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Chapter

A Review of Several Privacy
Violation Measures for Large
Networks under Active Attacks
Tanima Chatterjee, Nasim Mobasheri and Bhaskar DasGupta

Abstract

It is by now a standard practice to use the concepts and terminologies of network
science to analyze social networks of interconnections between people such as
Facebook, Twitter and LinkedIn. The powers and implications of such social net-
work analysis are indeed indisputable; for example, such analysis may uncover
previously unknown knowledge on community-based involvements, media usages
and individual engagements. However, all these benefits are not necessarily cost-
free since a malicious individual could compromise privacy of users of these social
networks for harmful purposes that may result in the disclosure of sensitive data
that may be linked to its users. A natural way to avoid this consists of an
“anonymization process” of the relevant social network. However, since such
anonymization processes may not always succeed, an important research goal is to
quantify and measure how much privacy a given social network can achieve.
Toward this goal, some recent research works have aimed at evaluating the resis-
tance of a social network against active privacy-violating attacks by introducing and
studying a new and meaningful privacy measure for social networks. In this chap-
ter, we review both theoretical and empirical aspects of such privacy violation
measures of large networks under active attacks.

Keywords: social networks, privacy measure, active attacks, (k, ℓ)-anonymity,
algorithmic complexity

1. Introduction

In recent years, social networks have become an indisputable part of people’s
lives. The emergence of such networks has altered how we interact with the world.
A given individual’s day-to-day activities like media consumption, job hunting and
social interaction have changed, along with how businesses and other beneficial
entities interact with them through marketing, advertising, and information diffu-
sion. This has led to an unstoppable race of collecting information and interaction
from social networks by researchers, governments, and business entities for various
purposes. From a research point of view, social networks and their interaction
mechanisms provide valuable insight in many fields of study, such as sociology,
psychology, advertising, and recommendation systems. It is only natural that the
information contained in these networks and the value they hold have been and will
be targeted by bad actors for malicious activities. The importance of these networks
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and the value of information that can be retrieved from them have led social
network researchers to take a closer look at methods to combat such bad actors as
well as formulate network measures that can provide an insight to the privacy of
these networks. In this survey, we will look at one such measure known as k,ℓð Þ-
anonymity [1] and will discuss some theoretical and empirical results regarding this
measure.

1.1 Overview of the paper

Given the irrefutable importance of social networks in our daily lives and the
ever increasing risk of compromising valuable personal data through privacy
attacks against these networks, it is preferable to know how secure a given social
network is against privacy attacks. This necessitates a deeper look into the types of
privacy attacks and how to cope with them. There is an extensive literature on
privacy preserving computational models in variety of application areas such as
multi-party communications or distributed computing settings [2–6]. In this chap-
ter, we focus on a specific type of attack known as background-based active attack
and one measure that reflects the resistance of any given network against such
attacks. The organization of the rest of the paper is as follows:

• In Section 2 we briefly discuss the notion of privacy in social networks and
review some literature on privacy violating attacks on social networks. We also
introduce the k,ℓð Þ-anonymity privacy measure and some corresponding
network measurement which are the basis for this measure.

• In Section 3 we review some basic terminologies and notations that will be used
in formulation of the three problems introduced in Section 4.

• Section 4 contains three problems that arise from theoretical investigation of
the k,ℓð Þ-anonymity.

• Section 5 contains the results of an empirical study on the resistance of real-
world social networks.

• Finally, we end this chapter with some concluding remarks in Section 6.

2. Privacy measures in social networks

We begin by discussing the mathematical structure that fit the most to represent
social networks. A social network is often portrayed as a graph [7, 8] G ¼ V,Eð Þ
where V is a set of nodes representing the social members, and E is the set of edges
portraying the relationship among these members. Both nodes and edges may have
extra attributes, such as weights, that provide extra information about the nature of
these social bonds (e.g., trust or popularity); however, throughout this survey we
will consider the simplest form of graphs, namely undirected and unweighted
graphs, to model our social networks.

As we discussed in the previous section, the information that the social networks
provide are invaluable. Due to the very nature of many social network applications,
the identity of the members or the nature of relationship between members is quite
sensitive and valuable. Thus, when releasing a social network we want to remove
any attributes that may help identify these kinds of sensitive data. Assuming all
members and their relationships are of high sensitivity, preventing identity disclosure
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or link disclosure becomes an important task. One popular method to prevent such
disclosures is anonymization. In an anonymization process, we publish the network
without identifying the corresponding nodes or potentially identifiable attributes.
Even after anonymizing the network, we will still be releasing many informative
attributes encoded by the network structure; for example, attributes such as node
degree, connectivity, or other similar graph properties can still help the adversaries
in compromising the user privacies of a published network.

Adversaries usually rely on background knowledge to compromise the privacy of
published anonymized social networks. For understanding the failure of current
privacy preservation methods such as anonymization, we need to have a proper
model for the adversary background knowledge. Although it’s challenging to have
a comprehensive model of all possible types of adversary background knowledge, it is
very useful to model the background knowledge via structural properties of networks
such as node degrees, embedded subgraphs, node neighbors, etc. [9]. Backstrom et al.
[10] were the first to introduce a category of attacks on anonymized social graphs.
The models introduced in [10] are background-based attacks and are widely used in
privacy analysis of social networks. The two main types of attacks are as follows.

1.Passive attacks in which the adversary will notmodify the network by injecting
new nodes, but instead will use the structural knowledge to detect the location of
a known node. In this type of attacks, the adversary can benefit from the fact that
most nodes in real social networks often belong to a small uniquely identifiable
subgraph [10]. An adversary can then build a coalition with members of such
subgraphs and attempt to re-identify the subgraphs in the anonymized
published network, thus compromising the privacy of neighboring nodes.

2.Active attacks in which the adversary will choose an arbitrary set of target
users, create new nodes and insert them into a social network in a way that
they are connected to the target set and they form a distinguishable subgraph.
After the anonymized version of the social network is published, the adversary
can then use the subgraph as a fingerprint to re-identify the targeted users and
compromise their privacy.

The authors in [10] also showed that it is possible to compromise the privacy of

any social network of n nodes with high probability using only O
ffiffiffiffiffiffiffiffiffiffiffi

log n
p� �

attacker
nodes. In a passive attack, adversary’s structural knowledge will give her/him a
global view of the network depending on the global structure of the network. It
could pose a high privacy risk if an adversary were to combine this global view with
the local structural knowledge obtained using an active attack. As an example,
consider the network in Figure 1. If we only have global structural knowledge, it is
not possible to differentiate the nodes v3 and v4 (e.g. , same node degrees, etc.).
However, controlling just one extra node in the graph, such as the node v1, provides
local structural knowledge such as distances between nodes, and using the knowl-
edge of the distance of v1 from v3 and v4 (dv1,v3 ¼ 1 and dv1,v4 ¼ 2) one can easily
differentiate node v3 from node v4.

There are several well-studied strategies for coping with active attacks on a
social network [9, 11, 12] via addressing the anonymization process of the social
network. However, in this chapter we will focus on a measure that evaluates how
resistant a social network is against this type of privacy attack. Introduced by
Trujillo-Rasua et al. [1], k,ℓð Þ-anonymity is a novel and, to the best of our knowl-
edge, the only privacy measure examining the structural resistance of a given graph
against active attacks. The k,ℓð Þ-anonymity is a measure based on metric represen-
tation of nodes, where k is a privacy threshold and l is the maximum number of
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attacker nodes that may be inserted in the network. It was shown in [1] that graphs
satisfying k,ℓð Þ-anonymity can successfully deter adversaries controlling at most l
nodes in the graph from re-identifying nodes with probability higher than 1

k.

2.1 k, ℓð Þ-anonymity

The k,ℓð Þ-anonymity measure is based on a concept known as k-metric anti-
dimension of graphs. To facilitate further discussions about the measure, we first
introduce some notations and terminologies. For a simple connected graph G ¼
V,Eð Þ, where V is set of nodes and E is set of edges, let distvi,vj denote distance (i.e. ,

number of edges in a shortest path) between the nodes vi and vj. Given and ordered
set of nodes S ¼ v1, … , vtf g and a node u we define the metric representation of u
with respect to S as a vector du,�S ¼ distu,v1 , … , distu,vtð Þ. Metric representations of
nodes are closely related to the concept of a resolving set of a graph. Inspired by the
problem of identifying an intruder in a network and introduced separately by Slater
[13] and by Harary and Melter [14], a resolving set of graph provides recognition of
every pair of nodes in graph.

Definition 1 (resolving set). Given a graph G ¼ V,Eð Þ, a subset S⊆V is called a
resolving set for G if, for each pair of nodes u, vð Þ∈G, there exist a node x∈ S such
that distx,u 6¼ distx,v. A smallest-cardinality resolving set is called the metric basis,
and its cardinality is referred to as the metric dimension of G.

The concepts of metric representation and resolving set inspired the introduc-
tion of another network measure known as k-antiresolving set that will be used as the
founding base for k,ℓð Þ-anonymity.

Definition 2 (k-antiresolving set). Given a graph G ¼ V,Eð Þ, S⊂V is called a
k-antiresolving set of G if k is the largest integer such that, for every node v∈VnS,
there exist at least k� 1 nodes u1, u2, … , uk�1 ∈VnS with the same metric represen-
tation with respect to S as v.

A k-antiresolving set of minimum cardinality is called a k-antiresolving basis, and
its cardinality denotes the k-metric antidimension adimk Gð Þ of G. Note that the
k-antiresolving set may not exist for every k in a graph.

The (k,l)-anonymity measure is built upon the k-antiresolving set concept.
Assume the adversary has gained control of a subset S of nodes in the graph G,
where S is a k-antiresolving set for G. Then the adversary cannot uniquely re-
identify any node based on the background knowledge (namely, the knowledge of
metric representation of a node v with respect to S) with probability higher than 1

k.

k,ℓð Þ-anonymity is formally defined as [1].

Figure 1.
A simple graph G used in Section 2 to illustrate the high risk posed by combining knowledge gained by active
and passive attacks.
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Definition 3 ( k,ℓð Þ-anonymity). A graph G under active attack satisfies k,ℓð Þ-
anonymity if k is the smallest positive integer so that the k-metric antidimension of
G is less than or equal to l.

In the above definition, k is a parameter depicting the privacy threshold and l
represents the maximum number of attacker nodes. It is safe to assume that number
of attacker nodes l is significantly smaller than number of nodes present in the
network as injecting attacker nodes or gaining control of existing nodes is difficult
without being detected [15].

3. Basic terminologies and notations

For the exposition in the remainder of this chapter, we will need some notations
and terminologies which we introduce here. Consider the (undirected unweighted)
graph G in Figure 2. We will use this graph to illustrate the terminologies and
notations that are introduced.

• The metric representation of node vi is denoted by
dvi ¼ distv1,vi , distv2,vi , … , distvn,við Þ.

◦ For example, in Figure 2, dv1 ¼ 0, 1, 2, 3, 3, 2ð Þ

• The diameter of G is the length of the longest shortest path and is denoted by

diam Gð Þ ¼ max vi,vj ∈V distvi,vj

n o

.

◦ For example, in Figure 2, diam Gð Þ ¼ 3.

• The open neighborhood of node vi is a subset of all nodes directly connected to
vi and denoted by Nbr við Þ ¼ vjj vi, vj

� �

∈E
� �

.

◦ For example, in Figure 2, Nbr v2ð Þ ¼ v1, v3, v6f g.

• The metric representation of a node vi with respect to a subset such as S⊂V is
denoted by dvi,�S.

◦ For example, in Figure 2, dv1,� v3,v4f g ¼ 2, 3ð Þ.

Figure 2.
An example used in Section 3 for illustrating various notations.
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• We can expand the previous notation to reflect the metric representation of a
subset of nodes V 0 ⊂V S with respect to S as DV 0,�S ¼ dvl,�S jvl ∈V 0

� �

.

◦ For example, in Figure 2, D v1,v2f g,� v3,v4f g ¼ 2, 3ð Þ, 1, 2ð Þf g. Note that the

first pair (2,3) corresponds to v1 and the second pair (1,2) corresponds to v2.

• We define a partition
Q

¼ V1, V2, … ,V tf g of V 0 ⊆V as one with the
following properties:

◦ ⋃t
i¼1 V i ¼ V 0, and

◦ for all i 6¼ j, Vi ∩V j ¼ Ø.

• We define a refinement
Q0 ¼ V 0

1,V
0
2, … ,V 0

ℓ

� �

of a partition
Q

, denoted by
Q0 ≺r

Q

, as one that can be obtained from
Q

using the following rules:

◦ For every node vj ∈ ⋃t
i¼1 Vi

� �

n ⋃ℓ

i¼1 V 0
i

� �

, remove vj from the set in
Q

that contains it.

◦ Optionally, for every set Vℓ in
Q

, replace Vℓ by a partition of Vℓ.

◦ If there exists an empty set, remove it.

i. For example, in Figure 2, v1, v2f g, v3f g, v5f gf g≺r v1, v2f g, v3, v4, v5f gf g.

• We define an equivalence relation (and related notations) over set of same-
length vectors DVnV 0,�V 0 for some Ø⊂V 0 ⊂V as follows:

◦ The set of equivalence classes, which forms a partition of DVnV 0,�V 0 , is

denoted by
Q¼

VnV 0,�V 0

i. For example, in Figure 2,
Q¼

v1,v2,v6f g,� v3,v5f g ¼ 2, 3ð Þ, 1, 2ð Þ, 2, 3ð Þf g.

◦ We declare two nodes vi, vj ∈VnV 0 to be in the same equivalence class if

dvi,�V 0 and dvj,�V 0 belong to the same equivalence class in
Q¼

VnV 0,�V 0 ; thus
Q¼

VnV 0,�V 0 also defines a partition into equivalence classes of VnV 0.

◦ The measure of the equivalence relation is defined as

μ DVnV 0,�V 0

� �

¼
def

min y∈
Q¼

VnV0 ,�V0
jyjf g.

◦ If a set S is a k-antiresolving set then DVnS,�S defines a partition into

equivalence classes of measure k.

i. For example, in Figure 2, μ D v1,v2,v6f g,� v3,v5f g

� �

¼ 1 and v3, v5f g is a

1-antiresolving set.
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4. Theoretical results

To understand graph resistance against privacy attacks, one needs to study the
k,ℓð Þ-anonymity in greater details. Thus, we look into some computational prob-
lems related to this measure that were formalized and investigated in [16]. This
section contains three problems from [16] and the respective algorithms to solve
each problem efficiently. It is important to note that k,ℓð Þ-anonymity in its basic
definition sets no limitation for the adversary, which means that an adversary can
take control of as many nodes as she/he can. However, in real world there are many
mechanisms designed solely to prevent such attacks and thus the chances of being
caught are significantly high. This notion is the motivation behind several problems
with respect to measuring the k,ℓð Þ-anonymity in a graph.

We now state the three problems for analyzing k,ℓð Þ-anonymity. Problem 1
simply checks to find a k-antiresolving set for the largest possible value of k. Problem
2 sets a restriction for number of nodes the adversary can control and attempts to find
the largest possible value of k while minimizing the number of nodes that are
compromised. Problem 3 introduces a version of the problem that attempts to address
the trade-off between privacy threshold and number of compromised nodes.

Problem 1 (metric antidimension (ADIM)). Find a k-antiresolving subset of
nodes S that maximizes k.

Problem 1 assumes there are no limitations on the number of attacker nodes,
thus finding an absolute bound for privacy violation. Note that solution to Problem
1, denoted by kopt, shows that, given no bound on number of the nodes an adversary
can control, it is feasible to uniquely re-identify kopt nodes with probability 1

kopt
. The

assumptions in Problem 1 are rarely plausible in practice; due to mechanisms
present to counter such attacks, the more nodes the adversary controls, the higher
the risk of being exposed. Thus, a limit on number of attacker nodes is necessary,
which leads us to Problem 2.

Problem 2 (k≥ -metric antidimension (ADIM≥ k)). Given k, find a k0-

antiresolving set S such that (i) k0 > ¼ k and, (ii) S is of minimum cardinality.
Problem 2 is an extension to Problem 1 that attempts to find the largest value of

k while minimizing the number of attacker nodes. A solution to this problem asserts
few interesting statements. For example, an adversary controlling l attacker nodes

where ℓ< ∣L≥ k
opt ∣ cannot uniquely re-identify any node in the network with a prob-

ability better than 1
k. However, using enough number of nodes (≥ ∣L≥ k

opt ∣) one can re-

establish such possibilities.
The third problem focuses on a trade-off between number of attacker nodes and

the privacy violation probability. Given two measures k,ℓð Þ-anonymity and k0,ℓ0
� �

-

anonymity where k0 > k and ℓ
0
<ℓ, it is easy to observe that k0,ℓ0

� �

-anonymity

measure provides a smaller privacy violation probability but also has lower toler-
ance for attacker nodes. The trade-off leads us to the third problem.

Problem 3 (k=-metric antidimension (ADIM¼k)) Given a positive integer k,
find a k antiresolving subset of nodes S with minimum cardinality if such a subset
exists.

Chatterjee et al. [16] investigated Problems 1–3 from a computational complex-
ity perspective. The following theorems summarizes their finding on Problems 1–3.
The non-trivial mathematical proofs for these theorems are unfortunately outside of
the scope of this chapter; we strongly recommend readers who are interested in the
proofs to read the original paper [16].

Theorem 1. [16]
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1.Both ADIM and ADIM≥ k can be solved in O n4ð Þ time.

2.Both ADIM and ADIM≥ k can also be solved in O n4 log n
k

� �

time with high

probability.

Theorem 2. [16]

1.ADIM¼k is NP-Complete for any k in the range 1≤ k≤ nε where 0≤ ε< 1
2 is any

arbitrary constant, even if the diameter of the input graph is 2.

2.Assuming NP⊈DTIME n log log n
� �

, there exists a universal constant δ>0 such

that ADIM¼k does not admit 1
δ
ln n

� �

approximation for any integer k in the

range 1≤ k≤ nε for any constant 0≤ ε< 1
2, even if the diameter of the input

graph is 2.

3. If k ¼ n� c for some constant c then ADIM¼k can be solved in polynomial time.

Theorem 3. [16]

1.ADIM¼1 admits 1þ ln n� 1ð Þð Þ approximation in O n3ð Þ time.

2.If G has at least one node of degree 1 then ADIM¼1 can be solved in O n3ð Þ time.

3. If G does not contain a cycle of 4 edges then ADIM¼1 can be solved in O n3ð Þ
time.

4.1 Algorithms

The following algorithms were devised in [16] to address Problems 1–3. It is
important to note that ADIM can be solved in O n5ð Þ time by repeatedly solving
ADIM≥ k for k ¼ n� 1, n� 2, … , 1 to find the largest obtainable value for k such

that L≥ k
opt <∞. However, few modifications to Algorithm 1 directly result in O n4ð Þ

solution, which is shown in Algorithm 2.

5. Empirical results

In [18], DasGupta et al. investigated the resistance of 8 real-world network
against active attacks with respect to the k,ℓð Þ-anonymity. All the networks under
investigation were unweighted graphs and the direction of edges (if the network
was directed) was ignored during the analysis. Table 1 contains the general
information regarding these networks. Results for both ADIM and ADIM≥ k were
obtained by running Algorithm 1 on the networks, the return statements from
Algorithm 1 being an exact solution to Problem 2. On the other hand, the exact
solution for Problem 1 can be achieved by combining Algorithm 1 and binary search

on k to find the largest value of k such that V ≥ k
opt 6¼ Ø [18].
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The results for both Problem 1 and Problem 2 for the networks in Table 1 are
depicted in Table 2. Results in Table 2 provide the following interesting insights
with respect to resistance against privacy attacks in real-world social networks.

• All networks, with the exception of ”Enron Email Data” network, will have a
significant percentage of their users compromised if an adversary gains control
of only one node (varying between 2.6% of users compromised in ”University
Rovira i Virgili emails” network to 26.5% of users compromised in ”Zachary
Karate Club” network).

Name Number

of nodes

Number

of edges

Description

Zachary Karate Club

[20]

34 78 Network of friendship between 34 members of a

karate club

San Juan Community

[21]

75 144 Network for visiting relations between families living

in farms in San Juan Sur, Costa Rica, 1948

Jazz Musician

Network [22]

198 2842 A social network of jazz musicians

University Rovira i

Virgili emails [23]

1133 10903 The network of email interchanges between members

of university

Enron Email Data Set

[24]

1088 1767 Enron email network

Email Eu Core [25] 986 24989 Emails from a large European research institute

UC Irvine College

Message platform [26]

1896 59835 Messages on a Facebook-like platform at UC-Irvine

Hamsterster

friendships [27]

1788 12476 Friendships between users of the website

Table 1.
List of 8 social networks studied in [18].
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• For all networks with the exception of ”Enron Email Data” network, the
minimum privacy violation probability is notably higher than 0 (varying
between 0.019 for the ”UC Irvine College Message platform” network to 0.25
for the ”Hamsterster friendships” network). The value for minimum privacy
violation probability in ”Hamsterster friendships” network is notably higher
compare to all other networks.

• In comparison to other networks, the ”Zachary Karate Club” and the ”San Juan
Community” have higher percentage of their users compromised if subjected
to a privacy attack.

The exception network is the “Enron Email Data” network which due to a high

value of L≥ k
opt is very resilient against an attack. An adversary needs to control at

least 86% of the network to achieve a value of popt ¼ 0:007, which is not feasible in

practice. This interesting observation in the “Enron Email Data” network motivated

further inspections in different values of k. As shown in Table 3, L≥ k
opt in the “Enron

Email Data” network does not decrease significantly until k is set to a much smaller
value compare to kopt, which further emphasizes that violating the privacy of the
“Enron Email Data”network is not guaranteed in practice. The authors in [18]
also investigated the k,ℓð Þ-anonymity measure in synthetic networks constructed
based on both Erdös-Rényi random graphs and Barabási-Albert scale-free networks.
We refer the reader to the original paper for more information.

Name n kopt p
opt

¼ 1
kopt L

≥ kopt
opt ¼ L

¼kopt
opt

kopt
n

Zachary Karate Club [20] 34 9 0.111 1 26.5%

San Juan Community [21] 75 7 0.143 1 9.3%

Jazz Musician Network [22] 198 12 0.084 1 6.0%

University Rovira i Virgili emails [23] 1133 29 0.035 1 2.6%

Enron Email Data Set [24] 1088 153 0.007 935 14.1%

Email Eu Core [25] 986 39 0.026 1 3.4%

UC Irvine College Message platform [26] 1896 55 0.019 1 2.9%

Hamsterster friendships [27] 1788 4 0.25 1 0.22%

n depict the number of nodes, kopt is the largest value of k such that V ≥ k
opt 6¼ ø, and L

≥ kopt
opt is minimum number of

attacker nodes for corresponding k.
an denotes the number of nodes in the social graph.
bkopt is the largest value of k such that V ≥ k

opt 6¼ ø.

Table 2.
Results for ADIM using Algorithm 1 [18].

k 4 5 10 20 40 60 100 120 153

Enron Email Data Set pk ¼
1
k

0.25 0.2 0.1 0.05 0.025 0.017 0.01 0.009 0.007

L≥ k
opt

1 334 463 567 683 842 935 935 935

Table 3.
L≥ k

opt values recorded for k> 1 for the “Enron Email Data” network [18]. The values shown are subject
to L≥ k

opt 6¼ L≥ k�1

opt .
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6. Conclusions

Since their emergence about a decade ago, social networks have rapidly grown
and infiltrated every aspect of our daily lives. With rapidly expanding reliance on
their platforms, social networks like Facebook and Twitter are becoming a goldmine
of personal information and user behavior data which makes the study of these
networks of prime importance. The valuable information stored within these plat-
forms makes them the target of malicious entities which try to compromise the
privacy of the users which may further lead to unwanted disclosure of the sensitive
attributes of the network.

In this chapter, we have reviewed a novel privacy measure that quantifies the
resistance of a large social network against a privacy violating attack. We reviewed
some efficient algorithms to compute this measure in social graph and revisited the
privacy violation properties in 8 real-world networks. The current theoretical and
empirical results for k,ℓð Þ-anonymity pave the way for further investigation of this
measure, as well as addressing its shortcomings and limitations.
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