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Abstract

Recurrent perceptron classi�ers generalize the usual perceptron model� They correspond
to linear transformations of input vectors obtained by means of �autoregressive moving�
average schemes�� or in�nite impulse response �lters� and allow taking into account those
correlations and dependences among input coordinates which arise from linear digital �l�
tering� This paper provides tight bounds on sample complexity associated to the �tting of
such models to experimental data� The results are expressed in the context of the theory of
probably approximately correct �PAC� learning�

Keywords

perceptrons� recurrent models� neural networks�
learning� Vapnik�Chervonenkis dimension

�This research was supported in part by US Air Force Grant AFOSR���������
yA preliminary version of some of the results reported here will also appear in David S� Touretzky� Michael C�

Mozer and Michael E� Hasselmo �eds�	� Advances in Neural Information Processing Systems �� The MIT Press�

����

zDepartment of Computer Science� University of Waterloo� Waterloo� Ontario N�L �G
� CANADA� Email�
bdasgupt�daisy�uwaterloo�ca

xDepartment of Mathematics� Rutgers University� New Brunswick� NJ �
���� USA� Email�
sontag�hilbert�rutgers�edu

�



� Introduction

One of the most popular approaches to binary pattern classi�cation� underlying many statis�
tical techniques� is based on perceptrons or linear discriminants � see for instance the classical
reference ����� In this context� one is interested in classifying k�dimensional input patterns
v 	 
v�� � � � � vk� into two disjoint classes A

� and A�� A perceptron P which classi�es vectors
into A� and A� is characterized by a vector 
of �weights
� �c � Rk� and operates as follows� One
forms the inner product �c�v 	 c�v� � � � �� ckvk� If this inner product is positive� v is classi�ed
into A�� otherwise into A�� see Figure �� 
A variation allows for an additional constant term
c�� corresponding geometrically to a partition of R

k by a hyperplane not passing through the
origin� but this term� can be incorporated into the remaining weights if one input variable is
always set to the value ��
��
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Figure �� Usual view of perceptron classi�ers

In practice� given a large number of labeled 
�training
� samples 
v�i�� �i�� where �i � f���g�
one attempts to �nd a vector �c so that �c�v�i� is positive when �i 	 ��
 and negative 
or
zero� otherwise� Finding such a vector amounts to solving a linear programming problem� and
recursive algorithms 
�perceptron learning method
� are popular for its solution� The resulting
perceptron corresponding to one such vector �c is then used to classify new� previously unseen�
examples� There are two ways of justifying this procedure� The �rst is under the hypothesis
that the sets A� and A� are indeed linearly separable� that is� there is some hyperplane having
them on opposite sides� In addition� it is assumed that the training samples are in either A� or
A�� and are labeled accordingly� Provided that the training set is large enough� a hyperplane
separating the samples is a good approximation of a true separating hyperplane for A� and
A�� A second justi�cation 
called sometimes �agnostic learning
 in computational learning
theory� is based on the fact that� if a large proportion of samples can be linearly separated�
then it is very likely that future samples will be correctly classi�ed when using the same rule�
Both of these justi�cations can be made precise on the basis of sample complexity bounds 
�VC
dimension
 as discussed below�� and can be found in classical references 
see e�g� ����� as well
as ����� These bounds give estimates of the number of random training samples needed so
that a perceptron consistent with 
a large proportion of� the seen samples will also� with high
probability� perform well on unseen data� see in particular the exposition in ����� The bounds
are linear in the input dimensionality� k� for any �xed con�dence levels�
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Recurrent Perceptrons

In signal processing and control applications� the size k of the input vectors v is typically
very large� As perceptron theory says that a number of training samples proportional to k is
required for reliable prediction� this means that a very large number of samples is needed in such
applications� However� perceptron theory does not take into account the fact that the signals
of interest may exhibit context dependence and correlations� and this prior information can
help in narrowing down the search for a classi�er� It is often the case in such applications that
the classes A� and A� can be separated by means of a linear dynamical system of fairly small
dimensionality � In that case� the inner product �c�v represents a convolution by a separating
vector �c that is the impulse�response of a recursive digital �lter of some order n � k� In this
model� we think of the inputs as being presented sequentially instead of in parallel� to a linear
�lter� as shown in Figure �� 
In general� at each time t� vt can be itself a vector� though for
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Figure �� Recurrent perceptron classi�ers

simplicity we will restrict our analysis to the case in which these are scalars�� This dynamic
behavior can be represented in various ways� for instance by means of an �autoregressive moving
average
 update

yt 	 ��yt�n � � � �� �nyt�� � ��vt�n � � � �� �nvt�� t 	 n� �� � � � � k � �

for appropriate coe�cients �i�s and �i�s 
with the recursion initialized at y� 	 � � � 	 yn 	 �� and
where the sign of the last output yk�� determines the classi�cation�� or equivalently� letting �c
denote the impulse response sequence� as a classical perceptron yk�� 	 �c�v in which the weight
vector �c has a special form� namely �c is n�recursive� meaning that there exist real numbers
r�� � � � � rn so that

cj 	
nX
i��

cj�iri � j 	 n� �� � � � � k �

Seen in this context� the usual perceptrons are nothing more than the very special subclass of
��nite impulse response
 systems 
all poles at zero�� thus it is appropriate to call the more
general class �recurrent
 or �IIR 
in�nite impulse response�
 perceptrons 
as done in ��� ����

The BPS 
�backpropagation for sequences
� approach developed by Bengio and coauthors

see ���� Section ���� is an example of an application of these ideas in signal processing� The au�
toregressive equation is seen as determining the behavior of dynamical processing units 
cf� ����
equation ������ and there is an output nonlinearity given by a �squashing
 function� corre�
sponding in our case to taking the sign of the output� 
Sometimes cascades of these units
are allowed� which makes the model capable of handling more highly nonlinear data as well��
The reference ��� describes experimental data regarding the use of the BPS architecture in sev�
eral applications� including the speech recognition task of speaker�independent discrimination
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between the consonants �b
 and �d
 
in this case� at each t the input vt is a vector whose
coordinates consist of Fourier�like parameters associated to speech samples as well as some
additional information on signal levels�� There is also related work in control theory dealing
with such classifying� or more generally quantized�output� linear systems� see ��� ��� ���� Vari�
ous dynamical system models for classi�cation appear also when learning �nite automata and
languages �see e�g� ����� and in signal processing as a channel equalization problem 
at least
in the simplest ��level case� when modeling linear channels transmitting digital data from a
quantized source �see ��� and also the related paper �����

Thus we are motivated to look into the theoretical issue that arises from the �tting data to
perceptrons in which the weight vector �c is constrained to lie in the class of n�recursive 
with
�xed n � k� vectors� One may expect that the size of learning samples required in order to
reliably classify future unlabeled inputs will be much smaller than k� Indeed� roughly speaking
the main result is that the number of samples needed is proportional to the just logarithm of
the length k 
as opposed to k itself� as would be the case if one did not take advantage of the
recurrent structure�� This number is in general larger than the number of parameters �n� a
perhaps surprising fact 
see Remark ����� The precise formulation is in terms of computational
leaning theory 
or� in more classical statistical language� in terms of generalized Glivenko�
Cantelli theorems for uniform convergence of empirical probabilities� and is reviewed below� We
also make some remarks on the actual computational complexity of �nding a vector �c consistent
with the training data� and we also discuss brie�y the identi�cation of linear dynamical systems�
in which the complete output 
as opposed to merely the sign� is of interest�

Sample Complexity and VC Dimension

We next very brie�y review some 
by now standard� notions regarding sample complexity� with
the purpose of motivating the main results� which deal with the calculation of VC dimensions�
For more details see the books ���� ���� the paper ���� or the survey �����

In the general classi�cation problem� an input space X as well as a collection F of maps
X� f��� �g are assumed to have been given� 
The set X is assumed to be either countable
or an Euclidean space� and the maps in F are assumed to be measurable� In addition� mild
regularity assumptions are made which insure that all sets appearing below are measurable�
but details are omitted since in our context these assumptions are always satis�ed�� Let W be
the set of all sequences

w 	 
u�� �
u���� � � � � 
us� �
us��

over all s � �� 
u�� � � � � us� � X
s� and � � F � An identi�er is a map 	 � W � F � The value of

	 on a sequence w as above will be denoted as 	w� The error of 	 with respect to a probability
measure P on X� a � � F � and a sequence 
u�� � � � � us� � X

s� is

Err�
P� �� u�� � � � � us� �	 Prob �	w
u� �	 �
u��


where the probability is being understood with respect to P ��

The class F is said to be 
uniformly� learnable if there is some identi�er 	 with the following
property� For each �� 
 � � there is some s so that� for every probability P and every � � F �

Prob �Err�
P� �� u�� � � � � us� � �� � 
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where the probability is being understood with respect to P s on Xs��

In the learnable case� the function s
�� 
� which provides� for any given � and 
� the smallest
possible s as above� is called the sample complexity of the class F � It can be proved that
learnability is equivalent to �niteness of the Vapnik�Chervonenkis �VC� dimension � of the
class F � a combinatorial concept whose de�nition we recall later� In fact� s
�� 
� is bounded by
a polynomial in ��� and ��
 and is proportional to � in the following precise sense 
cf� ��� �����

s
�� 
� � max
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log
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Moreover� lower bounds on s
�� 
� are also known� in the following sense 
cf� ����� for � � � � �

� �
and assuming that the collection F is not trivial 
i�e�� F does not consist of just one mapping
or a collection of two disjoint mappings� see ��� for details�� we must have

s
�� 
� � max

�
�� �
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The above bounds motivate the studies dealing with estimating VC dimension� as we pursue
here�

When there is an algorithm that allows computing an identi�er 	 in time polynomial on the
sample size� the class is said to be learnable in the PAC 
�probably approximately correct
�
sense of Valiant 
cf� ������ In this paper� we �rst study the question of uniform learnability
in the sample complexity sense� for recurrent perceptron concept classes� and we also prove a
result� in Section � regarding PAC learnability for such classes�

There is a variation of the PAC learning results� in which the objective is not to obtain
arbitrary small errors but merely to approximate the smallest possible error rate achievable
with a given class of functions F � This is much more realistic in applications� as there is
no reason to assume that a given structure 
such as recurrent perceptrons of a given order�
will represent the data precisely� The VC dimension appears again in the sample complexity
estimates associated to this �agnostic learning
 problem 
the term originates in the fact that
we do not wish to assume a particular �target concept
 that generates the observed samples��
A typical result in this area is as follows 
cf� ����� based on ���� ���� for more details�� Let A be
any distribution overX�f��� �g� Pick any �� 
 � �� Suppose that a sample 
u�� y��� � � � � 
us� ys�
of length s 	 s
�� 
� is drawn according to A� where

s
�� 
� �
���

��

�� ln

��e

�
� ln

�



� �

Assume that we now approximately minimize the empirical risk� in the sense that we �nd a
function � � F so that the average number of missclassi�cations 

�� �	 
��s�card fij�
ui� �	
yig when using � is within ��� of the minimal possible number inf���F 

�

��� Then� with
probability � � � 
 
with respect to the random drawing of the sample�� the expectation of
the error made by � on samples drawn according to the same distribution A is within � of the
minimal possible expected error among all possible �� � F �

Generalizations to the learning of real�valued 
as opposed to Boolean� functions� by evalua�
tion of the �pseudo�dimension
 of recurrent maps� are also possible� see the brief discussion in
Section ��
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� De�nitions and Statements of Main Results

The concept of VC dimension is classically de�ned in terms of abstract concept classes� Assume
that we are given a set X� called the set of inputs � and a family of subsets C of X� called the set
of �concepts�
 A subset X � Xis said to be shattered 
by the class C� if for each subset B � X
there is some C � C such that B 	 C

T
X � The VC dimension is then the largest possible

positive integer n 
possibly �	� so that there is some X � Xof cardinality n which can be
shattered� An equivalent manner of stating these notions� somewhat more suitable for our
purposes� proceeds by identifying the subsets of X with Boolean functions from X to f��� �g

we pick f��� �g instead of f�� �g for notational convenience�� to each such Boolean function
� there is an associated subset� namely fx � X j�
x� 	 �g� and conversely� to each set B � X

one can associate its characteristic function �B de�ned on the set X � Similarly� we can think
of the sets C � C as Boolean functions on Xand the intersections C

T
X as the restrictions of

such functions to X � Thus we restate the de�nitions now in terms of functions�

Given the set X� and a subset X of X� a dichotomy on X is a function


 � X � f��� �g �

Assume given a class F of functions X� f��� �g� to be called the class of classi�er functions�
The subset X � X is shattered by F if each dichotomy on X is the restriction to X of some
� � F � The Vapnik�Chervonenkis dimension vc 
F� is the supremum 
possibly in�nite� of the
set of integers � for which there is some subset X � Xof cardinality � which can be shattered
by F �

Pick any two integers n�� and q��� A sequence

�c 	 
c�� � � � � cn�q� � R
n�q

is said to be n�recursive if there exist real numbers r�� � � � � rn so that

cn�j 	
nX
i��

cn�j�iri � j 	 �� � � � � q �


In particular� every sequence of length n is n�recursive� but the interesting cases are those in
which q �	 �� and in fact q 
 n�� Given such an n�recursive sequence �c� we may consider its
associated perceptron classi�er� This is the map

��c � R
n�q � f��� �g � 
x�� � � � � xn�q� �� sign

�
n�qX
i��

cixi

�

where the sign function is understood to be de�ned by sign 
z� 	 �� if z � � and sign 
z� 	 �
otherwise� 
Changing the de�nition at zero to be �� would not change the results to be
presented in any way�� We now introduce� for each two �xed n� q as above� a class of functions�

Fn�q �	
�
��c j �c � R

n�q is n�recursive
�
�

This is understood as a function class with respect to the input space X	 Rn�q� and we are
interested in estimating vc 
Fn�q��

Our main result will be as follows 
in this paper� all logarithms are understood to be in base
���

�



Theorem � max
n
n� nblog
b� � q��

n
c�c
o
� vc 
Fn�q� � minfn� q � ��n� �n log
q � ��g �

The upper bound is a simple consequence of an argument based on parameter counts� and
is given in Section �� Much more interesting is the almost matching lower bound� which will
involve a result on dual VC dimensions which we prove in Section ��

Some particular cases are worth discussing� When q 	 O
n� then both the upper and the
lower bounds are of the type cn for some 
di�erent� constants c� If q 	 �
n���� 
for any
constant � � ��� then both the upper and the lower bounds are of the form cn log
 q

n
� for some

constants c� In this latter case� assume that one is interested in the behavior of vc 
Fn�q� as
n � �	 while q grows polynomially in n� then the upper and lower bounds are both of the
type cn logn� for some constants c� If instead q grows exponentially on n� both the upper and
lower bounds are polynomial in n�

The organization of the rest of the paper is as follows� In Section � we prove an abstract
result on VC�dimension� which is then used in Section � to prove Theorem �� In Section ��
we show that the consistency problem for recurrent perceptrons can be solved in polynomial
time� for any �xed n� some recent facts regarding representations of real numbers and decision
problems for real�closed �elds� needed in this Section� are reviewed in an Appendix� Finally�
in Section � we make some �nal comments about bounds on the sample complexity needed
for identi�cation of linear dynamical systems� that is to say� the real�valued functions obtained
when not taking �signs
 when de�ning the maps ��c�

� An Abstract Result on VC Dimension

Assume that we are given two sets Xand �� to be called in this context the set of inputs and
the set of parameter values respectively� Suppose that we are also given a function

F � ��X� f��� �g �

Associated to this data is the class of functions

F �	 fF 
�� �� � X� f��� �g j� � �g

obtained by considering F as a function of the inputs alone� one such function for each possible
parameter value �� We will prove lower bounds in Theorem � by studying the VC dimension
of classes obtained in this parametric fashion�

Note that� given the same data one could� dually� study the class

F� � fF 
�� �� � �� f��� �g j � � Xg

which is obtained by �xing the elements of Xand thinking of the parameters as inputs� It is
well�known 
cf� ����� Theorem ������ and in any case� a consequence of the much more general
result to be presented below� that

vc 
F� � blog
vc 
F���c�
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which provides a lower bound on vc 
F� in terms of the �dual VC dimension�
 A sharper
estimate is possible when � can be written as a product of n sets

� 	 �� � �� � � � �� �n 
��

and that is the topic which we develop next�

We assume from now on that a decomposition of the form in Equation 
�� is given� and
will de�ne a variation of the dual VC dimension by asking that only certain dichotomies on �
be obtained from F�� We de�ne these dichotomies only on �rectangular
 subsets of �� that is�
sets of the form

L 	 L� � � � �� Ln � �

with each Li � �i a nonempty subset� Given any index � � � � n� by a ��axis dichotomy
on such a subset L we mean any function 
 � L � f��� �g which depends only on the �th
coordinate� that is� there is some function � � L� � f��� �g so that 

��� � � � � �n� 	 �
��� for
all 
��� � � � � �n� � L� an axis dichotomy is a map that is a ��axis dichotomy for some �� A
rectangular set L will be said to be axis�shattered if every axis dichotomy is the restriction to
L of some function of the form F 
�� �� � �� f��� �g� for some � � X�

Theorem � If L 	 L� � � � ��Ln � � can be axis�shattered and each set Li has cardinality ri�
then vc 
F� � blog
r��c� � � �� blog
rn�c�

Note that in the special case n 	 � one recovers the result vc 
F� � blog
vc 
F���c� We
will prove this theorem below� after a couple of small observations�

Remark ��� Assume that L 	 L� � � � �� Ln � � can be axis�shattered� Pick any indices

possibly equal� ��� �� � f�� � � � � ng and any functions �i � L�i � f��� �g� i 	 �� �� By
de�nition of axis�shattering� there exist elements ��� �� � X� such that

F 
��� � � � � �n� �i� 	 �i
��i� 

��� � � � � �n� � L� � � � �� Ln � 
��

We then have�

�a� If �� 	 �� and �� 	 �� then �� 	 ���

�b� If �� �	 �� and �� 	 �� then both �� and �� are constant functions�

Property 
a� is obvious� Property 
b� is proved as follows� Without loss of generality� we may
take �� 	 � and �� 	 �� Now pick b��� � � � � b�n arbitrarily� Then

��
�� 	 F 
�� b��� � � � � b�n� �� 	 ��
b���
for all � � L�� and a similar argument shows that �� is constant as well� �

Remark ��� Let S 	 fs�� s�� � � � � srg be a set of cardinality r 	 �m� where m is a positive
integer� Let M be the m�r matrix whose columns are the �m possible vectors in f��� �gm and
de�ne the functions �i by the formula �i
sj� 	Mij for all � � i � m and � � j � r� Then� it is
easy to see that the the set of m 
distinct� dichotomies ��� ��� � � � � �m on S have the following
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property� For each vector 
a�� a�� � � � � am� � f��� �g
m� there exists a unique index j � f�� � � �rg

such that
�i
sj� 	 ai � i 	 �� � � � � m � 
��

Moreover� none of the functions �i is a constant function� �

Proof of Theorem �� We may assume without loss of generality that each r� 	 �
m� for some

positive integersm�� � � � � mn� This is because any possible indices so that r� 	 � can be dropped

and the result proved with smaller n�� and� for each r� � �� a subset L�

� of L�� of cardinality
�blog r�c� could be used instead of the original L� if r� is not a power of two�

To prove the Theorem� it will be enough to �nd n disjoint subsets X�� X�� � � � � Xn of X� of
cardinalitiesm�� � � � � mn respectively� so that the set X 	 X�

S
X�

S
� � �
S
Xn is shattered� Pick

any � � f�� � � � � ng� Consider the set L� 	 fl���� l���� � � � � l��r�g� By Remark ��� applied to this
set� there exists a set of m� distinct and nonconstant dichotomies ����� ����� � � � � ���m� on L� so
that� for any vector 
a�� a�� � � � � am�� � f��� �g

m�� there exists a unique index � � j� � r� so
that

���i
l��j�� 	 ai � i 	 �� � � � � m� � 
��

Since L can be axis�shattered� each of the axis dichotomies ���i can be realized as a function
F 
�� ��� That is� there exists a set inputs

X� 	 f����� ����� � � � � ���m�g

so that� for each i 	 �� � � � � m��

F 
��� � � � � �n� ���i� 	 ���i
��� � 

��� � � � � �n� � L� � � � �� Ln � 
��

Note also that� by construction� ���i �	 ���i� for i �	 i�� since the corresponding functions ���i are
distinct 
recall Remark ���� part 
a���

Summarizing� for each vector 
a�� a�� � � � � am�� � f��� �gm� and for each � � f�� � � � � ng
there is some � � j� � r� so that

F 
��� � � � � ����� l��j� � ����� � � � � �n� ���i� 	 ���i
l��j�� 	 ai � i 	 �� � � � � m� 
��

for all �q�Lq 
q �	��� We do this construction for each � and de�ne X �	 X�
S
X�

S
� � �
S
Xn�

Note that the sets X� are disjoint� since ���i �	 ����i� whenever � �	 �� 
by part 
b� of Remark ���
and the fact that the functions ���i are all nonconstant�� The set X can be shattered� Indeed�
assume given any dichotomy 
 � X � f��� �g� Using Equation 
��� with the vector a 	



������ � � � � 

���m��� for each �� it follows that for each � � f�� � � � � ng there is some � � j� � r�
so that

F 
l��j� � � � � � ln�jn � ���i� 	 

���i� � i 	 �� � � � � m��

That is� the function F 
�� �� coincides with 
 on X � when one picks � 	 
l��j�� � � � � ln�jn��

Note that the lower bound in the above result is almost tight� because by Lemma ���
there is a set of the form L 	 L� � � � �� Ln � � which can be axis�shattered and for which
vc 
F� 	 O
n log
rn��� with cardinality of each Li greater or equal to r for each i�

�



� Proof of Main Result

We recall the following result� it was proved� using Milnor�Warren bounds on the number of
connected components of semi�algebraic sets� by Goldberg and Jerrum�

Fact ��� 
����� Assume given a function F � � � X� f��� �g and the associated class of
functions F �	 fF 
�� �� � X� f��� �g j� � �g� Suppose that � 	 Rk and X	 Rn� and that
the function F can be de�ned in terms of a Boolean formula involving at most s polynomial
inequalities in k � n variables� each polynomial being of degree at most d� Then� vc 
F� �
�k log
�eds�� �

Lemma ��� vc 
Fn�q� � minfn� q � ��n� �n log
q � ��g

Proof� Since Fn�q � Fn�q���

vc 
Fn�q� � vc 
Fn�q��� 	 n� q

where the last equality follows from the fact that vc 
sign
G�� 	 dim
G� when G is a vector
space of real�valued functions 
the standard �perceptron
 model�� On the other hand� it is
easy to see 
by induction on j� that� for n�recursive sequences� cn�j 
for � � j � q� is a
polynomial in c�� c�� � � � � cn� r�� r�� � � � � rn of degree exactly j � �� Thus one may see Fn�q as a
class obtained parametrically� and applying Fact ��� 
with k 	 �n� s 	 �� d 	 q � �� gives
vc 
Fn�q� � ��n� �n log
q � ���

Lemma ��� vc 
Fn�q� � maxfn� nblog
b� �
q��
n c�cg

Proof� As Fn�q contains the class of functions ��c with �c 	 
c�� � � � � cn� �� � � � � ��� which in turn
being the set of signs of an n�dimensional linear space of functions� has VC dimension n� we know
that vc 
Fn�q� � n� Thus we are left to prove that if q � n then vc 
Fn�q� � nblog
b�� q��

n
c�c�

The set of n�recursive sequences of length n�q includes the set of sequences of the following
special form�

cj 	
nX
i��

�il
j��
i � j 	 �� � � � � n� q 
��

where �i� li � R for each i 	 �� � � � � n� 
More precisely� this is a characterization of those n�
recursive sequences of length n � q for which the characteristic roots� that is� the roots of the
polynomial determined by the recursion coe�cients� are all real and distinct� such facts are
classical in the theory of recurrences�� In turn� this includes the sequences as in Equation 
��
in which one uses only �� 	 � � � 	 �n 	 �� Hence� to prove the lower bound� it is su�cient to
study the class of functions induced by

F � Rn�Rn�q � f��� �g � 
��� � � � � �n� x�� � � � � xn�q� �� sign

�	 nX
i��

n�qX
j��

�j��
i xj


A 
��

��



Let r 	 b q�n��
n

c and let L�� � � � � Ln be n disjoint sets of real numbers 
if desired� integers�� each
of cardinality r� Let L 	

Sn
i�� Li� In addition� if rn � q�n��� then select an additional set B

of 
q�n�rn��� real numbers disjoint from L�

We will apply Theorem �� showing that the rectangular subset L� � � � �� Ln can be axis�
shattered� Pick any � � f�� � � � � ng and any � � L� � f��� �g� Consider the 
unique� interpo�
lating polynomial

p
�� 	
n�qX
j��

xj�
j��

in � of degree q�n�� such that

p
�� 	

�
�
�� if � � L�

� if � � 
L �B�� L��

One construction of such a polynomial is via the Lagrange formula

X
l�L�

�
l�
 lj�L�B � lj ��l
�� lj�

 lj�L�B � lj ��l
l � lj�
�

Now pick � 	 
x�� � � � � xn�q���� Observe that

F 
l�� l�� � � � � ln� x�� � � � � xn�q� 	 sign

�
nX
i��

p
li�

�
	 �
l��

for all 
l�� � � � � ln� � L�� � � ��Ln � since p
l� 	 � for l �� L� and p
l� 	 �
l� otherwise� It follows
from Theorem � that vc 
Fn�q� � nblog
r�c� as desired�

Remark ��� The dependence of vc 
Fn�q� on q in Lemma ��� is perhaps a somewhat surprising
combinatorial fact� since there are only �n free parameters c�� � � � � cn� r�� � � � � rn� Intuitively� the
explanation for this dependence is that� although the number of free parameters is independent
of q� the degree of the polynomial computed does depend on q� and this degree in�uences
the number of distinct sign assignments that the polynomial can achieve� In general� the VC
dimension of a concept class may be far larger than the number of free parameters� even in�nite

cf� ������ and is roughly equal to the square of the number of parameters for general classes
of �neural network
 classi�ers 
cf� ������ As a related remark� observe that� as follows from a
simple continuity argument� once that parameters have been found to achieve the shattering
of a set of samples� any other set of samples near this set can also be shattered 
using the
same sets of parameters�� In other words� one can always shatter an open set of samples 
when
viewing such sequences of samples as elements of an appropriate product Euclidean space� of
cardinality equal to the VC dimension� One may ask about the shattering of more arbitrary
sequences� for instance� the shattering of all sequences in �general position
� In ����� a result is
given which implies� in particular� that when there are �n parameters it is impossible to shatter
all general position sets of more than �n � � points� So the �dimension
 obtained when one
asks for shattering of all sets in general position 
a concept studied also in ����� and related to
Cover�s capacity measures� is linearly proportional to the number of parameters� �

��



� The Consistency Problem

We next brie�y discuss polynomial time learnability of recurrent perceptron mappings� As
discussed in e�g� ����� in order to formalize this problem we need to �rst choose a data structure
to represent the hypotheses in Fn�q� In addition� since we are dealing with complexity of
computation involving real numbers� we must also clarify the meaning of ��nding
 a hypothesis�
in terms of a suitable notion of polynomial�time computation� Once this is done� the problem
becomes that of solving the consistency problem�

Given a set of s � s
�� 
� inputs ��� ��� � � � � �s � R
n�q� and an arbitrary dichotomy

! � f��� ��� � � � � �sg � f��� �g �nd a representation of a hypothesis ��c � Fn�q such
that the restriction of ��c to the set f��� ��� � � � � �sg is identical to the dichotomy !

or report that no such hypothesis exists��

The representation to be used should provide an e�cient encoding of the values of the param�
eters r�� � � � � rn� c�� � � � � cn� given a set of inputs 
x�� � � � � xn�q� � R

n�q� one should be able to
e�ciently check concept membership 
that is� compute sign 


Pn�q
i�� cixi��� Regarding the precise

meaning of polynomial�time computation� there are at least two models of complexity possible�
The �rst� the unit cost model of computation� is intended to capture the algebraic complexity
of the problem� in that model� each arithmetic and comparison operation on two real numbers
is assumed to take unit time� and �nding a representation in polynomial time means doing so
in time polynomial on s � n � q� An alternative� the logarithmic cost model � is closer to the
notion of computation in the usual Turing machine sense� in this case one assumes that the
inputs 
x�� � � � � xn�q� are rational numbers� with numerators and denominators of size at most
L bits� and the time involved in �nding a representation of r�� � � � � rn� c�� � � � � cn is required to
be polynomial on L as well�

We study the complexity of the learning problem for constant n 
but varying q�� The
key step is treating consistency� since if the decision version of a consistency problem is NP�
hard� then the corresponding class is not properly polynomially learnable under the complexity
theoretic assumption RP�	NP� cf� ���� For a suitable choice of representation� we will prove the
following result�

Theorem � For each �xed n � �� the consistency problem for Fn�q can be solved in time
polynomial in q and s in the unit cost model� and time polynomial in q� s� and L in the
logarithmic cost model�

Since vc 
Fn�q� 	 O
n�n log
q����� it follows from here that the class Fn�q is learnable in
time polynomial in q 
and L in the log model�� Our proof will consist of a simple application
of several recent results and concepts� given in ��� �� ���� which deal with the computational
complexity aspects of the �rst�order theory of real�closed �elds� Note that we do not study
scaling with respect to n� for q 	 �� this reduces to the still�open question of polynomial time
solution of linear programming problems� in the unit cost model�

Proof of Theorem �� For asymptotic results we may assume� without loss of generality�
that s � �n from the bound of Theorem �� We will use the representation discussed in the
Appendix for the coe�cients c�� � � � � cn� r�� � � � � rn� seen as vectors in Rk� k 	 �n� We �rst write
the consistency problem as a problem of the following type�

��




�� �nd some c�� � � � � cn� r�� � � � � rn � R such that �si�� 
Qi !i �� 
or report that no such
parameter values exist�

where each Qi is a certain real polynomial in the variables r�� � � � � rn� c�� � � � � cn of degree at most
q � �� and !i is the relation � 
resp� �� if 

�i� 	 � 
resp� 

�i� 	 ���� Next� we determine
all non�empty sign conditions of the set Q 	 fQ� � � �Qsg� See Fact A�� in the Appendix for an
algorithm achieving this� For constant n� and this can be done in polynomial time in either the
unit cost or the logarithmic cost model� Now� we check each non�empty sign condition to see if
it corresponds to the given dichotomy !� i�e� if all the 
Qi !i �� hold� If there is no match� we
report a failure� Otherwise� we output the representation of the coe�cients c�� � � � � cn� r�� � � � � rn�

� A Comment on Real�Valued Function Learning

As a �nal comment� we wish to simply remark that it is possible to obtain results on the
learnability of linear systems dynamics� that is� the class of functions obtained if one does not
take the sign when de�ning recurrent perceptrons� The connection between VC dimension
and sample complexity is only meaningful for classes of Boolean functions� in order to obtain
learnability results applicable to real�valued functions one needs metric entropy estimates for
certain spaces of functions� These can be in turn bounded through the estimation of Pollard�s
pseudo�dimension� The reader is referred to ���� for the appropriate de�nitions and the results
linking pseudo�dimension PD and learnability� One example result possible in our context is as
follows� For any two nonnegative integers n� q� consider the class

F �
n�q �	

n b��c ��� �c � Rn�q is n�recursiveo
where b��c � Rn�q � R � 
x�� � � � � xn�q� ��

n�qX
i��

cixi �

Assume that we wish to learn with respect to the loss function �
y�� y�� 	 maxfjy� � y�j
� � �g

and that n� q � �� Then we have that

pd
h
F �
n�q

i
� ��n log
n� q� �

The proof follows easily from the Milnor�type bounds and the appropriate de�nitions�

A Appendix� Representations of Real Numbers and Decision

Problems

We collect here some facts regarding Thom encodings of real numbers and their use in decision
problems for real�closed �elds�

��



Let f
x� be a real univariate polynomial of degree d� and let � be a real root of f � The
Thom encoding of � relative to f
x�� denoted Th 
�� f�� or just Th 
�� if f is clear from the
context� is the sign vector


sg�f
���� sg�f �
���� � � � � sg�f �d�
���
�
� f��� �� �gd��

where sg�x� 	 x�jxj if x �	 � and sg��� 	 �� It is known 
cf� ���� that Th 
�� f� uniquely
characterizes � among the roots of f �

In this paper� by a representation of a vector 
y�� y�� � � � � yk� � R
k we mean a vector


f
t�� g�
t�� � � � � gk
t�� ��

consisting of�

�a� a univariate polynomial f
t��

�b� k � � univariate polynomials g�
t�� � � � � gk
t�� and

�c� a vector � � f��� �� �gdeg�f����

so that � is the Thom encoding Th 
�� of some root � of f � and yi 	
gi���
g����

for each � � i � k�
The polynomials are represented by vectors providing their degrees and listing all coe�cients�
When dealing with the logarithmic cost model� we assume in addition that the coe�cients of
the polynomials f and gi are all rational numbers� In the unit cost model� the size of such a
representation is de�ned to be the total number of reals needed so as to specify the coe�cients�
that is� the sum of the degrees of all the polynomials plus k � � � deg
f�� In the logarithmic
cost model� the size is the above plus the total number of bits needed in order to represent the
coe�cients of the polynomials� each written in binary as the quotient of two integers�

In the paper� we use these representations for the parameters de�ning concepts� while inputs
are given directly as real numbers 
rationals in the log model�� thus we need to know that signs
of polynomial expressions involving vectors represented in the above manner as well as reals
can be evaluated e�ciently� We next state a result that assures this� By the complexity of a
multi�variable polynomial H
z�� � � � � zq� we mean the sum of the number of nonzero monomials
plus the sum of the total degrees of all these monomials 
for instance� �z��z

�
��z

	
� has complexity

�� �� � 	 ���� in the log cost model� we assume that the coe�cients of H are rational and we
add the number of bits needed to represent the coe�cients�

Lemma A�� In the unit cost model� there is an algorithm A which� given a polynomial H of
complexity h on variables x�� � � � � xl� y�� � � � � yk� and given real numbers x�� � � � � xl and a represen�
tation 
f
t�� g�
t�� � � � � gk
t�� �� of a vector y�� � � � � yk� can compute sg�H
x�� � � � � xl� y�� � � � � yk��
in time polynomial on l� h� and the size of this representation� The same result holds in the
logarithmic cost model� assuming that the inputs xi are all rational� with time now polynomial
on the size of these inputs as well� �

Proof� Note that� in general� if p�
t� and p�
t� are two rational functions with numerator and de�
nominators of degree bounded by d� then both p�
t�p�
t� and p�
t��p�
t� are rational functions

��



with numerator and denominator of degree at most �d� Moreover� these algebraic operations
can be computed in time polynomial on d as well as� in the log model� on the size of coe�cients�
Working iteratively on all monomials of H � we conclude that it is possible to construct from
the gi�s and xj �s� in polynomial time� two polynomials R�
t� and R�
t� with real 
rational� in
the log model� coe�cients so that H
x�� � � � � xl� y�� � � � � yk� 	 R�
���R�
��� where � is the root
encoded by �� Note that

sign

�
R�
��

R�
��

�
	

�
� if sign 
R�
��� 	 sign 
R�
��� and R�
�� �	 �
�� otherwise

Thus it is only necessary to evaluate sign 
Ri
���� i 	 �� �� The evaluation can be done e�ciently
because of the following fact from �����

There is an algorithm B with the following property� Given any univariate real
polynomial f
t�� a real root � of f speci�ed by means of its Thom encoding Th 
���
and another univariate polynomial g
t�� B outputs sign 
g
���� using a number of
arithmetic operations polynomial on deg
f��deg
g�� in the logarithmic cost model�
if all input coe�cients are rationals of size at most L� then B uses a number of bit
operations polynomial on deg
f� � deg
g� � L�

This provides the desired sg�H
x�� � � � � xl� y�� � � � � yk���

The main reason that representations of the type 
f
t�� g�
t�� � � � � gk
t�� �� are of interest is
that one can produce solutions of algebraic equations and inequalities represented in that form�
We explain this next�

One says that a vector � 	 
��� ��� � � � � �s� � f��� ����gs is a nonempty sign condition for
an ordered set of s real polynomials P 	 fP��P�� � � � �Psg in k � s real variables if there exists
some point 
y�� � � � � yk� � Rk such that �i 	 sg�Pi
y�� y�� � � � � yk�� for all i� the corresponding
point 
y�� y�� � � � � yk� � R

k is said to be a witness of ��

Fact A�� 
��� ��� There is an algorithm A as follows� Given any set P of s real polynomials
in k � s variables� where each polynomial is of degree at most d� A computes� for each non�
empty sign�condition of P � the sign condition � as well as a representation of a witness for
�� Moreover� A runs in O

sd�O�k�� time in the unit cost model� and in the corresponding
representation� deg
f� � 
sd�O�k�� In the logarithmic cost model� assuming that coe�cients of
the given polynomials are rationals of size at most L� A runs in time O
skdO�k�LO����� and the
degrees and coe�cients of all the polynomials f� g�� � � � � gk 
and� consequently the number of
components in Th 
��� are rational numbers of size at most O
dO�k�LO����� �
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