferroni correction. De-
tails of p-value calculation can be found in reference [19]. The sloop connecting
two antiparallel strands in nucleoplasmin-core proteindjrcle, top of Fig 1b) be-
comes disconnected in auxin binding protein 1 (in circlettdra of Fig 1b), and
the N- and C- termini of the nucleoplasmin-core protein @uare, top of Fig 1b)
are connected in auxin binding protein 1 (square, bottomigf1B). For details
of other circular permutations we discovered, includinghpatations between as-
partate racemase and type Il 3-dehydrogenase and betweswpimge migration
inhibition factor and the C-terminal domain of arginine megsor, please see [19].

Beyond circular permutation

Because of its relevance in understanding the functiondlfalding mechanism
of proteins, circular permutations have received muchnsitia [45, 67]. A more
challenging class of permuted proteins is that of the naslicypermutation with
more complex topological changes. Very little is known atibis class of permuted
proteins, and the detection of non-cyclic permutationshiallenging task [26, 18,
24, 68].

Non-cyclic permutations of the Arc repressor were creatéfic@ally were found
to be thermodynamically stable. It can refold on the subiseitond time scale,
and can bind operator DNA with nanomolar affinity [63], indiimg that naturally
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c.) _’CN
%Q

b.)

Fig. 1 A newly discovered circular permutation between nuclesiplia-core Lk5j , chain E, top
panel), and a fragment of auxin binding protein 1 (residués127) (I r h, chain A, bottom
panel). a) These two proteins align well with a RMSD value &6A over 68 residues, with a
significant p-value of 27 x 10~° after Bonferroni correction. b) The loop connecting strahd
and strand 5 of nucleoplasmin-core (in rectangle, top) mesodisconnected in auxin binding
protein 1. The N- and C- termini of nucleoplasmin-core (intamgle, top) become connected in
auxin binding protein 1 (in rectangle, bottom). To aide isualization of the circular permutation,
residues in the N-to-C direction before the cut in the nyal@smin-core protein are colored red,
and residues after the cut are colored blue. ¢) The topol@ayram of these two proteins. In the
original structure of nucleoplasmin-core, the electrondgiiy of the loop connecting strand 4 and
strand 5 is missing in the PDB structure file. This figure is ified from [19].

occurring non-cyclic permutations may be as rich as theicymrmutations. Our
database search uncovered a naturally occurring nonecgelimutation between
chain F of AML1/Core Binding Factor (AML1/CBF, PDB IRRe50, Figure 2a,
top) and chain A of riboflavin synthase (PDB lpkv, Figure 2a, bottom) [71, 46].
The two structures align well with an RMSD of 1.23 atan alignment length of
42 residues, with a significaptvalue of 28 x 10~4 after Bonferroni correction.

The topology diagram of AML1/CBF (Figure 2b) can be transfed into that
of riboflavin synthase (Figure 2f) by the following steps:nReve the the loops
connecting strand 1 to helix 2, strand 4 to strand 5, and dtbatio strand 6 (Figure
2c¢). Connect the C-terminal end of strand 4 to the originaéMnini (Figure 2d).
Connect the C-terminal end of strand 5 to the N-terminal dritetix 2 (Figure 2e).
Connectthe original C-termini to the N-terminal end of sti®. The N-terminal end
of strand 6 becomes the new N-termini and the C-terminal éstrand 1 becomes
the new C-termini (Figure 2f).
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Fig. 2 A non-cyclic permutation discovered between AML1/Core @iy Factor (AML1/CBF,
PDB ID 1e50, Chain F, top) and riboflavin synthase (PDBIpkv, chain A, bottom) a) These
two proteins structurally align with an RMSD of 1.Z30over 42 residues , and has a significant
value of 28 x 10~ after Bonferroni correction. The residues that were assiggguivalences from
the structural alignment are colored blue. b) These preteie related by a complex permutation.
The steps to transform the topology of AML1/CBF (top) to flawin (bottom) are as follows: c)
Remove the the loops connecting strand 1 to helix 2, strangs#and 5, and strand 5 to helix 6; d)
Connect the C-terminal end of strand 4 to the original N-taime) Connect the C-terminal end of
strand 5 to the N-terminal end of helix 2; f) Connect the aradiC-termini to the N-terminal end
of strand 5. The N-terminal end of strand 6 becomes the neeridihi and the C-terminal end of
strand 1 becomes the new C-termini. We now have the topol@gyraim of riboflavin synthase.
This figure was modified from [19].

4 Local Sequence Order Independent Structural Alignment

The comparison of overall structural folds regardless pbtogical reconnections
can lead to insight into distant evolutionary relationshifowever, similarity in
overall fold is not a reliable indicator of similar functi¢#4, 50, 25]. Several stud-
ies suggest that structural similarities between locdbsarregions where biologi-
cal function occurs, such as substrate binding sites, asdtartpredictor of shared
biological function [47, 52, 10, 35, 61, 62].

Substrate binding usually occurs at concave surface regemmmonly referred
to assurface pocketpt3, 23, 10, 20]. A typical protein has many surface pockets,
but only a few of them present a specific three-dimensiomahgement of chemical
properties conducive to the binding of a substrate. Thisgimanust maintain this
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physiochemical environment throughout evolution in otdenaintain its biological
function. For this reason, shared structural similaribesveerfunctional surfaces
among proteins may be a strong indicator of shared biolb@icection. This has
lead to a number of promising studies, in which protein fioret can be inferred by
similarity comparison of local binding surfaces [10, 39, %148].

A challenging problem with the structural comparison oftpin pockets lies in
the inherent flexibility of the protein structure. A protdsnot a static structure
represented by a Protein Data Bank entry. The whole proteiwell as the local
functional surface may undergo large structural fluctuegiorhe use of a single
surface pocket structure as a representative templatedpeeific protein function
will often result in many false negatives. This is due to thahility of a single
representative to capture the full functional charactiessacross all conformations
of the protein.

To address this problem, we have developed a method thatutamatically
identify the structurally preserved atoms across a familprotein structures that
are functionally related. Based on sequence-order indigrgrsurface alignments
across the functional pockets of a family of protein stroefwur method creates
signature pocketwith structurally conserved atoms identified and their fhation
measured. As more than one signature pocket may result fargéesunctional
class, the signature pockets can be organized irtasis setof pockets for that
functional family. These signature pockets of the bindingaces then can be used
for scanning a protein structure database for functiorriefece.

4.1 Bi-partite graph matching approach to structural alignment

Our method for surface alignment is sequence order indegentt is based on a
maximum weight bi-partite graph matching formulation o8] with further mod-
ifications. This alignment method is a two step iterativecess. First, an optimal
set of equivalent atoms under the current superpositiofoared using a bi-partite
graph representation. Second, a new superposition of theitoteins is determined
using the new equivalent atoms from the previous step. Thesteps are repeated
until a stopping condition has been met.

To establish the equivalence relationship, two proteircfimmal pocket surfaces
Sa andSs are represented as a graph, in which a node on the grapheapegsatom
from one of the two functional pockets. The graph is bi-peaifiedges only connect
nodes from proteirSy to nodes from proteirss. In our implementation, directed
edges are only drawn from nodes®xfto nodes ofs if a similarity threshold is met.
The similarity threshold used in ourimplementation is adlion of spatial distances
and chemical differences between the corresponding atee®s[@1] for details).
Each edge ; connecting nodéto nodej is assigned a weight(i, j) equal to the
similarity score between the two corresponding atoms. Abetjuivalence relations
between atoms @&, and atoms ofg can be found by selecting a sub-set of the edges
connecting nodes @, to Sg, with maximized total edge weight, where at most one
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edge can be selected for each atom [14]. A solution to the maxi weight bi-
partite graph matching problem can be found using the Huagatgorithm [38].

The Hungarian method works as follows. To begin, an overteak,; = 0 is
initialized, and an artificial source nodeand an artificial destination nodkare
added to the bi-partite graph. Directed edges with O-wefigith the source node
sto each node 08, and from each node ds to the destination nodé are also
added. The algorithm then proceeds as follows:

1. Find the shortest distan€&€i) from the source nodgto every other nodeusing
the Bellman-Ford [7] algorithm.

2. Assign a new weight/ (i, j) to each edge that does not originate from the source
nodes as follows,

W (i, j) =w(i, )+ [F (i) = F(j)]- C)]
3. Updateq asFé"” =Fq —F(d)

4. Reverse the direction of the edges along the shortestiaths to d.
5. If Fy > F(d) and a path exists betwesmandd then start again at step 1.

The Hungarian algorithm terminates when either there is aih froms to d
or when the shortest distance from the source node to thend#ésh nodeF (d)
is greater than the current overall scétg . The bi-partite graph will now consist
of directed edges that have been reversed (point from nddgsto nodes 0fSy).
These flipped edges represent the current equivalencerahips between atoms
of Sy and atoms ofs.

The equivalence relations can then be used to superimpasadiproteins. After
superposition, a new bi-partite graph is created and thémar weight bi-partite
matching algorithm is called again. This process is remkd#tratively until the
change in RMSD upon superposition falls below a threshold.

4.2 Signature pockets and basis set of binding surface for a
functional family of proteins

Based on the pocket surface alignment algorithm, we haveldeed a method that
automatically generate structural templates of localesie$, calledgignature pock-
ets which can be used to represent an enzyme function or a lgjraditivity. These
signature pockets contain broad structural informatiorwali as discriminating
ability.

A signature pocket is derived from an optimal alignment acdqumputed sur-
face pockets in a sequence-order-independent fashiorhichwatoms and residues
are aligned based on their spatial correspondence whemmabgimilarity is ob-
tained, regardless how they are ordered in the underlyiilggry sequences. Our
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method does not require the atoms of the signature pocket podsent in all mem-
ber structures. Instead, signature pockets can be creatad/ing degrees of partial
structural similarity, and can be organized hierarchjcatldifferent level of binding
surface similarity.

The input to the signature pocket algorithm is a set of fuomal pockets from a
pre-calculated database of surface pockets and voids eeipsosuch as those con-
tained in the CASTp database [20]. The algorithms beginsdvfopming all vs all
pair-wise sequence order independent structural alighmethe input functional
surface pockets. A distance score, which is a function oRNESD and the chem-
istry of the paired atoms from the structural alignmentgisarded for each aligned
pair of functional pockets (see [21] for details). The ré&isgl distance matrix is
then used by an agglomerative clustering method, which rgéeea hierarchical
tree. The signature of the functional pockets can then beated using a recursive
process following the hierarchical tree.

The process begins by finding the two closest siblings (ps&eand Sg), and
combining them into a single surface pocket structiyg Because of the recursive
nature of this algorithm, either of the two structures beiombined may themselves
already be a combination of several structures. When camdpthe two structures,
we follow the criteria listed below:

1. If two atoms were considered equivalent in a structuighahent, a single coor-
dinate is created in the new structure to represent bothsaatdhe new coordinate
is calculated by averaging the coordinates of all undegydtoms that are cur-
rently represented by the two coordinates to be averaged.

2. If no equivalence was found for an atom during the stradtalignment, the co-
ordinates of that atom are transferred directly into the peaket structure.

During each step in combining two surface pockets, a coutth®humber of
times that an atom at the positibmvas present in the underlying set of pockets is
recorded, which is then divided by the number of the constitypockets. This is
the preservation ratigo(i). In addition, the mean distance of the coordinates of the
aligned atoms to their geometric center is recorded adoitegion variation v At
the end of each step, the new struct8kg replaces the two structur& andSg in
the hierarchical tree, and the process is repeated on thetegbtlierarchical tree. At
a specific height of the hierarchical tree, different sigimatpockets can be created
with different extents of structural preservation by sélegap threshold value.

The signature pocket algorithm can be terminated at anyt gdaiiing its traversal
of the hierarchical tree. Figure 3 illustrates this poinsbpwing three different stop-
ping thresholds (horizontal dashed lines). Depending erthioice of the threshold,
one or multiple signature pockets may result. Figure 3a stelow threshold which
results in a set of 3 signature pockets. Raising the threstan produce fewer sig-
nature pockets (Figure 3b). A single signature pocket teptasents all surface
pockets in the data set can be generated by raising the tidesbten further (Fig-
ure 3c). Since clusters from the hierarchical tree represeset of surface pockets
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Fig. 3 Different basis sets of signature pockets can be producedfatent levels of structural
similarity by raising or lowering the similarity thresho(dertical dashed line). a.) A low threshold
will produce more signature pockets. b.) As the thresholaised, fewer signature pockets will
be created. c.) A single signature pocket can in principlereated to represent the full surface
pocket data set by raising the threshold.

that are similar within certain threshold, if a stoppingasinold is chosen such that
there exist multiple clusters in the hierarchical tree,gnature pocket will be cre-
ated for each cluster. The set of signature pockets froramifft clusters collectively
form abasis seof signature pockets, which represent the ensemble ofrdiftéy
sampled conformations for a functional family of proteiAs.a basis set of signa-
tures can represent many possible variations in shapeshamdical textures, it can
represent structural features of an enzyme function withpdex binding activities,
and can also be used to accurately predict enzymes function.

4.3 Signature pockets of NAD binding proteins

To illustrate how signature pockets and basis set help ttifgekey structural ele-
ments important for binding and how they can facilitate fimetinference, we dis-
cuss a study of the nicotinamide adenine dinucucleotideD)NBinding proteins.
NAD consists of two nucleotides, nicotinamide and adeniviach are joined by
two phosphate groups. NAD plays essential roles in metsimolvhere it acts as a
coenzyme in redox reactions, including glycolysis and tlrecacid cycle.

Using a set of 457 NAD binding proteins of diverse fold stures and diverse
evolutionary origin, we first extracted the NAD binding sagés from precomputed
CASTp database of protein pockets and voids [20]. Basednoifesity values from
a comprehensive all-against-all sequence order indep¢sdeface alignment, we
obtain a hierarchical tree of NAD binding surfaces. The ltasg9 signature pockets
of the NAD binding pocket form a basis set, which are shownigufe 4.

These signature pockets contain rich biological infororatiAmong the NAD-
binding oxioreductase, three signature pockets (Fig 4End,|) are for clusters of
oxioreductases that act on the CH-OH group of donors (alemtioreductases), one
signature pocket (Fig 4J) is for a cluster that act on thetalde group of donors, and
the remaining two signature pockets (Fig 4F and G) are foor@ductases that act
on the CH-CH group of donors. For NAD-binding lyase, one @& tWwo signature
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Signature Pocket Inhibitor ~ Description

Lyase

E.C.#:4.2.1.46 &4.1.1.35

SCOPID:c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

3

Isomerase

EC.#:5.1.3.2

SCOPID:c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

Lyase

EC. #:4234&46.1.3

SCOP ID: e.22.1.1

SCOP Fold: Dehydroquinate synthase-like
Note: Rossman fold topology binds NAD

Le—

LEBDRET

CH-OH oxioreductase
EC.#:1.1.137&1.1.1.27

SCOP ID: d.162.1.1

SCOP Fold: LDH C-terminal domain-like
Note: Rossman fold domain

I
| s |

CH-CH oxioreductase

EC.#:1.3.1.9

SCOPID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

CH-CH oxioreductase

EC.#1.3.1.9

SCOPID:c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

CH-OH oxioreductase

EC. #:1.1.135&1.1.1.141 &1.1.1.178
SCOPID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

prom

CH-OH oxioreductase

EC.#1.1.1.1

SCOPID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

U N

Aldehyde oxioreductase
EC.#:1.2.1.12

SCOP ID: d.81.1.1

SCOP Fold: FwdE/GAPDH domain-like
Note: Rossman fold domain

Fig. 4 The topology of the hierarchical tree and signature poc&éthe NAD binding pockets.
a.) The resulting hierarchical tree topology. b-j.) Theulag signature pockets of the NAD bind-
ing proteins, along with the superimposed NAD molecules Were bound in the pockets of the
member proteins of the respective clusters. The NAD coerzyinave two distinct conformations.
Those in an extended conformation are marked with an X argktha compact conformation are
marked with a C.



Title Suppressed Due to Excessive Length 15

pockets (Fig 4D) represent lyase that cleave both C-O andde+@s. The other
signature pocket (Fig 4B) represent lyases that cleave Gethand C-C bonds.
These two signatures come from two clusters of lyase cordtions, each with a
very different class of conformations of the bound NAD cadeic

We found that the structural fold and the conformation of leeind NAD co-
factor are the two major determinants of the formation of¢husters of the NAD
binding pockets (Figure 4A). It can be seen in Figure 4B-Jtthere are two general
conformations of the NAD coenzyme. The NAD coenzymes labéle(Fig 4B,
C, F, G, H, and J) have a closed conformation, while the camesylabeled X
(Fig 4D, E, and I) have an extended conformation. This indgahat the binding
pocket may take multiple conformations yet bind the samestsate in the same
general structure. For example, the two structurally detsignature pockets shown
in Figure 4F, G are derived from proteins that have the sawmlegical function and
SCOP fold. All of these proteins bind to the same NAD confdiora

We have further evaluated the effectiveness of the NAD bigdite basis set by
determining its accuracy in correctly classifying enzyras®ither NAD-binding or
non-NAD-binding. We constructed a test data set of 576 sarfackets from the
CASTp database [20] independent of the training set of 45D X#ding proteins.
These 576 surface pockets were selected by taking the tageéstgpockets in vol-
ume from 142 randomly chosen proteins and 50 proteins that NAD bound in
the PDB structure, with the further constraint that theyeveot in our training data
set. We then structurally aligned all 576 pockets in our tkexté set against each of
the nine NAD signature pockets in the resulting basis seé. t€sting pocket was
assigned to be an NAD binding pocket if it structurally akginto one of the nine
NAD signature pockets, with its distance under a predefihezshold. Otherwise it
was classified as non-NAD binding. The results show that éisestset of 9 signature
pockets can classify the correct NAD binding pocket withssrity and specificity
of 0.91 and 0.89, respectively.

We performed further testing to determine whether a singpeasentative NAD
binding pocket, as opposed to a basis set, is sufficient éartifying NAD-binding
enzymes. We chose a pocket representative pocket from otte &f clusters that
were used to construct the 9 signature pockets. Here, aggstickets was classi-
fied as NAD-binding if its structural similarity to the sirggtepresentative pocket
was above the same pre-defined threshold used in the bastdgt We repeat
this exercise nine times, each time using a different reqgive from a different
cluster. We found that the results deteriorated signifigawith an average sensitiv-
ity and specificity of only 0.36 and 0.23, respectively. Tétisdy strongly indicates
that the construction of a basis set of signatures as a staldemplate provides
significant improvement for a set of proteins binding the sam-factor but with di-
verse evolutionary origin. Further details of the NAD-himgl protein study can be
found in [21], along with an in-depth study of the metalloepdptidase, including
the construction of its signatures and basis set, as welas ttility in function
prediction.
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5 Conclusion

In this chapter, we have discussed methods that providé@odio the problem of
aligning protein global structures as well as aligning piotocal surface pockets.
Both methods disregard the ordering of residues in the pr@iémary sequences.
For global alignment of protein structures, such a methodlmaused to address
the challenging problem of identifying proteins that arpdmgically permuted but
are spatially similar. The approach of fragment assemb$getan the formulation
of a relaxed integer programming problem and an algorithsetdaon scheduling
split-interval graphs works well, and is characterized lgparanteed approximation
ratio. In a scaled up study, we showed that this method womd$ iw discovery
of circularly permuted proteins, including several prawdty unrecognized protein
pairs. It also uncovered a case of two proteins related blyarigrder permutations.

We also described a method for order-independent alignofdotal spatial sur-
faces that is based on bi-partite graph matching. By assgssirface similarity
for a group of protein structures of the same function, thethmd can be used to
automatically construct signatures and basis set of bipndirrfaces characteristic
of a specific biological function. We showed that such sigrext can reveal use-
ful mechanistic insight on enzyme function, and can coteeleell with substrate
binding specificity.

In this chapter, we neglect an important issue in our disonssf comparing
protein local surfaces for inferring biochemical functsomamely, how to detect
evolutionary signals and how to employ such informationdtein function pre-
diction. Instead of going into details, we first point reat®rthe general approach of
constructing continuous time Markovian models to studytgiroevolution [74, 33].
In addition, a Bayesian Monte Carlo method that can sepaedéetion pressure due
to biological function from selection pressure due to thestmints of protein fold-
ing stability and folding dynamics can be found in [61] and4@] . The Bayesian
Monte Carlo approach can be used to construct customizeithgenatrices that are
specific to a particular class of proteins of the same functi2etails of how such
method works and how it can be used to accurately predictreaZynctions from
structure with good sensitivity and specificity for 100 emzyfamilies can be found
in a recent review [42] and original publications [61, 62heTltask of computing
surface pockets and voids using alpha shape is discussaddet review [41].
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