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FULL SIBLING RECONSTRUCTION IN WILD
POPULATIONS FROM MICROSATELLITE GENETIC
M ARKERS

Mary V. Ashley* Tanya. Berger-Wolff  Isabel C. Caballerof,
Wanpracha Chaovalitwongse!  Bhaskar DasGupta  Saad |. Sheikh'

I do not believe that the accident of birth makes
people sisters and brothers. It makes them sib-
lings. Gives them mutuality of parentage.

— Maya Angelou

Abstract

New technologies for collecting genotypic data from ndtpopulations open the
possibilities of investigating many fundamental biolaiphenomena, including be-
havior, mating systems, heritabilities of adaptive traki®m selection, and dispersal
patterns. The power and potential of genotypic informatifian rests in the ability to
reconstruct genealogical relationships among indivisiighese relationships include
parentage, full and half-sibships, and higher order aspafgpedigrees. Some areas
of genealogical inference, such as parentage, have begtiadktensively. Although
methods for pedigree inference and kinship analysis exisst make assumptions that
do not hold for wild populations of animals and plants.

In this chapter, we focus on the full sibling relationshigldinst review existing
methods for full sibship reconstructions from microséejenetic markers. We then
describe our new combinatorial methods for sibling reaomasion based on simple
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Mendelian laws and its extension even in the presence ofseimdhe data. We also
describe a generic consensus method for combining sit#icmnstruction results from
other methods. We present experimental comparison of thiegyésting approaches
on both biological and simulated data. We discuss relatigeitmand drawbacks of
existing methods and suggest a practical approach for seemting sibling relation-

ships in wild populations.

1. Introduction

Kinship analysis of wild populations is often an important and necessary aoenp of
understanding an organism’s biology and ecology. Population biologigigistuplants
and animals in the field want to know how individuals survive, acquire meggsoduce,
and disperse to new populations. Often these parameters are difficult@sdibje to infer
from observational studies alone, and the establishment of kinship mafarentage or
sibling relationships, for example) can be extremely useful. The powtedibox provided
by advances in molecular biology and genome analysis has offered popudalogists a
growing list of possibilities for inferring kinship. Paternity analysis in wild ptagions be-
came common upon the arrival of the first DNA-based markers in the mi@sl38hen
multi-locus DNA fingerprinting methods became available. Probably the mosbleota
discoveries came from studies of avian mating systems. Multi-locus DNA finigéng
revealed that many bird species that were behaviorally monogamous want aften re-
productively promiscuous. Females of such species would furtivelpgn@ extra-pair
copulations, apparently unbeknownst to their cuckolded male socialepsirtin fact, the
frequency of extra-pair fertilizations (up to 50% in some species) led &dhavioral ecol-
ogist to distinguish betweesbcial mating systems and genetic mating systems (reviewed
in [55]). The invention of the polymerase chain reaction (PCR) [38] duildd to the re-
placement of multi-locus fingerprinting with single-locus PCR-based techasilythe mid
1990s [3, 39]. Microsatellites (also known as SSRs and STRs) werersheavrid still are
the most widespread molecular marker for inferring kinship in wild populatialtisough
their development in each new species studied is often a time-consuming enkme
obstacle. Microsatellite genotypes, which could be obtained from tiny amofibisod,
tissue, or even feces, have been used to infer parentage, partiQdsshpity, in a large
number of wild species. Notable examples include the study of pollination paitefar-
est trees [13, 14, 47], identifying fathers of the famed chimpanzeesoofb® [12], and
evaluating the success of alternative mating strategies used by male bigheem [24].
A breakthrough in paternity assignment came with the release of the sofpn@geam
CERVUS [30] that provided a user-friendly Windows-based progtfzeth employed a sta-
tistical likelihood method to assign paternity to a candidate father with an estimatdd lev
of statistical confidence.

There are many cases where field studies can sample cohorts of @ffgetisampling
putative parents is problematic. In these cases, sibling relationshipsif3ibstonstruc-
tion, rather than parentage assignment, is required. For genetic mdr&etiag Mendelian
inheritance, such as microsatellites, parentage assignment (maternity roitpaie com-
putationally much simpler than sibship reconstruction. In diploid organisms;,eafpand
each offspring must share an allele at every genetic locus (barriegmatations). On
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the other hand, full siblings will share, on average, half their allelesabahy one locus,
they may share 0,1, or 2 alleles. Sibling reconstruction methods have laggid those
developed for paternity assignment, but several methods of siblings&aotion are now
available. In this review, we will examine the constraints that Mendelian inhegtdictates
for sibling reconstructing, review the use of microsatellite genotyping in wifglifagions,
and evaluate alternative genetic markers. We will then review the variousdsetbr full
sibling reconstruction that are currently available and present expaametdidation of
various methods using both real biological data and simulated data.

1.1. Microsatellites

While there are several molecular markers used in population genetics satiltibes are
the most commonly used in kinship studies in wild populations. First discoverdtein
late 1980s when genomic sequencing studies began [48, 54], microsaseHitsisort (one
to six base pairs) simple sequence repeats, su'agGT),, or (AGC/TCG),, that are
scattered around eukaryotic genomes. A genomic library for a studyespscscreened
for such repeats and primers for PCR amplification are constructed fnegions flank-
ing the short repeats. Alternatively, microsatellite primers developed ®ispacies may
be used for closely related species. For example, microsatellites devdtopedmans
amplify homologous loci in chimpanzees [12]. Figure 1 shows a schematiopdsaf a
microsatellite marker with three alleles and the resulting genotypes. Becausésthael-
atively high rate of mutation for adding or subtracting repeat units, micrtisateci have
high numbers of alleles and high levels of heterozygosity. PCR-basedsaietite anal-
ysis provides co-dominant, unlinked markers where alleles and genatgpelse scored
precisely by size. These are the characteristics that make them espeséily for esti-
mating kinship and relatedness. There are some technical problems ssbwdia scoring
microsatellites, and any method of sibling reconstruction with microsatellites nedxs
able to accommodate a low frequency of scoring errors or artifacts, itiGautb occasional
mutation.

Microsatellites have been successfully applied to a wide range of nontorgaaisms,
including vertebrates, invertebrates, plants, and fungi, and are us€drttarge-scale pop-
ulation structure as well individual kinship. For kinship studies, microsateltitve been
used more commonly for parentage than for sibship reconstruction, loattesan increas-
ing number of studies that have attempted to reconstruct sibships with part@parental
sampling. In lemon sharks, cohorts of juvenile sharks were sampled lgnfraen nurs-
ery lagoons, and sibship reconstruction was used to infer the mating sgstefertility of
adults [17]. Sibship reconstruction was used to infer patterns of bragsjpism for indi-
vidual female cowbirds, who lay their eggs in the nests of other birds g}5|d a study of
wood frogs, tadpoles were sampled from ponds and sibgroups teades to study their
spatial distribution and the potential for kin selection [22]. Such studies baployed a
variety of methods to reconstruct sibling groups from microsatellite dataibedhere was
no widely accepted or easily implemented software available.

In addition to microsatellites, which assay DNA repeat variation, sever&-Pgsed
methods are available to assay variation in DNA sequence. RAPDs (randomplyfied
polymorphic DNA), ISSRs (inter-simple sequence repeats), and AFamglified frag-
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Alleles
#1 —_— CACACACA <

#2 —=>CACACACACACA~—
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Genotypes
1M 202 33 12 13 213

Figure 1. A schematic example of a microsatellite marker.

ment length polymorphisms) are dominant, multi-locus techniques which artepratic

for kinship inference. SNPs (single nucleotide polymorphisms) are singles Imarkers
that focus on a variable single nucleotide position in the genome. While theyiarerous
in the genome and, once identified, easy to score, they have limitations in éhef &neship
reconstruction. The power to identify related individual depends mainthemumber of
alleles per locus and their heterozygosity. SNPs are usually biallelic, adharerosatel-
lites may have 10 or more alleles per locus and typically have high heterdtiggodt

appears for at least the next few years, microsatellites will remain the nar&boice for
estimating relatedness in wild populations. We thus focus our efforts orogévg and
comparing methods of sibling reconstruction that are applicable to microsateilitesre
generally, codominant, multiallelic markers.

2. Sibling Reconstruction Problem

In order to reason about the inherent computational properties of tidepn of recon-
structing sibling relationships and to compare the accuracy and perfoenmdna@rious
computational methods for solving the problem, we must define it formally. Thlglgm
of siblings reconstruction was first formally defined in [5] and is restagzd.h

Definition 1. Let U be a population of: diploid individuals of the same generation geno-
typed at at microsatellite loci:

U = {Xl, ...Xn}, WhereXi = (<al‘1,b2‘1>, ceny <ail,bil>)

anda;; andb;; are the two alleles of the individuaht locus; represented as some identify-
ing string. The goal of th&bling Reconstruction Problem s to reconstruct the full sibling
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groups (groups of individuals with the same parents). We assume ndddgewof parental
information. Formally, the goal is to find a partition of individud?s, ... P,, such that

V1<k<m, VX, X,€P,: Parents(Xy,)= Parents(X,)

Note, that we have not defined the functiBarents(X). This is a biological objective.
Computational approaches use the formalization of various biologicahgsiguns and con-
straints to achieve a good estimate of the biological sibling relationship. Weilue$oe
fundamental genetic properties that serve as a basis for most computappnaaches in
the next section.

3. Genetics of Sibship

3.1. Mendelian Genetics

Mendelian genetics lay down a very simple rule for gene inheritance in dipigehsms:
an offspring inherits one allele from each of its parents for each locus. This introduces two
overlapping necessary (but not sufficient) constraints on full sibliogigs in absence of
genotyping errors or mutations: the 4-allele property and the 2-allele pydpel0].

4-Allele Property: The total number of distinct alleles occurring at any locus may not
exceed 4.
Formally, a set of individuals' C U has the 4-allele property if

Vi<j<lI: < 4.

U{aij bis}

i€S

Clearly, the 4-allele property is necessary since a group of siblings banitionly
combinations of the 4 alleles of their common parents. The 4-allele property is ef
fective for identifying sibling groups where the data are mostly heterarygad the
parent individuals share few common alleles. Generally, as in Table d¢arsasting

of any two individuals trivially satisfies the 4-allele property. The set oividdals

1, 3 and 4 from Table 1 satisfies the 4-allele property. However, thef sedivid-

uals 2, 3 and 5 fails to satisfy it as there are five alleles occurring at théofiss:
{12,28,56,44, 51}.

2-Allele Property: There exists an assignment of individual alleles within a locus to ma-
ternal and paternal such that the number of distinct alleles assignedhtpaa@nt at
this locus does not exceed 2.

Formally, a set of individual$' C U has the 2-allele property if for each individual
X; in each locus there exists an assignmeni;pf= c;; or b;; = c;; (and the other
allele assigned tg;;) such that

A}

€S

Vi<j<lI: <2 and <2

U{es}

€85
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The 2-allele property is clearly stricter than the 4-allele property. Lookitiyealable 1,
our previous 4-allele set of individuals 1, 3 and 4 fails to satisfy the 2-giielperty since
there are more than two alleles on the left side of locu§4d; 28, 13}. Moreover, there is
no swapping of the left and right sides of alleles that will bring down the rerroballeles
on each side to two: individuals 1 and 4 with their alleles 44/44 and 13/13 glfélatie
capacity. Again, any two individuals trivially satisfy the 2-allele property.

Table 1. An example of input data for the sibling reconstruction prodem. The five
individuals have been sampled at two genetic loci. Each allele is repreged by a
number. Same numbers within a locus represent the same alleles.

| Individual | Alleles (a,b) at locus 1] Alleles (a, b) at locus 2|

1 44, 44 55, 27
2 12,56 18, 39
3 28,44 55,18
4 13,13 39, 27
5 28,51 18, 39

Assuming the order of the parental alleles is always the same in the off{penghe
maternal allele is always on the same side), the 2-allele property is equivalenbi-
ologically consistent full sibling relationship. The parental allele ordewewer, is not
preserved, and an interesting problem arises: given a set of indlgifltthat satisfies the
4-allele property, does there exist a series of allele reorderings withie &ci of individ-
uals inS so that after those reorderingssatisfies the 2-allele property? For example, in
Table 1, the individuals 1, 3, and 5 have more than two alleles on the rightsideus 2:
{27,18,39}. However, switching the alleles 18 and 39 at locus 2 in the individual 5 will
bring the number of alleles on either side down to two. Since the number of alfetather
side of locus 1 is also two, the set of individuals 1, 3, and 5 satisfies tHel24aroperty.

In [10] we show the connection between the two properties that we restae h

Theorem 1. Let a be the number of distinct alleles present in a given locusiame the
number of distinct alleles that either appear with three different alleles in this lor are
homozygous (appear with itself). Then, given a set of individuals witldthkele property,
there exists a series of allele reorderings within loci resulting in a set thistisathe 2-
allele property if and only if for all the loci in the set

a+ R < 4.

In our example of individuals 1, 3, and 5 in locusals= |{44,28,51}| = 3andR = 1
since each allele is paired up only with at most two different alleles but 44dsrmhygote.
Inlocus 2,a = |{55,27,18,39}| = 4 but R = 0 since there are no homozygote alleles and
no allele appears with more than two different alleles. Thus, the set ofdidils 1, 3, and
5 satisfies: + R < 4 for all loci and, hence, the 2-allele property.

The 2-allele property takes into account the fact that the parents caibod&only two
alleleseach to their offspring. Note, that the 2-allele property is, again, a necessdry
not a sufficient constraint for a group of individuals to be siblings (isesce of errors or
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mutations). The full formalization of the Mendelian inheritance constraints icdhnéext
of sibling reconstruction is presented in [5, 10].

3.2. Relatedness Estimators

In the 1980’s several statistical coefficients of relatedness were uteald 31, 33, 36]. All
methods use observed allele frequencies to define the probabilistic dégetedness be-
tween two individuals. In 1999, Queller and Goodnight improved on theirageh [37] by
defining simple statistical likelihood formulae for different types of relatigmsihnd used
those to infer sibling relationships. The 1999 paper also defines a methetetonéhe the
statistical significance, or “p-value”, of a relationship estimate. This is dgr@andomly
generating two individuals using the observed allele frequencies andtihgaged proba-
bilities of inheriting a shared allele as defined in the paper. Such randosgbaidividuals
are generated a large number of times, then the likelihood ratio that exclo@esf@he in-
dividuals is accepted as being at p-value 0.05. Even though this appsaaaot presented
or aimed as a method for sibship reconstruction, it served as a basis filvddet methods
that followed. A number of assumptions are made by all relatedness estipiattuding
ignoring mutations and genotyping errors. More importantly, the methodsnassthat a
sample representative of the population has been scored, and thecarstaestimates of
allele frequencies for the entire population. If these assumptions do fthtresults will
be biased [34]. Finally, any method relying purely on a pairwise genetiodistaay lead
to inconsistent results,e. the transitivity of the sibling relationship may not hold. More-
over, as mentioned before, any pair of individuals can be siblings ypaimwise distance
estimate method cannot exclude that possibility [49].

4. Methods for Full Sibling Reconstruction

As more microsatellite markers become available for wild species there is a grimtgnest
in the possibility of inferring relatedness among individuals when part @f &tle pedigree
information is lacking [43]. The majority of the available software requireem@l data.
However, recently there have been several methods attempting to rectsgiship groups
from genetic data without parental information [1, 2, 6, 8, 29, 32, 43%3P Fernandez and
Toro [18] and Butler et al. [9] review many of the methods discussed here

In their survey, Butler et al. [9] classified sibship reconstruction methddgwo main
groups: (1) methods that generate complete genealogical structurethasdrequire ex-
plicit pedigree reconstruction, and (2) pairwise methods that do not imgly gadigree
reconstruction. This latter group can be subdivided into methods that estaiatgse
relatedness based on genotypic similarity and likelihood approaches thsifyclaairs of
individuals into different types of relationships based on marker informatio

In one of the earlier examples of the first type of method, Painter [32] agal/esian
approach to calculate relationship likelihood and then an exhaustivéhgedied the most
likely sibship in a small population of 9 individuals. He identified the need forgisetter
optimization techniques for larger populations. Among the methods that follcseosde
use Markov-Chain Monte Carlo (MCMC) techniques to locate a partition aichaals
that maximizes the likelihood of the proposed family relationship, such as CQL[G8]
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software and Almudevar's method [1]. Smith [43] has developed an apprthat max-
imizes a relatedness configuration score derived form the pairwisedeés likelihood
ratio. Almudevar and Field [2] used an exclusion principle that looks for trges full-

sibling families, using partial likelihoods to pick between families of the same sizeth&r

approach is based on Simpson’s index of concentration [9], whetggithat conform to
Mendelian inheritance rules are formed according to marker informatioa o®the advan-
tages of these methods is that they avoid the inconsistency problems of pastirmators
described below. However, the statistical likelihood methods still dependedintiwledge
of population allelic data (to calculate likelihoods) which is typically unavailableaccu-

rate. Moreover, since most of these methods employ global optimization attinejrthey
are usually computationally demanding.

As described above, a second type of approach, pairwise methodwjdelg used
for sibship reconstruction. While these methods are typically simple and &ssttifer
several disadvantages. First, they can lead to incongruous assigrimeeatsse only two
individuals are considered at a time and transitivity is not preserve@n8elike all statis-
tical methods, they are dependent on the knowledge of allelic frequeri¢hes mopulation
considered. Third, if multiple definite relationships exist, such as full sibling# sib-
lings, or unrelated, arbitrary thresholds have to be defined to decidatdgocy to which
a particular pair is assigned [18].

Here, we consider a different classification of sibling reconstruction odsthbased
on the computational approach a method employs as the basis for rectostrusiB-
SHIP [49], Pedigree [43], KINGROUP [29], and COLONY [53] rely atatistical esti-
mates of relatedness [37] and reconstruct the maximum likelihood siblingpgrétamily
Finder [8] and Almudevar [1] mix statistical and combinatorial approacti@sally, Al-
mudevar and Field [2], 2-allele Minimum Set Cover [5, 6, 10, 41] and $heflal. [40] use
only the fundamental Mendelian constraints and combinatorial techniqguesaastruct
sibling groups.

A common assumption of all but two (Sheikh et al. [40] and COLONY [53]}Icdf
sibship reconstruction methods is that the molecular data is error and muta@ofi].
Data that contain errors test the robustness of these methods and are protagm of the
estimators involving pedigree reconstruction [9].

Following our computationally based classification, we now describe some ofeth-
ods in more detail, providing deeper analysis of the two best-performing ae(hee Sec-
tion 5. for experimental comparison), the likelihood based COLONY anddhebmatorial
2-allele Minimum Set Cover.

4.1. Statistical Likelihood Methods

As Painter’s [32] first likelihood-based sibling reconstruction method ekéet likeli-
hood maximization methods require sophisticated optimization techniques to find she mo
likely sibship partition for datasets of size greater than 10 individuals.

In 2000, Thomas and Hill [49] introduced a Markov Chain Monte Carlo (&) ap-
proach to find the maximum likelihood of a sibship reconstruction. The methogaes
the likelihood ratio of two individuals being siblings to that of the the pair beinge-un
lated [36]. Starting with a random patrtition of individuals into potential siblingugs, the
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method uses a “hill-climbing” approach to explore different sibship reicoctsons, reas-
signing individuals into sibling groups to improve the likelihood of all pairs beifbjngs.

The process continues until one of the halting conditions is reached: #itherumber
of iterations exceeds a threshold, or the sibling reconstruction stabiliezeshe likeli-

hood value reaches a fixed point. The algorithm was not computationattieeffand was
subsequently improved. Like most likelihood based methods, the main assumipticn
approach is that the sample at hand is representative of the entire papumateyms of
allele frequencies and, thus, the relatedness probabilities. More detrilpehtamethod
also assumes that the population contains only full siblings and unrelatgiiinals which
typically does not hold for any population.

In 2002, Thomas and Hill [50] extended their approach by adding hdihgibela-
tionships, thus creating a limited family hierarchy. The algorithm is similar to their pre
vious approach in [49], with the addition that an individual could be assidgo either a
half sibling group or a full sibling group at every iteration. Half sibling gzewvere ran-
domly created every few hundred iterations to ensure that a hierarsiicature existed
in the population. In that paper, Thomas and Hill also explored the effégspulation
size, population structure, and the allelic information available on the penfameraf their
MCMC approach. Typical of the statistical approaches, the accuifatye seconstruction
improved with the increase of available marker information and the nestedhtss full
siblings within half sibling groups but decayed with the increase of the ptipulsize.

In 2001 Smith et al. [43] presented two different MCMC methods for sibsidgom-
struction. One of the methods is very similar to [50], while the other aims to maximize the
joint likelihood of the entire sibship reconstruction rather than pairwise datss ratio.

The methods performed very well for the Atlantic salmon dataset the autbedsin the
original publication. The softwareE®IGREEIS now available for general use as an online
service. Smitlet al. have also assayed the dependency of the accuracy of reconstruction
various data parameters. In general, the methods suffer from typsahasions of other
statistical methods. The accuracy of reconstruction decreases whenighasufficient
allelic diversity per locus or the sample is not representative of the populatio

Konovalov et al. [29] introduced KINGROUP, available as an opencedavd” pro-
gram. KINGROUP uses the relatedness estimators of [37] with additionaithlgs de-
signed for the reconstructions of groups of kin that share a common redhio

Family Finder [8] was introduced in 2003. It is a very efficient method tkaswa com-
bination of statistics and graph theory. This approach constructs a gigpindividuals
as vertices. Edges represent pairwise sibling relationship and aretegigsing, again,
the likelihood ratio of individuals being siblings to their being unrelated [37tercon-
structing this graph “clusters”, or components, corresponding sibliogpg are identified
by finding light edge cuts. Cuts with the number of edges less than one thing efiges
in the graph are chosen. It is a simple and efficient method that can loé\effié enough
loci are available and allelic diversity is high. While there is some theoreticis basage
of the likelihood ratio implies the same assumptions as [37]. Furthermore, ihasdhat
sibling groups are roughly equally sized, which is a dubious assumptioofsarddoes not
hold, especially for wild population samples.
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4.1.1. COLONY

A different likelihood maximization approach was used by Wang [53]. CQKs a com-
prehensive statistical approach that uses the simulated annealing hearistita (local)
likelihood maximum of a sibship reconstruction. The algorithm starts with knoWhd
half siblings (if any are available) and places the rest into singleton siblimgpgr along
with the computed likelihood of each group. A proposed alternate solutiamest geration
is created by moving a random number of individuals from one full sibligigito another
(both groups must not be one of the known full sibling groups). Fordilalings, a random
number of entire full sibling groups are moved from one half sibling grougntmher. As
before, these must not be the original known half sibling families. Afteegeing a new
proposed solution, the likelihood of the old and new configurations of theedlfamilies
is calculated. The new configuration is accepted or rejected based oesadit which
depends on the ratio of the new and old likelihoods.

COLONY is the first method to fully accommodate sampling bias and genotyping er-
rors, although it relies on many user input parameters to do so. Ereestimated using
the calculated probability of observing the given allele assuming the actual ialidiffer-
ent. The probabilities of allelic dropouts and other typing of errors aredbass [19], allelic
dropout is considered to be twice as likely as other errors.

Simulated annealing relies on random numbers and explores a vast sojgio. s
COLONY can be quite slow, and its performance both in terms of time and agcdea
pends drastically on the amount of microsatellite information available. COLONY w
designed for both diploid and haplodiploid species. It is perhaps the ropgirehensive
and sophisticated method currently available for full sibling reconstructitim avstrong
theoretical basis. However, in addition to other disadvantages common tatisflisal sib-
ship reconstruction methods, it also assumes that one of the parents isamausgwhich,
unfortunately, renders it inappropriate for many species that haveipraous mating sys-
tems.

4.2. Combinatorial Approaches

Combinatorial approaches to sibling reconstruction use Mendelian ciotsti@eliminate
sibling groups that are infeasible and to form potential sibling groups tmdbmm to these
constraints. Various methods then use different objectives to chamseaimong these the
groups to form the solution.

Almudevar and Field [2] were the first to introduce a combinatorial appr.o&laey for-
mulated the Mendelian properties in form of graphs and constructed all maigassble
sibling groups. They then performed an exhaustive search to selauirireal number of
these groups using maximum likelihood of the reconstruction as the guidi.appeoach
yielded reasonably good results but was computationally very expeosiga resulting in
the system running out of memory in our experiments (see Section 5.). Almupes-
sented a “hybrid” approach in [1] that used simulated annealing basBtCOMMC methods
to find a locally optimal solution. The method generates putative triplets of {sead chil-
dren, and then uses simulated annealing to explore the space of diffessitile pedigrees.
The exploration is similar to the approach taken by COLONY described abuVeses the
likelihood of the sibling group configuration as a guide. Such a heuristiobaph is not



Full Sibling Reconstruction in Wild Populations from Microsatellite Genetic Merk#

guaranteed to find a globally minimum number of sets. This new version of theodheth
allows for the use of other information in the reconstruction, such as multiplerggons

of siblings, parental genotypes and sex where available. All the inform&itranslated
into constraints that guide the formation of the potential feasible solution.

4.2.1. 2-Allele Minimum Set Cover

The 2-Allele Minimum Set cover approach [5, 6, 10, 41], like Alimudevat Bield’s, uses
Mendelian constraints, specifically the 2-allele property, to form all maxiessible sib-
ling groups. The goal, then, is to find the smallest number of these that cattam
dividuals. Unlike Almudevar and Field, this approach finds the true globéher than
local, minimum. We describe the technical details of the approach and the caiopaita
complexity of this formulation of the problem below.

Recall that we are given a populatibhof n diploid individuals sampled dtloci

U = {Xl, ...Xn}, WhereXi = ((ail,biﬁ, ceey <a¢l,bil))

anda;; andb;; are the two alleles of the individuakt locus;.

The goal of the Minimum 2-Allele Set Cover problem is to find the smallest nuiber
subsets, ..., S,, such that eacl; C U and satisfies the 2-allele constraint ang; = U.
We shall denote the Minimum 2-Allele Set Cover mindividuals with/ sampled loci as
2-ALLELE ,, .

Of all the sibling reconstruction problem formulations, this is the only one fockvits
computational complexity is known.

Computational Complexity

The Minimum 2-Allele Set Cover problem is a special case of theiIMum SET COVER
problem, a classical NP-complete problem [28]iINMMum SET COVER is defined as fol-
lows: given a universé/ of elementsXy, ..., X, and a collection of subsets of U, the
goal is to find the minimum collection of subséisC S whose union is the entire universe
U.

Recall, that g1 + )-approximate solution (or simply an(1 + ¢)-approximation) of a
minimization problem is a solution with an objective value no larger thane times the
value of the optimum, and an algorithm achieving such a solution is said to happrax-
imation ratio of at mostl + . To say that a problem is-inapproximable under a certain
complexity-theoretic assumption means that the problem does not haap@oximation
unless that complexity-theoretic assumption is false.

MINIMUM SET COVER cannot be approximated in polynomial time to within a factor
of (1 — ¢)Inn unlessNP C DTIM E(nl°9'9")  [16]. Johnson introduced B+ Inn
approximation in 1974 [27].

In the 2-ALLELE ,, , the problem the elements are the sampled individuals and the
setsS are the groups of individuals that satisfy the 2-allele property. The méderelifce
between MNIMUM SET CoVER and 2-ALLELE,, ,, or more generallyc-ALLELE ,, ,
problem fork € {2,4}, is that the latter add the 2-allele or the 4-allele restriction on



12 Mary V. Ashley, Tanya Y. Berger-Wolf, Isabel C. Caballero et al.

the structure of the subsefs We show that this restriction does not make the problem
computationally easier angdALLELE ,, , remains NP-complete.

A natural parameter of interest in this class of problems is the maximum size énab
elements): in any set inS. We denote the corresponding problem of finding the minimum
set cover when the size of sibling sets is at mos$a-k-ALLELE,, , in the subsequent dis-
cussions. For example, 2-4-ALLELE, and 2-2-ALLELE,, , are the problem instances
where each subset contains at most two individuals. Recall, that anpfpaiividuals
necessarily satisfies both the 2-allele and the 4-allele properties. Thus|lé®ionS for
2-k-ALLELE ,,, consists of all possible pairs of individuals and the smallest number of
subsets that contain all the individuals are a2 disjoint pairs.

In general, ifa is a constant, then-k-ALLELE ,, , can be posed as a minimum set
cover problem with the number of subsets polynomial end the maximum set size being
a. This problem has a naturél + In a)-approximation using the standard approximation
algorithms for the minimum set cover problem [51]. For a generdhe same algorithm
guarantees aé% +In c)-approximation for any constant> 0. Recently, Ashley et al. [4]
have been able to obtain several non-trivial computational complexititsésuthese prob-
lems which we restate here.

For the smallest non-trivial value of = 3, the 3-k-ALLELE ,, ;s problem is1.0065-
inapproximable unles®& P = N P. This was proved by a reduction from th&®BANGLE
PACKING problem [20, p. 192]. A({ + ¢)-approximation for any > 0 and any constant
€ > 0 is easily achieved using the results of Hurkens and Schrijver [25].

For the second smallest value @f= 4 and! = 2, 4-k-ALLELE ,, 5 is 1.00014-
inapproximable unles® P # N P, proved by a reduction from the AkX-CuT problem
on cubic graphs via an intermediate novel mapping of a geometric nature(%Thez)—
approximation can be achieved fok= 3 by using the result of Berman and Krysta [7].

The n-inapproximability result under the assumption of ZENP was proved for all
sufficiently large values of, that isa = n’, wheree is any constant strictly less than
This result was obtained by reducing a suitable hard instance of the gpbgsing problem.

In all the reductions above additional loci play an important role of addingpiexity to
the problem to ensure the inapproximability result. Thus, interestingly andvdoameoun-
terintuitively, while sampling more loci provides more information and typically inapso
the accuracy of most sibling reconstruction methods, it also adds compatat@nplex-
ity and increases the computational time needed to construct the solutiorhes@rd the
scope of practical computability.

The Algorithm

In [6] we have presented a fully combinatorial solution for the siblingsnetraction prob-

lem based on the 2-Allele Minimum Cover formulation. We briefly describe tiAa PELE
CovEeRalgorithm here. The algorithm works by first generating all maximal siblilogigs

that obey the 2-allele property and then finds the optimal minimum number of sibling
groups necessary to explain the data. The algorithm maintains a completeratiome

of canonical possible sibling groups, called the possibilities table, showakile 2. Each
potential sibling group is mapped to a set of possible canonical représastaGenetic
feasibility of membership of each new individual in a sibling group is checlgg this
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mapping. The intricate process of generating the maximal feasible 2-allels detsribed
in detail in [6].

The 2-allele property reduces the possible combinations of alleles at aifoawggoup
of siblings down to a few canonical options, assuming that the alleles in thg gne
renumbered 1 through 4. Table 2 lists all different types of sibling graassible with
the 2-allele property using such a numbering. We do this by listing all possiiis pf
parents whose alleles are among 1,2,3, and 4 and all the genetically diti#fspming they
can produce. However, in any sibling group with a given set of pamatijsa subset of the
offspring possibilities from the table may be present.

Table 2. Canonical possible combinations of parent alleles and all reking offspring
allele combinations

Parents Offspring
allelea alleleb

1 3 Parents Offspring
1 4 allelea alleleb
2 3
2 4
(1, 2)and (3, 4) 3 1 (1,1)and (1, 1) 1 1
4 1
o L
(1,1)and (1, 2) 1 2
2 1
1 1
1 3 1 5
2 1 1 3
(1,2)and (1, 3) 2 3 (1, 1)and (2, 3) 5 1
3 1 3 1
1 2
3 2
(1, 1) and (2, 2) ; i
1 1
1 2
(1,2)and (1, 2) 5 1
2 2

The maximal feasible 2-allele sets are generated using the canonicaliltessiin
Table 2 in a way which provably produceld maximal such sets and does it in provably
fewest number of queries per individual. After that, the minimum set cover is cortstiu
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as the solution to the sibling reconstruction problem. Note, that since 2-allele nmmimu
cover and Minimum Set Cover are both NP-complete problems, the solution tinw is n
guaranteed to be polynomial. We use the commercial mixed integer linear preghaer
CPLEX! to solve the problem to optimality. On datasets with several hundreds indisidua
it may take several hours to days to obtain a solution.

Subsequently, Chaovalitwongse et al. [10] have presented a full matibahogtimiza-
tion formulation for the Minimum 2-allele Cover problem. We shall briefly desctte
2-ALLELE OPTIMIZATION MODEL (2AOM) here. The formulation directly models the
objective of finding the minimum number of 2-allele sets that contain all indiNgjuather
than using the intermediate steps of generating all maximal 2-allele sets andjfthdin

minimum set cover of those.

Locus 1 Locus 2 A A R I
Individual || alleles(a,b) | alleles(a,b) 0

44,44 55, 27

12,56 18,39

Individual
L

28, 44 55, 18
13,13 39, 27
28,51 18, 39

OB WNE

T
Allele

Figure 2. A multidimensional matrix representation of a dataset of microsateliitplea.

Recall, thatlJ is the set of individualsS is a set of sibling groups, ar@ € S is the
reconstructed set of sibling groups which is returned as the solutionK Le the set of
possible observed alleles arddbe the set of sampled loci. As the input, we are given
|U| = n individuals sampled dtZ.| = [ loci. We represent the data as a multidimensional
0-1 matrix M shown in Figure 2. The matrix entdy/ (i, k,1) = 1 if the individuali € U
has the allelé: € K in locusl € L.

From the input matrixg!, is defined as an indicator variable and equals to 1 if the first
allele at locud of individual i is k. Similarly, b}, is an indicator variable for the second
allele at locud of individual i is k. f!, = max{al, + bl,} is an indicator of whethek
appears at locusof individual 7, that is, M (i, k,1) = f,. Finally b}, = a!, - bl, is an
indicator of whether the individualis homozygous (allelé appears twice) at locus The
following decision variables are then used:

e 2, € {0,1}: indicates whether any individual is selected to be a member of sibling
groups;

e z;; € {0,1}: indicates whether the individuais selected to be a member of sibling
groups;

1CPLEX is a registered trademark of ILOG
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° yék € {0,1}: indicates whether any member of sibling groupas the allelg: at
locusl;

° wik € {0,1}: indicates whether there is at least one homozygous individual in sibling
groups with the allelek appearing twice at locus

e vl,,, € {0,1}: indicates whether the alleleappears with allelé’ in sibling group
s at locusl.

With these variable, the mathematical representation of the objective functibthe
constraints of the 2AOM problem are as follows.

Objective function: The overall objective function is to minimize the total number of
sibling groups:

The minimization objective is subject to three types of constraints stated below.

Cover and logical constraints: Ensure that every individual is assigned to at least one
sibling group:
Z ris > 1, YieU
VseS
The binary sibling group variableis activated for the assignment of any individual
i to the sibling group:

Tis < zg, VieUNVseS

2-allele constraints: Activate the binary indicator variable for aIIeIggC with the assign-
ment of any individual to the sibling set. Here( is a large constant which can be
defined ag” = 2|U| + 1:

Z fhais <Ciyly, VseSVke K\Viel
VieU

Activate the binary indicator variables for homozygous individuals with altedg-
pearing twice at locuéin sibling groups. Here(s is a large constant which can be
defined ag’s = |U| + 1:

> higeis < Cowly,, VseS,VkeKWlel
VieU

Activate the binary indicator variable for allele paiy,, for any assignment to the
sibling groups of the individual: with alleles(k, k') at locusl. HereCs is a large
constant and can be defined@s= |U| + 1:

> fhhiis < Cavly, Vse€SVE£K € KVieL
VieU
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Ensures that the number of distinct alleles plus the number of homozygolss alle
does not exceed 4, conforming to Theorem 1:

S oyl tuwl <4, VseS Vel
Vke K

Every allele in the set should not appear with more than two other alleles ¢éxglu
itself), also conforming to Theorem 1.

> v <2, VseSVkeKViel
VE' €K \k

Binary and nonnegativity constraints:

Ze, Tis, Yo, wly € {0,1}, Vi€ UVs € S,Vk € K,V € L

The total number of discrete variables in the 2AOMA$|U || K ||S|) and so is the
total number of constraints. Thus, the 2A0OM formulation of the 2-allele minimuverco
problem is a very large-scale mixed integer program problem and mayerezdy to solve
in large instances. The main justification for a formal mathematical model of tideon
is that it allows for the theoretical investigation of its computational propertidsgaides
approximation approaches.

4.3. Consensus-based Approach

Among all the methods for sibling reconstruction, only COLONY [53] is desthto tol-
erate genotyping errors or mutation. Yet, both errors and mutations charaoided in
practice and identifying these errors without any prior kinship informati@ndsallenging
task. A new approach for reconstructing sibling relationships from nmatetite data de-
signed explicitly to tolerate genotyping errors and mutations in data based methef a
consensus of several partial solutions was proposed by Sheikhre{40, 42]

Consider an individualX; which has some genotyping error(s). Any error that is af-
fecting sibling reconstruction must be preventikigs sibling relationship with at least one
other individualX;, who in reality is its sibling. Itis unlikely that an error would cause two
unrelated individuals to be paired up as siblings, unless all error-freel@onot contain
enough information. Thus, we can discard one locus at a time, assumingietodneous,
and obtain a sibling reconstruction solution based on the remaining loci. el solu-
tions put the individualsY; and X; in the same sibling groug.¢., there is a consensus
among those solutions), we consider them to be siblings. The core of teertrs-based
error-tolerant approach is concerned with pairs of individuals thatada@onsistently end
up in the same sibling group during this process, that is, there is no cassaibsut their
sibling relationship.

Definition 2. A consensus method for the sibling reconstruction problem is a computable
function f that taked: solutionsS = {5, ..., Si. } as input and computeme final solution.
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The strict consensus places two individuals into a sibling groups only if they are to-
gether in all input solutions. While it always results in a consistent soluticalsd pro-
duces many singleton sibling groups. In [40, 424istance based consensus for sibling
reconstruction was introduced. Starting with a strict consensus of thesofutions, dis-
tance based consensus iteratively merges two sets until the quality of thiersaannot
be improved. The computational complexity and the algorithms change degemdihe
cost of the merging operations and the function that defines the quality sbliigon. The
approach taken in [40, 42] uses the number of the sibling groups in tbkimgssolution
as the measure of the quality of the solution, that is, it seeks to minimize the number of
groups. The cost of the merging operation is based on the size of thesgreing merged
and errors that need to be corrected for the 2-allele property to berpeelsn the combined
group.

Any method or a mix of methods for sibling reconstruction can be used as segda
produce the input solution for the consensus method. The running time obttsensus
method depends on the running times of the base methods. In our experiseEnSeC-
tion 5.) consensus based on 2-allele minimum cover algorithm typically achieee®5%
accuracy.

5. Experimental Validation

To assess and compare the accuracy of various sibling reconstructtbndseve used
datasets with known genetics and genealogy. Since most sibling recdiostmethods do
not tolerate errors in data, we first used error free datasets. Howmetgical datasets
containing no errors are rare. Thus, in addition to biological datasetsrested simulated
sets using a large number of parameters over a wide range of valuesorifare the
performance of five sibling reconstruction methods, spanning the vafiegnagputational
techniques: Almudevar and Field [2], Family Finder [8], KINGROUP [ZBQLONY [53],
and 2-allele Minimum Cover [6].

In addition, we used the same datasets with introduced errors to assesgdneance
of COLONY and the distance-based consensus of the 2-allele Minimunr @en errors
are present.

We measure the error by comparing the known sibling sets with those gahleyatar-
ious sibling reconstruction methods, and calculating the minimum partition distafte [
The error is the percentage of individuals that would need to be removedke the re-
constructed sibling sets equal to the true sibling sets. Note, we are compwiagoh in
terms of individuals, not in terms of the number of sibling groups reconstiucterrectly.
Thus, the accuracy is the percent of individuals correctly assignedliilogsgroups.

The experiments were run on a combination of a cluster of 64 mixed AMD aedl In
Xeon nodes of 2.8 GHz and 3.0GHz processors and a single Intel Xeath Qore 3.2 GHz
Intel processor with 24 GB RAM memory.

5.1. Biological Datasets

For validation of our methods, both the 2-allele and the consensus extewsiarsed bi-
ological datasets of offspring that resulted from one generation dfated crosses, thus



18 Mary V. Ashley, Tanya Y. Berger-Wolf, Isabel C. Caballero et al.

the identity of the parents and their microsatellite genotypes were known.

Radishes. The wild radishRaphanus raphanistrum dataset is a subsample of [11]. It
consists of samples from 64 radishes from two families with 11 sampled locie Clos
to 53% of allele entries are missing.

Salmon. The Atlantic salmorSalmo salar dataset comes from the genetic improvement
program of the Atlantic Salmon Federation [23]. We use a truncated sampBglof
individuals from 6 families and 4 loci. There are no missing alleles at any locus
This dataset is a subset of one of the samples of genotyped individeal$y$2] to
illustrate their technique.

Shrimp. The tiger shrim@Penaeus monodon dataset [26] consists of 59 individuals from
13 families with 7 loci. There are 16 missing allele entries (3.87% of all allele en-
tries).

Flies. Scaptodrosophila hibisci dataset [56] consists of 190 same generation individuals
(flies) from 6 families sampled at various number of loci with up to 8 alleles per
locus. All individuals shared at least 2 sampled loci which were chasesufr study.
25% of allele entries were missing.

Table 3 summarizes the results of the four algorithms on the biological datasets.

Table 3. Accuracy (percent) of the 2-allele algorithm and the threeeference
algorithms on biological datasets. Heré is the number of loci in a dataset and “Inds”
column gives the number of individuals in the dataset. The three rerence algorithms

are [2] (A&F), Family Finder by [8] (B&M), and the KINGROUP by [29] (KG) .

| Dataset | I [Inds| Ours | A&F [B&M | KG |

l

Shrimp | 7| 59| 77.97 67.80| 77.97| 77.97
Salmon | 4| 351 | 98.30| outofmemory | 99.71| 96.02
Radishes 5| 64 || 75.90| ouofmemoy | 53.30| 29.95
Flies 2| 190 100.00 31.05| 27.89| 54.73

Almudevar and Field’s algorithm ran out of 4GB memory on the salmorradidh datasets.

5.2. Synthetic Datasets

To test and compare sibling reconstruction approaches, we also wkanraimulations
to produce synthetic datasets. We first create random diploid parenthemdenerate
complete genetic data for offspring varying the number of males, femaleksalleci,
number of families and number of offspring per family. We then use the 2-allgtgithm
described above to reconstruct the sibling groups. We compare autsrés the actual
known sibling groups in the data to assess accuracy. We measure tiragsof algorithm
using the Gusfield Partition Distance [21]. In addition, we compare the acgaf our 2-
allele algorithm to the two reference sibling reconstruction methods, [8]28jddescribed
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above. We repeat the entire process for each fixed combination ahetaavalues 1000
times. We omit the comparison of the results to the algorithm of [2] since thentweEsion
of the provided software requires user interaction and therefore itaasiifle to use it in
the automated simulation pipeline of 1000 iterations of over a hundred combimation
parameter values.

First, we generate the parent generatiodbmales andt” females with parents with
loci and a specified number of alleles per loaus/Ne create populations with uniform as
well as non-uniform allele distributions. After the parents are created, dffsprings are
generated by selectinfy pairs of parents. A male and a female are chosen independently,
uniformly at random from the parent population. For these parentsdfisgenumber of
offspringso is generated. Here, too, we create populations with a uniform as well as a
skewed family size distribution. Each offspring randomly receives onkeabch from its
mother and father at each locus. This is a rather simplistic approach, éuwes\consistent
with the genetics of known parents and provides a baseline for the agafridne algorithm
since biological data are generally not random and uniform.

The parameter ranges for the study are as follows:

e The number of adult femalds and the number of adult malég were equal and set
to 5,10 or 15.

e The number of loci sampleld= 2, 4,6

e The number of alleles per locus (for the uniform allele frequency distributios
5,10, 15.

e Non-uniform allele frequency distribution (for 4 alleles): 12 - 4 - 1 - lire[d].
e The number of families in the populatigh= 2, 5, 10.

e The number of offspring per mating pair (for the uniform family size distriljtio
o =2,5,10.

e Non-uniform family size distribution (for 5 families): 25-10-10-4-1, asih [

All datasets were generated on the 64-node cluster running RedHat i0uThe 2-
allele algorithm is used on this generated population to find the smallest nunibeatlefe
sets necessary to explain this offspring population. We use the commerigasdiver
CPLEX 9.0 for Windows XP on a single processor machine to solve the minimucoser
problem to optimality. The reference algorithms were run on a single pracesschine
running Windows XP.

We measure the reconstruction accuracy of various methods as the fiurfdfie num-
ber of alleles per each locus, family size (number of offspring), numbé&mailies (and
polygamy), and the variation in allele frequency and family size distributions.

Figure 3 shows representative results for the accuracy of our 2-alggeéthm and the
two reference algorithms on uniform allele frequency and family sizes diiits. Figure
4 shows results for the datasets with skewed family sizes and allele frgadistributions.

2The difference in platforms and operating systems is dictated by the deasiatware licenses and pro-
vided binary code
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Each bar represents the mean value of a 1000 random repetitions amtbthieaes show
the standard deviation.
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Figure 3. Accuracy of the sibling group reconstruction methods on ratydgenerated
data. They-axis shows the accuracy of reconstruction as a function of varioudatiom
parameters. The accuracy of our 2-allele algorithm is shown, as welbasfhhe two
reference algorithms: [8] and [29] (KINGROUP). The title shows the ealtithe fixed
parameters: the number of adult males/females, number of families, the nuroliepang
per family, the number of loci, and the number of alleles per locus.

The results of COLONY and the consensus based 2-allele Minimum Cosénaiated
datasets with introduced errors are shown in Figure 5.

Overall, we have compared our 2-allele algorithm as well as the robuseonsus ap-
proach to the best existing sibling reconstruction methods on biologicalyauticietic data
over a wide range of parameters. We have identified the strengths akdegsas of var-

ious approaches to sibling reconstruction and pinpointed the data parsumeder which
those are manifested.

6. Conclusion

Full utilization of new genetic tools provided by advances in DNA and genarakysis will
only be realized if computational approaches to exploit the genetic informiedigm pace.
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Figure 4. Accuracy of the sibling group reconstruction using our 2-alierithm and
the two reference methods on the datasets with skewed family sizes and a\glerfcy
distributions.

Pedigree reconstruction in wild populations is an emerging field, made pobgitiie de-
velopment of markers, particularly DNA microsatellites, that can be usedntotgge any
organism, including free-living populations sampled in the field. Rules ofddkan in-
heritance and principles of population genetics can be applied to microsatetioéyging
data to infer familial relationships such as parentage and sibship, ancettarsstruct wild
pedigrees. Such pedigrees, in turn, can be used to learn abouti@sspegolutionary po-
tential, their mating systems and reproductive patterns, dispersal anddinmygreviewed
in [35]). The findings of pedigree reconstruction have been especiaibble in the area
of paternity assignment, where dozens of examples of previously undotad multiple
paternity have now been reportesly [15, 17, 44, 52]).

Our focus has been on a more challenging computational problem thanipater
parentage) assignment, that of sibling reconstruction. Sibling reconstristieeded when
wild samples consist primarily of offspring cohorts, in cases where it istioglly difficult
or impossible to sample the parental generation. We first develop a forfiratide of the
sibling reconstruction problem and formalize the genetics of sibship. Sildoanstruction
methods can be divided into three categories depending on their appmuettiods that rely
only statistical estimates of relatedness [29, 32, 43, 49, 50, 53], thdsmthhine statistical
and combinatorial approaches [8], and those that use only Mendelistramts and com-
binatorial techniques [1, 2,5, 6,10, 41]. Statistical methods rely on essno&tgairwise
relatedness and typically reconstruct maximum likelihood sibling groupspétiermance
of statistical methods depends upon an accurate estimate of underlying i@tglericies

within the sampled populations, rather than the observed sample. Furthermore, they are of-

ten computationally demanding. Combinatorial approaches offer the adeahtt sibling
groupings are based only on Mendelian constraints without needingriafmm on popu-
lation allele frequencies. A new method we describe here, the 2-allele mininiwoves,
generates all sibling groups that obey the 2-allele property and thentfiedgptimal min-
imum number of sibling groups needed to explain the data. To accommodatymego
errors and mutations, we also describe a new consensus-baseddypgpplied here to the
2-allele minimum cover algorithm.
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Figure 5. Results on simulated datasets with errors. Only 50 iterations wenidarsthe
COLONY algorithm due to its computational inefficiency and time constraints.

We tested the performance of various sibling reconstruction methods usihgdal
biological data and synthetic data sets. For real data, the actual pedigitebgroups
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were known from controlled crosses, and we tested the accuracyedifferent methods
in recovering the known sibgroups. We found that our 2-allele disthased consensus
method performed very well, recovering over 95% of the known sibgrodfiie also pro-
duced synthetic datasets which simulated a variety of mating systems, family stg,)ctu
and genetic data. Again, our method produced very good results. Ottibe methods
tested, COLONY [53], a statistical approach, also performed very watinathe assump-
tions of monogamy held and there were a sufficient number of loci andatecestimates
of allele frequencies.

There is no one method that is guaranteed to provide the correct arssmer,sam-
ples of different populations suffer from different sampling biase$ @hmethods make
assumptions that may not hold for a specific dataset. We favor the 2-alleledrfetithis
very reason: it makes the fewest assumptions. Also, the 2-allele algontdmaligperforms
well over a wide range of data parameters, thus making it a good genehalamespecially
when few loci are sampled or the allelic variation is low. Our current recordatém is
to use the proposed concensus approach on the 2-allele method in conmbivitiother
available methods, keeping in mind aspects of the study organism’s biologymmliag
biases, as a way to achieve confidence in sibling reconstruction.

Another consideration is presentation and implementation of the methods. Miest mo
ular ecologists do not have a background in computer science, and Witr@gpmethod that
is easily accessible, user-friendly, and produces results that caabigyrinterpreted, re-
gardless of the underlying mathematical or computational elegance. COL©OMMilable
as a Windows executable. However, it is computationally intensive ancchsisumprac-
tical to run on a personal computer. Our method does not require instaltatianuser’s
computer but provides a web-based service. It only requires amétteonnection to send
the dataset for analysis using a web interfac®ur software accepts any file formatting
using Excel software which is widely used by biologists.

Sibling reconstruction is among the first kinship reconstruction problembé#vatgen-
erated a variety of computational methods. However, more complicated peslignd ge-
nealogical relationships await computational solutions. Computationally, kimehgn-
struction in wild populations is not only a rich source of interesting problentsoibe that
poses a particular challenge of testing the accuracy of devised solutR@ad.biological
data must be used to conduct comparisons of feasibility and accuraiffeoénit methods.
More benchmark data is needed to ground truth algorithms and softwarallyfFimovel
approaches must be developed to assess accuracy of the resultiir@nsaind confidence
in the answers provided.
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