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Abstract

Threats on the stability of a financial system may severdgcathe functioning of the entire econ-
omy, and thus considerable emphasis is placed on the angly® cause and effect of such threats. The
financial crisis in the current and past decade has showwotieaimportant cause of instability in global
markets is the so-calldthancial contagionnamely the spreadings of instabilities or failuresnafivid-
ual components of the network to other, perhaps healthier, ooepts. This leads to a natural question
of whether the regulatory authorities could have predieted perhaps mitigated the current economic
crisis by effective computations of some stability measfréhe banking networks. Motivated by such
observations, we consider the problem of defining and etiatpatabilities of both homogeneous and
heterogeneous banking networks against propagati@yrthronous idiosyncratic shocgsven to a
subset of banks. We formalize the homogeneous banking retwodel of Nieret al. [46] and its cor-
responding heterogeneous version, formalize the synoloshock propagation procedures outlined
in [25, 46], define two appropriate stability measures andstigate the computational complexities of
evaluating these measures for various network topologidsparameters of interest. Our results and
proofs also shed some light on the properties of topologidsparameters of the network that may lead
to higher or lower stabilities.

*Talks based on these results were given or will be given atfrennual New York Computer Science and Economics Day, New
York University, September 16, 2011, at the Industrial-deaic Workshop on Optimization in Finance and Risk Manageme
October 3-4, 2011, Fields Institute, Toronto, Canada, atiteaMathematical Finance theme, 2012 Annual Meeting o€teadian
Applied and Industrial Mathematics Society, July 24-28120



1 Introduction and Motivation

In market-based economies, financial systems perform it@pifinancial intermediation functions of bor-
rowing from surplus units and lending to deficit units. Ficiah stability is the ability of the financial
systems to absorb shocks and perform its key functions, ievstnessful situations. Threats on the stabil-
ity of a financial system may severely affect the functioniighe entire economy, and thus considerable
emphasis is placed on the analyzing the cause and effectbfthteats. The concept of instability of a
market-based financial system due to factors such as dehtiinmgaof investments can be traced back to
earlier works of the economists such as Irving Fisher [29] dohn Keynes [37] during the 1930's Great
Depression era. Subsequently, some economists such amHyimsky [44] have argued that:

Such instabilities are inherent in many modern capitalirmies

In this paper, we investigate systemic instabilities of ltfaaking networks, an important component of
modern capitalist economies of many countries. The finhodas in the current and past decade has shown
that an important component of instability in global finatcharkets is the so-calleithancial contagion
namely the spreadings of instabilities or failuresrafividual components of the network to other, perhaps
healthier, components. The general topic of interest mphper, motivated by the global economic crisis in
the current and the past decade, is the phenomenon of fiheootagion in the context dfanking networks
and is related to the following natural extension of the tjoagposed by Minsky and others:

e What is the true characterization of such instabilities arfiking networksi.e.,

— Are such instabilities systemie.g, caused by a repeal of Glass-Steagall act with subsequent
development of specific properties of banking networks a@iatved a ripple effect [14]?

— Or, are such instabilities caused just by a few banks thagé Viteo big to fail” and/or “a few
individually greedy executives” ?

To investigate these types of questions, one must firsegbtl following issues:
e What is theprecisemodel of the banking network that is studied?
e How exactlyfailures of individual banks propagated through the nekworother banks?
e Whatis amppropriate stability measur@nd what are the computational properties of such a measure?

As prior researchers such as Allen and Babus [1] pointedji@yth-theoretic concepts provide a conceptual
framework within which various patterns of connectionsamn banks can be described and analyzed in a
meaningful way by modeling banking networks adigectednetwork in which nodes represent the banks
and the links represent the direct exposures between b&ksh a network-based approach to studying
financial systems is particularly important for assessingritial stability, and in capturing the externali-
ties that the risk associated with a single or small groumsfitutions may create for the entire system.
Conceptually, links between banks have waposingeffects on contagion:

e More interbank links increase the opportunity for spregdmilures to other banks [32]: when one
region of the network suffers from a crisis, another regitso ncurs a loss because their claims on
the troubled region fall in value and, if this spillover affés strong enough, it can cause a crisis in
adjacent regions.



e More interbank links provide banks with a form @binsuranceagainst uncertain liquidity flows [2],
i.e.,, banks can insure against the liquidity shocks by exchandg@posits through links in the network.

2 The Banking Network Model

2.1 Rationale Behind the Model

As several prior researchers such as [1, 25, 39, 46] havadgireommented, graph-theoretic frameworks
may provide a powerful tool for analyzing stability of banfgiand other financial networks. We provide
and use a mathematically precise abstraction of a bankitwgpriemodel as outlined in [46] and elsewhere.
The same or very similar version of the graph-theoretic fgspagation model used in this paper has also
been extensively used by prior researchers in finance, edoaaand banking industry to study various
properties and research questions involving banking systmilar to what is studied in this paper.d,

see [5,19, 31, 45, 49], to name a few). As commented by rdser@such as [5, 46]:

the modelling challenge in studying banking networks liesso much in analyzing a model
that is flexible enough to represent all types of insolvermsgades, but in studying a model that
can mimic the empirical properties of these different typlsetworks

A loss propagation model such as the one discussed here sawhelre such as in [5, 19, 31, 45, 49] con-
ceptualises the main characteristics of a financial systeinguetwork theory by relating the cascading
behavior of financial networks both to the local propertiethe nodes and to the underlying topology of
the network, allowing us to vary continuously the key parerseof the network.

2.2 Homogeneous Networks: Balance Sheets and Parameters Banks

We provide a precise abstraction of the model as outlined@hyhich builds up on the works of Eboli [25].
The network is modeled by a weighted directed gr&pk (V,F) of n nodes andn directed edges, where
each node € V corresponds to a banBénk,) and each directed edge V') € F indicates thaBank, has

an agreement to lend moneyBank,. Let deg,(v) and deg,(v) denote the in-degree and the out-degree
of nodev. The model has the following parameters:

E = total external asset, | = total inter-bank exposure, A=1+E = total asset
_ i _ Y _ i
[0,1] > y = percentage of equity to assety = w(e) = . = weight of edgeec F, @ = severity of shock (> ® > y)

Now, we describe the balance sheet for a nodeV (i.e., for Banky):

Assets Liabilities
Iy = deg,,(v)xw=interbank asset by = deg,(v) x w=interbank borrowing
8 = (bv—lv)+E—7w =(by—1)+E cv=yxa, = networth (equity)

share of total external asdet dy customer deposits
a=6+Il, = b,+E=totalasset ly=by+c,+d, = totalliability

ay = fy (balance sheet equation)

IThis model assumes that all the depositors are insured éardkpositse.g, in United States the Federal Deposit Insurance
Corporation provides such an insurance up to a maximum.|&Vels,we will omit the parameters dy for all vin the rest of the
paper when using the model Similarly, ¢, quantities (which depend on tlig's) are also only necessary in writing the balance
sheet equation and will not be used subsequently.



Note that the homogeneous model is completely describebleog-tuple of parametefs, y, |, E).

2.3 Balance Sheets and Parameters for Heterogeneous Netwsr

The heterogeneous version of the model is the same as it®¥¥dmmeous counterpart as described above, ex-
cept that the shares of interbank exposures and exterrddssdifferent banks may be different. Formally,
the following modifications are done in the homogeneous mode

e w(e) > 0 denotes the weight of the edge E along with the constraint thgte.r w(e) =1.
® Iy= Ze:(v.v')eFW(e)’ andb, = 2 e=(V.v)eF w(e).

e e, =(by—1)+ayx (E—Yyey(by—1)) for somea, > 0 along with the constrainf ., ay = 1.
Sincey ey (by — 1v) = 0, this givess, = (by — 1y) + aE. Consequentlyg, now equald, + ayE.

Denoting them-dimensional vector ofv(e)’s by w and then-dimensional vector oft,’s by a, the heteroge-
neous model is completely described by the 6-tuple of paens{s, y, |, E,w,a).

Figure 1: An example of our banking network model.
n = number of nodes- 5
@ m= number of edges- 7
| = total inter-bank exposure m=7
E = total external asset 14,y =0.1

lllustration of calculations of balance sheet parameters We illustrate the calculation of relevant param-
eters of the balance sheet of banks for the simple bankinvgonkeishown in Fig. 1.

(a) Homogeneous version of the network

e W= weight of every edge-|/m= 1.

Iy, = degy(vi) xwW=1, Iy, = degy(V2) x W= 1, 1y, = deg,(V3) x W= 2, Iy, = deg,(Va) x W=
1, 1y, = deg,,(Vs) x w=2.

by, = deg, (V1) xw=2, by, = deg, (V2) xw=1, by, = deg, (V3) xw =1, by, = deg, (Va) x W =
3, by, =deg,(vs) xw=0.

evl:bvl_’v1+%:3-87 eszbVZ_lVZ—'_%:Z-Ba eV3:bV3_lV3+%:1-87 e\/4:bV4_lV4+%:
4.8, &, =by, — Iy, + £ =08,

a,=b,+5=48a,=b,+5=38a,=b,+£=38 a,=b,+5=58 a,=b,+E=28.

e ¢, =VYa, =048,¢, =ya, =0.38,¢c, = ya,, = 0.38,¢, = ya, =0.58,¢, = ya,, == 0.28.



(b) Heterogeneous version of the network

Suppose that 95% dE is distributed equally on the two banks and v», and the rest 5% oE is
distributed equally on the remaining three banks. Thus:

a, E=2%E =6.65 a,E= =6.65, a,E=2%F ~0.233 a,,E =2%E ~0.233 a,E=2%E ~0.233

Suppose that 95% dfis distributed equally on the three eddgs= (vo,Vv1), f2 = (Va,Va4), f3 = (Va,V2), and
the remaining 5% of is distributed equally on the remaining four eddgs= (vs,Vv1), fs = (v3,V4), fg =
(Vs,Va), f7 = (vs,v3). Then,

w(f1) =w(fa) =w(fs) = 28 ~ 2,216 w(fs) =w(fs) = w(fs) = w(f;) = 2% —0.08725

by, = W(f1) +W( fs) ~ 2.30325 1, = w(f2) = 2.216

for bankv;:
1 = (by, — Iv,) + 0y, E ~ 6.7365 ay, = by, + o, E = 8.9525 ¢, = ya,, = 0.8925
for bankv,: by, =w(f3) ~ 2.216 Iy, = w(f1) = 2.216
e, = (by, — Iv,) + ay,E = 6.65, a,, = by, + ay,E ~ 8.866. c,, = yay, ~ 0.8666
for bankva: by, = w(f7) =0.08725 1y, = w(fs) +w(fs) =0.1745
¥ @, = (by, — Iy) + Oy,E ~ 0.14575 &y, = by, + ay,E ~ 0.32025 ¢y, = ya, ~ 0.032035
for bankye: P = W(f2) +W(fs) +-w(fe) ~2.39050Q 1, = w(fs) ~ 2216
4.
&y, = (by, — Iv,) + 0, E ~ 0.4075 ay, = by, + ay,E ~ 2.6235 c,, = ya,, ~ 0.26235
for bankvs: D6 = 0 fvs = W(fe) +w(f7) = 0.1745

ey, = (by, — Ivs) + o E = 0.0585 a,, = by, + ay,E ~ 0.233 ¢, = ya,, ~ 0.0233

2.4 ldiosyncratic Shock [25, 46]

As in [46], our initial failures are caused hgiosyncratic shocksvhich can occur due toperations risks
(frauds) orcredit risks and has the effect of reducing the external assets of atsdlsabset of banks
perhaps causing them to default. Whalggregatedor correlatedshocks affecting all banks simultaneously
is relevant in practice, idiosyncratic shocks are a cleavay to study thestability of the topology of the
banking network. Formally, we select a non-empty subsebdks (banks) @ Vshock € V. For all nodes

V € Vshock WE Simultaneously decrease their external assets &dig s, = P g, where the paramet&p €
(0,1] determines the “severity” of the shock. As a result, the netwvorth ofBank, becomes, = ¢, —s,.
The effect of this shock is as follows:

e If ¢, > 0, Bank, continues to operate but with a lower net wortrclf

e If ¢, < 0, Bank, defaults(i.e., stops functioning).

2.5 Propagation of an Idiosyncratic Shock [25, 46]

We use the notation,(t) to denotec, at timet, andto+ to denote any > to. Let Vajive(t) €V be the set

of nodes that have not failed at timeand letGgjive(t) = (Vaive(t), Faive(t)) be the corresponding node-
induced subgraph d& at timet with deg,(v,t) and deg,(vt) denote the in-degree and out-degree of a
nodev € Vayjive(t) in the graphGajive(t). In @ continuous-time model, the shock propagates as fellow
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t=1;Vaie(l) =V
(* start the shock at = 1 on nodes iVshock *)
VYveV: if veVghoek thency(l) =c,—Pe, elsec (1) =cy

(* shock propagation at timds=2,3,...,T *)
while (t<T) A (Vaive(t) #0) do
(* transmit loss to next time step *)

min{|c,(t) |, by
VU € Valive(t) : cu(t+1) = cy(t) — y ()\t }
Vi Cy(t)<0 & (u,Vv)EFaive(t) €0n (V7 )

(* removeBank, from network if it is to fail at this step *)
Valive(t + 1) = Vaive(t) \ {V| V € Vaive(t) & ¢y(t) < O}

t=t+1
endwhile

Table 1: Discrete-time idiosyncratic shock propagatianifsteps.

e Vaive(1l) =V, cy(1) = ¢y — Sy if V€ Vshoek andcy(1) = ¢, otherwise.
e If abanks equity ever becomes negative, it fails subsetyéet, Vto > 1: ¢,(to) < 0=V ¢ Vajve(ty)-

e A failed bankBank, at timet = tg affects the net worth (equity) of all banks that gave loaBa&ok,
in the following manner. For each edge V) € Fajive(to) in the network at timéy, the equityc,(to) is
decreased by an amodruf % Thus, the shock propagation is defined by the following
differential equation:

acy(t) min{|cy(t)|, by }
ot

Vi Cy(t)<0& (u,v)eRalve(t) degn (V> t)

An intuitive explanation of the two quantities inside thersnation in the above equation is as follows. The

term dé;((t\i‘t) distributes the loss of equity of a bank equitably amongriéslitors that have not failed yet.

The termﬁ"f\m ensures that the total loss propagated is no more than tidrtt#rbank exposure of the
failed bank.

A discrete-timeversion of the above can be obtained by the obvious methodiarfitizing time and
replacing the partial differential equations by “diffecenequations”. With appropriate normalizations, the
discrete-time model for shock propagation is described synahronous iterative procedure shown in Ta-

ble 1 whera =1,2,..., T denotes the discrete time step at which the synchronouseugddone T < n).

2If | cy(to) | > by then the depositors incur a losshwf— | cy(to) |, but as already mentioned before this model assumes that all
the depositors are insured for their deposits.



A simplified illustration of the effect of idiosyncratic shocks Consider the
case when the model omogeneouand the topology of the grap8 is in-
arborescencei.e., a directed rooted tree where all edges are oriented towal
the root. Consider two nodesv €V such that(v,u) € F and deg,(v) =0 (see
Fig. 2). Suppose that at time= 1 the nodeu is shocked and consequently it
defaults The amount of shock transmitted framo v is

A min{|c,(1)[,b,} min{Pe,—cy(1),b,} min{®(by—1,+ %) —y(by E%).;EU . an in
— — = Fifufe—=2:
degn(u) degn( ) degn (1) arborescence graph.
mln{CD(degn( +5) - (degn +£),deg, (u)}
deg,(u
=min 1+ S 1
B ndegn degn(u)’

Sincec, (1) = y x E/n, we have

o4 =) =2y omin{ (@< (1 e )~ g

Assuming® — y < 1+ m and deg,(u) > 1, the above expression simplifies to

ndeg

cv<2>mv><§—<¢—wx (1+@>

Suppose thag = ®/4. Then,c,(2) ~ y x (% —-3- 3E( )). Consequently, one can observe the following:

ndeg, (u

o If E/n <2, thenc,(2) < 0 and nodes will surely fail at timet = 2.

e If E/n> 4 and deg (u) > 10 thenc,(2) > 0 and nodes will surely not fail at timet = 2.

2.6 Parameter Simplification

We can assume without loss of generality that in the homagenshock propagation model= 1. To
observe this, ifv=1/m # 1, then we can divide each of the quantitigsb,, E andd, by w; it is easy to see
that the outcome of the shock propagation procedure in Tlatdenains the same. Moreover, we will ignore
the balance sheet equation simf;éas no effect in shock propagation.

3 Related Prior Works on Financial Networks

Although there is a large amount of literature on stabilitfimancial systems in general and banking systems
in particular, much of the prior research is on the empiridé or applicable to small-size networks. Two
main categories of prior researches can be summarizedlaw$olThe particular model used in this paper
is the model of Nieet al.[46]. As stated before, definition of a precise stability swea and analysis of its
computational complexity issues for stability calculatiwere not provided for these models before.



Network formation Babus [7] proposed a model in which banks form links with eattter as an in-
surance mechanism to reduce the risk of contagion. In csint@astiglionesi and Navarro [15] studied
decentralization of the network of banks that is optimaifrine perspective of a social planner. In a setting
in which banks invest on behalf of depositors and there aséip® network externalities on the investment
returns, fragility arises when “not sufficiently capit&@@ banks gamble with depositors’ money. When the
probability of bankruptcy is low, the decentralized sadativell-approximates the first objective of Babus.

Contagion spread in networks Although ordinarily one would expect the risk of contagiorbe larger in

a highly interconnected banking system, some empiricalilsitions indicate that shocks haveatremely
complexeffect on the network stability in the sense that higher eativity among banks may sometimes
lead tolowerrisk of contagion.

Allen and Gale [2] studied how a banking system may respomomtagion when banks are connected
under different network structures, and found that, in &rgpvhere consumers have the liquidity prefer-
ences as introduced by Diamond and Dybvig [23] and have raramidity needs, banks perfectly insure
against liquidity fluctuations by exchanging interbank@&{s, but the connections created by swapping de-
posits expose thentire systento contagion. Allen and Gale concluded that incomplete agteraremore
prone to contagion than networks with maximum connectigityce better-connected networks are more
resilient via transfer of proportion of the losses in onelmportfolio to more banks through interbank
agreements. Freixat al.[30] explored the case of banks that face liquidity fluctoiagi due to the uncer-
tainty about consumers withdrawing funds. Gai and Kapa&@Rh qrgued that the higher is the connectivity
among banks the more will be the contagion effect duringscrislaldane [34] suggested that contagion
should be measured based on the interconnectedness ohettthion within the financial system. Liedorp
et al.[42] investigated if interconnectedness in the interbaiakkat is a channel through which banks affect
each others riskiness, and argued that both large lendoh@mnowing shares in interbank markets increase
the riskiness of banks active in tdetchbanking market.

Dasgupta [21] explored how linkages between banks, repieddoy cross-holding of deposits, can
be a source of contagious breakdowns by investigating hgedgirs, who receive a private signal about
fundamentals of banks, may want to withdraw their depaofitely believe that enough other depositors will
do the same. Lagunoff and Schreft [41] considered a modehiohwagents are linked in the sense that the
return on an agents’ portfolio depends on the portfoliocatmns of other agents. lazzetta and Manna [35]
used network topology analysis on monthly data on depositkasge to gain more insight into the way a
liquidity crisis spreads. Nieet al. [46] explored the dependency of systemic risks on the straadf the
banking system via network theoretic approach and thaersé of such a system to contagious defaults.
Kleindorferet al.[39] argued that network analyses can play a crucial roledeustanding many important
phenomena in finance. Corbo and Demange [20] explored, ¢ineaxogenous default of set of banks, the
relationship of the structure of interbank connectionshi ¢ontagion risk of defaults. Babus [8] studied
how the trade-off between the benefits and the costs of baikgd changes depending on the network
structure, and observed that, when the network is maxingglidity can be redistributed in the system to
make the risk of contagion minimal.



4 The Stability and Dual Stability Indices

A banking network is calledeadif all the banks in the network have failed. Consider a givemhgeneous
or heterogeneous banking netwdi®, y,1,E,®) or (G, y,|,E,®,w,a). For0c V' CV, let
infl(V') = {v eV |vfails if all nodes inv’ are shocked

/n, ifinfl(V') =V
oo,  otherwise

v

SI(G,V,T) = {

The Stability Index The optimalstability indexof a networkG is defined as

SI*(G,T) = SI(G.Venoo T) = min { SI(G,V'.T) }

For estimation of this measure, we assume that it is posisibtbe network to failj.e., SI*(G,T) < o. Thus,
0 < SI*(G,T) <1, and the higher the stability index is, the better is thbibta of the network against an
idiosyncratic shock. We thus arrive at the natural compuitat problem SABT . We denote an optimal
subset of nodes that is a solution of ProblemSr ¢ by Vsnock i-€., SI*(G, T) = SI(G, Vshock T ). Note that
if T > nthen the SABT ¢ finds a minimum subset of nodes which, when shocked,evéhtuallycause the
death of the network in an arbitrary number of time steps.

Input: a banking network with shocking parameger Input: a banking network with shocking parameter
and an integef > 1 and two integer3,k > 1
Valid solution: A subse¥V’ CV such thaSI(G,V’,T) < o | Valid solution: A subset/’ CV such thafV’| = k
Objective: minimize|V’| Objective: maximize |infl(V’) /k |
Stability of banking network (STABT¢) Dual Stability of banking network (DUAL-STABT ¢ « )

The Dual Stability Index Many covering-type minimization problems in combinateritave a natural
maximization dual in which one fixes a-priori the number of@xing sets and then finds a maximum number
of elements that can be covered with these many sets. Forpdxathe usual dual of the minimum set
covering problem is the maximum coverage problem [38]. Agausly, we define a dual stability problem
DUAL-STABT 0 «. Thedual stability indexof a networkG can then be defined as

DSI*(G,T,K) = wom?\‘/)ﬂ:K linfl(V') / k|

The dual stability measure is of particular interest wis¢{(G, T) = o, i.e., the entire network cannot be
made to fail. In this case, a natural goal is to find out if a $igant portion of the nodes in the network can
be failed by shocking a limited number of nodesGfthis is captured by the definition &fSI*(G, T, k).

Violent Death vs. Slow Poisoning In our results, we distinguish two cases of death of a network
violent death (T = 2) The network is dead by the very next step after the shock.

slow poisoning (anyT > 2) The network may not be dead immediately but adiesntually



4.1 Rationale Behind the Stability Measures

Although it is possible to think of many other alternate mmas of stability for networks than the ones

defined in this paper, the measures introduced here areenttitin the ideas that references [25, 46] directly
(and, some other references such as [31, 49] implicitly)l tsempirically study their networks by shocking

only a few (sometimes one) node. Thus, a rationale in defitiiagstability measures in the above manner
is to follow the cue provided by other researchers in the m@nkdustry in studying models such as in

this paper instead of creating a completely new measuranthgitbe out of sync with ideas used by prior

researchers and therefore could be subject to criticisms.

5 Comparison with Other Models for Attribute Propagation in Networks

Models for propagation of beneficial or harmful attributesdébeen inves- e 0
tigated in the past in several other contexts such as influgraximization e

in social networks [13, 16, 17, 36], disease spreading immnbetworks

[18, 26, 27], percolation models in physics and mathem@@lsand other o e

types of contagion spreads [11, 12]. However, the modeltfocls prop- P =04 y=01 E=5
agation in financial network discussed in this papduislamentallyery Figure 3: A homogeneous net-
different from all these models. For example, the cascadgefsmf fail- Work used in the discussion in
ure considered in [11, 12] are probabilistic models of falpropagation Section 5.

of amore generic nature, and thus not very useful to stutlyrégpropagation via interlocked balance sheets
of financial institutions (as is the case in OTC derivativesrkets). Some distinguishing features of our
model include:

(a) Almost all of these models include a trivial solution in whithe attribute spreads to the entire network
if we inject each node individually with the attribute. Tligsnot the case with our moded node may not
fail when shocked, and the network may not be dead if all nadeshocked For example, consider the
network in Fig. i).

e Suppose that all the nodes are shocked. Then, the followieigte happen.

— Nodea (and similarly nodeb) fails att = 1 since® (deg,(a) + £) > y(deg,(a) + £).
— Nodec also fails at = 1 since® (deg, (c) — deg,,(c) + £) = 0.4 > y(deg,(c) + £) = 0.3.

— Noded (and similarly nodes) do not fail att = 1 since® (—deg,,(d) + %) =0<yx % =01
and its equity stays atD—0=0.1.

— At t = 2, noded (and similarly nodee) receives a shock from nodeof the amounto"‘;zo'3 =
0.05< 0.1. Thus, nodes ande do not fail. Since no new nodes fail durihg- 2, the network
does not become dead.

e However, suppose that only nodeandb are shocked. Then, the following events happen.

— Nodea (and similarly nodd) fails att = 1 since® (deg, (a) + £)=0.8 > y (deg, (a) + £)=0.2.

— Att = 2, nodec receives a shock of the amounk20.8—0.2) = 1.2 > y(deg,(c)+ £) = 0.3.
Thus, nodee fails att = 2.
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— Att = 3, noded (and similarly nodes) receives a shock of the amouk#;23 = 0.45> y x £ =
0.1. Thus, both these nodes failtat 3 and the entire network is dead.

As the above example shows, if shocking a subset of nodessaaketwork dead, adding more nodes to this
subset mayot necessarily lead to the death of the network, and the diabieasure i:meither monotone
nor sub-modular Similarly, it is also possible to exhibit banking networkgch that to make the entire

network fail:

e it may be necessary to shock a node even if it does not faieshocking such a node “weakens” it
by decreasing its equity, and

e it may be necessary to shock a node even if it fails due to shgislen to other nodes.

(6) The complexity of the computational aspects of many prevtribute propagation models arise due
to the presence of cycles in the graph; for example, see ftgidlynomial-time solutions of some of these
problems when the underlying graph does not have a cycleonirast, our computational problems are
may be hardeven when the given graph is acycliastead, a key component of computational complexity

arises due to two or more directed paths sharing a node.

Stability SI*(G,T)

Dual Stability DSI*(G, T, k)

N?:g’l?:i tyr;e, bound, assumption (if any), bound, assumption (if any),
yp corresponding theorem corresponding theorem
T=2 (1—¢)Inn,

approximation hardness

NP ¢ DTIME (n'°8/°9") Theorem 8.1

T = 2, approximation ratio

ndE
Of(log{ ———=—— ), Theorem 9.1
( g(v(cb—v) |E—¢|>>

Homo-
geneous Acyclic, VT > 1, (1-et+e)t,
f . APX-h Th 10.1
approximation hardness ard, Theorem 10 P # NP, Theorem 15.1(a)
In-arborescence O(nz) time, every node fails (0] (n3) time, every node fails
VT > 1, exact solution when shocked, Theorem 11.1 when shocked, Theorem 15.1(b)
Acyclic, vV T > 1, (1—¢) Inn, NP ¢ DTIME(n/ogloan), (1-el+e)™
approximation hardness Theorem 12.1 P # NP, Theorem 15.1(a)
Acyclic, T = 2, approximation hardness nd, assumption &), Theorem 16.1
Hetero- Acyclic, v T > 3, 2106"*n NP ¢ DTIME(nPo(logn) ),
geneous

approximation hardness

Theorem 14.1

Acyclic, T =2,
approximation ratio ¥

o <Iog N E Winax Winin Omax >
@y (P —y) E Wiin Tmin Wimax/ '
Theorem 13.1

*See Theorem 13.1 for definitions of some parameters in th@zippation ratio.
TSee page 43 for statement of assumpfignwhich is weaker than the assumptiBr: NP.
Table 2: A summary of our results;> 0 is any arbitrary constant and04 < 1 is some constant.

6 Overview of Our Results and Their Implications on Banking Networks

Table 2 summarizes our results, where the notation (@ly, . .. ,Xx) denotes a constant-degree polynomial

in variablesxy,xo,...,X. Our results for heterogeneous networks show that the gmoldf computing
stability indices for them is harder than that for homogerseaetworks, as one would naturally expect.
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6.1 Brief Overview of Proof Techniques
6.1.1 Homogeneous NetworksSTABT ¢

T = 2, approximation hardness and approximation algorithm The reduction for approximation hard-
ness is from a corresponding inapproximability result Fer dominating set problem for graphs. The loga-
rithmic approximatioralmostmatches the lower bound. Even though this algorithmic grobtan be cast
as a covering problem, ormannotexplicitly enumerateexponentially mangovering sets in polynomial
time. Instead, we reformulate the problem to that of cormguin optimal solution of a polynomial-size
integer linear programmingdL(P), and then use the greedy approach of [24] for approximatfoareful
calculation of the size of the coefficients of thé ensures that we have the desired approximation bound.

Any T > 1, approximation hardness and exact algorithm The APX-hardness result, which holds even
if the degrees of all nodes asenall constants, is via a reduction from the node cover problen3d@gular
graphs. Technical complications in the reduction arisenfroaking sure that the generated graph instance
of STABT ¢ isacyclic no new nodes fail for anty> 3, but the network can be dead without each node being
individually shocked. If the network is a rooted in-arbamsce and every node can be individually shocked
to fail, then we design aﬁ)(nz) time exactalgorithm via dynamic programming; as a by product it also
follows that the value of the stability index of this kind aétwork withboundednode degrees iarge.

6.1.2 Homogeneous NetworkDUAL-STABT o «

Any T, approximation hardness and exact algorithm For hardness, we translate a lower bound for
the maximum coveragproblem [28]. The reduction relies on the fact that in duabsity measure every
node of the network needot fail. If the given graph is a rooted in-arborescence andyewede can be
individually shocked to fail, we provide &b (n3) time exact algorithm via dynamic programming.

6.1.3 Heterogeneous NetworksSTABT ¢

Any T, approximation hardness The reduction is from a corresponding inapproximabilitgule for the
minimum set covering problem. Unlike homogeneous netwarkequal shares of the total external assets
by various banks allows us to encode an instance of set cgveqgoalizing” effects of nodes.

T =2 Theapproximation algorithm uses linear program in Theorem 9.1 with more careful caliculs.

Any T > 2, approximation hardness This stronger poly-logarithmic inapproximability resthian that in
Theorem 12.1 is obtained by a reduction fromN®EP, a graph-theoretic abstraction of two prover multi-
round protocol for any problem INP. Many technical complications in the reduction, culmingtto a set
of 22 symbolic linear equations between the parametersabanust satisfy. Intuitively, the two provers in
MINREP correspond to two nodes in the network that cooperate todf@ihother specified set of nodes.

6.1.4 Heterogeneous NetworkDUAL-STAB2 ok, approximation hardness The reduction for this
stronger inapproximability result is from tlkensest hyper-grapbroblem.
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6.2 Implications of Our Results on Banking Networks
6.2.1 Effects of Topological Connectivity

Though researchers agree that the connectivity of bankétgarks affects its stability [2, 32], the conclu-
sions drawn are mixed, namely some researchers concludegbkar connectivity implies more susceptibil-
ity to contagion whereas other researchers conclude inghesite. Based on our results and their proofs,
we found that topological connectivity does play a signiita@le in stability of the network in the following
complex manner.

Even acyclic networks display complex stability behavior Sometimes a cause of the instability of

a banking network is attributed wyclical dependencies of borrowing and lending mechanisms among
major banks.e.g, banksvy, v» andvs borrowing from bankss, vz andvy, respectively. Our results
show that computing the stability measures may be difficedinewithout the presence of such cycles.
Indeed, larger inapproximability results, especially fmterogeneous networks, are possible because
slight change in network parameters can cause a large clratigestability measure. On the other hand,
acyclic small-degree rooted in-arborescence networkibigxtigher values of the stability measueeg,

if the maximum in-degree of any node in a rooted in-arbomeseeas 5 and the shock paramegeis no
more than twice the value of the percentage of equity to sigséten by Theorem 11.31"(G,T) > 0.1.

Intersection of borrowing chains may cause lower stability By aborrowing chainwe mean a directed
path from a node; to another node,, indicating that bank; effectively borrowed from baniy through

a sequence of successive intermediaries. Now, assumehtrat is another directed path frowm to
another nodes. Then, failure ofv, andvs propagates the resulting shocksvicand, if the shocks arrive
at the same step, then the total shock received by baitkthe addition of these two shocks, which in
turn passes this “amplified” shock to other nodes in the netwo

Based on these kinds of observations, it can be reasondbtydd that homogeneous networks with topolo-

gies more like a small-degree in-arborescence have higakeilites, whereas networks of other types of

topologies may have lower stabilities even if the topolegiee acyclic. For example, as we observe later,
when ded® = 3, y = 0.1 and® = 0.15, we getSI*(G, T) > 0.22 and the network cannot be put to death

without shocking more than 22% of the nodes.

6.2.2 Effects of Ratio of External to Internal Assets E/I) and percentage of equity to assetsyj for
Homogeneous Networks

As our relevant results and their proofs show, lower valdds/d andy may cause the network stability to be
extremely sensitive with respect to variations of otheapaters of a homogeneous network. For example,
in the proof of Theorem 8.1 we have lim. E/i = lim,_,., y = 0, leading to variation of the stability index
by a logarithmic factor; however, in the proof of Theorem1l@e haveE/I = 0.25 andy = 0.23 leading to
much smaller variation of the stability index.

6.2.3 Homogeneous vs. Heterogeneous Networks

Our results and proofs show that heterogeneous networkanéElwith diverse equities tend to exhibit wider
fluctuations of the stability index with respect to paramgte.g, Theorem 14.1 shows a polylogarithmic
fluctuation even if the rati& /I is large.
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6.2.4 Further Empirical Study

Subsequent to writing this paper, DasGupta and Kaligoumdeseparate article [22] performed a thorough
empirical analysis of the stability measure over more than 700000 gmtibns of networks types and
parameters, and uncovered many interesting insightshetcelationships of the stability with other relevant
parameters of the network, such as:

Effect of uneven distribution of assets: Networks where all banks have roughly themeexternal assets
are more stable over similar networks in which fewer banke lzadisproportionately higher external
assets compared to the remaining banks, and failures oé thaisks withhigher assets contribute
more damage to the stability of the network. Furthermordéwakks in which fewer banks have a
disproportionately higher external assets compared toeimaining banks has a minimal instability
even if their equity to asset ratio is large and comparableds of external assets. This is not the
case for networks where all banks have roughly the samenattassets. Thus, in summary, they
concluded that banks with disproportionately large extkassets (“banks that are too big”) affect the
stability of the entire banking network in aglversemanner.

Effect of connectivity: For banking networks where all banks have roughly the sammuatrof external
assets, higher connectivity leadsltover stability. In contrast, for banking networks in which few
banks have disproportionately higher external assets amdpo the remaining banks, higher con-
nectivity leads tdiigherglobal stability.

Correlated versus random failures: Correlatedinitial failures of banks causes more damage to the entire
banking network as opposed to juabhdominitial failures of banks.

Phase transition properties of global stability: The global stability exhibits several shappase transi-
tionsfor various banking networks within certain parameter esng

7 Preliminary Observations on Shock Propagation

Proposition 7.1. Let (G = (V,F),y, B,E) be the given (homogeneous or heterogeneous) banking rketwor
Then, the following are true:

(a) If deg,,(v) = 0for some w V, then node v must be given a shock (and, must fail due tortbcksfor
the entire network to fail.

(b) Leta be the number of edges in the longest directed simple path ihh&n, no new node fails at any
timet> a.

(c) We can assume without loss of generality that G is weaklyexird,i.e., the un-oriented version of G
is connected.

Proof.
(a) Since deg,,;(v) = 0, no part of any shock given to any other nodes in the netwankreachs. Thus, the
network ofv, namelyc, = ya, stays strictly positive (sincg > 0) and noders never fails.

(b) Let tj5st be the latest time a node @& failed, and letV(t) be the set of nodes that failed at tirhe-
1,2,... tlast. Then,V(1),V(2),...,V(tiast) is a partition ofV. For everyi =1,2,... tjast— 1, add directed
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edges(u,v) from a nodeu € V(i) to a nodev € V(i + 1) if uwas last node that transmitted any part of the
shock tov beforev failed. Note thatu,v) is also an edge d& and for every node € V(i + 1) there must
be an edgéu,v) for some nodes € V (i). Thus,G has a path of length at leagist

(c) This holds since otherwise the stability measures can beuted separately on each weakly connected
component. i

8 Homogeneous NetworksSTAB2 ¢, Logarithmic Inapproximability

Theorem 8.1. SI*(G, 2) cannot be approximated in polynomial time within a factofbf- ¢)Inn, for any
constante > 0, unlessNP C DTIME (n'09/09n).

Proof. Thedominating seproblem for an undirected graph (DOMIN-SET) is defined akoWes: given an
undirected graph G= (V,F) with n=|V| nodes, find a minimum cardinality subset of nodésW such
that every node in V' is incident on at least one edge whose other end-point is'int\is known that
DOMIN-SAT is equivalent to the minimum set-cover problendan L-reduction [9], and thus cannot be
approximated within a factor ¢fL — £) Inn unlessNP C DTIME (n'°9'°d") [28].

Consider an instancg& = (V,F) of DOMIN-SET with n nodes andn edges, and |eDPT denote the
size of an optimal solution for this instance. Our (diregtbelnking networkG — (V, F) is obtained
from G by replacing each undirected ed§e v} by two directed edgeéu,v) and (v,u). Thus we have
0 < deg,(v) = deg, (V) < n for every nodev € V. We set the global parameters as follovis:= 10n,
y=n"2and® =1.

For a nodey, letNbr(v) = {u|{u,v} € E} be the set of neighbors ofin G. We claim that if a node is
shocked at timé = 1, then all nodes in igv} UNbr(v) fail at timet = 2. Indeed, suppose thais shocked
att = 1. Then,v surely fails because

_ dean(v)+§

E 2
e, = degy (V) — deg,(V)+ = = 10> = > =10 _yq,

Now, consideit = 2 and consider a nodesuch thatv has not failed but a node € Nbr(v) failed at time
t = 1. Then, node surely fails because

i - i - 10— 2
S > min{s,1 —Cy,bu}  min{®e, - yay,deg,(u)} - min{ - }

— 1
deg,(u,2) degy, (u) deg, (u)
- 2 N deg,(v)+ £

w2 =VYay

S

Thus, we have a 1-1 correspondence between the solutior@MiD-SET and death 03, namely’ cV
is a solution of DOMIN-SET if and only if shocking the nodesﬁhmake58 fail at timet = 2. m|

9 Homogeneous NetworksSTAB2, ¢, Logarithmic Approximation

Theorem 9.1. STAB,o admits a polynomial-time algorithm with approximation icat

o100y Ea) )
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Proof. Suppose thatbg, < 0 for some nodel € V. Then, there exists an optimal solution in which we do
not shock the node. Indeed, ifu was shocked, the equity afincreases frone, to ¢, + | ®e, | andu does
not propagate any shock to other nodes. Thug siill fails att = 2, then it also fails at = 2 if it was not
shocked.

Let Vshock denote the set of nodes that we will select for shocking, &ordevery nodev € V, let o

max{ 0, Pe,}, ifu=v
be defined asd,, = mm{:l;ee;], _(VC)V’ b"}, if ®e, > ¢, and(u,v) € F. Then, our problem reduces to a
n
0, otherwise

covering problem of the following type:
find a minimum cardinality subsetpck C V such that, for every node §,.\.,...Ovu > Cu.

Note that we cannot even explicitly enumerate, for a nadeV, all subsetsv’ C V \ {u} such that
SvevOvu > Cy, since there are exponentially many such subsets. Let tlaybvariablex, € {0,1} be
the indicator variable for a nodec V for inclusion inVshock HOwever, we can reformulate our problem as
the following integer linear programming problem:

minimize Z/x\,
ve

subjecttovue V: ;5v,uxv > Gy 1)

x € {0,1}

Let{ = mI\I/’I{ mln{éuv} cu }. We can rewrite each constraif¥ o,y > ¢, as Z 2y > z " to ensure
ue
ve

that every non-zero entry is at least 1. Since the coeffigiefithe constraints and the objective function are
all positive real numbers, (1) can be approximated by thedyr@lgorithm described in [24, Theorem 4.1]
with an approximation ratio of 2 Inn—+In (max,ev {zue\, % }) Now, observe that:

min {dyu} = min {CD (degn(u) —degy(u) + %) } =Q (@)

Ouu>0 Ouu>0
min min {dyy} =min min {(CD Y) < ) deg’“t }_Q<M>
ueVv veVv ueVv  veV V) degn n
Suyv>0 Pe,>cy
. . E
mpies —gip{ (e 5 | ( )
{ =min{ mlnmln{éuv} mln{cu}} Q (mm{ (®= V)E, yf})

max;d,u<nmax{(¢ y) <1+d oq. )> dJCCIlZ%’:t((u))}_O(n(qJ—y)E)

and thus, maxy {Zuev 2 } o} (poly( 3 By ﬁ)) giving the approximation bound. O
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10 Homogeneous NetworksSTABT ¢, any T, APX-hardness

Theorem 10.1.For any T, computing!*(G, T) is APX-hard even if the banking network G is a DAG with
deg,(v) < 3anddeg,(v) < 2 for every node v.

Proof. We reduce the 34AIN-NODE-COVER problem to SABt . 3-MIN-NODE-COVER is defined as
follows. We are given an undirected 3-regular gr&ph.e., an undirected grap® = (V,F) in which the
degree of every node is exactly 3 (and ths= 1.5|V|). A valid solution (node cover) is a subset of nodes
V/ CV such that every edge is incident to at least one nod#'.inThe goal is then to find a node cover
V’ CV such thatV’| is minimized This problem is known to baPX-hard [10].

{\2,v3}

€4 €6 €3 E5 €34 €35 €5 66
Q Q) Q) (VY () () ()

c O O O O q
W w U U, u u supersourcenodes

—

Figure 4: A 3-regular grapt = (V,F) and its corresponding banking netwﬁt (V,F).
Given such an instand® = (V,F) of 3-MIN-NODE-COVER, we construct an instance of the banking
network G — (7, ?) as follows:

e For every nodey; € V, we have two nodes;, U in 7 and a directed edge;, u)). We refer tou/ as a
“super-source” node.

e For every edgdvi,v;} € F with i < j, we have a (“sink”) nodes j in 7 and two directed edges
(&,j,u) and(& j,u;) in F. For notational convenience, the naglg is also sometimes referred to as

the nodee; ;.
Thus,|7| =35|V|, and|?| =4|V|. See Fig. 4 for an illustration. Observe that:
e deg, (u) =3 anddeg,(u)=1foralli=12,...,|V|.

e deg, (U) =1 and deg,(4) =0 foralli=1,2,...,|V|. Thus, by Proposition 7.1(a), every node
must be shocked to make the network fail.
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e deg,(ej)=0and €2 €365
deg,(&,j) = 2 for all i and j. '
Since deg (g j) =0, if a node
&, is shocked, no part of the
shock is propagated to any other

node in the network. @ failed
& Onot shockedX
e Since the longest path i6 has QO arbitrary

2 edges, by Proposition 7.1(b) Figure 5: Casqlll) : if node u, is shocked then the nodes

no new node fails at arty> 3. 12,63 andey s must fail att = 2.

For notational convenience, let= V|, & = E/n, ande j,, 8 j, ande j, be the three edggs;,vj, }, {Vi,Vj,}

and{v,vj,} in G that are incident on the node We will select the remaining network parameters, namely

y, ® and&’, based on the following desirable properties.

(1) If a nodeu is shocked at = 1, it fails:
® (deg, (U) — degy(U) +&) >y (deg,(U) +&) = @ (1+8)>y(1+68) = P>y (2)
(II) If a nodes j is shocked, it does not fail:

deg, (6,j) —degy (e, +&<0 = &£<2 (3)

(1) If a nodeu; is shocked at = 1, theny; fails att = 1, and the nodes j,,& j, andg j, fail at timet = 2
if they were not shocked (see Fig. 5 for an illustration):

min{ @ (deg,(u) — degy(u) +&) — y (degy (ui) + &), degy(u) }

>y (deg, (aJl) +&)

deg, (u)
_ min { ¢(2+c£")3— y(3+&),3} S ye
The above inequality is satisfied provided:
P2+ &) >y(3+4f) 4)
1>y& = y< 1 (5)

&

(IV) Consider a sink node j. Then, we require that if one or both of the super-source npaed u’j are

shocked at = 1 but the none of the nodes, u; ande j were shocked, then we require that one or both of

the corresponding nodesandu; fail att = 2, but the node ; neverfails. Pictorially, we want a situation
as depicted in Fig. 6. This is satisfied provided the follayimequalities hold:

(IV-1) u; fails att = 2 if uj was shocked (the case of andu; is similar):

min{ ® (degy(y) — degu (W) + &) —  (degy () + &), degy (W) }
deg, ()
min{(®—y)(1+¢&),1}

= 1 >y(3+¢&)

>y (deg, (U) + &)
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The above inequality is satisfied provided:

(P—Y)(1+&)>y(B8+8) = P(1+ &) >y(4+28) (6)
1>y(3+8) = y<3+ig (7)

(IV-2) & j never fails even if bothly andu; have failed:

min{ (®P—y)(1+&),1 & ) &
{ Vl)( ) }—y(3+c£") < y7 = min{ (P—y)(1+&),1} §3y<1+§>
The above inequality is satisfied provided:
& 5&
(¢—y)(l+éo)§3y<1+§> = ¢(1+é")§y<4+7> (8)

1s3y<1+§> = y>

There are obviously many
choices of parametens 5 €3 €3
@ andé that satisfy Equa-
tions (2)—(9); here we ex-
hibit just one. Let& =

1 which satisfied Equa-

@ failed
O not shocked

tion (3). Choosingy = O arbitrary
0.23 satisfies Equations (5), ® never fails
(7) and (9). Lettingp = Figure 6: CasélV) : to makee, 3 fail, at least one ofi, or u3 must be shocked.

0.7 satisfies Equations (2), (4), (6) and (8).
Suppose that’ C V is a solution of 3MIN-NODE-COVER. Then, we shock all the super-nodes, and
the nodes inV’. By (I) and(lll) all the super-nodes and the nodes(tm,iev\vl{vi}) fails att = 1, and by

(1) the nodes inJyy, v,jce{8j} failst = 2. Thus, we obtain a solution ﬁ by shocking|V'| + n nodes.
i<j

Conversely, consider a solution of th&AB ¢ problem oné. Remember that all the super-nodes must
be shocked, which ensures that we need to simeela nodes for some integer> 0, and that any node
that is not shocked will fail at= 2. By (ll) it is of no use to shock the sink nodes. Thus, the shocked nodes
consist of all super-nodes and a subseof cardinalitya of the nodesi;, U, ..., us. By (IV) for every node
g j at least one of the nodes or u; must be inJ. Thus, the set of nodgs/ |u; € U } form a node cover of
G of sizea.

That the reduction is an L-reduction follows from the obsginn that any locally improvable solution
of 3-MIN-NODE-COVER has between/3 andn nodes. i

11 Restricted Homogeneous NetworksSTABt ¢, Any T, Exact Solution

The APX-hardness result of Theorem 10.1 has constant values foidbanhdy, and requires deg,(v) = 2
for some nodes. We show that if deg,(v) < 1 for every nodev then under mild technical assumptions
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SI"(G,T) can be computed in polynomial time for ailyand, in addition, if deg(v) is bounded by a
constant for every node then the network is highly stable.€., SI*(G,T) is large). Recall that an in-
arborescence is a directed rooted tree where all edgesiantent towards the root.

1

CD )
1+ ded® (7 - 1)
whereded™ = max,cv {deg,(v) }. Moreover, under the assumption that every node of G candbeidtu-
ally failed by shockingSI*(G, T) can be computed exactly in(@z) time.

Theorem 11.1.1f the banking network G is a rooted in-arborescence 8ENG, T ) >

Remark 11.2. Thus, for example, wheted;® = 3, y= 0.1 and® = 0.15, we getSI*(G, T) > 0.22and the
network cannot be put to death without shocking more @22t of the nodes. The proof gives an example
for which the lower bound is tight.

In the rest of this section, we prove the above theorem.G.et (V,F) be the given in-arborescence
rooted at node. We will use the following notations and terminologies:

e U— Vvandu~» vdenote a directed edge and a directed path of one of more,edgpsctively, from
nodeu to nodev.

e If (u,v) € F thenv is theparentof u andu is achild of v. Similarly, if u~» v exists inG thenv an
ancestorof u andu a descendentf v.

e Let [(u) = {v|u~ vexists inG} denote the set of all proper ancestorsupndA(u) = {v|v ~»
u exists inG } U {u} denote the set of all descendantaudincluding the nodeu itself). Note that for
the networkG to fail, at least one node iao(u) U {u} must be shocked for every node

Suppose that we shock a nodef G (and shock no other nodes &{u)). If u fails, then the shock splits
and propagates to a subset of nodeA(n) until each split part of the shock terminates because of éne o
the following reasons:

¢ the component of the shock reaches a “leaf” nedéth deg,(v) =0, or

e the component of the shock reaches a nodeth a sufficiently highc, such that does not fail.
Based on the above observations, we define the followingtifigsn

Definition 11.3(see Fig. 7 for illustrations) Theinfluence zonef a shock on u, denoted ir(u), is the set
of all failed nodes \& A(u) within time T when u is shocked (and, no other nodA(m) is shocked). Note
that ue iz(u).

Note that, for any node, iz(u) can be computed i®(n) time.
Lemma 11.4. For any node uiz(u) | < 1+ deg, (u) (% - 1>.

Proof. For notational simplicity, let’ = E/n. If the nodeu does not fail when shocked, arfails but it
has no child, thefiz(u) | < 1 and our claim holds sinc® > y. Otherwise u fails and each of its dggu)
children at level 2 receives a part of the shock given by

[ o(degy(u) —1+&) — y(degy(u) + &)
0= m'”{ deg, (U) ’ 1}

< d><1+ ﬁ) —y<1+ @) <O(148)—y(14 &)
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shocked®
failed (due to shock)®

not shocked and not faile@®

Figure 8: A tight example for the bound
inLemma11.4§& = 0).

Figure 7: Influence zone of a shock on

Consider a child of u. Each node’ € A(v) that fails due to the shock subtracts an amoumnt(deg, (V) + &) >

y(1+4 &) from © provided this subtraction does not result in a negativeevallihus, the total number of
failed nodes is strictly less thantideg, (u) % = 1-+deg,(u) (% - 1). O

Remark 11.5. The bound in Lemma 11.4 is tight as shown in Fig. 8.

Lemma 11.4 immediately implies that

n
maxy iz(u ax(®

. M { ()} n/(1+dedi® (-1

SI*(G,T) > 2= - > ( - (v ))Hdedﬂal’((qy’l)

We now provide a polynomial time algorithm to comp@&E (G, T) exactly assuming each node can be
shocked to fail individuallyFor a nodeu, define the following:

e Forevery nodel € O(u), SI5,ns(G, T,u,U) is the number of nodes in an optimal solution 0R8+ ¢
for the subgraph induced by the nodeshifu) (or , if there is no feasible solution of /@Bt ¢ for
this subgraph under the stated conditions) assuming ttoaviol:

— U was shocked,
— uwasnotshocked, and
— no node in the path’ ~ u excludingu’ was shocked.
e Sl5,5(G,T,u) is the number of nodes in an optimal solution afa8+ ¢ for the subgraph induced

by the nodes im\(u) (or «, if there is no feasible solution ofi8BT ¢ under the stated conditioris)
assuming that the nodewas shocked (and therefore failed).

We consider the usual partition of the nodeszahto levels level(r) = 1 andlevel(u) = level(v) + 1 if uis
a child ofv. We will computeSIg,s(G, T,u) andSlg,ns(G, T,u,v) for the nodesu level by level, starting

SIntuitively, a value ofw signifies that the corresponding quantity is undefined.
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with the highest level and proceeding to successive lowaride By Observation 7.1(a), the rootmust
be shocked to fail for the entire network to fail, and tl8I§,5(G, T,r) will provide us with our required
optimal solution.

Every nodeu at the highest level has dg@u) = 0. In generalSIg, (G, T,u) andSIg,ys(G, T,u,U') can
be computed for any nodewith deg,,(u) = 0 as follows:

Computing SIg,s(G, T,u) whendeg, (u) = 0: SIg,5(G, T,u) = 1 by our assumption that every node can
be shocked to fail.

Computing SIg,\s(G, T,u,u') whendeg,(u) = O:

e If ueiz(u') then shocking node makes node fail. Since nodeu fails without being shocked,
we haveSIg, (G, T,u,u’) = 0.

e Otherwise, node does not fail. Thus, there is no feasible solution &iig} \s(G, T,u,u’) =

Note that we only count the number of nodedii) in the calculations 0815, \s(G, T,u,U') andSIg,s(G, T, u).
Now, consider a node at some level with degy,(u) > 0. Letvy, V..., Vgeq (u) b€ the children ofi at
level £+ 1. Note that'(vy) = O(v2) = -+ = O(Vgeq, u))-

Computing SIg,s(G, T,u) whendeg, (u) > 0: By our assumptiony fails when shocked. Note that no
node inA(u) \ {u} can receive any component of a shock given to a nodé\ith(u) sinceu failed.
For each child; of uwe have two choicesy is shocked and (and, therefore, fails)yois not shocked.
Thus, in this case we ha®s, (G, T,u) = 1+ zdeg” min{ SI5As(G, T, Vi), Slgans(G, T, Vi, u) }

Computing SI§,ns(G, T,u,u') whendeg,(u) > 0: Sinceu’ is shocked and is not shocked, the following
cases arise:

e If ugiz(U') then theru does not fail. Thus, there is no feasible solution for thegsaph induced
by the nodes id\(u) under this condition, an8Ig,\s(G, T,u,u') =

e Otherwise,u € iz(U'), and thereforeu fails whenu' is shocked. For each chilg of u, there
are two options:v; is shocked and fails, ov; is not shocked. Thus, in this case we have

d
Slgans(G, T,uu) = 3,77 o (U )mln{ I545(G, T, Vi), Slsans(G, T, Vi, u )}-

Let /max be the maximum level number of any nodeGn Based on the above observations, we can design
the dynamic programming algorithm as shown in Fig. 9 to casjam optimal solution of 8Bt ¢ on G.
It is easy to check that the running time of our algorithr®ig?).

12 Heterogeneous NetworksSTABT ¢, Any T, Logarithmic Inapproxima-
bility

Theorem 12.1. Assuming\P ¢ DTIME (n/°9'°9")  for any constan® < € < 1and any T, it is impossible to
approximateSI* (G, T) within a factor of (1— €)Inn in polynomial time even if G is a DAG.
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(* preprocessing *)
YueV: computeiz(u)
(* dynamic programming *)
for £ = fmax, fmax—1,...,1do
for each nodes at level/ do
if deg,(u) = 0then
Slgas(G, T,u) =1
VU € O(u): if ueiz(u) then SIg,ns(G, T,u,u') = 0 elseSIg, ysSt(G, T,u,u') =
else  (*deg,(u) >0%
Slgas(G.T,u) = 1+ 3% min{SI*SAS(G7T7Vi)7 Isans(G, T, Vi, )}
vu e O(u): if ugiz(u') then SIg,ns(G, T,u,u') = oo
else
SIEns(G T, U, u) = 5o )mln{SISAS(G T. V), SI’gANS(G,T,vi,u’)}
endif
endif
endfor
endfor
return Slg,s(G, T,r) as the solution

Figure 9: A polynomial time algorithm to compu8#* (G, T) whenG is a rooted in-arborescence and each
node ofG fails individually when shocked.

Uy U us Uy
U = {U]_, Uz, Uz, U4}
S ={5,9,%,%}
S = {ug, Uz, us} Figure 10: An instanc€?,.”)
S = {uz, W} of SET-COVER and its corre-
S = {us} S, sponding banking networks =
S = {U]_,Uz} (VvF)

Proof. The (unweighted) ST-CoVER problem is defined as follows. We have an univezsef n elements,

a collection ofm sets.# over %/. The goal is to pick a sub-collectio¥’ C . containing aminimum

number of sets such that these sets “covét’i.e., Usco#S= % . It is known that there exists instances of

SET-COVER that cannot be approximated within a factor(f- &) Inn, for any constant & & < 1, unless

NP C DTIME (nl°9'o9n) [28]. Without any loss of generality, one may assume thatyeetementu € %

belongs to at least two sets.if since otherwise the only set containingnust be selected in any solution.
Given such an instancg/,.’) of SET-COVER, we now construct an instance of the banking network

G = (V,F) as follows:
e We have a special nodg.

e Forevery seGe ., we have a nod§, and a directed edd&, B).
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e For every element € %/, we have a node, and directed edggsi, S) for every seSthat containsu.

Thus,|V| =n+m+1, and|F| < nm+m. See Fig. 10 for an illustration. We set the shares of intexssets
for each bank as follows:

e For each sebe ., if Scontainsk > 1 elements then, for each elemert S, we set the weight of
the edgee = (u,S) asw(e) = 3.

e For each sebe .7, we set the weight of the edd& 8B) as 1.
Thus,l = 4m. Also, observe that:
e ForanySe .¥,bs=3,andis=1.

e For anyue %, b, = 0. Also, sinceu belongs to at least two sets.if and any set has at mast- 1

elementsZ <1, < 3.

e by =mandig =0.

e Since deg (u) = 0 for any elementi € %, if a nodeu is shocked, no part of the shock is propagated

to any other node in the network.
e Since the longest path @ has 2 edges, by Proposition 7.1(b) no new nod8 fails for T > 3.

Let the share of external assets for a node (bgtig denoted by, (thus, .y Ey = E). We will select the
remaining network parameters, namgly® and thek, values, based on the following properties.

() If the node®B is shocked at = 1, it fails:
®(by —1g+Eg)>y(bg+Eg) = ®(M+Eg)>y(m+Eg) = d>y (10)

(I For anySe ., if nodeSis shocked at = 1, thenSfails att = 1, and, for everyi € S nodeu fails at
timet = 2:

min{ ® (bs—1s+Eg) — y (bs+Es), bs}

deg. (S >y (by+Ey)
_ min{ ®(2+Es) — y(3+Es), 3} - VE,
B
The above inequality is satisfied if:
®(2+Es) > y(3+Es+|SEy) (11)
P (2+Es)—y(3+Es) <3 (12)

(Ill) For anyu € 7%, consider the node, and letS;,S,...,S, € . be thep sets that contaim. Then,

we require that if the nod® is shocked at = 1 then® fails att = 1, every node among the set of nodes

{S1,S,...,S} that was not shocked &t= 1 fails att = 2, but the nodes does not fail if the none of the
nodesu,S;, S, ..., S, were shocked, This is satisfied provided the following irsigjes hold:
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(I-1) Any node among the set of nodéS;, S, ..., Sy } that was not shocked at= 1 fails att = 2. This
is satisfies provided for any s8t . the following holds:

min{® (bg — 13+ Ey) — y (by + Ex), by }
deg, ()

>y (bs+Es)

= min{(d)—y) <1+E—r:> , l} > y(3+Es)

The above inequality is satisfied provided:

(®—y) <1+E—r:> >y(3+Eg) = <D<1+E—r:> >V<4+E3+E—r§> (13)
1>y(34+Eg) = y< 3+1Es (14)
(I1I-2) udoes not fail if the none of the nodesS;, S, ..., S, were shocked:
min{(CD— Y) <1+ E—ﬁ?) , 1} —y(3+Es) < VTE“
= min{(d)—y) <1+E—r:> , 1} < y<3+ES+%>

The above inequality is satisfied provided:
E% Eu
— = < —— =
(P—y) <1+ m> < y<3+Es+ n>
Eg
- <
(P—vy) <l+ - > <1

I

©
R

H

_I_

|

E% Eu
<y|44+Es+—+— 15
)ev(aresr e R) a9
1
E;
1+ &

y>®— (16)

There are many choices of parametgr® andE,’s satisfying Equations (10)—(16); we exhibit just one:

1 1
VSe .. Es=0 Egy=0 Yue % - Eu:m y=01 e =04+ 1110000

Suppose that”’ C .7 is a solution of &T-CovER. Then, we shock the nodg and the node$ for each
Se .. By (l) and(ll) the nodeB and the nodeS for eachSe .’ fails att = 1, and by(ll) the nodesu
for everyu € % failst = 2. Thus, we obtain a solution & by shocking|.#’| + 1 nodes.

Conversely, consider a solution of th&ABt ¢ problem onG. If a nodeu for someu € % was shocked,
we can instead shock the no8dor any setSthat contains, which by (1) still fails all the nodes in the
network and does not increase the number of shocked nodess, @fter such normalizations, we may
assume that the shocked nodes consigt ahd a subset”’ C .7 of nodes. By(Il) and(lll) for every node
u € % atleast one set that containsnust be in”’. Thus, the collection of sets i’ form a cover of%
of size|cS]|. m

13 Heterogeneous NetworksSTAB2 ¢, Logarithmic Approximation

For any positive reak > 0, let X = max{x,1/x} andx = min{x,%/x}. Let Wmin = MiNg ye)>0 {W(e)},
Wmax = ma)%{W(e)}1 Qmin = MiNy: g,>0 {av}, andamax = maX/{av}-
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Theorem 13.1. STABoe admits a poly-time algorithm  with  approximation  ratio
N E Wmax Wimin Omax >

Oflo
< g(Dy((D—V)Emmwmax

Proof. We can reuse the proof of the corresponding approximatiomdonogeneous networks in Theo-

rem 9.1 to obtain an approximation ratio ofhn+In (max,ev {zue\, 5{ }) wherel = ml\l/’l{ ml\p{c‘iu v} Cu b
ue ve

provided we recalculate max, {Zuev 6}“} Then,

Lry\? {Ouu} = rurél\p {CD ( z w(e) —Z w(e) +aVE> } = Q(poly(s,d),g,m) )
(V)

Suu>0 Buu>0 JUeF  e=(uVv)eF

Sw(e)

avE e=(vv)eF

i min {ouvk =i min 3 (P=) l+ZW(e) ~ Y Swe
Ouv>0 de,>cy

e=(V,v)eF e=(V,v)eF

= Q(p0|y(nil7q)_ Y, ¢7E7M7M7M) )

. _ . o 71 . .
min{c.} = gy{v (eiwzu)w(e) + auE> } — Q(poly ("™, ,E, Gimin, Wnin) )

U)eF

: T : -1
¢ = min{ minmin{dy}, min{cy} } = Q(poly(n ,®— Y, D, y,E, Winin, Omin, Wiax) )

ZW( e)

ayE ! — _
max;c‘i\,u < nmax (d—y) 1+ Swie) — ezzs\//\(/é)eF = O(poly(n,E,m,W, Omax) )
e=(V,v)eF e=(V,v)eF

and thus,

veV

o 1 1= - _ _ _
max{ ; %} =0 (pOIy (naq) la y 17((D_ Y) 1aEaE 1,Wmax7 Wmin, Omax; Wmin 1,amin l7Wmax 1>>
Uue

giving the desired approximation bound. m]

14 Heterogeneous NetworksSTABT @, T > 3, Poly-logarithmic Inapprox-
imability

Theorem 14.1. Assuming\P ¢ DTIME (nPo(°9M)) for any constan® < & < 1 and any T> 3, it is impos-

sible to approximat&|*(G, T) within a factor 0f2109" N jn polynomial time even if G is a DAG.

Proof. The MINREP problem (with minor modifications from the original setup)defined as follows. We

are given a bipartite grap® = (V'®t, V9"t F) such that the degree of every node@fs at least 10, a
left . righ

partition ofV'eft into ‘Va—| equal-size subseg®® Vieft . v!eft and a partition ok/"9" into ‘V,ﬁgt‘ equal-

size subsety, 9" Vo Vgght.
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These partitions define a natural “bipartite super-grap&iper= (Vsuper Fsuper in the following manner.
Gsuperhas a “super-node” for evely® (fori = 1,2,...,a) and for every\/jright (for j=1,2,...,B). There
exists an “super-edget ; between the super-node f¢*" and the super-node fot/ 'Ot it and only if there
existsu € V/'®" andv ¢ VJ-right such that{u,v} is an edge ofs. A pair of nodesu andv of G “witnesses” the
super-edgey j of H providedu is in V{e®, vis in Vjright and the edgdu,v} exists inG, and a set of nodes
V/ CV of G witnesses a super-edge if and only if there exists at leaspair of nodes irSthat witnesses
the super-edge.

The goal of MNREPIis to findVy C V"¢t andV, C V"9 such thaw; UV, witnesse®verysuper-edge dfl
and thesizeof the solution, nameljVs | +|Vz|, is minimum For notational simplicity, let = [V/'€%| 4 \vriont|,
The following result is a consequence of Raz’s parallel tigpe theorem [40, 47].

Theorem 14.2. [40] Let L be any language iNP and0 < 0 < 1 be any constant. Then, there exists a
reduction running in FPY(99" time that, given an input instance x of L, produces an instanfdVl INREP
such that:

e if x € L thenMINREP has a solution of size + f3;
o if x ¢ L thenMINREP has a solution of size at leaétr + §) - 2°¢" ",

Thus, the above theorem provides 'agléén-inapproximability for MNREP under the complexity-
theoretic assumption &fP ¢ DTIME (nPoiedm),

LetF = {{u,v} lueviemt ve eright, {u,v} € F}. We now show our construction of an instance of

STABT ¢ from an instance of MNREP. Our directed grapl@ = (7,?) for STABT ¢ IS constructed as
follows (see Fig. 11 for an illustration):

Nodes:

e For every nodel € \/i'eft of G we have a corresponding nod@gin the set of nodev-'? in 8 and for
right i

every nodev € V; =" of G we have a corresponding nodgé in the set of node‘s{j”ght in 8 The total
number of such nodes s

e For every edgdu,v} of G with u € V" andv ¢ Vj”ght, we have a corresponding noflg v in the set
of nodesl?j in G. There areF | such nodes.

—
e For every super-edds j of Gsupes We have a nodh; j in 8 There argFsypef Such nodes.

¢ \We have one “top super-nodeyy, one “side super-node/sige, and 2F | additional nodesss, &, . . ., SE|s
F F
M1,M2;. .., A|F|- Letw = U‘j:‘]_wj andm = Uljzllmj.

Thus,n+3F| +2 < |V | = n+ [F| + [Feupel + 2+ 2|F| < n+4|F| + 2.
Edges:
e For every nodel of G, we have an edg@,vtop) in 8 There aren such edges.

o For every edggu,v} of G, we have two edge&fy v, ) and(fg v, V) in G. There are #| such
edges.
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MINREP instance
G= (Vleft,vn‘ght, F)
. Gsuper= (Vsupes Fsupeb

Super-node

I

: ||:|: AR O N
I I

I

| Fsuper|

___hi__

Figure 11: Reduction of an instance oft REP to STABT ¢ for heterogeneous networks.

e For every super-edga ; of Gsyperand for every edgéd,, in F j, we have an edgélﬁ, f@ﬁ) in 8
There argdF| such edges.

e Let py,p2,..., P be any arbitrary ordering of the edgesHn Then, for everyj = 1,2,... |F|, we
have the edgeSiside, &} ), (&, mj) and(mj, pj). The total number of such edges i 8

Thus,|E| = n+6|F|.

Distribution of internal assets: We set the weight of every edge to 1, Thus; n+ 3 oyt yrigne degu) +
4|F| =n+6|F]|.

Let degu) > 10 be the degree of nodec V't UV, Observe that:

e by, =N, andiy,, = 0. Since deg|,; (Vop) = 0, by Proposition 7.1(a) the nodg, must be shocked to
make the network fail.

e b =|F|, andiy, = 0. Since deg(Vsize) = 0, by Proposition 7.1(a) the nogtgg4e must be shocked

to make the network fail.
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For anyu € Vet vt b — degu) andig = 1.

For any nodef v, br; , =1 andi; , = 2.

For every noddn. Jj» b =0andig~ = |Fi.j|. Since deg hI ,j ) =0 for any nodeh. ,j» if such a node
J
is shocked, no part of the shock is propagated to any other maithe network.

For everyj, bmj =l = bwj = Iy, = 1.

Since the longest directed path@has 4 edges, by Proposition 7.1(b) no new nod6 ifails for
t>4.

Let the share of external assets for a node (bgrh@ denoted b¥, (thus, 3,y Ey = E). We will select
the remaining network parameters, namgly and the set oE, values, based on the following desirable
properties and events. For the convenience of the readbtlse aelevant constraints are also summarized
in Table 3. Assume that no nodes(nJ..J F..J) U (U. i {h. J}) were shocked dt= 1

(I) Suppose that the nodgy, is shocked at = 1. Then, the following happens.

(I-a) wop fails att = 1:

® (thop - thop + EVtop) > y(thop + EVtop) = (n + EVtop) > y(n+ EVtop) = (17)
—
(I-b) Each nodeu e \/ﬁ UV"9ht that was not shocked ait= 1 fails att = 2:
min {(D top thop + EVtop ) (thop + EVtop thop}

degn (Vtop)
mi () +E — +E
m{ (n Vtop) y(n Vtop)’ n} >y (dequ) +Ey)

>y (bg +Eg)

n
These constraints are satisfied provided:
d(n+E —vy(n+E degqu)+E
(N Bvop) — V(0 F Euy) >y(degu)+Eg) = 0>y |1+ dedu) +Eg )E+ i (18)
" 14
<D(n+Evtop)—y(n+Evtop)§n = <D§y+1 Ewp (29)
_"_ (o]

(I-c) If the nodesu’, V and f; v werenotshocked at = 1, then the part of the shock, say, given
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de E 1
o>y (17) | d>y 1+% 18) | ®<y+—F (19) > > y<1+7> (20)
14 e 14 o dequ) - 1+Eg
® (dequ) —1+Eg)—y(dequ)+Eg) @ (degv)—1+Ey)—y(degv)+Ey)
1+E 21
deg(u) + degqV) 4 ( T fv.v) (21)
degu)+Eg dequ)
D < 22
*y(deg(u)—l—kE@ dequ) —1+Ey (22)
®(degu) —1+E4)—y(dequ)+Ey) P(degv)—1+Ey)—y(degv)+Ev)
- 1+E E 23
degu) * degv) v(1+Er0) > Ve, (23)
1 /5 )
YE— <1 (24) <y |1+ — 25) | &> (26)
. Ex; <l+ %>
[F]
(IF| + Evgge) ) 1 1
<D>y( 29) | o<y+ @7) o<y(i+—) (9
3‘F|+‘F‘ECUJ‘+|F‘EQ]+EVside 1+ E‘VETe EL‘QJ
+E 1 3+ Vsu:ie%FEtc1 +E 1
o<y |1+ ——  (30) ®< == : 32)
G ) 1 S L)
1 EVto "0 5| e
Oy (6+ deqw + dequ degu) + degv + ndégfv + deg(v) +Efyy + T +Es T By ) 31)
Vsl e V10 EVO
1+ \F(\j + deg{u) + ndeqpu) + deg{v nde‘gpv)
1+ % +degu) +Eg degu) 6+ rl?fe + By + By + ncf::t&pu) + cljzeg(j + deg(v +Eiio
o<y Evmp + EVmp (33) >y Es 1 oy | Eo 1 (34)
1+ 1+ 2+ 71 + geqw) T ridequ) T degv)
3+ Vs'de+Ew- +E . 1
S I (35)
1+ l,g'fe Eg; +Ep, 1+ e — Eg + By
6 1 Eviop Evop Ev E Evgige E E
©< + Gequ ndegu) + degu) + degv) * ndegy) T deg(v +Efy T T T Ee T By
=Y 1 EVlOP EV‘OD Vslde —_E E
+ degu) * fdequ) T deg{v) + ndeqy T TF| B TExy .
+ 1 EVlop 1 Vtop E,, id (36)
1+ Gegu + ndequ) + degw) T ndegw) T TRI- — B T ey
1 Vlo EVo side hl
6+ Gequ) T ndequ) T degu) + degv + nde‘gpv) + degv) +Efyo + |FT +Eq) + By + 5
<y E, E (37)
0] Vtoj Vsl e
1+ degu) + ndeqpu + deg{v ndegpv) + |Fl|j EWJ’ + Emj
En =
2+ |,§'Te+ij 1 2+ gt + By + 1+ Ey 1
o<yl —a +—e (38) d<y e +—e (39)
14+ 5me | 14 omeEy 1+ Sse —Eoy +En 1+ S —Eoy +
6 1 EVtOp E"side E E E E—)
* dequw T hdegu T deg(u) + deg(v) |F| +EBe +Bryy +EBay
®<y o - (40)
2+ Geqw T ndeqw degv) + deg(v + 78~ Exy + By
1 Evo V5| e
©< 6+ Foqw T ndequ T deg(u) egv) + T T Es + By T By N 1 42)
= 24 gl 4 o T - 24 b+ o o Dee B LE
degu) ' ndedu) deg{v degv) TR wj Aj degu) ' ndedu) degv) deg{v DR wj Aj

Table 3: List of all inequalities to be satisfied in the probffbeorem 14.1.
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to Viop that is received by nodéy v att = 3is:

- { min {® (B, — tvioy + Evigp) — ¥ (Buigp + Evigp )+ Bty }

deg, (Vtop)
deg, (U)
. { min{CD(b\,mp — thop + EVtop) - V(bvtop + EVmp)7 thop} _

min
degy (Viop)

_ deg, (V)
min { Min{®(N+ Eup) ~ ¥(1+ By ), N — vy (dedqu) +Ey), deg(u)}

—v(bﬁ+Eﬁ),bﬁ}
o, =

v(bv+Ev),bv}

_|_

n

_ dequ)
min { min{® (n+ Evy,) —¥(N+Evy, ), N}

n

—y(degv) +Ev), de@(V)}
+

deg\v)
On the other hand, if the node; v andexactlyone of the noded and v, say U, werenot
shocked at = 1, then the part of the shock, say, given toviop that is received by nodéﬁ’v
att =3is:

. { min{®(n+ Ey,,) — y(n+ Ey,, ), n}
/

n

—y(dequ)+Ey), deg(u)}

O-l —

degu)
(I) Suppose that some nodeé is shocked at = 1. Then, the following happens.

(I-a) NodeU fails att = 1:

(20)

degu)— 1+ Eﬁ)
(I-b) Node fg v € R fails att = 2 and noddy; fails att = 3 if both T and V' were shocked at
t=1

min{®(bg — 1y +Eg)—y(bg +Eg), by }
deg, ()

®bg—I1g+Eg)>ybg+Eg) = <D>y<1+

min{®(by — 1y +Ey)—y(by +Ey),by }
* deg, (V) -y <bfﬁ’7 * Efﬁv)

_ min{® (dequ) —1+Ey) — y(dequ) + Ey ), dequ) }

dequ)
min{® (degv) —1+Ev) — y(degv) + Ev ), degv) }

+ degv) >y <1+ Efﬁj)
min{miﬂ{q’(bﬁ—lﬁ +dEeg()ﬁ—) y(by +Eg). by} | min{®(by —iy +dEez()v—) y(by +Ev). by} _ V<bfw +Efw) , bfw}
deg, (f v)

> v (bg; +E5y)
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. [min{®(degu) —1+Ey)—y(dequ)+Eg),dequ)} min{®(degv)—1+Ey)—y(deqv)+Ev),degv)}
mm{ degu) + degv) -y (1+Ef?7) ' 1}

> yEm

These constraints are satisfied provided the inequaltigs-(20) are satisfied, and the following

holds:
® (dequ) —1+Ey)—y(dequ)+Ey) @ (degv) —1+Ey)—y(deqv)+Ev)
deg(u) + degv) 4 <l+ Efﬁfv) (21)
® (degu) — 1+ Ey) — y(degu) + Ey) < degu) = |® <y ( d:;%“ﬁfgﬁ) o ql?)effﬂ e @

®(dequ)—1+Ey)—y(dequ)+Ey)  P(degv) —1+Ey)—y(deqv)+E)
degu) * deqv)

_y (1+ Ef?V) > VEp | (29)

VE— <1 (24)
1,1

(I When the nodesjge is shocked at = 1, the following happens.
(Ill-a)  vsige fails att = 1.
q)(bvside_ leide+ EVside) > y(szide+ EVside) = (D(“:‘ + EVside) > y(“:‘ + EVside) = o> y

which is same as (17).
(I1l-b) If a nodew; € wis shocked at = 1, it does not fail:

1
® (b — I+ Ex;) < y(be +Eg ) = q>§y<1+E—> (25)

&)

(Ill-c) Any nodew; € w fails att = 2 irrespective of whethess; was shocked or not:

min { ® (szide — lvgige + EVside) B y(b\/side + EVside )> b\/side}

> y(bg. + Ex.
degn (Vside) y( ' o )
These constraints are satisfied provided:
y (2+ EVside + E >
® (szide B leide + EVside) B y(szide + EVside) _ [FI &
>y (g +Eg) = | P> = (26)
degp (Vside) (1_|_ M)
[FI
1
@ (szide — lvgge T EVside) - y(szide+ EVside) < szide = |®< y+ 1Td (27)
+ side
IFI
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(ll-d) If a nodem; € m is shocked at = 1, it does not fail (and thus, bill-b) , it does not fail at
t =2 also):

1
Dby — Iy +Ex) < y(by +Exj) = d>§y<l+E—> (28)

Aj

(Ill-e) Any nodem; € = fails att = 3 irrespective of whethen; was shocked or not:

: iN @ (byg o= veiget Evsige) — ¥ (Ovgige T Eveige ) v
mm{% _ y(bbdj—I_Ebjj)?ij}
deg () 7 ey HE) =
. [min{®(|F|+E...) - V(F|+Ew..), |F
mln{ { (‘ ’+ VS|de)‘F‘y(’ ‘—'_ V5|de) ’ ‘} o y(1+ ij )7 1} > y(1+ Emj)

These constraints are satisfied provided all the previonstrints hold and the following holds:

O (F|+ Eue) — V(IF |+ Eu) (I —
we) (14 By ) >y (14Es) = [©> e 29
7 VOB ) >V (U Ea) = 1Y SRR, 1P IEn 7 B ) |

®(|F|+Ey..) — V(|F| +E. 1+ Eg, 1
(| |+ VSIde) y(| |+ VSIde) _ V(1+Ew ) < 1=|d < y 1+ T + (30)
|F| : 1+% 1+ Eugige
IF| IF|
(IlI-f) Consider a directed path @ from pj = fg v 10 Vsige The maximum

value of its proportion of shock receive Ipy from this path, sayy, is obtained by shocking all
the nodesssige, @, mj and is given by (assuming all previous inequalities hold):

{ min { ¢ (sz\de — Ivgge EVs\de) -y (szme + EVs\de)

(Vb o) = @y 1 +E2)) b |

degy (Vsige)
In (Vside, e — (V(bca,""Em])q)(bm,’mJ+Em,)):bm,}

min

gy =

degy(m))
. . EV'd EV'd
= min{mind{ ®( 1+ ’FS"P'—ij —y(2+ ’FS"P‘+EwJ- 10— (Y(1+Ey) —®Ey), 1

Similarly, the minimum value of its proportion of shock reeeby p; from this path, sayy,
is obtained by shocking only the nogig4e and is given by (assuming all previous inequalities

hold):
@ (szide — vgige T EVside) -y (szide+ EVside) o V(bw- + Ew-)
min Vsl gegn(wj) - Y(bqu + Er—’lj) ’ br_’:j

~

degp(xj)
—mind @ (14 D) (24 D g —y(1+Ey) .1
N IF| Fl =

We want nodefy v to fail att = 4 assuming it did not fail already. Sindg;  did not fail

att = 2, at most one of the nodég and vV was shocked. There are two cases to consider:
when neitheft’ nor V was shocked, or when exactly one of these nodes,Ts’awas shocked
(assuming all previous inequalities hold):
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Op+ 01 =

E..
B, e) - V< |\|I:ST9+EwJ> - V(1+Emj) ; 1}

id
F|
{P(n+ Evtop —y(n+Ey, ). N} y(deg(u)+Ew),d89(U)}

min {CD <m
{2
degu)

min{ min{® (n-+ E\,mp)n— y(n+ Evep ) n}

— y(degv)+Ev), deg(v)}
_|_

deg\v)

>y (bfrr,v + Efav)

. Ev., Ev.,
m|n{¢<1+ |‘|’:S'Te> - y<2+ |‘|’:s"|’e+ij> -y(1+ Emj),l}

min{d) <1+ EV“’") - y(l EV‘”) y(deg(u)+Eﬁ),deg(u)}

+ degu)

min{¢<1+ EV“’") y<l+ %) - y(deg(v)+E7),deQ(v)}
* degv)
y (1+ Efw>

oo Min{®(by — 1y +Ey) —y(by +Ey), by}

1

_|_

deg, (V) -y (bfﬁfv * EfﬁV)

onfo(s52) o5 ) v o

min{® (n+E —y(n+E n
min {@(n+ V“’p)n Y+ By ), }—y(deg(u)+Eﬁ),deg(u)}

dequ)

min{®(by —1y +Ey)—y(by +E3), by}
deg, (V)

y (bfﬁ‘v + Efﬁ,v)

min<{ ® 14—ES"je —yl2+ EVS"“’%—EW,J —y(1+E4).1
min{{d><<1+ I|Elj| 3 g E|:’|’> - V(>de@(u)+Eﬁ),deju)}

degu)
min{®(deq V) — 1+ Ev ) — y(deq V)+Ev),deg V)}
deg, (V)
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> y(1+Ee,)

These constraints are satisfied provided all the previonstraints hold and the following holds:

Ev. E..
CD<1+ |V:T - y<2+ ’E'T9+Emj> - y(1+E-)
E
CD<1+ \;"p —V<1+%>—V(dGQU)+Eﬁ)
+ degu)
EVtop Viop
|1+ el B4 1+T —y(degv)+Ev)
+ degV) > V(1—|— Efﬁ,v)
1 EVt Eﬁ 1 EV[ EV EV'
6 op op E side E ] E .
— o>y +dequ)%_ndeg(u) deg(u)+deQ(v) ndegVv) deqv)+ fov * IF| 5 5 (31)
1+ EVside + 1 + EVlOP + 1 EVtOP
|F| ~ dedqu) ndegu) degv) ndegv)
Ev.
. 3+|VF—S']“"+EW,J.+Emj 1
®(14+ -2 ) —y(2+ 2+ Ey | —y(1+Es) <1=|®<y E + e
‘F‘ ‘F‘ 1 Vside 1+ side
T IF]
IF|
(32)
E
Vto EVto 1+ % +dequ)+Eﬁ dequ)
<D<1+ np>_y<1+ np>_y(deQU)+Eﬁ)§deQU)E by E + E,
1+ —2= 1+ —=
(33)
EVtop EVtop
e Ol 1+—72 ) —y|(1+—72 ) —y(dequ)+Ey)
Vside Vside
<D<1+ \FT ) - y<2+ \FT +Emj> —y(1+E,) + deqU)
L ®(ded V)~ 1+Ey)— y(ded V) +Ey)) y(1+Ef )
degn(v) o
_ E Eg+1 E
Vside Viop v v
4 Ev 1 Ev Ev 1
2+ S|de+ + P
|[F|  dedqu) ndegu) degv)

(IV) By (lI-b) noderﬁ fails att = 3 provided both the nodes and V were shocked at = 1.
Our goal is to make sure that notlg does not fail in any other condition (assuming the node
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itself was not shocked). Assuming the nodgs v and fw v were not shocked, the maximum
amount of shock thaty v € ?, can receive is when all the nodes befdrgy in the path

were shocked and no more than one of the nades V was

shocked. Based on this, theTollowing constraints must faldi ; not to fail.

min {01 + 02— V(bfﬁ,v + Efﬁ.v) ’ bfrw} < V(bﬁﬁ + EHT)
degn(fg v) - Rl

min{ min{® (n+ By, )n_ AURESSYIL y (dequ) +Eg), deg(u)}

min degu)

min{ min{® (n+ Ey,, )n— y(n+Eugp). N} y (degv) +Ev), de@(V)}

* deqgv)

. . EVsie EVsie
+m|n{m|n{¢<1+ |F‘|’ —ij> - y<2+ |F‘|’ +ij>,1} — (V(1+Emj)—<DEmj),1}

YE-
~y(14Eq, ) 1 p < =
‘ IRl

min{ o (-— 4 Eviy P AL
degu) ndegu) degv) ndedv)

_ 3 + 1 + EVtop + Eﬁ + 1 + EVtop + EV +E
Y{°" Gequ) " ndequ) " degu) ' degv) ' ndegv) ' degv)  _@¥

VEm

, Ey, Ey,
+mm{¢<1+M—EwJ+EQJ> —y<3+Ade+ij+Emj>,1},1 <-4
IF| I IFi.jl

These constraints are satisfied provided all the previonstrints hold and the following holds:

Ev, =
¢<1+E—Em1+Emj> —y<3+ﬂ+Em1+Emj> <1

F| F|
E,.
3+ ’§'78+ij+Emj L
= 0o<y E + E (35)
Vside Vside
1+—|F]j —Ex; +Ey 1+ ||:]j —Ex + By
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1 Evmp Eﬁ 1 EVtop EV EVside
ny ©+ Geqw) T ndequ) " degu) T deqv) T ndeqv) T degy) T Efev T | T Em TEs
141w L | S Buw g g
dequ) ' ndequ) ' degv) ndegv) |F|] 1
1
* PR S - W = - (30)
dequ) ndequ) ' degv) ndegv) |F| o1
1 EVtOP Eﬁ 1 EVIOP EV —Vside Em
o Ot Geqw) "ndequ) " degu) | degv) | ndegv) | degv) Tt TR TEm TR TR
- 1yt S 1 S Bee g g
dequ) ndegu) ' degv) ndegv) |F| o1
(37)
On the other hand, if exactly one of thinodﬁ?sor V, say U, was shocked at= 1, then the
maximum amount of shock thdt; v € F j can receive is is modified, and the new conditions
for our desired goal become as follows.
, min{® (by — 1y +Ey)—y(by +Ev), by } }
min< oy o,—y(b E b
{ei- ot V) For (b B ) B f (b )
degn (fuv) - IRl
min{® (n+E —y(n+E ,Nn
min{ {of V“’")n AU IL) o y (degu) +Eg), deg(u)}
min dequ)
L min{® by —iv+Ev)—y(bv+Ev). by}
7
degn (V) c
. . Vside Vside
enfnlo (s B ) o) ) o
VE
—v(1+E. )1 &z
y( fﬁ’v) IFjl
. 1 Eviop 1 Ev 1 Eviop Eo Ev
mng @ <1+ degu) *h degu) degVv) + degiv)) a y<2+ degu) *h degu) ' degu) + deg(v))
- min{min{cb <1+ E|VFT — ij> — y<2+ E|VFT - ij> : 1} — (y(1+Ey) — PEy)), 1}
YE
—y(1+E;s ;1 )
( ﬁﬁ) IFi.jl
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These constraints are satisfied provided all the previonstints hold and the following holds:

Ev,
E.. E.. 24+ 2+ B 1
q><1+—“V;Te—ij> —y<2+—“V;'TE+EwJ> <i=|o<y| g | +—¢ (38)
1 Vside E.. 1 Vside E..
TR TR
EVside EVside
1+ Fl —Ex | —y(2+ F +Es ) — (V(1+Es) —®E. ) <1
2 EVside
e B T 14Es L
=|0<y = + Ev. (39)
1+ |FsTe_ij+Emj 1+ |FSTE_EwJ+EmJ
1 Ey, 1 Ev 1 Ey, Eg Ev
o1 @ __ —y(2 'op
< * dequ) * ndequ) degv) * degv) yiet dequ) * ndegqu) * dequ) * degqv)
Ev. id Ev. id VEFJ'
side ) _ slae ) _ . _ . _ < 3
o1 -e ) -y(2e G ) - (e -om) —y(1rE ) <
1 Ev, Eg Ev E. YE
6 op side E.. E E.. 1]
o y| . dedu) " ndegu) " degu) degv) " JF| T Tt TR TR @)
=Y 2_|_ 1 + EVtOP _ 1 + EV + EVside —E. +E
dequ) ' ndequ) deqv) deqv) |F| 1
1 Ev 1 Ev 1 Ev Eq Ev
o1 % _ —y(2 op
( " dequ) " ndegu) ~ degv) deg(v)) V( " dequ) " ndegu) " dequ) deg(v))
E., Ey.
+o <l_|_ ‘\llzsl(‘ie _ ij> — y<2+ ‘\;:SI(‘ie + ij> — (Y(1+Ey,) —®E,) — y<1+ Ef?v) <1 (41)
1 Ev Eo Ev  Ey
6 op side E ) E E )
ny " dequ) " ndequ) " dequ) " degv) T JF| T T Eluw TR
=Y 24+ 1 4 EVtOP . 1 + EV + EVside —E. +E
= dequ) ndegu) degv) degv) |F| 7 H
1
+ 2+ 1 i EVtop N 1 + Ev + EVSide o E + E (42)
dequ) ' ndegu) degv) degv) |F| I

There are many choices of parametgr® andE,’s satisfying inequalities (17)—(26); we exhibit just one:
y=4n100  o=n1% yyeVetuvI" Ey=1 B, =n’  Ey,=nF

i . 1
vueVeivve Vit By =1 Whij € Fape fuy €Fj B =1 Vi ey =Eey =
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Remembering that 18 degu) < n for any nodeu € VUVt and|F ;| < |F|, itis relatively straightfor-
ward to verify that all the inequalities are satisfied forsalfficiently largen. Note that

IF|
E:EVtop+Evside+ ZEﬁ‘i' zEfﬁv+ ZEh|J + Z(EwJ+ZEmj)
=1

ueVleltyyright  fuvieF hij € Fsuper

— R 5 [F I+ [Foupet

and thus the ratio of total external assets to total inteamaétE /| is large. We can now finish our proof by
selectingd such that log®n = log* ¢ \7\ — 1 and showing the following:

(completeness)If M INREP has a solution of size + 8 on G thenSI* (8,T) <a+B+2.

(soundness)If every solution of MINREP on G is of size at least(a +B)2'°9175” then

s (6,7)>7 ;LB olog* 2

Proof of Completeness M INREP has a solution of sizex + f3)

LetVy C V' andV, C V"9 be a solution of MNREP such thatVy| + [Vo| = a 4+ B. We shock the nodes
Viop and Vsige, and every noddl for everyu € Vet U9t By (1-a) vp fails att = 1, and by(l-b) and
(Il-a) every node imi":l\/i'e“UUj ”ght fails on or before = 2. By (lll-a) , (Ill-b) and(lll-c) every node
in {Vshockt U Um fails on or beforet = 3. SinceV; andV, are a valid solution of MNREP , for every
super-edgé j there existai € V; andv € Vs such thau € Vieft, v e Vrlght and{u,v} € F; since we shock
the nodesu andV by (Il-a) both U and V fail att = 1, by (Il-b) the nodefy v fails att = 2, and by

(ll-c) the nodehu fails att = 3. Thus, the networ@ fails att = 3 andSI* (8,T> =a+pL+1fort>4.

Proof of Soundness (every solution oMM INREP is of size at leas{ o + B)Z'Oglf’s m

We will prove the logically equivalent contrapositive ofratlaim, i.e., we will show that ifSI* (B,T) <

# 2109’ then MINREP has a solution of size strictly less théo +[3)2'°9H”. Consider a solution of
STABT,0 ON 8 that shocks at mogt= “—ZB 209" °n hodes. Note that the nodeg, andvsige must be shocked
att = 1 by Proposition 7.1(a). Bfi-a) and(lll-a) , the nodesto, andvsige fails att = 1, by (I-b) and(llI-c)
every node inv'e U\/T>9*“Ubv fails att = 2, by (lll-e) every node im fails att = 3, by (lll-f) every node
f w fails att = 4 unless it was shocked at 1 and by(IV) a nodeth fails only if hy j, fovruovru € ?J or
boththe nodest’ and'V were shocked dt= 1. We “normalize” this given solution in the following manme
(each step of the normalization assumes that the previeps bave been already carried out):

e If anode fromm Ut was shocked dt= 1, we do not shock it. Byll) this has no effect on the failure
of the network.

o Ifanodefyy € F.; was shocked, we do not shock it but instead shock the riodesd V. if they
were not already shocked in the given solution. Th|s at mosbbks the number of nodes shocked
and, by(ll-b) , the nodef,, fails att = 2 and the nodb. j fails att = 3 if it was not shocked dt= 1
Thus, after this sequence of normalization steps, we mayvasshat nofy v node was shocked.
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o If a nodeh; ; was shocked at= 1, we do not shock it but instead shock the no@and V' (for
someu andv such that{u,v} € F ;) if they were not already shocked in the given solution. 'léhls
most doubles the number of nodes shocked andil4b) , the nodef,, fails att = 2 and the nodlaI i
fails att = 3. Thus, after this sequence of normalization steps, we resymae that ndn. j node was
shocked.

These normalizations result in a solution ofABt ¢ of size at most 2 in which the nodesvtop, Vside, &

—
subsetV; C Vet and a subsed, C V9 of nodes. Our solution of MIREPis V= {v| V € V; } C Vet
andV, = {v| V e V2} C Vrignt of S|ze Z— 2 < 2z Since failure of everyy j is attributed to shocking two
nodesU andV such thatfy v € F. i, every super-edge j of G is witnessed by the two nodesandv. O

15 Homogeneous NetworksDUAL-STABT ok, any T, hardness and exact
algorithm

Theorem 15.1.
(a) AssumingP # NP, DSI*(G, T, k) cannot be approximated within a factor ¢f —e~*+ 6)_1, for any
0 >0, even if G is a DAGH is the base of natural logarithm).

(b) If G is arooted in-arborescence th&81*(G, T, k) < % (1+ dedh® (% — 1> ) , Whereded!® = max.cy {deg, (V) }
is the maximum in-degree over all nodes of G. Moreover, utfteassumption that any individual node of
the network can be failed by shockim@§I* (G, T, k) can be computed exactly in(6¥) time.

Proof.

(a) The maxk-cover problem is defined as follows. An instance of the @obls an univers&/ of n
elements, a collection oh sets.” over %, and a positive integex. The goal is to pick a sub-collection
&' C .7 of k sets such that the number of elements covered, namely, S, is maximized Let OPT
denote the maximum number of elements covered by an optiohatian of the maxx-cover problem. It
was shown in [28] that, assumiig# NP, the maxx -cover problem cannot be approximated within a factor

of for any constan® > 0. More precisely, [28] provides a polynomial-time redantifor a

(1-1+9)
restricteef:i but stilNP-hard version of the Boolean satisfiability problem (3-C)N&tances of max-cover
with Kk = \02/\“ for some constant @ a < 1, and shows that

(1) if the CNF formula is satisfiable, thedPT = |% |;
(2) if the CNF formula is not satisfiable, th&@PT < <1— 1 +9(k > |% |, whereg(k) — 0 ask — c.

Our reduction from max-cover to DUAL-STABT« is as followd. In our graphG = (V,F), we have an
element nodei for every elementi € %, a set nodé for every setSe .7, and directed edged, §) for
every element € % and setSc . such thatu € S Thus,n= |V| = |%|+ || and|F| = Y5~ |S. We
now set the remaining parameters as follo@s= n, y = n~2 and® = 1. Now, we observe the following:

e If an element node s shocked, it does not fail since (deg, (G) — deg,, (@) +£) < 0 whereas
y(deg, (G)+ &) =n"2>0.

4However, this exact construction will not work in the prodfltieorem 8.1 since the entire network needs to fail in thaopr
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o If a set node S is shocked, it fails sinced® (deg, (S)—deg,(S)+E&) > 2 whereas
y(deg, (S +E5) <2t <1

e If a set nodeSis shocked, then every element nad®r’u € Sfails att = 2. To observe this, note that

min{® (deg, (S) — deg,(S) + &) — y(deg, (1) + £), deg, (5}
deg, (S)
2_ n+1

v n+1 ~ E
Tn > = y(degn (S +ﬁ>

v

¢ Since the longest directed path@has one edge, no new nodes fails duting2.

Based on the above observations, one can identify the detsesin max-cover with the set nodes selected
for shocking in DUAL-STABT « on G to conclude thaDSI*(G, T,k) = OPT + k. Thus, using1) and(2),
inapproximability gap is

%]+« _ 7| +|%|”

— 1 as|% | — o foranys >0
(I-g+o) |7+ (1-g+ow)|2|+|z]" 1-5+8

(b) Using Lemma 11.4, we have

max

DSI*(G,T,K) < ‘ <“6V EiZ(U)D <% <1+deg‘n‘ax<$—1>>

To provide a polynomial time algorithm f@SI*(G, T, k), we suitably modify the algorithm described in
the proof of Theorem 11.1. We redefiB&, \s(G, T, u,v) andSIg,s(G, T, u) in the following manner:

e For every noder € [(u) and every integer & k < k, DSI§,ns(G, T,u, U, K) is the number of nodes
in an optimal solution of DAL -STABT ¢« (Or « if there is no feasible solution of AL -STABT ¢ «)
for the subgraph induced by the noded\{u) assuming the following:

U’ was shocked,

u was not shocked,

no node in the path’ ~ u exceptu’ was shocked, and

total number of shocked nodesAtu) is exactlyk.

e For every integer X k < k, DSIg,g(G,T,u,k) is the number of nodes in an optimal solution of
DUAL-STABT o « for the subgraph induced by the nodediu) (or o, if there is no feasible solution
of STABT ¢ Under the stated conditions) assuming that the noatas shocked (and therefore failed),
and the number of shocked node\ifu) is exactlyk.

Computing these quantities becomes slightly more comiputaty involved as shown below.
Computing DSIg, (G, T,u,k) whendeg, (u) = 0:
DSIg,s(G, T,u,1) = 1 andDSIg, g(G, T,u,k) = —oo for anyk # 1.

Computing DSIg,\s(G, T, u, U, k) whendeg, (u) = 0:
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e If ueiz(u) then shocking node makes nodeu fail. Thus, SIg,ns(G,T,u,u,1) =1 and
SIgans(G, T,u, U k) = —oo for anyk # 1.

¢ Otherwise, node does not fail. ThusDSIs,ys(G, T, U, U) = —o.

Computing DSIg,s(G, T,u) whendeg, (u) > 0: In this case we have
DSIgs(G, T,uk) = 1+

k
min min< DSIE.s(G, T, Vi, ki), DSIE G,T,vi,u,ki }
kl+k2+“‘+kdegn(u):k*l {I; { SAS( ! k|) SANS( ! k|) }

Computing DSI§,ns(G, T, u, U, k) whendeg, (u) > 0: Sinceu’ is shocked andi is not shocked, the fol-
lowing cases arise:

e If ug¢iz(U') then theru does not fail. Then,
DSl ns(G, T, u,u' k) =

degn(u)
i i * e * ol L
k1+k2+_“rrl|kr:eqn<u):k { Zl mln{ DSlsas(G, T, Vi, ki), Slgans(G, T, vi, U, ki) } }

e Otherwiseu € iz(U'), and therefores fails whenu' is shocked. Then,

DSIEns(G, T, u, U k) = 1+

deg, (1)
min min{ DSI%, (G, T, vi. k), DSI5, (G, T, Vi, U K }
k1+kz+~~~+kdegn<u>_k{ i; { sasl k) sans! U k) }

It only remains to show how we compute
degy (u)
min min< DSIS, (G, T, Vi, ki), DSIE G,T,v, U,k } for F € {k—1,k} in poly-
ot K (0 =F i; { sas( i ki) sans( iU, ki) } { } in poly
nomial time. It is easy to cast this problem as an instancbéetinbounded integral knapsack problem in

the following manner:

e We have deg(u) objectsOy, 0z, . .., Ogeq, (), €ach ofunlimitedsupply andwveight1.

e Thecostof selectingk; objects of the typ&; is
min{ DSIS,s(G, T, Vi, k), DSIEAns(G, T, Vi, U ki) }

e Thegoalis to select a total oéxactlyF objects such that the total costignimum

The standard pseudo-polynomial time dynamic programmiiggrithm for Knapsack can be used to solve

the above instance in @deg, (u)) = O (n?) time. Thus, the total running time of our algorithm igi).
O
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16 Heterogeneous NetworkdDUAL-STAB2 ¢ «, Stronger Inapproximability

We show thaDSI*(G, 2, k) cannot be approximated within a large approximation fgatovided a complexity-
theoretic assumption is satisfied. To understand this gasomwe recall the following definitions from [6].
A random (m;n,d) hyper-graphH is a random hyper-graph of nodes,m hyper-edges each having
having exactlyd nodes obtained by choosing each hyper-edge independewtiyraformly at random. For
our purpose, assume thhis a constant, anch> n° for some constart > 3. LetQ: {0,1}% — {0,1} denote
ad-ary predicate, and le¥qn, be a distribution oved-local functions from{0, 1}" to {0, 1}™ by defining
the randomd-local function fy o: {0,1}" — {0,1}™ to be the function whos&" output is computed by
applying the predicat® to thed inputs that are indexed by tli& hyper-edge ofi. Finally, thek densest
sub-hypergraph problenD8) is defined as followsgiven an hyper-graph G- (V,F) with n= |V| and
m = |F| such that every hyper-edge contamsctlyd nodes and an integer > O, select a subset\C V
of exactlyk nodes which maximizeg {us, Uz, ..., Ug} € F|ug,Uz,...,Uug €V'}|.
The essence of the complexity-theoretic assumption isith&édr a suitable choice o), Fqm is a
collection of one-way functions, thddS is hard to approximate. More precisely, the assumption is:
(*) If Zgm is Yo(1/mlogn)-pseudorandom, then far = ni~% for some constant > 3 there exists
instancess = (V,F) of DSk with m> n€ such that it is not possible to decide in polynomial time ért

. . . 1+0(1))m . . .
is a solution ofDS, with at Ieast( +0(1)) edges (the “yes” instance), or if every solutionOs, has

w edges (the “no” instance).
nz

at most

Theorem 16.1. Under the technical assumptidw), DSI*(G, 2,K) cannot be approximated within a ratio
of n® for some constand > 0 even if G is a DAG.

Proof. Given an instanc& = (V,F) of DS, as stated irfx), we construct an instance gra@: (7,?)
as follows:

e For every nodel € V, we have a noder € 7 and for every edge= {uy, U, ..., u%f € F, we have a
node @ (also denoted byus, U, ..., ug ;) inV/. Thus, the total number of nodes 6fis |V | =m+n.

e For every hyper-edge= (up, Uy, ...,Uq) € F, we haved edgese,u;), (e uz),...,(euq) € ? We set
the weight (share of internal asset) of every e¢lge;) to 2. Thus|l| =2dm

Let the share of external assets for a node (bayik 7 be denoted by (thUS’ZVGV Ey =E). We
will select the remaining network parameters as follows. daxhe € F, E¢z = 1.99d, and for eaclu €V,
Ey =0. Thus,E =1.99dm Finally, we set® = 1 andy = 1/2. We prove the following:

1+0(1))m
( +o( )) hyper-edges then then

(completeness)If DS, has a solution witlr > Ty
n?=2 d

DSI* (8,2,K) >K+a.

(1—o0(1))m

c3

nz

(soundness)If everysolution of DS, has at mosp = hyper-edges then

DSI* (8,2,K) <K+B.
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Note that withc = 5 (and, thusn > n°), and sufficiently largel andn, we have

1es  (tro@m)m oy 1 (1+o() m
K+a _ n— 2 + ngaé(l %) n-d4 k- E{l > (1_0(1)) nl/d
K+ nl‘%+(l (;E))m nl“+(1 o)) m —

€3 n

which proves the theorem with = /d.

Proof of CompletenessPS has a solution witha hyper-edges)

LetV’ CV be a solution oDS, with at leastor hyper-edges. We shock all the node¥dpyck= {ﬁ lueV’}.
Every shocked nodar fails att = 1 since® (by — 14 +Eg) = 2deg, (U) > deg,(T) = y (bg +Eqg).
Now, consider a hyper-edge= (u, Uy, ...,Uq) € F such thau, Up, ..., ug € V. Then, the nodég fails at
t = 2 since

& min{® (by — 1y +Eg) —y (bg +Eg). by}
| | | | | | :d>099w: b —|—E
i; deg, (7)) y (be +Ez)

Proof of Soundness (every solution dDSy has at mostf hyper-edges)

We will prove the logically equivalent contrapositive ofralaim,i.e., we will show that ifDSI* (8, 2, K) >
B + k thenDS, has a solution of with strictly more thgh hyper-edges. First, note that we can assume
without loss of generality that, for any hyper-edge F, the node€ is not shocked. Otherwise, if we shock
node €, then it does not fail since at= 1 since® (bg — 14 + E¢) = —0.01d < 0.995 = y (bg + E3),
and in fact doing so increases its equity t605d. Since the equity ofe increased by shocking it, if this
node failed in the given solution then it would also fail ifwks not shocked. So, we can instead shock a
nodeU that was not shocked in the given solution; such a node misitsincex < n.

Note that we have already shown in the proof of the completepart that, for ang= (ug, U, ...,Uq) €
F, if the d nodesti, U3, . .., ug are shocked ther® fails att = 2. Thus, our proof is complete provided we
show that such a nod€ doesnotfail att = 2 if at leastone of the nodesi, U3, . .., Ug is not shocked. Let
Sc {U{,Us,...,U4} be the set of shocked nodes among thikeedes. Theng does not fail at = 2 since

min{® (by — 15 +Eg) —v (bw +Eg) , by }
UEeS degn(UI))

<d—1<0.995 = y (bg +Ez)

for all sufficiently larged. m]

17 Software Availability

An interactive software (called FIN-STAB) implementing expanded version of the shock propagation
algorithm shown in Table 1 is available from the website
http://www2.cs.uic.edu/~dasgupta/financial-simulator-files
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18 Conclusions

In this paper, we have formalized a model for idiosyncratigpagation of shocks to a banking network,
defined two possible stability measures, provided theirpuational properties and discussed the implica-
tions of our results on the banking system. We view our work ascessary first step towards understanding
vulnerabilities of banking systems due to sudden loss afraat assets, and hope that it will generate suf-
ficient interests in both the banking network community amelrietwork algorithms community to further
investigate and refine these stability issues.
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APPENDIX

For the benefit of the reader, we provide explanations fondifeance terminologies frequently used in
this paper.

External asset: refers to the case of financial institutions borrowing framestors and similar outside
entities.

Interbank exposure: refers to the case of financial institutions borrowing frotines financial institutions.

Net worth or equity: a fixed proportion of the total asset of a bank. In generahdrigquity imply better
stability for an individual bank.
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