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Abstract

Threats on the stability of a financial system may severely affect the functioning of the entire econ-
omy, and thus considerable emphasis is placed on the analyzing the cause and effect of such threats. The
financial crisis in the current and past decade has shown thatone important cause of instability in global
markets is the so-calledfinancial contagion, namely the spreadings of instabilities or failures ofindivid-
ual components of the network to other, perhaps healthier, components. This leads to a natural question
of whether the regulatory authorities could have predictedand perhaps mitigated the current economic
crisis by effective computations of some stability measureof the banking networks. Motivated by such
observations, we consider the problem of defining and evaluating stabilities of both homogeneous and
heterogeneous banking networks against propagation ofsynchronous idiosyncratic shocksgiven to a
subset of banks. We formalize the homogeneous banking network model of Nieret al. [46] and its cor-
responding heterogeneous version, formalize the synchronous shock propagation procedures outlined
in [25, 46], define two appropriate stability measures and investigate the computational complexities of
evaluating these measures for various network topologies and parameters of interest. Our results and
proofs also shed some light on the properties of topologies and parameters of the network that may lead
to higher or lower stabilities.

∗Talks based on these results were given or will be given at the4th annual New York Computer Science and Economics Day, New
York University, September 16, 2011, at the Industrial-Academic Workshop on Optimization in Finance and Risk Management,
October 3-4, 2011, Fields Institute, Toronto, Canada, and at the Mathematical Finance theme, 2012 Annual Meeting of theCanadian
Applied and Industrial Mathematics Society, July 24-28, 2012.
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1 Introduction and Motivation

In market-based economies, financial systems perform important financial intermediation functions of bor-
rowing from surplus units and lending to deficit units. Financial stability is the ability of the financial
systems to absorb shocks and perform its key functions, evenin stressful situations. Threats on the stabil-
ity of a financial system may severely affect the functioningof the entire economy, and thus considerable
emphasis is placed on the analyzing the cause and effect of such threats. The concept of instability of a
market-based financial system due to factors such as debt financing of investments can be traced back to
earlier works of the economists such as Irving Fisher [29] and John Keynes [37] during the 1930’s Great
Depression era. Subsequently, some economists such as Hyman Minsky [44] have argued that:

Such instabilities are inherent in many modern capitalist economies.

In this paper, we investigate systemic instabilities of thebanking networks, an important component of
modern capitalist economies of many countries. The financial crisis in the current and past decade has shown
that an important component of instability in global financial markets is the so-calledfinancial contagion,
namely the spreadings of instabilities or failures ofindividual components of the network to other, perhaps
healthier, components. The general topic of interest in this paper, motivated by the global economic crisis in
the current and the past decade, is the phenomenon of financial contagion in the context ofbanking networks,
and is related to the following natural extension of the question posed by Minsky and others:

• What is the true characterization of such instabilities of banking networks,i.e.,

– Are such instabilities systemic,e.g., caused by a repeal of Glass-Steagall act with subsequent
development of specific properties of banking networks thatallowed a ripple effect [14]?

– Or, are such instabilities caused just by a few banks that were “too big to fail” and/or “a few
individually greedy executives” ?

To investigate these types of questions, one must first settle the following issues:

• What is theprecisemodel of the banking network that is studied?

• How exactlyfailures of individual banks propagated through the network to other banks?

• What is anappropriate stability measureand what are the computational properties of such a measure?

As prior researchers such as Allen and Babus [1] pointed out,graph-theoretic concepts provide a conceptual
framework within which various patterns of connections between banks can be described and analyzed in a
meaningful way by modeling banking networks as adirectednetwork in which nodes represent the banks
and the links represent the direct exposures between banks.Such a network-based approach to studying
financial systems is particularly important for assessing financial stability, and in capturing the externali-
ties that the risk associated with a single or small group of institutions may create for the entire system.
Conceptually, links between banks have twoopposingeffects on contagion:

• More interbank links increase the opportunity for spreading failures to other banks [32]: when one
region of the network suffers from a crisis, another region also incurs a loss because their claims on
the troubled region fall in value and, if this spillover effect is strong enough, it can cause a crisis in
adjacent regions.
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• More interbank links provide banks with a form ofcoinsuranceagainst uncertain liquidity flows [2],
i.e., banks can insure against the liquidity shocks by exchanging deposits through links in the network.

2 The Banking Network Model

2.1 Rationale Behind the Model

As several prior researchers such as [1, 25, 39, 46] have already commented, graph-theoretic frameworks
may provide a powerful tool for analyzing stability of banking and other financial networks. We provide
and use a mathematically precise abstraction of a banking network model as outlined in [46] and elsewhere.
The same or very similar version of the graph-theoretic losspropagation model used in this paper has also
been extensively used by prior researchers in finance, economics and banking industry to study various
properties and research questions involving banking systems similar to what is studied in this paper (e.g.,
see [5, 19, 31, 45, 49], to name a few). As commented by researchers such as [5, 46]:

the modelling challenge in studying banking networks lies not so much in analyzing a model
that is flexible enough to represent all types of insolvency cascades, but in studying a model that
can mimic the empirical properties of these different typesof networks.

A loss propagation model such as the one discussed here and elsewhere such as in [5, 19, 31, 45, 49] con-
ceptualises the main characteristics of a financial system using network theory by relating the cascading
behavior of financial networks both to the local properties of the nodes and to the underlying topology of
the network, allowing us to vary continuously the key parameters of the network.

2.2 Homogeneous Networks: Balance Sheets and Parameters for Banks

We provide a precise abstraction of the model as outlined in [46] which builds up on the works of Eboli [25].
The network is modeled by a weighted directed graphG= (V,F) of n nodes andm directed edges, where
each nodev∈V corresponds to a bank (Bankv) and each directed edge(v,v′) ∈ F indicates thatBankv has
an agreement to lend money toBankv′ . Let degin(v) and degout(v) denote the in-degree and the out-degree
of nodev. The model has the following parameters:

E = total external asset, I = total inter-bank exposure, A= I +E = total asset
[0,1] 3 γ = percentage of equity to asset,w= w(e) = I

m = weight of edgee∈ F, Φ = severity of shock (1≥Φ > γ)

Now, we describe the balance sheet for a nodev∈V (i.e., for Bankv)1:

Assets Liabilities
ιv = degout(v)×w= interbank asset

ev = (bv− ιv)+
E−∑v∈V (bv−ιv)

n = (bv− ιv)+
E
n

= share of total external assetE
av = ev+ ιv = bv+

E
n = total asset

bv = degin(v)×w= interbank borrowing
cv = γ×av = net worth (equity)

dv = customer deposits
`v = bv+ cv+dv = total liability

av = `v (balance sheet equation)

1This model assumes that all the depositors are insured for their deposits,e.g., in United States the Federal Deposit Insurance
Corporation provides such an insurance up to a maximum level. Thus,we will omit the parameters dv for all v in the rest of the
paper when using the model. Similarly, `v quantities (which depend on thedv’s) are also only necessary in writing the balance
sheet equation and will not be used subsequently.
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Note that the homogeneous model is completely described by the 4-tuple of parameters〈〈〈G,γ , I ,E〉〉〉.

2.3 Balance Sheets and Parameters for Heterogeneous Networks

The heterogeneous version of the model is the same as its’ homogeneous counterpart as described above, ex-
cept that the shares of interbank exposures and external assets for different banks may be different. Formally,
the following modifications are done in the homogeneous model:

• w(e)> 0 denotes the weight of the edgee∈ E along with the constraint that∑e∈F w(e) = I .

• ιv = ∑e=(v,v′)∈F w(e), andbv = ∑e=(v′,v)∈F w(e).

• ev = (bv− ιv)+αv×
(

E−∑v∈V(bv− ιv)
)

for someαv > 0 along with the constraint∑v∈V αv = 1.
Since∑v∈V(bv− ιv) = 0, this givesev = (bv− ιv)+αvE. Consequently,av now equalsbv+αvE.

Denoting them-dimensional vector ofw(e)’s by w and then-dimensional vector ofαv’s by ααα , the heteroge-
neous model is completely described by the 6-tuple of parameters〈〈〈G,γ , I ,E,w,ααα〉〉〉.

v1v1v1

v2v2v2

v3v3v3

v4v4v4

v5v5v5

Figure 1: An example of our banking network model.
n= number of nodes= 5
m= number of edges= 7
I = total inter-bank exposure= m= 7
E = total external asset= 14,γ = 0.1

Illustration of calculations of balance sheet parameters We illustrate the calculation of relevant param-
eters of the balance sheet of banks for the simple banking network shown in Fig. 1.

(a) Homogeneous version of the network

• w= weight of every edge= I/m= 1.

• ιv1 = degout(v1)×w= 1, ιv2 = degout(v2)×w= 1, ιv3 = degout(v3)×w= 2, ιv4 = degout(v4)×w=

1, ιv5 = degout(v5)×w= 2.

• bv1 = degin(v1)×w = 2, bv2 = degin(v2)×w = 1, bv3 = degin(v3)×w = 1, bv4 = degin(v4)×w =

3, bv5 = degin(v5)×w= 0.

• ev1 = bv1− ιv1 +
E
n = 3.8, ev2 = bv2− ιv2 +

E
n = 2.8, ev3 = bv3− ιv3 +

E
n = 1.8, ev4 = bv4− ιv4 +

E
n =

4.8, ev5 = bv5− ιv5 +
E
n = 0.8.

• av1 =bv1+
E
n = 4.8, av2 = bv2+

E
n = 3.8, av3 = bv3+

E
n = 3.8, av4 = bv4+

E
n = 5.8, av5 = bv5+

E
n = 2.8.

• cv1 = γ av1 = 0.48,cv2 = γ av2 = 0.38,cv3 = γ av3 = 0.38,cv4 = γ av4 = 0.58,cv5 = γ av5 == 0.28.
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(b) Heterogeneous version of the network

Suppose that 95% ofE is distributed equally on the two banksv1 and v2, and the rest 5% ofE is
distributed equally on the remaining three banks. Thus:

αv1E= 0.95E
2 = 6.65, αv2E= 0.95E

2 = 6.65, αv3E= 0.05E
3 ≈ 0.233, αv4E= 0.05E

3 ≈ 0.233, αv5E= 0.05E
3 ≈ 0.233

Suppose that 95% ofI is distributed equally on the three edgesf1 = (v2,v1), f2 = (v1,v4), f3 = (v4,v2), and
the remaining 5% ofI is distributed equally on the remaining four edgesf4 = (v3,v1), f5 = (v3,v4), f6 =

(v5,v4), f7 = (v5,v3). Then,

w( f1) = w( f2) = w( f3) = 0.95I
3 ≈ 2.216, w( f4) = w( f5) = w( f6) = w( f7) = 0.05I

4 = 0.08725

for bankv1:
bv1 = w( f1)+w( f4)≈ 2.30325, ιv1 = w( f2) = 2.216
ev1 = (bv1− ιv1)+αv1E ≈ 6.7365, av1 = bv1 +αv1E = 8.9525, cv1 = γ av1 = 0.8925

for bankv2:
bv2 = w( f3)≈ 2.216, ιv2 = w( f1)≈ 2.216
ev2 = (bv2− ιv2)+αv2E = 6.65, av2 = bv2 +αv2E ≈ 8.866, cv2 = γ av2 ≈ 0.8666

for bankv3:
bv3 = w( f7) = 0.08725, ιv3 = w( f4)+w( f5) = 0.1745
ev3 = (bv3− ιv3)+αv3E ≈ 0.14575, av3 = bv3 +αv3E ≈ 0.32025, cv3 = γ av3 ≈ 0.032035

for bankv4:
bv4 = w( f2)+w( f5)+w( f6)≈ 2.39050, ιv4 = w( f3)≈ 2.216
ev4 = (bv4− ιv4)+αv4E ≈ 0.4075, av4 = bv4 +αv4E ≈ 2.6235, cv4 = γ av4 ≈ 0.26235

for bankv5:
bv5 = 0, ιv5 = w( f6)+w( f7) = 0.1745
ev5 = (bv5− ιv5)+αv5E ≈ 0.0585, av5 = bv5 +αv5E ≈ 0.233, cv5 = γ av5 ≈ 0.0233

2.4 Idiosyncratic Shock [25, 46]

As in [46], our initial failures are caused byidiosyncratic shockswhich can occur due tooperations risks
(frauds) orcredit risks, and has the effect of reducing the external assets of a selected subset of banks
perhaps causing them to default. Whileaggregatedor correlatedshocks affecting all banks simultaneously
is relevant in practice, idiosyncratic shocks are a cleanerway to study thestability of the topology of the
banking network. Formally, we select a non-empty subset of nodes (banks) /0⊂Vshock⊆ V. For all nodes
v∈Vshock, we simultaneously decrease their external assets fromev by sv = Φev, where the parameterΦ ∈
(0,1] determines the “severity” of the shock. As a result, the new net worth ofBankv becomesc′v = cv−sv.
The effect of this shock is as follows:

• If c′v≥ 0, Bankv continues to operate but with a lower net worth ofc′v.

• If c′v < 0, Bankv defaults(i.e., stops functioning).

2.5 Propagation of an Idiosyncratic Shock [25, 46]

We use the notationcv(t) to denotecv at time t, andt+0 to denote anyt > t0. Let Valive(t) ⊆ V be the set
of nodes that have not failed at timet and letGalive(t) = (Valive(t),Falive(t)) be the corresponding node-
induced subgraph ofG at time t with degin(v, t) and degout(v, t) denote the in-degree and out-degree of a
nodev∈Valive(t) in the graphGalive(t). In a continuous-time model, the shock propagates as follows:
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t = 1 ; Valive(1) =V
(* start the shock att = 1 on nodes inVshock*)
∀v∈V∀v∈V∀v∈V : if v∈Vshock then cv(1) = cv−Φev elsecv(1) = cv

(* shock propagation at timest = 2,3, . . . ,T *)
while (t ≤ T)

∧

(Valive(t) , /0) do

(* transmit loss to next time step *)

∀u∈Valive(t)∀u∈Valive(t)∀u∈Valive(t) : cu(t +1) = cu(t)− ∑
v: cv(t )<0 &&& (u,v)∈Falive(t )

min
{∣

∣cv(t)
∣

∣ , bv
}

degin(v, t)

(* removeBankv from network if it is to fail at this step *)
Valive(t +1) =Valive(t)\

{

v
∣

∣v∈Valive(t)&&& cv(t)< 0
}

t = t +1
endwhile

Table 1: Discrete-time idiosyncratic shock propagation for T steps.

• Valive(1) =V, cv(1) = cv−sv if v∈Vshock, andcv(1) = cv otherwise.

• If a banks equity ever becomes negative, it fails subsequently, i.e., ∀ t0≥ 1: cv(t0)< 0⇒ v<Valive(t+0 ).

• A failed bankBankv at timet = t0 affects the net worth (equity) of all banks that gave loan toBankv

in the following manner. For each edge(u,v) ∈ Falive(t0) in the network at timet0, the equitycu(t0) is
decreased by an amount2 of min{|cv(t0) |, bv}

degin(v,t0)
. Thus, the shock propagation is defined by the following

differential equation:

∀ t ≥ 1 ∀u∈Valive(t) :
∂ cu(t)

∂ t
=− ∑

v: cv(t)<0 &&& (u,v)∈Falive(t)

min
{∣

∣cv(t)
∣

∣, bv
}

degin(v, t)

An intuitive explanation of the two quantities inside the summation in the above equation is as follows. The
term |cv(t)|

degin(v,t)
distributes the loss of equity of a bank equitably among its creditors that have not failed yet.

The term bv
degin(v,t)

ensures that the total loss propagated is no more than the total interbank exposure of the
failed bank.

A discrete-timeversion of the above can be obtained by the obvious method of quantizing time and
replacing the partial differential equations by “difference equations”. With appropriate normalizations, the
discrete-time model for shock propagation is described by asynchronous iterative procedure shown in Ta-
ble 1 wheret = 1,2, . . . ,T denotes the discrete time step at which the synchronous update is done (T ≤ n).

2If |cv(t0) | > bv then the depositors incur a loss ofbv− |cv(t0) |, but as already mentioned before this model assumes that all
the depositors are insured for their deposits.
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Figure 2: An in-
arborescence graph.

A simplified illustration of the effect of idiosyncratic shocks Consider the
case when the model ishomogeneousand the topology of the graphG is in-
arborescence, i.e., a directed rooted tree where all edges are oriented towards
the root. Consider two nodesu,v∈V such that(v,u) ∈ F and degin(v) = 0 (see
Fig. 2). Suppose that at timet = 1 the nodeu is shocked and consequently it
defaults. The amount of shock transmitted fromu to v is

∆=
min{|c′u(1)|,bu}

degin(u)
=

min{Φeu−cu(1),bu}
degin(u)

=
min

{

Φ
(

bu− ιu+
E
n

)

− γ
(

bu+
E
n

)

,bu
}

degin(u)

=
min

{

Φ
(

degin(u)−1+ E
n

)

− γ
(

degin(u)+
E
n

)

,degin(u)
}

degin(u)

= min

{

(Φ− γ)×
(

1+
E

ndegin(u)

)

− 1
degin(u)

, 1

}

Sincecv(1) = γ× E/n, we have

cv(2) = cv(1)−∆ = γ× E
n
−min

{

(Φ− γ)×
(

1+
E

ndegin(u)

)

− 1
degin(u)

, 1

}

AssumingΦ− γ � 1+ E
ndegin(u)

and degin(u)� 1, the above expression simplifies to

cv(2)≈ γ× E
n
− (Φ− γ)×

(

1+
E

ndegin(u)

)

Suppose thatγ = Φ/4. Then,cv(2)≈ γ×
(

E
n −3− 3E

ndegin(u)

)

. Consequently, one can observe the following:

• If E/n≤ 2, thencv(2)< 0 and nodev will surely fail at timet = 2.

• If E/n≥ 4 and degin(u) > 10 thencv(2) > 0 and nodev will surely not fail at timet = 2.

2.6 Parameter Simplification

We can assume without loss of generality that in the homogeneous shock propagation modelw = 1. To
observe this, ifw= I/m, 1, then we can divide each of the quantitiesιv, bv, E anddv by w; it is easy to see
that the outcome of the shock propagation procedure in Table1 remains the same. Moreover, we will ignore
the balance sheet equation sincedv has no effect in shock propagation.

3 Related Prior Works on Financial Networks

Although there is a large amount of literature on stability of financial systems in general and banking systems
in particular, much of the prior research is on the empiricalside or applicable to small-size networks. Two
main categories of prior researches can be summarized as follows. The particular model used in this paper
is the model of Nieret al. [46]. As stated before, definition of a precise stability measure and analysis of its
computational complexity issues for stability calculation were not provided for these models before.
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Network formation Babus [7] proposed a model in which banks form links with eachother as an in-
surance mechanism to reduce the risk of contagion. In contrast, Castiglionesi and Navarro [15] studied
decentralization of the network of banks that is optimal from the perspective of a social planner. In a setting
in which banks invest on behalf of depositors and there are positive network externalities on the investment
returns, fragility arises when “not sufficiently capitalized” banks gamble with depositors’ money. When the
probability of bankruptcy is low, the decentralized solution well-approximates the first objective of Babus.

Contagion spread in networks Although ordinarily one would expect the risk of contagion to be larger in
a highly interconnected banking system, some empirical simulations indicate that shocks have anextremely
complexeffect on the network stability in the sense that higher connectivity among banks may sometimes
lead tolower risk of contagion.

Allen and Gale [2] studied how a banking system may respond tocontagion when banks are connected
under different network structures, and found that, in a setting where consumers have the liquidity prefer-
ences as introduced by Diamond and Dybvig [23] and have random liquidity needs, banks perfectly insure
against liquidity fluctuations by exchanging interbank deposits, but the connections created by swapping de-
posits expose theentire systemto contagion. Allen and Gale concluded that incomplete networks aremore
prone to contagion than networks with maximum connectivitysince better-connected networks are more
resilient via transfer of proportion of the losses in one bank’s portfolio to more banks through interbank
agreements. Freixaset al. [30] explored the case of banks that face liquidity fluctuations due to the uncer-
tainty about consumers withdrawing funds. Gai and Kapadia [32] argued that the higher is the connectivity
among banks the more will be the contagion effect during crisis. Haldane [34] suggested that contagion
should be measured based on the interconnectedness of each institution within the financial system. Liedorp
et al. [42] investigated if interconnectedness in the interbank market is a channel through which banks affect
each others riskiness, and argued that both large lending and borrowing shares in interbank markets increase
the riskiness of banks active in thedutchbanking market.

Dasgupta [21] explored how linkages between banks, represented by cross-holding of deposits, can
be a source of contagious breakdowns by investigating how depositors, who receive a private signal about
fundamentals of banks, may want to withdraw their deposits if they believe that enough other depositors will
do the same. Lagunoff and Schreft [41] considered a model in which agents are linked in the sense that the
return on an agents’ portfolio depends on the portfolio allocations of other agents. Iazzetta and Manna [35]
used network topology analysis on monthly data on deposits exchange to gain more insight into the way a
liquidity crisis spreads. Nieret al. [46] explored the dependency of systemic risks on the structure of the
banking system via network theoretic approach and the resilience of such a system to contagious defaults.
Kleindorferet al.[39] argued that network analyses can play a crucial role in understanding many important
phenomena in finance. Corbo and Demange [20] explored, giventhe exogenous default of set of banks, the
relationship of the structure of interbank connections to the contagion risk of defaults. Babus [8] studied
how the trade-off between the benefits and the costs of being linked changes depending on the network
structure, and observed that, when the network is maximal, liquidity can be redistributed in the system to
make the risk of contagion minimal.
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4 The Stability and Dual Stability Indices

A banking network is calleddeadif all the banks in the network have failed. Consider a given homogeneous
or heterogeneous banking network〈〈〈G,γ , I ,E,Φ〉〉〉 or 〈〈〈G,γ , I ,E,Φ,w,ααα 〉〉〉. For /0⊂V ′ ⊆V, let

infl(V ′) =
{

v∈V
∣

∣v fails if all nodes inV ′ are shocked
}

SI(G,V ′,T) =

{
∣

∣V ′
∣

∣/n, if infl(V ′) =V
∞ , otherwise

The Stability Index The optimalstability indexof a networkG is defined as

SI∗(G,T) = SI(G,Vshock,T) = min
V ′

{

SI(G,V ′,T)
}

For estimation of this measure, we assume that it is possiblefor the network to fail,i.e., SI∗(G,T)<∞. Thus,
0< SI∗(G,T) ≤ 1, and the higher the stability index is, the better is the stability of the network against an
idiosyncratic shock. We thus arrive at the natural computational problem STABT,Φ. We denote an optimal
subset of nodes that is a solution of Problem STABT,Φ by Vshock, i.e., SI∗(G,T) = SI(G,Vshock,T). Note that
if T ≥ n then the STABT,Φ finds a minimum subset of nodes which, when shocked, willeventuallycause the
death of the network in an arbitrary number of time steps.

Input : a banking network with shocking parameterΦ, Input: a banking network with shocking parameterΦ,
and an integerT > 1 and two integersT,κ > 1

Valid solution: A subsetV ′ ⊆V such thatSI(G,V ′,T)< ∞ Valid solution: A subsetV ′ ⊆V such that|V ′|= κ
Objective: minimize|V ′| Objective: maximize

∣

∣ infl(V ′)/κ
∣

∣

Stability of banking network (STABT,Φ ) Dual Stability of banking network (DUAL -STABT,Φ,κ )

The Dual Stability Index Many covering-type minimization problems in combinatorics have a natural
maximization dual in which one fixes a-priori the number of covering sets and then finds a maximum number
of elements that can be covered with these many sets. For example, the usual dual of the minimum set
covering problem is the maximum coverage problem [38]. Analogously, we define a dual stability problem
DUAL -STABT,Φ,κ . Thedual stability indexof a networkG can then be defined as

DSI∗(G,T,κ) = max
V′⊆V : |V ′|=κ

∣

∣ infl(V ′)/κ
∣

∣

The dual stability measure is of particular interest whenSI∗(G,T) = ∞, i.e., the entire network cannot be
made to fail. In this case, a natural goal is to find out if a significant portion of the nodes in the network can
be failed by shocking a limited number of nodes ofG; this is captured by the definition ofDSI∗(G,T,κ).

Violent Death vs. Slow Poisoning In our results, we distinguish two cases of death of a network:

violent death (T = 2) The network is dead by the very next step after the shock.

slow poisoning (anyT ≥ 2) The network may not be dead immediately but dieseventually.
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4.1 Rationale Behind the Stability Measures

Although it is possible to think of many other alternate measures of stability for networks than the ones
defined in this paper, the measures introduced here are in tune with the ideas that references [25, 46] directly
(and, some other references such as [31, 49] implicitly) used to empirically study their networks by shocking
only a few (sometimes one) node. Thus, a rationale in definingthe stability measures in the above manner
is to follow the cue provided by other researchers in the banking industry in studying models such as in
this paper instead of creating a completely new measure thatmay be out of sync with ideas used by prior
researchers and therefore could be subject to criticisms.

5 Comparison with Other Models for Attribute Propagation in Networks

bbb

aaa

ccc

eee

ddd

Φ = 0.4 γ = 0.1 E = 5

Figure 3: A homogeneous net-
work used in the discussion in
Section 5.

Models for propagation of beneficial or harmful attributes have been inves-
tigated in the past in several other contexts such as influence maximization
in social networks [13, 16, 17, 36], disease spreading in urban networks
[18, 26, 27], percolation models in physics and mathematics[48] and other
types of contagion spreads [11, 12]. However, the model for shock prop-
agation in financial network discussed in this paper isfundamentallyvery
different from all these models. For example, the cascade models of fail-
ure considered in [11, 12] are probabilistic models of failure propagation
of a more generic nature, and thus not very useful to study failure propagation via interlocked balance sheets
of financial institutions (as is the case in OTC derivatives markets). Some distinguishing features of our
model include:

(a)(a)(a) Almost all of these models include a trivial solution in which the attribute spreads to the entire network
if we inject each node individually with the attribute. Thisis not the case with our model:a node may not
fail when shocked, and the network may not be dead if all nodesare shocked. For example, consider the
network in Fig. 3(i).

• Suppose that all the nodes are shocked. Then, the following events happen.

– Nodea (and similarly nodeb) fails att = 1 sinceΦ
(

degin(a)+
E
5

)

> γ
(

degin(a)+
E
5

)

.

– Nodec also fails att = 1 sinceΦ
(

degin(c)−degout(c)+
E
5

)

= 0.4> γ
(

degin(c)+
E
5

)

= 0.3.

– Noded (and similarly nodee) do not fail att = 1 sinceΦ
(

−degout(d)+
E
5

)

= 0< γ× E
5 = 0.1

and its equity stays at 0.1−0= 0.1.

– At t = 2, noded (and similarly nodee) receives a shock from nodec of the amount0.4−0.3
2 =

0.05< 0.1. Thus, nodesd ande do not fail. Since no new nodes fail duringt > 2, the network
does not become dead.

• However, suppose that only nodesa andb are shocked. Then, the following events happen.

– Nodea (and similarly nodeb) fails att = 1 sinceΦ
(

degin(a)+
E
5

)

=0.8> γ
(

degin(a)+
E
5

)

=0.2.

– At t = 2, nodec receives a shock of the amount 2× (0.8−0.2) = 1.2> γ
(

degin(c)+
E
5

)

= 0.3.
Thus, nodec fails att = 2.
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– At t = 3, noded (and similarly nodee) receives a shock of the amount1.2−0.3
2 = 0.45> γ× E

5 =

0.1. Thus, both these nodes fail att = 3 and the entire network is dead.

As the above example shows, if shocking a subset of nodes makes a network dead, adding more nodes to this
subset maynot necessarily lead to the death of the network, and the stability measure isneither monotone
nor sub-modular. Similarly, it is also possible to exhibit banking networkssuch that to make the entire
network fail:

• it may be necessary to shock a node even if it does not fail since shocking such a node “weakens” it
by decreasing its equity, and

• it may be necessary to shock a node even if it fails due to shocks given to other nodes.

(b)(b)(b) The complexity of the computational aspects of many previous attribute propagation models arise due
to the presence of cycles in the graph; for example, see [16] for polynomial-time solutions of some of these
problems when the underlying graph does not have a cycle. In contrast, our computational problems are
may be hardeven when the given graph is acyclic; instead, a key component of computational complexity
arises due to two or more directed paths sharing a node.

Network type,
result type

Stability SI∗(G,T)SI∗(G,T)SI∗(G,T)
bound, assumption (if any),

corresponding theorem

Dual Stability DSI∗(G,T,κ)DSI∗(G,T,κ)DSI∗(G,T,κ)
bound, assumption (if any),

corresponding theorem

Homo-
geneous

T = 2
approximation hardness

(1− ε) lnn,
NP * DTIME

(

nlog logn
)

, Theorem 8.1

T = 2, approximation ratio O

(

log

(

n Φ E
γ (Φ− γ) |E−Φ|

))

, Theorem 9.1

Acyclic, ∀ T > 1,
approximation hardness

APX-hard, Theorem 10.1

(

1−e−1+ ε
)(

1−e−1+ ε
)(

1−e−1+ ε
)−1,

P , NP, Theorem 15.1(a)

In-arborescence,
∀ T > 1, exact solution

O
(

n2
)

time, every node fails
when shocked, Theorem 11.1

O
(

n3
)

time, every node fails
when shocked, Theorem 15.1(b)

Hetero-
geneous

Acyclic, ∀ T > 1,
approximation hardness

(1− ε) lnn, NP * DTIME
(

nlog logn
)

,
Theorem 12.1

(

1−e−1+ ε
)−1(

1−e−1+ ε
)−1(

1−e−1+ ε
)−1

,
P , NP, Theorem 15.1(a)

Acyclic, T = 2, approximation hardness nδ , assumption (?)†††, Theorem 16.1

Acyclic, ∀ T > 3,
approximation hardness

2log1−ε n, NP * DTIME(npoly(logn)),
Theorem 14.1

Acyclic, T = 2,
approximation ratio ‡‡‡

O

(

log
n E wmax wmin αmax

Φ γ (Φ− γ) E wmin αmin wmax

)

,

Theorem 13.1

‡‡‡See Theorem 13.1 for definitions of some parameters in the approximation ratio.
†††See page 43 for statement of assumption(?), which is weaker than the assumptionP , NP.

Table 2: A summary of our results;ε > 0 is any arbitrary constant and 0< δ < 1 is some constant.

6 Overview of Our Results and Their Implications on Banking Networks

Table 2 summarizes our results, where the notation poly(x1,x2, . . . ,xk) denotes a constant-degree polynomial
in variablesx1,x2, . . . ,xk. Our results for heterogeneous networks show that the problem of computing
stability indices for them is harder than that for homogeneous networks, as one would naturally expect.
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6.1 Brief Overview of Proof Techniques

6.1.1 Homogeneous Networks,STABT,ΦSTABT,ΦSTABT,Φ

T = 2T = 2T = 2, approximation hardness and approximation algorithm The reduction for approximation hard-
ness is from a corresponding inapproximability result for the dominating set problem for graphs. The loga-
rithmic approximationalmostmatches the lower bound. Even though this algorithmic problem can be cast
as a covering problem, onecannotexplicitly enumerateexponentially manycovering sets in polynomial
time. Instead, we reformulate the problem to that of computing an optimal solution of a polynomial-size
integer linear programming (ILP), and then use the greedy approach of [24] for approximation. A careful
calculation of the size of the coefficients of theILP ensures that we have the desired approximation bound.

Any T > 1T > 1T > 1, approximation hardness and exact algorithm TheAPX-hardness result, which holds even
if the degrees of all nodes aresmallconstants, is via a reduction from the node cover problem for3-regular
graphs. Technical complications in the reduction arise from making sure that the generated graph instance
of STABT,Φ is acyclic, no new nodes fail for anyt > 3, but the network can be dead without each node being
individually shocked. If the network is a rooted in-arborescence and every node can be individually shocked
to fail, then we design anO

(

n2
)

time exactalgorithm via dynamic programming; as a by product it also
follows that the value of the stability index of this kind of network withboundednode degrees islarge.

6.1.2 Homogeneous Networks,DUAL -STABT,Φ,κDUAL -STABT,Φ,κDUAL -STABT,Φ,κ

Any TTT, approximation hardness and exact algorithm For hardness, we translate a lower bound for
themaximum coverageproblem [28]. The reduction relies on the fact that in dual stability measure every
node of the network neednot fail. If the given graph is a rooted in-arborescence and every node can be
individually shocked to fail, we provide anO

(

n3
)

time exact algorithm via dynamic programming.

6.1.3 Heterogeneous Networks,STABT,ΦSTABT,ΦSTABT,Φ

Any TTT, approximation hardness The reduction is from a corresponding inapproximability result for the
minimum set covering problem. Unlike homogeneous networks, unequal shares of the total external assets
by various banks allows us to encode an instance of set cover by “equalizing” effects of nodes.

T = 2T = 2T = 2 Theapproximation algorithm uses linear program in Theorem 9.1 with more careful calculations.

Any T > 2T > 2T > 2, approximation hardness This stronger poly-logarithmic inapproximability resultthan that in
Theorem 12.1 is obtained by a reduction from MINREP, a graph-theoretic abstraction of two prover multi-
round protocol for any problem inNP. Many technical complications in the reduction, culminating to a set
of 22 symbolic linear equations between the parameters thatwe must satisfy. Intuitively, the two provers in
M INREP correspond to two nodes in the network that cooperate to failto another specified set of nodes.

6.1.4 Heterogeneous Networks,DUAL -STAB2,Φ,κDUAL -STAB2,Φ,κDUAL -STAB2,Φ,κ , approximation hardness The reduction for this
stronger inapproximability result is from thedensest hyper-graphproblem.
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6.2 Implications of Our Results on Banking Networks

6.2.1 Effects of Topological Connectivity

Though researchers agree that the connectivity of banking networks affects its stability [2, 32], the conclu-
sions drawn are mixed, namely some researchers conclude that lesser connectivity implies more susceptibil-
ity to contagion whereas other researchers conclude in the opposite. Based on our results and their proofs,
we found that topological connectivity does play a significant role in stability of the network in the following
complex manner.

Even acyclic networks display complex stability behavior: Sometimes a cause of the instability of
a banking network is attributed tocyclical dependencies of borrowing and lending mechanisms among
major banks,e.g., banksv1, v2 and v3 borrowing from banksv2, v3 and v1, respectively. Our results
show that computing the stability measures may be difficult even without the presence of such cycles.
Indeed, larger inapproximability results, especially forheterogeneous networks, are possible because
slight change in network parameters can cause a large changein the stability measure. On the other hand,
acyclic small-degree rooted in-arborescence networks exhibit higher values of the stability measure,e.g.,
if the maximum in-degree of any node in a rooted in-arborescence is 5 and the shock parameterΦ is no
more than twice the value of the percentage of equity to assets γ , then by Theorem 11.1SI∗(G,T)> 0.1.

Intersection of borrowing chains may cause lower stability: By aborrowing chainwe mean a directed
path from a nodev1 to another nodev2, indicating that bankv2 effectively borrowed from bankv1 through
a sequence of successive intermediaries. Now, assume that there is another directed path fromv1 to
another nodev3. Then, failure ofv2 andv3 propagates the resulting shocks tov1 and, if the shocks arrive
at the same step, then the total shock received by bankv1 is the addition of these two shocks, which in
turn passes this “amplified” shock to other nodes in the network.

Based on these kinds of observations, it can be reasonably inferred that homogeneous networks with topolo-
gies more like a small-degree in-arborescence have higher stabilities, whereas networks of other types of
topologies may have lower stabilities even if the topologies are acyclic. For example, as we observe later,
when degmax

in = 3, γ = 0.1 andΦ = 0.15, we getSI∗(G,T) > 0.22 and the network cannot be put to death
without shocking more than 22% of the nodes.

6.2.2 Effects of Ratio of External to Internal Assets (E/I ) and percentage of equity to assets (γ) for
Homogeneous Networks

As our relevant results and their proofs show, lower values of E/I andγ may cause the network stability to be
extremely sensitive with respect to variations of other parameters of a homogeneous network. For example,
in the proof of Theorem 8.1 we have limn→∞ E/I = limn→∞ γ = 0, leading to variation of the stability index
by a logarithmic factor; however, in the proof of Theorem 10.1 we haveE/I = 0.25 andγ = 0.23 leading to
much smaller variation of the stability index.

6.2.3 Homogeneous vs. Heterogeneous Networks

Our results and proofs show that heterogeneous networks of banks with diverse equities tend to exhibit wider
fluctuations of the stability index with respect to parameters, e.g., Theorem 14.1 shows a polylogarithmic
fluctuation even if the ratioE/I is large.
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6.2.4 Further Empirical Study

Subsequent to writing this paper, DasGupta and Kaligounderin a separate article [22] performed a thorough
empirical analysis of the stability measure over more than 700000 combinations of networks types and
parameters, and uncovered many interesting insights into the relationships of the stability with other relevant
parameters of the network, such as:

Effect of uneven distribution of assets:Networks where all banks have roughly thesameexternal assets
are more stable over similar networks in which fewer banks have a disproportionately higher external
assets compared to the remaining banks, and failures of those banks withhigher assets contribute
more damage to the stability of the network. Furthermore, networks in which fewer banks have a
disproportionately higher external assets compared to theremaining banks has a minimal instability
even if their equity to asset ratio is large and comparable toloss of external assets. This is not the
case for networks where all banks have roughly the same external assets. Thus, in summary, they
concluded that banks with disproportionately large external assets (“banks that are too big”) affect the
stability of the entire banking network in anadversemanner.

Effect of connectivity: For banking networks where all banks have roughly the same amount of external
assets, higher connectivity leads tolower stability. In contrast, for banking networks in which few
banks have disproportionately higher external assets compared to the remaining banks, higher con-
nectivity leads tohigherglobal stability.

Correlated versus random failures: Correlatedinitial failures of banks causes more damage to the entire
banking network as opposed to justrandominitial failures of banks.

Phase transition properties of global stability: The global stability exhibits several sharpphase transi-
tions for various banking networks within certain parameter ranges.

7 Preliminary Observations on Shock Propagation

Proposition 7.1. Let 〈G= (V,F),γ ,β ,E〉 be the given (homogeneous or heterogeneous) banking network.
Then, the following are true:

(a) If degout(v) = 0 for some v∈V, then node v must be given a shock (and, must fail due to this shock) for
the entire network to fail.

(b) Let α be the number of edges in the longest directed simple path in G. Then, no new node fails at any
time t> α .

(c) We can assume without loss of generality that G is weakly connected,i.e., the un-oriented version of G
is connected.

Proof.
(a) Since degout(v) = 0, no part of any shock given to any other nodes in the network can reachv. Thus, the
network ofv, namelycv = γ av stays strictly positive (sinceγ > 0) and nodev never fails.

(b) Let tlast be the latest time a node ofG failed, and letV(t) be the set of nodes that failed at timet =
1,2, . . . , t last. Then,V(1),V(2), . . . ,V(t last) is a partition ofV. For everyi = 1,2, . . . , t last−1, add directed
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edges(u,v) from a nodeu∈V(i) to a nodev∈V(i +1) if u was last node that transmitted any part of the
shock tov beforev failed. Note that(u,v) is also an edge ofG and for every nodev∈V(i +1) there must
be an edge(u,v) for some nodeu∈V(i). Thus,G has a path of length at least tlast.

(c) This holds since otherwise the stability measures can be computed separately on each weakly connected
component. �

8 Homogeneous Networks,STAB2,ΦSTAB2,ΦSTAB2,Φ, Logarithmic Inapproximability

Theorem 8.1. SI∗(G,2) cannot be approximated in polynomial time within a factor of(1− ε) lnn, for any
constantε > 0, unlessNP⊆ DTIME

(

nlog logn
)

.

Proof. Thedominating setproblem for an undirected graph (DOMIN-SET) is defined as follows: given an
undirected graph G= (V,F) with n= |V| nodes, find a minimum cardinality subset of nodes V′ ⊂V such
that every node in V\V ′ is incident on at least one edge whose other end-point is in V′. It is known that
DOMIN-SAT is equivalent to the minimum set-cover problem under L-reduction [9], and thus cannot be
approximated within a factor of(1− ε) lnn unlessNP⊆ DTIME

(

nlog logn
)

[28].
Consider an instanceG = (V,F) of DOMIN-SET with n nodes andm edges, and letOPT denote the

size of an optimal solution for this instance. Our (directed) banking network
−→
G = (

−→
V ,
−→
F ) is obtained

from G by replacing each undirected edge{u,v} by two directed edges(u,v) and (v,u). Thus we have
0 < degin(v) = degout(v) < n for every nodev ∈ V. We set the global parameters as follows:E = 10n,
γ = n−2 andΦ = 1.

For a nodev, let Nbr(v) = {u|{u,v} ∈ E} be the set of neighbors ofv in G. We claim that if a nodev is
shocked at timet = 1, then all nodes in in{v}∪Nbr(v) fail at timet = 2. Indeed, suppose thatv is shocked
at t = 1. Then,v surely fails because

Φev = degin(v)−degout(v)+
E
n
= 10>

2
n
>

degin(v)+
E
n

n2 = γ av

Now, considert = 2 and consider a nodev such thatv has not failed but a nodeu∈ Nbr(v) failed at time
t = 1. Then, nodev surely fails because

sv,2 ≥
min{su,1−cu,bu}

degin(u,2)
=

min{Φeu− γ au,degin(u)}
degin(u)

> min

{

10− 2
n

degin(u)
, 1

}

>
2
n
>

degin(v)+
E
n

n2 = γ av

Thus, we have a 1–1 correspondence between the solutions of DOMIN-SET and death of
−→
G, namelyV ′ ⊂V

is a solution of DOMIN-SET if and only if shocking the nodes inV ′ makes
−→
G fail at timet = 2. �

9 Homogeneous Networks,STAB2,ΦSTAB2,ΦSTAB2,Φ, Logarithmic Approximation

Theorem 9.1. STAB2,Φ admits a polynomial-time algorithm with approximation ratio

O

(

log

(

n Φ E
γ (Φ− γ) |E−Φ|

))

.
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Proof. Suppose thatΦeu < 0 for some nodeu∈V. Then, there exists an optimal solution in which we do
not shock the nodeu. Indeed, ifu was shocked, the equity ofu increases fromcu to cu+ |Φeu | andu does
not propagate any shock to other nodes. Thus, ifu still fails at t = 2, then it also fails att = 2 if it was not
shocked.

Let Vshock denote the set of nodes that we will select for shocking, and,for every nodev ∈ V, let δv,u

be defined as:δv,u =















max{0, Φev}, if u= v
min{Φev−cv, bv}

degin(v)
, if Φev > cv and(u,v) ∈ F

0, otherwise

. Then, our problem reduces to a

covering problem of the following type:

find a minimum cardinality subset Vshock⊆V such that, for every node u,∑v∈Vshock
δv,u > cu.

Note that we cannot even explicitly enumerate, for a nodeu ∈ V, all subsetsV ′ ⊆ V \ {u} such that

∑v∈V ′δv,u > cu, since there are exponentially many such subsets. Let the binary variablexv ∈ {0,1} be
the indicator variable for a nodev∈V for inclusion inVshock. However, we can reformulate our problem as
the following integer linear programming problem:

minimize ∑
v∈V

xv

subject to∀u∈V : ∑
v∈V

δv,uxv > cu (1)

xu ∈ {0,1}

Let ζ = min
u∈V

{

min
v∈V
{δu,v}, cu

}

. We can rewrite each constraint∑
v∈V

δv,uxv > cu as ∑
v∈V

δv,u

ζ
xv >

cu

ζ
to ensure

that every non-zero entry is at least 1. Since the coefficients of the constraints and the objective function are
all positive real numbers, (1) can be approximated by the greedy algorithm described in [24, Theorem 4.1]
with an approximation ratio of 2+ lnn+ ln

(

maxv∈V

{

∑u∈V
δv,u

ζ

})

. Now, observe that:

min
u∈V

δu,u>0

{δu,u}= min
u∈V

δu,u>0

{

Φ
(

degin(u)−degout(u)+
E
n

)}

= Ω

(
∣

∣E−Φ
∣

∣

n

)

min
u∈V

min
v∈V

δu,v>0

{δu,v}= min
u∈V

min
v∈V

Φev>cv

{

(Φ− γ)
(

1+
E

degin(v)

)

−Φ
degout(v)
degin(v)

}

= Ω
(

(Φ− γ)E
n

)

min
u∈V
{cu}= min

u∈V

{

γ
(

degin(u)+
E
n

)}

= Ω
(

γ E
n

)

ζ = min
{

min
u∈V

min
v∈V
{δu,v}, min

u∈V
{cu}

}

= Ω

(

min

{
∣

∣E−Φ
∣

∣

n
,
(Φ− γ)E

n
,

γ E
n

})

max
v∈V

∑
u∈V

δv,u ≤ n max
u∈V

{

(Φ− γ)
(

1+
E

degin(u)

)

−Φ
degout(u)
degin(u)

}

= O(n(Φ− γ)E )

and thus, maxv∈V

{

∑u∈V
δv,u

ζ

}

= O

(

poly

(

n, Φ
γ ,

1
Φ−γ ,

E
∣

∣E−Φ
∣

∣

))

, giving the approximation bound. �
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10 Homogeneous Networks,STABT,ΦSTABT,ΦSTABT,Φ, any T, APX-hardness

Theorem 10.1.For any T, computingSI∗(G,T) is APX-hard even if the banking network G is a DAG with
degin(v)≤ 3 anddegout(v)≤ 2 for every node v.

Proof. We reduce the 3-MIN-NODE-COVER problem to STABT,Φ. 3-MIN-NODE-COVER is defined as
follows. We are given an undirected 3-regular graphG, i.e., an undirected graphG= (V,F) in which the
degree of every node is exactly 3 (and thus|F|= 1.5|V |). A valid solution (node cover) is a subset of nodes
V ′ ⊆ V such that every edge is incident to at least one node inV ′. The goal is then to find a node cover
V ′ ⊆V such that|V ′| is minimized. This problem is known to beAPX-hard [10].

v1v1v1

v2v2v2 v3v3v3

v4v4v4

v5v5v5v6v6v6

e2,3e2,3e2,3

G= (V,F)G= (V,F)G= (V,F)

u1u1u1

u′1u′1u′1

u2u2u2

u2u2u2
′

u3u3u3

u′3u′3u′3

u4u4u4

u′4u′4u′4

u5u5u5

u′5u′5u′5

u6u6u6

u′6u′6u′6

e1,2e1,2e1,2 e1,4e1,4e1,4 e1,6e1,6e1,6 e2,3e2,3e2,3

{v2,v3}
e2,5e2,5e2,5 e3,4e3,4e3,4 e3,5e3,5e3,5 e4,5e4,5e4,5 e5,6e5,6e5,6

sink
nodes

super-source nodes

−→
G = (

−→
V ,
−→
F )

−→
G = (

−→
V ,
−→
F )

−→
G = (

−→
V ,
−→
F )

Figure 4: A 3-regular graphG= (V,F) and its corresponding banking network
→
G= (

→
V ,
→
F).

Given such an instanceG= (V,F) of 3-MIN-NODE-COVER, we construct an instance of the banking
network

−→
G = (

−→
V ,
−→
F ) as follows:

• For every nodevi ∈V, we have two nodesui ,u′i in
−→
V , and a directed edge(ui ,u′i). We refer tou′i as a

“super-source” node.

• For every edge{vi ,v j} ∈ F with i < j, we have a (“sink”) nodeei, j in
−→
V and two directed edges

(ei, j ,ui) and(ei, j ,u j) in
−→
F . For notational convenience, the nodeei, j is also sometimes referred to as

the nodeej,i .

Thus,|−→V |= 3.5|V|, and|−→F |= 4|V |. See Fig. 4 for an illustration. Observe that:

• degin (ui) = 3 and degout(ui) = 1 for all i = 1,2, . . . , |V|.

• degin (u
′
i) = 1 and degout(u

′
i) = 0 for all i = 1,2, . . . , |V|. Thus, by Proposition 7.1(a), every nodeu′i

must be shocked to make the network fail.
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e1,2e1,2e1,2 e2,5e2,5e2,5

u2u2u2

e2,3e2,3e2,3
t = 1t = 1t = 1

failed
not shocked
arbitrary

e1,2e1,2e1,2 e2,5e2,5e2,5

u2u2u2

e2,3e2,3e2,3
t = 2t = 2t = 2

Figure 5: Case(III) : if node u2 is shocked then the nodes
e1,2,e2,3 ande2,5 must fail att = 2.

• degin(ei, j ) = 0 and
degout(ei, j ) = 2 for all i and j.
Since degin(ei, j ) = 0, if a node
ei, j is shocked, no part of the
shock is propagated to any other
node in the network.

• Since the longest path in
−→
G has

2 edges, by Proposition 7.1(b)
no new node fails at anyt > 3.

For notational convenience, letn= |V|, E = E/n, andei, j1,ei, j2 andei, j3 be the three edges{vi ,v j1}, {vi ,v j2}
and{vi ,v j3} in G that are incident on the nodevi . We will select the remaining network parameters, namely
γ , Φ andE , based on the following desirable properties.

(I) If a nodeu′i is shocked att = 1, it fails:

Φ
(

degin(u
′
i)−degout(u

′
i)+E

)

> γ
(

degin(u
′
i)+E

)

≡ Φ (1+E )> γ (1+E ) ≡ Φ > γ (2)

(II) If a nodeei, j is shocked, it does not fail:

degin (ei, j)−degout(ei, j)+E < 0 ≡ E < 2 (3)

(III) If a nodeui is shocked att = 1, thenui fails att = 1, and the nodesei, j1,ei, j2 andei, j3 fail at timet = 2
if they were not shocked (see Fig. 5 for an illustration):

min
{

Φ (degin(ui)−degout(ui)+E )− γ (degin(ui)+E ) , degin(ui)
}

degin(ui)
> γ (degin(ei, j1)+E )

≡ min
{

Φ(2+E )− γ (3+E ), 3
}

3
> γ E

The above inequality is satisfied provided:

Φ(2+E )> γ (3+4E ) (4)

1> γ E ≡ γ <
1
E

(5)

(IV) Consider a sink nodeei, j . Then, we require that if one or both of the super-source nodeu′i andu′j are
shocked att = 1 but the none of the nodesui , u j andei, j were shocked, then we require that one or both of
the corresponding nodesui andu j fail at t = 2, but the nodeei, j neverfails. Pictorially, we want a situation
as depicted in Fig. 6. This is satisfied provided the following inequalities hold:

(IV-1) ui fails att = 2 if u′i was shocked (the case ofu j andu′j is similar):

min
{

Φ (degin(u
′
i)−degout(u

′
i)+E )− γ (degin(u

′
i)+E ) , degin(u

′
i)
}

degin(u
′
i)

> γ (degin(ui)+E )

≡ min
{

(Φ− γ)(1+E ), 1
}

1
> γ (3+E )
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The above inequality is satisfied provided:

(Φ− γ)(1+E )> γ (3+E ) ≡ Φ(1+E )> γ (4+2E ) (6)

1> γ (3+E ) ≡ γ <
1

3+E
(7)

(IV-2) ei, j never fails even if bothui andu j have failed:

min
{

(Φ− γ)(1+E ), 1
}

1
− γ (3+E )≤ γ E

2
≡ min

{

(Φ− γ)(1+E ), 1
}

≤ 3γ
(

1+
E

2

)

The above inequality is satisfied provided:

(Φ− γ)(1+E )≤ 3γ
(

1+
E

2

)

≡ Φ(1+E )≤ γ
(

4+
5E

2

)

(8)

1≤ 3γ
(

1+
E

2

)

≡ γ ≥ 2
6+3E

(9)

e2,3e2,3e2,3

t = 1t = 1t = 1

failed

not shocked

arbitrary

never fails

u2u2u2 u3u3u3

e2,3e2,3e2,3 e2,3e2,3e2,3

t = 2t = 2t = 2

u2u2u2 u3u3u3

e2,3e2,3e2,3 e2,3e2,3e2,3

T > 2T > 2T > 2

u2u2u2 u3u3u3

e2,3e2,3e2,3

Figure 6: Case(IV) : to makee2,3 fail, at least one ofu2 or u3 must be shocked.

There are obviously many
choices of parametersγ ,
Φ andE that satisfy Equa-
tions (2)–(9); here we ex-
hibit just one. LetE =

1 which satisfied Equa-
tion (3). Choosingγ =

0.23 satisfies Equations (5),
(7) and (9). LettingΦ =

0.7 satisfies Equations (2), (4), (6) and (8).
Suppose thatV ′ ⊂V is a solution of 3-MIN-NODE-COVER. Then, we shock all the super-nodes, and

the nodes inV ′. By (I) and(III) all the super-nodes and the nodes in
(

∪vi∈V\V ′{vi}
)

fails at t = 1, and by

(III) the nodes in∪{vi ,vj}∈E
i< j

{ei, j} fails t = 2. Thus, we obtain a solution of
−→
G by shocking|V ′|+n nodes.

Conversely, consider a solution of the STABT,Φ problem on
−→
G. Remember that all the super-nodes must

be shocked, which ensures that we need to shockn+a nodes for some integera≥ 0, and that any nodevi

that is not shocked will fail att = 2. By (II) it is of no use to shock the sink nodes. Thus, the shocked nodes
consist of all super-nodes and a subsetV ′ of cardinalitya of the nodesu1,u2, . . . ,un. By (IV) for every node
ei, j at least one of the nodesui or u j must be inU . Thus, the set of nodes{vi |ui ∈U} form a node cover of
G of sizea.

That the reduction is an L-reduction follows from the observation that any locally improvable solution
of 3-MIN-NODE-COVER has betweenn/3 andn nodes. �

11 Restricted Homogeneous Networks,STABT,ΦSTABT,ΦSTABT,Φ, Any T, Exact Solution

TheAPX-hardness result of Theorem 10.1 has constant values for both Φ andγ , and requires degout(v) = 2
for some nodesv. We show that if degout(v) ≤ 1 for every nodev then under mild technical assumptions

19



SI∗(G,T) can be computed in polynomial time for anyT and, in addition, if degin(v) is bounded by a
constant for every nodev then the network is highly stable (i.e., SI∗(G,T) is large). Recall that an in-
arborescence is a directed rooted tree where all edges are oriented towards the root.

Theorem 11.1.If the banking network G is a rooted in-arborescence thenSI∗(G,T)>
1

1+degmax
in

(

Φ
γ −1

) ,

wheredegmax
in = maxv∈V

{

degin(v)
}

. Moreover, under the assumption that every node of G can be individu-
ally failed by shocking,SI∗(G,T) can be computed exactly in O

(

n2
)

time.

Remark 11.2. Thus, for example, whendegmax
in = 3, γ = 0.1 andΦ = 0.15, we getSI∗(G,T)> 0.22and the

network cannot be put to death without shocking more than22%of the nodes. The proof gives an example
for which the lower bound is tight.

In the rest of this section, we prove the above theorem. LetG = (V,F) be the given in-arborescence
rooted at noder. We will use the following notations and terminologies:

• u→ v andu{ v denote a directed edge and a directed path of one of more edges, respectively, from
nodeu to nodev.

• If (u,v) ∈ F thenv is theparentof u andu is achild of v. Similarly, if u{ v exists inG thenv an
ancestorof u andu adescendentof v.

• Let ∇(u) = {v|u{ v exists inG} denote the set of all proper ancestors ofu, and∆(u) = {v|v{
u exists inG}∪{u} denote the set of all descendants ofu (including the nodeu itself). Note that for
the networkG to fail, at least one node in∇(u)∪{u} must be shocked for every nodeu.

Suppose that we shock a nodeu of G (and shock no other nodes in∆(u)). If u fails, then the shock splits
and propagates to a subset of nodes in∆(u) until each split part of the shock terminates because of one of
the following reasons:

• the component of the shock reaches a “leaf” nodev with degin(v) = 0, or

• the component of the shock reaches a nodev with a sufficiently highcv such thatv does not fail.

Based on the above observations, we define the following quantities.

Definition 11.3 (see Fig. 7 for illustrations). Theinfluence zoneof a shock on u, denoted byiz(u), is the set
of all failed nodes v∈ ∆(u) within time T when u is shocked (and, no other node in∆(u) is shocked). Note
that u∈ iz(u).

Note that, for any nodeu, iz(u) can be computed inO(n) time.

Lemma 11.4. For any node u,
∣

∣ iz(u)
∣

∣< 1+degin(u)
(

Φ
γ −1

)

.

Proof. For notational simplicity, letE = E/n. If the nodeu does not fail when shocked, oru fails but it
has no child, then

∣

∣ iz(u)
∣

∣ ≤ 1 and our claim holds sinceΦ > γ . Otherwise,u fails and each of its degin(u)
children at level 2 receives a part of the shock given by

a= min

{

Φ(degin(u)−1+E )− γ (degin(u)+E )

degin(u)
, 1

}

< Φ
(

1+
E

degin(u)

)

− γ
(

1+
E

degin(u)

)

≤Φ(1+E )− γ (1+E )
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iz(u)iz(u)iz(u)
uparent

child

shocked
failed (due to shock)

not shocked and not failed

Figure 7: Influence zone of a shock onu.
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⌋
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...
...
...
...

. . . . . .. . . . . .. . . . . .

Figure 8: A tight example for the bound
in Lemma 11.4 (E = 0).

Consider a childvof u. Each nodev′ ∈∆(v) that fails due to the shock subtracts an amount ofγ (degin(v
′)+E )≥

γ (1+E ) from a provided this subtraction does not result in a negative value. Thus, the total number of

failed nodes is strictly less than 1+degin(u)
Φ(1+E )−γ(1+E )

γ(1+E ) = 1+degin(u)
(

Φ
γ −1

)

. �

Remark 11.5. The bound in Lemma 11.4 is tight as shown in Fig. 8.

Lemma 11.4 immediately implies that

SI∗(G,T)>

n

max
u∈V

{

iz(u)
}

n
>

n
/

(

1+degmax
in

(

Φ
γ −1

))

n
=

1

1+degmax
in

(

Φ
γ −1

)

We now provide a polynomial time algorithm to computeSI∗(G,T) exactly assuming each node can be
shocked to fail individually. For a nodeu, define the following:

• For every nodeu′ ∈∇(u), SI∗SANS(G,T,u,u′) is the number of nodes in an optimal solution of STABT,Φ

for the subgraph induced by the nodes in∆(u) (or ∞, if there is no feasible solution of STABT,Φ for
this subgraph under the stated conditions) assuming the following:

– u′ was shocked,

– u wasnot shocked, and

– no node in the pathu′{ u excludingu′ was shocked.

• SI∗SAS(G,T,u) is the number of nodes in an optimal solution of STABT,Φ for the subgraph induced
by the nodes in∆(u) (or ∞, if there is no feasible solution of STABT,Φ under the stated conditions)3

assuming that the nodeu was shocked (and therefore failed).

We consider the usual partition of the nodes ofG into levels: level(r) = 1 andlevel(u) = level(v)+1 if u is
a child ofv. We will computeSI∗SAS(G,T,u) andSI∗SANS(G,T,u,v) for the nodesu level by level, starting

3Intuitively, a value of∞ signifies that the corresponding quantity is undefined.
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with the highest level and proceeding to successive lower levels. By Observation 7.1(a), the rootr must
be shocked to fail for the entire network to fail, and thusSI∗SAS(G,T, r) will provide us with our required
optimal solution.

Every nodeu at the highest level has degin(u) = 0. In general,SI∗SAS(G,T,u) andSI∗SANS(G,T,u,u′) can
be computed for any nodeu with degin(u) = 0 as follows:

Computing SI∗SAS(G,T,u) whendegin(u) = 0: SI∗SAS(G,T,u) = 1 by our assumption that every node can
be shocked to fail.

Computing SI∗SANS(G,T,u,u′) whendegin(u) = 0:

• If u∈ iz(u′) then shocking nodev makes nodeu fail. Since nodeu fails without being shocked,
we haveSI∗SANS(G,T,u,u′) = 0.

• Otherwise, nodeu does not fail. Thus, there is no feasible solution andSI∗SANS(G,T,u,u′) = ∞.

Note that we only count the number of nodes in∆(u) in the calculations ofSI∗SANS(G,T,u,u′) andSI∗SAS(G,T,u).
Now, consider a nodeu at some level̀ with degin(u) > 0. Letv1,v2, . . . ,vdegin(u) be the children ofu at

level `+1. Note that∇(v1) = ∇(v2) = · · ·= ∇(vdegin(u)).

Computing SI∗SAS(G,T,u) whendegin(u)> 0: By our assumption,u fails when shocked. Note that no
node in∆(u) \{u} can receive any component of a shock given to a node inV \∆(u) sinceu failed.
For each childvi of uwe have two choices:vi is shocked and (and, therefore, fails), orvi is not shocked.
Thus, in this case we haveSI∗SAS(G,T,u) = 1+∑degin(u)

i=1 min
{

SI∗SAS(G,T,vi), SI∗SANS(G,T,vi ,u)
}

.

Computing SI∗SANS(G,T,u,u′) whendegin(u) > 0: Sinceu′ is shocked andu is not shocked, the following
cases arise:

• If u< iz(u′) then thenu does not fail. Thus, there is no feasible solution for the subgraph induced
by the nodes in∆(u) under this condition, andSI∗SANS(G,T,u,u′) = ∞.

• Otherwise,u ∈ iz(u′), and thereforeu fails whenu′ is shocked. For each childvi of u, there
are two options:vi is shocked and fails, orvi is not shocked. Thus, in this case we have

SI∗SANS(G,T,u,u′) = ∑degin(u)
i=1 min

{

SI∗SAS(G,T,vi), SI∗SANS(G,T,vi,u′)
}

.

Let `max be the maximum level number of any node inG. Based on the above observations, we can design
the dynamic programming algorithm as shown in Fig. 9 to compute an optimal solution of STABT,Φ on G.
It is easy to check that the running time of our algorithm isO

(

n2
)

.

12 Heterogeneous Networks,STABT,ΦSTABT,ΦSTABT,Φ, Any T, Logarithmic Inapproxima-
bility

Theorem 12.1.AssumingNP 1 DTIME
(

nlog logn
)

, for any constant0< ε < 1 and any T, it is impossible to
approximateSI∗(G,T) within a factor of (1− ε) lnn in polynomial time even if G is a DAG.
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(* preprocessing *)
∀u∈V : computeiz(u)
(* dynamic programming *)
for `= `max, `max−1, . . . ,1 do

for each nodeu at level` do
if degin(u) = 0 then

SI∗SAS(G,T,u) = 1
∀u′ ∈ ∇(u) : if u∈ iz(u′) then SI∗SANS(G,T,u,u′) = 0 elseSIaSANSst(G,T,u,u′) = ∞

else (* degin(u)> 0 *)

SI∗SAS(G,T,u) = 1+∑degin(u)
i=1 min

{

SI∗SAS(G,T,vi), SI∗SANS(G,T,vi ,u)
}

∀u′ ∈ ∇(u) : if u < iz(u′) then SI∗SANS(G,T,u,u′) = ∞
else

SI∗SANS(G,T,u,u′) = ∑degin(u)
i=1 min

{

SI∗SAS(G,T,vi), SI∗SANS(G,T,vi ,u′)
}

endif
endif

endfor
endfor
return SI∗SAS(G,T, r) as the solution

Figure 9: A polynomial time algorithm to computeSI∗(G,T) whenG is a rooted in-arborescence and each
node ofG fails individually when shocked.

U = {u1,u2,u3,u4}U = {u1,u2,u3,u4}U = {u1,u2,u3,u4}
S = {S1,S2,S3,S4}S = {S1,S2,S3,S4}S = {S1,S2,S3,S4}
S1 = {u1,u2,u3}S1 = {u1,u2,u3}S1 = {u1,u2,u3}
S2 = {u3,u4}S2 = {u3,u4}S2 = {u3,u4}
S3 = {u3}S3 = {u3}S3 = {u3}
S4 = {u1,u2}S4 = {u1,u2}S4 = {u1,u2}
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3
2
3
2
3
2 Figure 10: An instance〈U ,S 〉

of SET-COVER and its corre-
sponding banking networkG =

(V,F).

Proof. The (unweighted) SET-COVER problem is defined as follows. We have an universeU of n elements,
a collection ofm setsS over U . The goal is to pick a sub-collectionS ′ ⊆ S containing aminimum
number of sets such that these sets “cover”U , i.e., ∪S∈S ′S= U . It is known that there exists instances of
SET-COVER that cannot be approximated within a factor of(1−δ ) lnn, for any constant 0< δ < 1, unless
NP ⊆ DTIME

(

nlog logn
)

[28]. Without any loss of generality, one may assume that every elementu ∈ U

belongs to at least two sets inS since otherwise the only set containingu must be selected in any solution.
Given such an instance〈U ,S 〉 of SET-COVER, we now construct an instance of the banking network

G= (V,F) as follows:

• We have a special nodeB.

• For every setS∈S , we have a nodeS, and a directed edge(S,B).
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• For every elementu∈U , we have a nodeu, and directed edges(u,S) for every setS that containsu.

Thus,|V|= n+m+1, and|F |< nm+m. See Fig. 10 for an illustration. We set the shares of internal assets
for each bank as follows:

• For each setS∈S , if Scontainsk > 1 elements then, for each elementu∈ S, we set the weight of
the edgee= (u,S) asw(e) = 3

k .

• For each setS∈S , we set the weight of the edge(S,B) as 1.

Thus,I = 4m. Also, observe that:

• For anyS∈S , bS= 3, andιS= 1.

• For anyu∈U , bu = 0. Also, sinceu belongs to at least two sets inS and any set has at mostn−1
elements,2n ≤ ιu <

3n
2 .

• bB = mandιB = 0.

• Since degin(u) = 0 for any elementu∈U , if a nodeu is shocked, no part of the shock is propagated
to any other node in the network.

• Since the longest path inG has 2 edges, by Proposition 7.1(b) no new node inG fails for T > 3.

Let the share of external assets for a node (bank)y be denoted byEy (thus,∑y∈V Ey = E). We will select the
remaining network parameters, namelyγ , Φ and theEy values, based on the following properties.

(I) If the nodeB is shocked att = 1, it fails:

Φ(bB− ιB+EB )> γ (bB+EB ) ≡ Φ(m+EB )> γ (m+EB ) ≡ Φ > γ (10)

(II) For anyS∈S , if nodeS is shocked att = 1, thenS fails at t = 1, and, for everyu∈ S, nodeu fails at
time t = 2:

min
{

Φ (bS− ιS+ES)− γ (bS+ES) , bS
}

degin(S)
> γ (bu+Eu)

≡ min
{

Φ(2+ES)− γ (3+ES), 3
}

|S| > γ Eu

The above inequality is satisfied if:

Φ(2+ES)> γ (3+ES+ |S|Eu) (11)

Φ(2+ES)− γ (3+ES)≤ 3 (12)

(III) For anyu ∈ U , consider the nodeu, and letS1,S2, . . . ,Sp ∈ S be thep sets that containu. Then,
we require that if the nodeB is shocked att = 1 thenB fails at t = 1, every node among the set of nodes
{S1,S2, . . . ,Sp} that was not shocked att = 1 fails att = 2, but the nodeu does not fail if the none of the
nodesu,S1,S2, . . . ,Sp were shocked, This is satisfied provided the following inequalities hold:
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(III-1) Any node among the set of nodes{S1,S2, . . . ,Sp} that was not shocked att = 1 fails att = 2. This
is satisfies provided for any setS∈S the following holds:

min
{

Φ (bB− ιB+EB)− γ (bB+EB ) , bB
}

degin(B)
> γ (bS+ES)

≡ min

{

(Φ− γ)
(

1+
EB
m

)

, 1

}

> γ (3+ES)

The above inequality is satisfied provided:

(Φ− γ)
(

1+
EB
m

)

> γ (3+ES) ≡ Φ
(

1+
EB
m

)

> γ
(

4+ES+
EB
m

)

(13)

1> γ (3+ES) ≡ γ <
1

3+ES
(14)

(III-2) u does not fail if the none of the nodesu,S1,S2, . . . ,Sp were shocked:

min

{

(Φ− γ)
(

1+
EB
m

)

, 1

}

− γ (3+ES)≤
γ Eu

n

≡ min

{

(Φ− γ)
(

1+
EB
m

)

, 1

}

≤ γ
(

3+ES+
Eu

n

)

The above inequality is satisfied provided:

(Φ− γ)
(

1+
EB
m

)

≤ γ
(

3+ES+
Eu

n

)

≡ Φ
(

1+
EB
m

)

≤ γ
(

4+ES+
EB
m

+
Eu

n

)

(15)

(Φ− γ)
(

1+
EB
m

)

≤ 1 ≡ γ ≥Φ − 1

1+ EB
m

(16)

There are many choices of parametersγ , Φ andEy’s satisfying Equations (10)–(16); we exhibit just one:

∀S∈S : ES= 0 EB = 0 ∀u∈U : Eu =
1

100n
γ = 0.1 Φ = 0.4+

1
n10000

Suppose thatS ′ ⊂S is a solution of SET-COVER. Then, we shock the nodeB and the nodesS for each
S∈S ′. By (I) and(II) the nodeB and the nodesS for eachS∈S ′ fails at t = 1, and by(II) the nodesu
for everyu∈U fails t = 2. Thus, we obtain a solution ofG by shocking|S ′|+1 nodes.

Conversely, consider a solution of the STABT,Φ problem onG. If a nodeu for someu∈U was shocked,
we can instead shock the nodeS for any setS that containsa, which by (II) still fails all the nodes in the
network and does not increase the number of shocked nodes. Thus, after such normalizations, we may
assume that the shocked nodes consist ofB and a subsetS ′ ⊆S of nodes. By(II) and(III) for every node
u∈U at least one set that containsu must be inS ′. Thus, the collection of sets inS ′ form a cover ofU
of size|cS′|. �

13 Heterogeneous Networks,STAB2,ΦSTAB2,ΦSTAB2,Φ, Logarithmic Approximation

For any positive realx > 0, let x = max{x,1/x} and x = min{x,1/x}. Let wmin = mine: w(e)>0
{

w(e)
}

,
wmax= maxe

{

w(e)
}

, αmin = minv: αv>0
{

αv
}

, andαmax= maxv
{

αv
}

.
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Theorem 13.1. STAB2,Φ admits a poly-time algorithm with approximation ratio

O

(

log
n E wmax wmin αmax

Φ γ (Φ− γ) E wmin αmin wmax

)

.

Proof. We can reuse the proof of the corresponding approximation for homogeneous networks in Theo-
rem 9.1 to obtain an approximation ratio of 2+ lnn+ ln

(

maxv∈V

{

∑u∈V
δv,u

ζ

})

, whereζ =min
u∈V

{

min
v∈V
{δu,v}, cu

}

,

provided we recalculate maxv∈V

{

∑u∈V
δv,u

ζ

}

. Then,

min
u∈V

δu,u>0

{δu,u}= min
u∈V

δu,u>0

{

Φ

(

∑
e=(v′,u)∈F

w(e)−∑
e=(u,v′)∈F

w(e) +αvE

)}

= Ω
(

poly
(

s,Φ,E,αmin
)

)

min
u∈V

min
v∈V

δu,v>0

{δu,v}= min
u∈V

min
v∈V

Φev>cv















(Φ− γ)









1+
αv E

∑
e=(v′,v)∈F

w(e)









−Φ
∑

e=(v,v′)∈F

w(e)

∑
e=(v′,v)∈F

w(e)















= Ω
(

poly
(

n−1,Φ− γ ,Φ,E,wmax,wmin,αmin
)

)

min
u∈V
{cu}= min

u∈V

{

γ

(

∑
e=(v′,u)∈F

w(e)+αuE

)}

= Ω
(

poly
(

n−1,γ ,E,αmin,wmin
)

)

ζ = min
{

min
u∈V

min
v∈V
{δu,v}, min

u∈V
{cu}

}

= Ω
(

poly
(

n−1,Φ− γ ,Φ,γ ,E,wmin,αmin,wmax
)

)

max
v∈V

∑
u∈V

δv,u ≤ n max
u∈V















(Φ− γ)









1+
αvE

∑
e=(v′,v)∈F

w(e)









−Φ
∑

e=(v,v′)∈F

w(e)

∑
e=(v′,v)∈F

w(e)















= O
(

poly
(

n,E,wmax,wmin,αmax
)

)

and thus,

max
v∈V

{

∑
u∈V

δv,u

ζ

}

= O
(

poly
(

n,Φ−1,γ−1,(Φ− γ)−1,E,E−1,wmax,wmin,αmax,wmin
−1,αmin

−1,wmax
−1
))

giving the desired approximation bound. �

14 Heterogeneous Networks,STABT,ΦSTABT,ΦSTABT,Φ, T > 3, Poly-logarithmic Inapprox-
imability

Theorem 14.1.AssumingNP * DTIME
(

npoly(logn)
)

, for any constant0< ε < 1 and any T> 3, it is impos-

sible to approximateSI∗(G,T) within a factor of2log1−ε n in polynomial time even if G is a DAG.

Proof. The MINREP problem (with minor modifications from the original setup) is defined as follows. We
are given a bipartite graphG = (V left,V right,F) such that the degree of every node ofG is at least 10, a

partition ofV left into |V
left|
α equal-size subsetsV left

1 ,V left
2 , . . . ,V left

α , and a partition ofV right into |V
right|
β equal-

size subsetsV right
1 ,Vright

2 , . . . ,V right
β .
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These partitions define a natural “bipartite super-graph”Gsuper= (Vsuper,Fsuper) in the following manner.
Gsuperhas a “super-node” for everyV left

i (for i = 1,2, . . . ,α) and for everyV right
j (for j = 1,2, . . . ,β ). There

exists an “super-edge”hi, j between the super-node forV left
i and the super-node forVright

j if and only if there

existsu∈V left
i andv∈V right

j such that{u,v} is an edge ofG. A pair of nodesu andv of G “witnesses” the

super-edgehi, j of H providedu is in V left
i , v is in V right

j and the edge{u,v} exists inG, and a set of nodes
V ′ ⊆V of G witnesses a super-edge if and only if there exists at least one pair of nodes inS that witnesses
the super-edge.

The goal of MINREP is to findV1⊆V left andV2⊆V right such thatV1∪V2 witnesseseverysuper-edge ofH
and thesizeof the solution, namely|V1|+ |V2|, isminimum. For notational simplicity, letn= |V left|+ |V right|.
The following result is a consequence of Raz’s parallel repetition theorem [40, 47].

Theorem 14.2. [40] Let L be any language inNP and 0 < δ < 1 be any constant. Then, there exists a
reduction running in npoly(logn) time that, given an input instance x of L, produces an instance of M INREP

such that:

• if x ∈ L thenM INREP has a solution of sizeα +β ;

• if x < L thenM INREP has a solution of size at least(α +β ) ·2log1−δ n.

Thus, the above theorem provides a 2log1−δ n-inapproximability for MINREP under the complexity-
theoretic assumption ofNP * DTIME

(

npolylog(n)
)

.

Let Fi, j =
{

{u,v}
∣

∣u∈V left
i , v∈V right

j , {u,v} ∈ F
}

. We now show our construction of an instance of

STABT,Φ from an instance of MINREP. Our directed graph
−→
G = (

−→
V ,
−→
F ) for STABT,Φ is constructed as

follows (see Fig. 11 for an illustration):

Nodes:

• For every nodeu∈V left
i of G we have a corresponding node−→u in the set of nodes

−−→
V left

i in
−→
G, and for

every nodev∈V right
j of G we have a corresponding node−→v in the set of nodes

−−−→
Vright

j in
−→
G . The total

number of such nodes isn.

• For every edge{u,v} of G with u∈V left
i andv∈V right

j , we have a corresponding nodef−→u ,−→v in the set

of nodes
−→
Fi, j in

−→
G. There are|F | such nodes.

• For every super-edgehi, j of Gsuper, we have a node
−→
hi, j in

−→
G. There are|Fsuper| such nodes.

• We have one “top super-node”vtop, one “side super-node”vside, and 2|F | additional nodesB1,B2, . . . ,B|F |,

D1,D2, . . . ,D|F|. LetB= ∪|F|j=1B j andD= ∪|F|j=1D j .

Thus,n+3|F|+2< |−→V |= n+ |F|+ |Fsuper|+2+2|F|< n+4|F|+2.

Edges:

• For every nodeu of G, we have an edge
(

u,vtop
)

in
−→
G. There aren such edges.

• For every edge{u,v} of G, we have two edges( f−→u ,−→v ,
−→u ) and( f−→u ,−→v ,

−→v ) in
−→
G. There are 2|F | such

edges.
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G= (V left,V right,F)G= (V left,V right,F)G= (V left,V right,F)
Gsuper= (Vsuper,Fsuper)Gsuper= (Vsuper,Fsuper)Gsuper= (Vsuper,Fsuper)

M INREP instance

=⇒=⇒=⇒

vsidevsidevside

BBB DDD

B1B1B1

B2B2B2

...

...

...

...

...

...

B|F|B|F|B|F|

D1D1D1

D2D2D2

...

...

...

...

...

...

D|F|D|F|D|F|

vtop

Super-node

· · ·· · ·· · ·

−−→
V left

1

−−→
V left

1

−−→
V left

1 · · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·
−→u−→u−→u · · ·· · ·· · ·· · ·· · ·· · ·

−−→
V left

i

−−→
V left

i

−−→
V left

i

· · ·· · ·· · ·· · ·· · ·· · · · · ·· · ·· · ·

−−→
V left

α
−−→
V left

α
−−→
V left

α

{ −−→
V left
−−→
V left
−−→
V left

· · ·· · ·· · ·

−−−→
V right

1

−−−→
V right

1

−−−→
V right

1

· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·
−→v−→v−→v· · ·· · ·· · ·· · ·· · ·· · ·

−−−→
V right

j

−−−→
V right

j

−−−→
V right

j

· · ·· · ·· · ·· · ·· · ·· · · · · ·· · ·· · ·

−−−→
V right

β

−−−→
V right

β

−−−→
V right

β

{ −−−→
V right
−−−→
V right
−−−→
V right

· · ·· · ·· · ·
−→
F1,1
−→
F1,1
−→
F1,1

· · ·· · ·· · ·· · · · ··· · · · ··· · · · ·· f−→u ,−→vf−→u ,−→vf−→u ,−→v · · · ·· · · ·· · · ·−→
Fi, j
−→
Fi, j
−→
Fi, j

· · ·· · ·· · ·· · ·· · ·· · · · · ·· · ·· · ·
−−→
Fα ,β
−−→
Fα ,β
−−→
Fα ,β

−→
h1,1
−→
h1,1
−→
h1,1 · · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · · −→hi, j

−→
hi, j
−→
hi, j · · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · · −−→hα,β

−−→
hα,β
−−→
hα,β[∣

∣Fsuper
∣

∣

∣

∣Fsuper
∣

∣

∣

∣Fsuper
∣

∣

· · ·· · ·· · · · · ·· · ·· · · · · ·· · ·· · · · · ·· · ·· · ·

Figure 11: Reduction of an instance of MINREP to STABT,Φ for heterogeneous networks.

• For every super-edgehi, j of Gsuperand for every edgefu,v in Fi, j , we have an edge
(−→

hi, j , f−→u ,−→v
)

in
−→
G.

There are|F| such edges.

• Let p1, p2, . . . , p|F | be any arbitrary ordering of the edges inF. Then, for everyj = 1,2, . . . , |F|, we
have the edges(vside,B j), (B j ,D j) and(D j , p j). The total number of such edges is 3|F |.

Thus,|−→E |= n+6|F|.

Distribution of internal assets: We set the weight of every edge to 1, Thus,I = n+∑u∈V left∪Vright deg(u)+
4|F |= n+6|F|.

Let deg(u)≥ 10 be the degree of nodeu∈V left ∪Vright. Observe that:

• bvtop = n, andιvtop = 0. Since degout

(

vtop
)

= 0, by Proposition 7.1(a) the nodevtop must be shocked to
make the network fail.

• bvside = |F |, andιvside= 0. Since degout(vside) = 0, by Proposition 7.1(a) the nodevsidemust be shocked
to make the network fail.
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• For anyu∈V left ∪Vright, b−→u = deg(u) andι−→u = 1.

• For any nodef−→u ,−→v , bf−→u ,−→v = 1 andι f−→u ,−→v = 2.

• For every node
−→
hi, j , b−→

hi, j
= 0 andι−→

hi, j
= |Fi, j |. Since degin

(−→
hi, j

)

= 0 for any node
−→
hi, j , if such a node

is shocked, no part of the shock is propagated to any other node in the network.

• For every j, bD j = ιD j = bB j = ιB j = 1.

• Since the longest directed path inG has 4 edges, by Proposition 7.1(b) no new node inG fails for
t > 4.

Let the share of external assets for a node (bank)y be denoted byEy (thus,∑y∈V Ey = E). We will select
the remaining network parameters, namelyγ , Φ and the set ofEy values, based on the following desirable
properties and events. For the convenience of the readers, all the relevant constraints are also summarized
in Table 3. Assume that no nodes in

(

∪i, j
−→
Fi, j

)

⋃

(

∪i, j

{−→
hi, j

})

were shocked att = 1.

(I) Suppose that the nodevtop is shocked att = 1. Then, the following happens.

(I-a) vtop fails att = 1:

Φ(bvtop− ιvtop+Evtop )> γ (bvtop +Evtop ) ≡ Φ(n+Evtop )> γ (n+Evtop ) ≡ Φ > γ (17)

(I-b) Each node−→u ∈
−−→
V left∪

−−−→
Vright that was not shocked att = 1 fails att = 2:

min
{

Φ(bvtop− ιvtop+Evtop )− γ (bvtop +Evtop ), bvtop

}

degin(vtop)
> γ (b−→u +E−→u )

≡
min

{

Φ(n+Evtop )− γ (n+Evtop ), n
}

n
> γ (deg(u)+E−→u )

These constraints are satisfied provided:

Φ(n+Evtop )− γ (n+Evtop )

n
> γ (deg(u)+E−→u ) ≡≡≡ Φ > γ

(

1+
deg(u)+E−→u

1+
Evtop

n

)

(18)

Φ(n+Evtop )− γ (n+Evtop )≤ n ≡≡≡ Φ≤ γ +
1

1+
Evtop

n

(19)

(I-c) If the nodes−→u ,−→v and f−→u ,−→v werenotshocked att = 1, then the part of the shock, sayσ1, given

29



Φ > γ (17) Φ > γ



1+
deg(u)+E−→u

1+
Evtop

n



 (18) Φ≤ γ +
1

1+
Evtop

n

(19) Φ > γ
(

1+
1

deg(u)−1+E−→u

)

(20)

Φ (deg(u)−1+E−→u )− γ (deg(u)+E−→u )

deg(u)
+

Φ (deg(v)−1+E−→v )− γ (deg(v)+E−→v )

deg(v)
> γ

(

1+E f−→u ,−→v

)

(21)

Φ≤ γ
(

deg(u)+E−→u
deg(u)−1+E−→u

)

+
deg(u)

deg(u)−1+E−→u
(22)

Φ(deg(u)−1+E−→u )− γ (deg(u)+E−→u )
deg(u)

+
Φ(deg(v)−1+E−→v )− γ (deg(v)+E−→v )

deg(v)
− γ

(

1+E f−→u ,−→v

)

> γ E−→
hi, j

(23)

γ E−→
hi, j

< 1 (24) Φ≤ γ
(

1+
1

EB j

)

(25) Φ >
γ
(

2+
Evside
|F| +EB j

)

(

1+
Evside
|F|

) (26)

Φ > γ
(

(|F|+Evside)

3|F |+ |F |EB j + |F |ED j +Evside

)

(29) Φ≤ γ +
1

1+
Evside
|F|

(27) Φ≤ γ
(

1+
1

ED j

)

(28)

Φ≤ γ



1+
1+EB j

1+
Evside
|F|



+
1

1+
Evside
|F |

(30) Φ≤ γ





3+
Evside
|F| +EB j +ED j

1+
Evside
|F |



+
1

1+
Evside
|F|

(32)

Φ > γ





6+ 1
deg(u) +

Evtop

n deg(u) +
E−→u

deg(u) +
1

deg(v) +
Evtop

n deg(v) +
E−→v

deg(v) +E f−→u ,−→v +
Evside
|F| +EB j +ED j

1+
Evside
|F| + 1

deg(u) +
Evtop

n deg(u) +
1

deg(v) +
Evtop

n deg(v)



 (31)

Φ≤ γ





1+
Evtop

n +deg(u)+E−→u

1+
Evtop

n



+
deg(u)

1+
Evtop

n

(33) Φ > γ





6+
Evside
|F| +EB j +ED j +

Evtop

n deg(u) +
E−→u +1
deg(u) +

E−→v
deg(v) +E f−→u ,−→v

2+
Evside
|F | + 1

deg(u) +
Evtop

n deg(u) +
E−→v−1
deg(v)



 (34)

Φ≤ γ





3+
Evside
|F| +EB j +ED j

1+
Evside
|F| −EB j +ED j



+
1

1+
Evside
|F | −EB j +ED j

(35)

Φ≤ γ





6+ 1
deg(u) +

Evtop

n deg(u) +
E−→u

deg(u) +
1

deg(v) +
Evtop

n deg(v) +
E−→v

deg(v) +E f−→u ,−→v +
Evside
|F| +EB j +ED j

1+ 1
deg(u) +

Evtop

n deg(u) +
1

deg(v) +
Evtop

n deg(v) +
Evside
|F| −EB j +ED j





+
1

1+ 1
deg(u) +

Evtop

n deg(u) +
1

deg(v) +
Evtop

n deg(v) +
Evside
|F| −EB j +ED j

(36)

Φ≤ γ







6+ 1
deg(u) +

Evtop

n deg(u) +
E−→u

deg(u) +
1

deg(v) +
Evtop

n deg(v) +
E−→v

deg(v) +E f−→u ,−→v +
Evside
|F| +EB j +ED j +

E−−→
hi, j

|Fi, j |

1+ 1
deg(u) +

Evtop

n deg(u) +
1

deg(v) +
Evtop

n deg(v) +
Evside
|F| −EB j +ED j






(37)

Φ≤ γ





2+
Evside
|F | +EB j

1+
Evside
|F | −EB j



+
1

1+
Evside
|F| −EB j

(38) Φ≤ γ





2+
Evside
|F | +EB j +1+ED j

1+
Evside
|F | −EB j +ED j



+
1

1+
Evside
|F| −EB j +ED j

(39)

Φ≤ γ







6+ 1
deg(u) +

Evtop

n deg(u) +
E−→u

deg(u) +
E−→v

deg(v) +
Evside
|F| +EB j +E f−→u ,−→v +ED j +

γ E−−→
hi, j

|Fi, j |

2+ 1
deg(u) +

Evtop

n deg(u) −
1

deg(v) +
E−→v

deg(v) +
Evside
|F | −EB j +ED j






(40)

Φ≤ γ





6+ 1
deg(u) +

Evtop

n deg(u) +
E−→u

deg(u) +
E−→v

deg(v) +
Evside
|F | +EB j +E f−→u ,−→v +ED j

2+ 1
deg(u) +

Evtop

n deg(u) −
1

deg(v) +
E−→v

deg(v) +
Evside
|F| −EB j +ED j



+
1

2+ 1
deg(u) +

Evtop

n deg(u) −
1

deg(v) +
E−→v

deg(v) +
Evside
|F| −EB j +ED j

(42)

Table 3: List of all inequalities to be satisfied in the proof of Theorem 14.1.

30



to vtop that is received by nodef−→u ,−→v at t = 3 is:

σ1 =

min

{

min
{

Φ(bvtop− ιvtop+Evtop )− γ (bvtop +Evtop ), bvtop

}

degin(vtop)
− γ (b−→u +E−→u ) , b−→u

}

degin (
−→u )

+

min

{

min
{

Φ(bvtop− ιvtop +Evtop )− γ (bvtop +Evtop ), bvtop

}

degin(vtop)
− γ (b−→v +E−→v ) , b−→v

}

degin (
−→v )

=

min

{

min
{

Φ(n+Evtop )− γ (n+Evtop ), n
}

n
− γ (deg(u)+E−→u ) , deg(u)

}

deg(u)

+

min

{

min
{

Φ(n+Evtop )− γ (n+Evtop ), n
}

n
− γ (deg(v)+E−→v ) , deg(v)

}

deg(v)

On the other hand, if the nodef−→u ,−→v andexactlyone of the nodes−→u and−→v , say−→u , werenot
shocked att = 1, then the part of the shock, sayσ ′1, given tovtop that is received by nodef−→u ,−→v
at t = 3 is:

σ ′1 =
min

{

min
{

Φ(n+Evtop )− γ (n+Evtop ), n
}

n
− γ (deg(u)+E−→u ) , deg(u)

}

deg(u)

(II) Suppose that some node−→u is shocked att = 1. Then, the following happens.

(II-a) Node−→u fails att = 1:

Φ(b−→u − ι−→u +E−→u )> γ (b−→u +E−→u ) ≡ Φ > γ
(

1+
1

deg(u)−1+E−→u

)

(20)

(II-b) Node f−→u ,−→v ∈
−→
Fi, j fails at t = 2 and node

−→
hi, j fails at t = 3 if both−→u and−→v were shocked at

t = 1:

min{Φ(b−→u − ι−→u +E−→u )− γ (b−→u +E−→u ), b−→u }
degin(

−→u )

+
min{Φ(b−→v − ι−→v +E−→v )− γ (b−→v +E−→v ), b−→v }

degin(
−→v )

> γ
(

bf−→u ,−→v +Ef−→u ,−→v

)

≡≡≡ min{Φ (deg(u)−1+E−→u ) − γ (deg(u)+E−→u ), deg(u)}
deg(u)

+
min{Φ (deg(v)−1+E−→v ) − γ (deg(v)+E−→v ), deg(v)}

deg(v)
> γ

(

1+Ef−→u ,−→v

)

min

{

min{Φ(b−→u − ι−→u +E−→u )− γ (b−→u +E−→u ), b−→u }
degin(

−→u )
+

min{Φ(b−→v − ι−→v +E−→v )− γ (b−→v +E−→v ), b−→v }
degin(

−→v )
− γ

(

bf−→u ,−→v +Ef−→u ,−→v

)

, bf−→u ,−→v

}

degin

(

f−→u ,−→v
)

> γ
(

b−→
hi, j

+E−→
hi, j

)
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≡≡≡

min

{

min{Φ(deg(u)−1+E−→u )− γ (deg(u)+E−→u ), deg(u)}
deg(u)

+
min{Φ(deg(v)−1+E−→v )− γ (deg(v)+E−→v ), deg(v)}

deg(v)
− γ

(

1+Ef−→u ,−→v

)

, 1

}

> γ E−→
hi, j

These constraints are satisfied provided the inequalities (17)–(20) are satisfied, and the following
holds:

Φ (deg(u)−1+E−→u )− γ (deg(u)+E−→u )

deg(u)
+

Φ (deg(v)−1+E−→v )− γ (deg(v)+E−→v )

deg(v)
> γ

(

1+Ef−→u ,−→v

)

(21)

Φ (deg(u)−1+E−→u ) − γ (deg(u)+E−→u )≤ deg(u) ≡≡≡ Φ≤ γ
(

deg(u)+E−→u
deg(u)−1+E−→u

)

+
deg(u)

deg(u)−1+E−→u
(22)

Φ(deg(u)−1+E−→u )− γ (deg(u)+E−→u )
deg(u)

+
Φ(deg(v)−1+E−→v )− γ (deg(v)+E−→v )

deg(v)
− γ

(

1+Ef−→u ,−→v

)

> γ E−→
hi, j

(23)

γ E−→
hi, j

< 1 (24)

(III) When the nodevside is shocked att = 1, the following happens.

(III-a) vside fails att = 1:

Φ(bvside− ιvside+Evside)> γ (bvside+Evside) ≡ Φ(|F |+Evside)> γ (|F |+Evside) ≡ Φ > γ

which is same as (17).

(III-b) If a nodeB j ∈ B is shocked att = 1, it does not fail:

Φ(bB j − ιB j +EB j )≤ γ (bB j +EB j ) ≡ Φ≤ γ
(

1+
1

EB j

)

(25)

(III-c) Any nodeB j ∈ B fails att = 2 irrespective of whetherB j was shocked or not:

min{Φ(bvside− ιvside+Evside) − γ (bvside+Evside), bvside}
degin(vside)

> γ (bB j +EB j )

These constraints are satisfied provided:

Φ(bvside− ιvside+Evside) − γ (bvside+Evside)

degin(vside)
> γ (bB j +EB j ) ≡ Φ >

γ
(

2+
Evside
|F| +EB j

)

(

1+
Evside
|F|

) (26)

Φ(bvside− ιvside+Evside) − γ (bvside+Evside)≤ bvside ≡ Φ≤ γ +
1

1+
Evside
|F |

(27)
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(III-d) If a nodeD j ∈ D is shocked att = 1, it does not fail (and thus, by(III-b) , it does not fail at
t = 2 also):

Φ(bD j − ιD j +ED j )≤ γ (bD j +ED j ) ≡ Φ≤ γ
(

1+
1

ED j

)

(28)

(III-e) Any nodeD j ∈ D fails att = 3 irrespective of whetherD j was shocked or not:

min

{

min{Φ(bvside−ιvside+Evside)−γ (bvside+Evside),bvside}
degin(vside)

− γ (bB j +EB j ), bB j

}

degin(B j)
> γ

(

bD j +ED j

)

≡

min

{

min{Φ(|F |+Evside) − γ (|F |+Evside), |F |}
|F| − γ (1+EB j ), 1

}

> γ
(

1+ED j

)

These constraints are satisfied provided all the previous constraints hold and the following holds:

Φ(|F |+Evside) − γ (|F |+Evside)

|F| − γ (1+EB j )> γ
(

1+ED j

)

≡ Φ > γ
(

(|F|+Evside)

3|F |+ |F|EB j + |F|ED j +Evside

)

(29)

Φ(|F |+Evside) − γ (|F|+Evside)

|F| − γ (1+EB j )≤ 1 ≡ Φ≤ γ



1+
1+EB j

1+
Evside
|F |



+
1

1+
Evside
|F |

(30)

(III-f) Consider a directed pathvside←−B j←−D j←−p j from p j = f−→u ,−→v to vside. The maximum
value of its proportion of shock receive byp j from this path, sayσ2, is obtained by shocking all
the nodesvside,B j ,D j and is given by (assuming all previous inequalities hold):

σ2 =

min















min

{

Φ (bvside− ιvside+Evside)− γ (bvside+Evside)

degin(vside)
−
(

γ
(

bB j +EB j

)

−Φ
(

bB j − ιB j +EB j

))

, bB j

}

degin(B j)
−
(

γ
(

bD j +ED j

)

−Φ
(

bD j − ιD j +ED j

))

, bD j















degin(D j)

= min

{

min

{

Φ
(

1+
Evside

|F| −EB j

)

− γ
(

2+
Evside

|F| +EB j

)

, 1

}

−
(

γ
(

1+ED j

)

−ΦED j

)

, 1

}

Similarly, the minimum value of its proportion of shock receive by p j from this path, sayσ2,
is obtained by shocking only the nodevside and is given by (assuming all previous inequalities
hold):

σ ′2 =

min















Φ (bvside− ιvside+Evside)− γ (bvside+Evside)

degin(vside)
− γ

(

bB j +EB j

)

degin(B j)
− γ

(

bD j +ED j

)

, bD j















degin(D j)

= min

{

Φ
(

1+
Evside

|F|

)

− γ
(

2+
Evside

|F| +EB j

)

− γ
(

1+ED j

)

,1

}

We want nodef−→u ,−→v to fail at t = 4 assuming it did not fail already. Sincef−→u ,−→v did not fail
at t = 2, at most one of the nodes−→u and−→v was shocked. There are two cases to consider:
when neither−→u nor−→v was shocked, or when exactly one of these nodes, say−→v , was shocked
(assuming all previous inequalities hold):
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σ ′2+σ1 = min

{

Φ
(

1+
Evside

|F |

)

− γ
(

2+
Evside

|F| +EB j

)

− γ
(

1+ED j

)

, 1

}

+

min

{

min
{

Φ(n+Evtop

)

− γ
(

n+Evtop ), n
}

n − γ (deg(u)+E−→u ) , deg(u)

}

deg(u)

+

min

{

min
{

Φ(n+Evtop

)

− γ
(

n+Evtop ), n
}

n − γ (deg(v)+E−→v ) , deg(v)

}

deg(v)

> γ
(

bf−→u ,−→v +Ef−→u ,−→v

)

≡≡≡

min

{

Φ
(

1+
Evside

|F|

)

− γ
(

2+
Evside

|F| +EB j

)

− γ
(

1+ED j

)

, 1

}

+

min

{

Φ
(

1+
Evtop

n

)

− γ
(

1+
Evtop

n

)

− γ (deg(u)+E−→u ) , deg(u)

}

deg(u)

+

min

{

Φ
(

1+
Evtop

n

)

− γ
(

1+
Evtop

n

)

− γ (deg(v)+E−→v ) , deg(v)

}

deg(v)

> γ
(

1+Ef−→u ,−→v

)

σ ′2+σ ′1+
min{Φ(b−→v − ι−→v +E−→v ) − γ (b−→v +E−→v ), b−→v }

degin(
−→v )

> γ
(

bf−→u ,−→v +Ef−→u ,−→v

)

≡≡≡

min

{

Φ
(

1+
Evside

|F|

)

− γ
(

2+
Evside

|F| +EB j

)

− γ
(

1+ED j

)

, 1

}

+

min

{

min
{

Φ(n+Evtop )− γ (n+Evtop ), n
}

n
− γ (deg(u)+E−→u ) , deg(u)

}

deg(u)

+
min{Φ(b−→v − ι−→v +E−→v )− γ (b−→v +E−→v ), b−→v }

degin(
−→v )

> γ
(

bf−→u ,−→v +Ef−→u ,−→v

)

≡≡≡

min

{

Φ
(

1+
Evside

|F|

)

− γ
(

2+
Evside

|F| +EB j

)

− γ
(

1+ED j

)

, 1

}

+

min

{

Φ
(

1+
Evtop

n

)

− γ
(

1+
Evtop

n

)

− γ (deg(u)+E−→u ) , deg(u)

}

deg(u)

+
min{Φ(deg(−→v )−1+E−→v )− γ (deg(−→v )+E−→v ), deg(−→v )}

degin(
−→v )
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> γ
(

1+Ef−→u ,−→v

)

These constraints are satisfied provided all the previous constraints hold and the following holds:

Φ
(

1+
Evside

|F|

)

− γ
(

2+
Evside

|F | +EB j

)

− γ
(

1+ED j

)

+

Φ
(

1+
Evtop

n

)

− γ
(

1+
Evtop

n

)

− γ (deg(u)+E−→u )

deg(u)

+

Φ
(

1+
Evtop

n

)

− γ
(

1+
Evtop

n

)

− γ (deg(v)+E−→v )

deg(v)
> γ

(

1+Ef−→u ,−→v

)

≡≡≡ Φ > γ









6+
1

deg(u)
+

Evtop

n deg(u)
+

E−→u
deg(u)

+
1

deg(v)
+

Evtop

n deg(v)
+

E−→v
deg(v)

+Ef−→u ,−→v +
Evside

|F| +EB j +ED j

1+
Evside

|F| +
1

deg(u)
+

Evtop

n deg(u)
+

1
deg(v)

+
Evtop

n deg(v)









(31)

Φ
(

1+
Evside

|F|

)

− γ
(

2+
Evside

|F| +EB j

)

− γ
(

1+ED j

)

≤ 1 ≡≡≡ Φ≤ γ









3+
Evside

|F| +EB j +ED j

1+
Evside

|F |









+
1

1+
Evside
|F|

(32)

Φ
(

1+
Evtop

n

)

− γ
(

1+
Evtop

n

)

− γ (deg(u)+E−→u )≤ deg(u) ≡≡≡ Φ≤ γ







1+
Evtop

n
+deg(u)+E−→u

1+
Evtop

n






+

deg(u)

1+
Evtop

n
(33)

Φ
(

1+
Evside

|F |

)

− γ
(

2+
Evside

|F| +EB j

)

− γ
(

1+ED j

)

+

Φ
(

1+
Evtop

n

)

− γ
(

1+
Evtop

n

)

− γ (deg(u)+E−→u )

deg(u)

+
Φ(deg(−→v )−1+E−→v )− γ (deg(−→v )+E−→v ))

degin(
−→v )

> γ
(

1+Ef−→u ,−→v

)

≡≡≡

Φ > γ









6+
Evside
|F | +EB j +ED j +

Evtop

n deg(u)
+

E−→u +1
deg(u)

+
E−→v

deg(v)
+Ef−→u ,−→v

2+
Evside

|F| +
1

deg(u)
+

Evtop

n deg(u)
+

E−→v −1
deg(v)









(34)

(IV) By (II-b) node
−→
hi, j fails at t = 3 provided both the nodes−→u and−→v were shocked att = 1.

Our goal is to make sure that node
−→
hi, j does not fail in any other condition (assuming the node
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itself was not shocked). Assuming the nodes−→u , −→v and f−→u ,−→v were not shocked, the maximum

amount of shock thatf−→u ,−→v ∈
−→
Fi, j can receive is when all the nodes beforef−→u ,−→v in the path

vside←−B j←−D j←−p j←− f−→u ,−→v were shocked and no more than one of the nodes−→u or−→v was

shocked. Based on this, the following constraints must holdfor
−→
hi, j not to fail.

min
{

σ1+σ2− γ
(

bf−→u ,−→v +Ef−→u ,−→v

)

, bf−→u ,−→v

}

degin( f−→u ,−→v )
≤

γ
(

b−→
hi, j

+E−→
hi, j

)

|Fi, j |
≡≡≡

min

{

min

{

min
{

Φ(n+Evtop )− γ (n+Evtop ), n
}

n − γ (deg(u)+E−→u ) , deg(u)

}

deg(u)

+

min

{

min
{

Φ(n+Evtop )− γ (n+Evtop ), n
}

n − γ (deg(v)+E−→v ) , deg(v)

}

deg(v)

+ min

{

min

{

Φ
(

1+
Evside

|F| −EB j

)

− γ
(

2+
Evside

|F| +EB j

)

, 1

}

−
(

γ
(

1+ED j

)

−ΦED j

)

, 1

}

−γ
(

1+Ef−→u ,−→v

)

, 1

}

≤
γ E−→

hi, j

|Fi, j |

≡≡≡

min

{

Φ
(

1
deg(u)

+
Evtop

n deg(u)
+

1
deg(v)

+
Evtop

n deg(v)

)

−γ
(

3+
1

deg(u)
+

Evtop

n deg(u)
+

E−→u
deg(u)

+
1

deg(v)
+

Evtop

n deg(v)
+

E−→v
deg(v)

+Ef−→u ,−→v

)

+ min

{

Φ
(

1+
Evside

|F | −EB j +ED j

)

− γ
(

3+
Evside

|F| +EB j +ED j

)

, 1

}

, 1

}

≤
γ E−→

hi, j

|Fi, j |

These constraints are satisfied provided all the previous constraints hold and the following holds:

Φ
(

1+
Evside

|F| −EB j +ED j

)

− γ
(

3+
Evside

|F| +EB j +ED j

)

≤ 1

≡≡≡ Φ≤ γ









3+
Evside

|F| +EB j +ED j

1+
Evside

|F| −EB j +ED j









+
1

1+
Evside

|F | −EB j +ED j

(35)

36



Φ≤ γ









6+
1

deg(u)
+

Evtop

n deg(u)
+

E−→u
deg(u)

+
1

deg(v)
+

Evtop

n deg(v)
+

E−→v
deg(v)

+Ef−→u ,−→v +
Evside

|F | +EB j +ED j

1+
1

deg(u)
+

Evtop

n deg(u)
+

1
deg(v)

+
Evtop

n deg(v)
+

Evside

|F| −EB j +ED j









+
1

1+
1

deg(u)
+

Evtop

n deg(u)
+

1
deg(v)

+
Evtop

n deg(v)
+

Evside

|F | −EB j +ED j

(36)

Φ≤ γ











6+
1

deg(u)
+

Evtop

n deg(u)
+

E−→u
deg(u)

+
1

deg(v)
+

Evtop

n deg(v)
+

E−→v
deg(v)

+Ef−→u ,−→v +
Evside

|F| +EB j +ED j +
E−→

hi, j

|Fi, j |

1+
1

deg(u)
+

Evtop

n deg(u)
+

1
deg(v)

+
Evtop

n deg(v)
+

Evside

|F| −EB j +ED j











(37)

On the other hand, if exactly one of the nodes−→u or −→v , say−→u , was shocked att = 1, then the
maximum amount of shock thatf−→u ,−→v ∈

−→
Fi, j can receive is is modified, and the new conditions

for our desired goal become as follows.

min

{

σ ′1+
min{Φ(b−→v − ι−→v +E−→v )− γ (b−→v +E−→v ), b−→v }

degin(
−→v )

+σ2− γ
(

bf−→u ,−→v +Ef−→u ,−→v

)

, bf−→u ,−→v

}

degin( f−→u ,−→v )
≤

γ
(

b−→
hi, j

+E−→
hi, j

)

|Fi, j |
≡≡≡

min

{

min

{

min
{

Φ
(

n+Evtop

)

− γ
(

n+Evtop

)

, n
}

n
− γ (deg(u)+E−→u ) , deg(u)

}

deg(u)

+
min{Φ (b−→v − ι−→v +E−→v )− γ (b−→v +E−→v ) , b−→v }

degin(
−→v )

+ min

{

min

{

Φ
(

1+
Evside

|F | −EB j

)

− γ
(

2+
Evside

|F | +EB j

)

, 1

}

−
(

γ
(

1+ED j

)

−ΦED j

)

, 1

}

−γ
(

1+Ef−→u ,−→v

)

, 1

}

≤
γ E−→

hi, j

|Fi, j |
≡≡≡

min

{

Φ
(

1+
1

deg(u)
+

Evtop

n deg(u)
− 1

deg(v)
+

E−→v
deg(v)

)

− γ
(

2+
1

deg(u)
+

Evtop

n deg(u)
+

E−→u
deg(u)

+
E−→v

deg(v)

)

+ min

{

min

{

Φ
(

1+
Evside

|F| −EB j

)

− γ
(

2+
Evside

|F| +EB j

)

, 1

}

−
(

γ
(

1+ED j

)

−ΦED j

)

, 1

}

−γ
(

1+Ef−→u ,−→v

)

, 1

}

≤
γ E−→

hi, j

|Fi, j |
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These constraints are satisfied provided all the previous constraints hold and the following holds:

Φ
(

1+
Evside

|F| −EB j

)

− γ
(

2+
Evside

|F| +EB j

)

≤ 1 ≡≡≡ Φ≤ γ









2+
Evside
|F| +EB j

1+
Evside

|F| −EB j









+
1

1+
Evside

|F| −EB j

(38)

Φ
(

1+
Evside

|F| −EB j

)

− γ
(

2+
Evside

|F| +EB j

)

−
(

γ
(

1+ED j

)

−ΦED j

)

≤ 1

≡≡≡ Φ≤ γ









2+
Evside

|F | +EB j +1+ED j

1+
Evside

|F| −EB j +ED j









+
1

1+
Evside

|F | −EB j +ED j

(39)

Φ
(

1+
1

deg(u)
+

Evtop

n deg(u)
− 1

deg(v)
+

E−→v
deg(v)

)

− γ
(

2+
1

deg(u)
+

Evtop

n deg(u)
+

E−→u
deg(u)

+
E−→v

deg(v)

)

+Φ
(

1+
Evside

|F | −EB j

)

− γ
(

2+
Evside

|F | +EB j

)

−
(

γ
(

1+ED j

)

−ΦED j

)

− γ
(

1+Ef−→u ,−→v

)

≤
γ E−→

hi, j

|Fi, j |
≡≡≡

Φ≤ γ











6+
1

deg(u)
+

Evtop

n deg(u)
+

E−→u
deg(u)

+
E−→v

deg(v)
+

Evside

|F| +EB j +Ef−→u ,−→v +ED j +
γ E−→

hi, j

|Fi, j |

2+
1

deg(u)
+

Evtop

n deg(u)
− 1

deg(v)
+

E−→v
deg(v)

+
Evside

|F | −EB j +ED j











(40)

Φ
(

1+
1

deg(u)
+

Evtop

n deg(u)
− 1

deg(v)
+

E−→v
deg(v)

)

− γ
(

2+
1

deg(u)
+

Evtop

n deg(u)
+

E−→u
deg(u)

+
E−→v

deg(v)

)

+Φ
(

1+
Evside

|F| −EB j

)

− γ
(

2+
Evside

|F| +EB j

)

−
(

γ
(

1+ED j

)

−ΦED j

)

− γ
(

1+Ef−→u ,−→v

)

≤ 1 (41)

≡≡≡
Φ≤ γ









6+
1

deg(u)
+

Evtop

n deg(u)
+

E−→u
deg(u)

+
E−→v

deg(v)
+

Evside

|F| +EB j +Ef−→u ,−→v +ED j

2+
1

deg(u)
+

Evtop

n deg(u)
− 1

deg(v)
+

E−→v
deg(v)

+
Evside

|F| −EB j +ED j









+
1

2+
1

deg(u)
+

Evtop

n deg(u)
− 1

deg(v)
+

E−→v
deg(v)

+
Evside

|F| −EB j +ED j

(42)

There are many choices of parametersγ , Φ andEy’s satisfying inequalities (17)–(26); we exhibit just one:

γ = 4n−1000 Φ = n−1000 ∀u∈V left ∪Vright : E−→u = 1 Evtop = n3 Evside = n2 |F |

∀u∈V left ∀v∈Vright : Ef−→u ,−→v = 1 ∀hi, j ∈ Fsuper∀ fu,v ∈ Fi, j : E−→
hi, j

= 1 ∀ j : EB j = EB j =
1
4

38



Remembering that 10≤ deg(u)< n for any nodeu∈V left∪Vright and|Fi, j |< |F |, it is relatively straightfor-
ward to verify that all the inequalities are satisfied for allsufficiently largen. Note that

E = Evtop +Evside+ ∑
u∈V left∪V right

E−→u + ∑
{u,v}∈F

Ef−→u ,−→v + ∑
hi, j∈Fsuper

E−→
hi, j

+
|F|

∑
j=1

(

EB j +∑ED j

)

= n3+n2 |F |+n+
3
2
|F|+ |Fsuper|

and thus the ratio of total external assets to total internalassetsE/I is large. We can now finish our proof by
selectingδ such that log1−δ n= log1−ε |−→V |−1 and showing the following:

(completeness)If M INREP has a solution of sizeα +β onG thenSI∗
(−→

G,T
)

≤ α +β +2.

(soundness)If every solution of MINREP on G is of size at least (α + β )2log1−δ n then

SI∗
(−→

G,T
)

≥ α +β
2

2log1−δ n.

Proof of Completeness (M INREP has a solution of sizeα +β )

Let V1 ⊆V left andV2 ⊆V right be a solution of MINREP such that|V1|+ |V2| = α +β . We shock the nodes
vtop andvside, and every node−→u for everyu ∈ V left ∪Vright. By (I-a) vtop fails at t = 1, and by(I-b) and
(II-a) every node in∪α

i=1V
left
i
⋃∪β

j=1V
right
j fails on or beforet = 2. By (III-a) , (III-b) and(III-c) every node

in {Vshock}∪B∪D fails on or beforet = 3. SinceV1 andV2 are a valid solution of MINREP , for every
super-edgehi, j there existsu∈V1 andv∈V2 such thatu∈V left

i , v∈Vright
j and{u,v} ∈ F ; since we shock

the nodes−→u and−→v , by (II-a) both−→u and−→v fail at t = 1, by (II-b) the nodef−→u ,−→v fails at t = 2, and by

(II-c) the node
−→
hi, j fails att = 3. Thus, the network

−→
G fails att = 3 andSI∗

(−→
G,T

)

= α +β +1 for t ≥ 4.

Proof of Soundness (every solution ofM INREP is of size at least(α +β )2log1−δ n)

We will prove the logically equivalent contrapositive of our claim, i.e., we will show that ifSI∗
(−→

G ,T
)

<

α+β
2 2log1−δ n then MINREP has a solution of size strictly less than(α +β )2log1−δ n. Consider a solution of

STABT,Φ on
−→
G that shocks at mostz= α+β

2 2log1−δ n nodes. Note that the nodesvtop andvsidemust be shocked
at t = 1 by Proposition 7.1(a). By(I-a) and(III-a) , the nodesvtop andvside fails att = 1, by(I-b) and(III-c)

every node in
−−→
V left ∪

−−−→
V right∪B fails at t = 2, by (III-e) every node inD fails att = 3, by (III-f) every node

f−→u ,−→u fails att = 4 unless it was shocked att = 1 and by(IV) a node
−→
hi, j fails only if

−→
hi, j , fovru,ovru ∈

−→
Fi, j or

boththe nodes−→u and−→v were shocked att = 1. We “normalize” this given solution in the following manner
(each step of the normalization assumes that the previous steps have been already carried out):

• If a node fromD∪B was shocked att = 1, we do not shock it. By(III) this has no effect on the failure
of the network.

• If a node f−→u ,−→v ∈
−→
Fi, j was shocked, we do not shock it but instead shock the nodes−→u and−→v if they

were not already shocked in the given solution. This at most doubles the number of nodes shocked
and, by(II-b) , the nodefu,v fails att = 2 and the node

−→
hi, j fails att = 3 if it was not shocked att = 1.

Thus, after this sequence of normalization steps, we may assume that nof−→u ,−→v node was shocked.
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• If a node
−→
hi, j was shocked att = 1, we do not shock it but instead shock the nodes−→u and−→v (for

someu andv such that{u,v} ∈ Fi, j ) if they were not already shocked in the given solution. Thisat
most doubles the number of nodes shocked and, by(II-b) , the nodefu,v fails att = 2 and the node

−→
hi, j

fails att = 3. Thus, after this sequence of normalization steps, we may assume that no
−→
hi, j node was

shocked.

These normalizations result in a solution of STABT,Φ of size at most 2z in which the nodesvtop, vside, a

subset
−→
V1 ⊆

−−→
V left and a subset

−→
V2 ⊆

−−−→
Vright of nodes. Our solution of MINREP is V1 = {v|−→v ∈ −→V1 } ⊆V left

andV2 = {v|−→v ∈ −→V2 } ⊆V right of size 2z−2< 2z. Since failure of every
−→
hi, j is attributed to shocking two

nodes−→u and−→v such thatf−→u ,−→v ∈
−→
Fi, j , every super-edgehi, j of G is witnessed by the two nodesu andv. �

15 Homogeneous Networks,DUAL -STABT,Φ,κDUAL -STABT,Φ,κDUAL -STABT,Φ,κ , any T, hardness and exact
algorithm

Theorem 15.1.
(a) AssumingP , NP, DSI∗(G,T,κ) cannot be approximated within a factor of

(

1−e−1+δ
)−1

, for any

δ > 0, even if G is a DAG (e is the base of natural logarithm).

(b) If G is a rooted in-arborescence thenDSI∗(G,T,κ)<
κ
n

(

1+degmax
in

(

Φ
γ −1

))

, wheredegmax
in =maxv∈V{degin(v)}

is the maximum in-degree over all nodes of G. Moreover, underthe assumption that any individual node of
the network can be failed by shocking,DSI∗(G,T,κ) can be computed exactly in O(n3) time.

Proof.
(a) The maxκ-cover problem is defined as follows. An instance of the problem is an universeU of n
elements, a collection ofm setsS overU , and a positive integerκ . The goal is to pick a sub-collection
S ′ ⊆S of κ sets such that the number of elements covered, namely

∣

∣∪S∈S ′ S
∣

∣, is maximized. Let OPT

denote the maximum number of elements covered by an optimal solution of the maxκ-cover problem. It
was shown in [28] that, assumingP ,NP, the maxκ-cover problem cannot be approximated within a factor

of
1

(

1− 1
e +δ

) for any constantδ > 0. More precisely, [28] provides a polynomial-time reduction for a

restricted but stillNP-hard version of the Boolean satisfiability problem (3-CNF5) instances of maxκ-cover
with κ =

∣

∣U
∣

∣

α
, for some constant 0< α < 1, and shows that

(1) if the CNF formula is satisfiable, thenOPT =
∣

∣U
∣

∣;

(2) if the CNF formula is not satisfiable, thenOPT <

(

1− 1
e
+g(κ)

)

∣

∣U
∣

∣, whereg(κ)→ 0 asκ → ∞.

Our reduction from maxκ-cover to DUAL -STABT,κ is as follows4. In our graphG = (V,F), we have an
element node ˜u for every elementu ∈ U , a set nodẽS for every setS∈S , and directed edges(ũ, S̃) for
every elementu∈ U and setS∈S such thatu∈ S. Thus,n= |V| = |U |+ |S | and|F| = ∑S∈S |S|. We
now set the remaining parameters as follows:E = n, γ = n−2 andΦ = 1. Now, we observe the following:

• If an element node ˜u is shocked, it does not fail sinceΦ
(

degin (ũ)−degout(ũ)+
E
n

)

≤ 0 whereas
γ
(

degin (ũ)+
E
n

)

= n−2 > 0.

4However, this exact construction will not work in the proof of Theorem 8.1 since the entire network needs to fail in that proof.
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• If a set node S̃ is shocked, it fails sinceΦ
(

degin

(

S̃
)

−degout

(

S̃
)

+ E
n

)

≥ 2 whereas
γ
(

degin

(

S̃
)

+ E
n

)

≤ n+1
n2 < 1.

• If a set nodeS̃ is shocked, then every element node ˜u for u∈ Sfails att = 2. To observe this, note that

min
{

Φ
(

degin

(

S̃
)

−degout

(

S̃
)

+ E
n

)

− γ
(

degin (ũ)+
E
n

)

, degin

(

S̃
)}

degin

(

S̃
)

≥
2− n+1

n2

n
>

n+1
n2 ≥ γ

(

degin

(

S̃
)

+
E
n

)

• Since the longest directed path inG has one edge, no new nodes fails duringt > 2.

Based on the above observations, one can identify the sets selected in maxk-cover with the set nodes selected
for shocking in DUAL -STABT,κ on G to conclude thatDSI∗(G,T,κ) = OPT+κ . Thus, using(1) and(2),
inapproximability gap is

∣

∣U
∣

∣+κ
(

1− 1
e +g(κ)

)∣

∣U
∣

∣+κ
=

∣

∣U
∣

∣+
∣

∣U
∣

∣

α

(

1− 1
e +g(κ)

)∣

∣U
∣

∣+
∣

∣U
∣

∣

α →
1

1− 1
e +δ

as
∣

∣U
∣

∣→ ∞ for anyδ > 0

(b) Using Lemma 11.4, we have

DSI∗(G,T,κ)<
κ
(

max
u∈V

{

iz(u)
}

)

n
<

κ
n

(

1+degmax
in

(

Φ
γ
−1

))

To provide a polynomial time algorithm forDSI∗(G,T,κ), we suitably modify the algorithm described in
the proof of Theorem 11.1. We redefineSI∗SANS(G,T,u,v) andSI∗SAS(G,T,u) in the following manner:

• For every nodeu′ ∈ ∇(u) and every integer 0≤ k≤ κ , DSI∗SANS(G,T,u,u′,k) is the number of nodes
in an optimal solution of DUAL -STABT,Φ,κ (or ∞ if there is no feasible solution of DUAL -STABT,Φ,κ )
for the subgraph induced by the nodes in∆(u) assuming the following:

– u′ was shocked,

– u was not shocked,

– no node in the pathu′{ u exceptu′ was shocked, and

– total number of shocked nodes in∆(u) is exactlyk.

• For every integer 0≤ k ≤ κ , DSI∗SAS(G,T,u,k) is the number of nodes in an optimal solution of
DUAL -STABT,Φ,κ for the subgraph induced by the nodes in∆(u) (or ∞, if there is no feasible solution
of STABT,Φ under the stated conditions) assuming that the nodeu was shocked (and therefore failed),
and the number of shocked nodes in∆(u) is exactlyk.

Computing these quantities becomes slightly more computationally involved as shown below.

Computing DSI∗SAS(G,T,u,k) whendegin(u) = 0:

DSI∗SAS(G,T,u,1) = 1 andDSI∗SAS(G,T,u,k) =−∞ for anyk, 1.

Computing DSI∗SANS(G,T,u,u′,k) whendegin(u) = 0:
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• If u ∈ iz(u′) then shocking nodev makes nodeu fail. Thus, SI∗SANS(G,T,u,u′,1) = 1 and
SI∗SANS(G,T,u,u′,k) =−∞ for anyk, 1.

• Otherwise, nodeu does not fail. Thus,DSI∗SANS(G,T,u,u′) =−∞.

Computing DSI∗SAS(G,T,u) whendegin(u)> 0: In this case we have

DSI∗SAS(G,T,u,k) = 1+

min
k1+k2+···+kdegin(u)

=k−1

{

k

∑
i=1

min
{

DSI∗SAS(G,T,vi ,ki), DSI∗SANS(G,T,vi ,u,ki)
}

}

Computing DSI∗SANS(G,T,u,u′,k) whendegin(u)> 0: Sinceu′ is shocked andu is not shocked, the fol-
lowing cases arise:

• If u< iz(u′) then thenu does not fail. Then,

DSI∗SANS(G,T,u,u′,k) =

min
k1+k2+···+kdegin(u)

=k

{

degin(u)

∑
i=1

min
{

DSI∗SAS(G,T,vi,ki), SI∗SANS(G,T,vi,u
′,ki)

}

}

• Otherwise,u∈ iz(u′), and thereforeu fails whenu′ is shocked. Then,

DSI∗SANS(G,T,u,u′,k) = 1+

min
k1+k2+···+kdegin(u)

=k

{

degin(u)

∑
i=1

min
{

DSI∗SAS(G,T,vi ,ki), DSI∗SANS(G,T,vi,u
′,ki)

}

}

It only remains to show how we compute

min
k1+k2+···+kdegin(u)

=z

{

degin(u)

∑
i=1

min
{

DSI∗SAS(G,T,vi ,ki), DSI∗SANS(G,T,vi ,u
′,ki)

}

}

for z ∈ {k−1,k} in poly-

nomial time. It is easy to cast this problem as an instance of the unbounded integral knapsack problem in
the following manner:

• We have degin(u) objectsO1,O2, . . . ,Odegin(u), each ofunlimitedsupply andweight1.

• Thecostof selectingki objects of the typeOi is

min
{

DSI∗SAS(G,T,vi ,ki), DSI∗SANS(G,T,vi ,u
′,ki)

}

• Thegoal is to select a total ofexactlyz objects such that the total cost isminimum.

The standard pseudo-polynomial time dynamic programming algorithm for Knapsack can be used to solve
the above instance in O

(

kdegin(u)
)

= O
(

n2
)

time. Thus, the total running time of our algorithm is O
(

n3
)

.
�
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16 Heterogeneous Networks,DUAL -STAB2,Φ,κDUAL -STAB2,Φ,κDUAL -STAB2,Φ,κ , Stronger Inapproximability

We show thatDSI∗(G,2,κ) cannot be approximated within a large approximation factorprovided a complexity-
theoretic assumption is satisfied. To understand this assumption, we recall the following definitions from [6].

A random(m,n,d) hyper-graphH is a random hyper-graph ofn nodes,m hyper-edges each having
having exactlyd nodes obtained by choosing each hyper-edge independently and uniformly at random. For
our purpose, assume thatd is a constant, andm≥ nc for some constantc> 3. LetQ: {0,1}d 7→ {0,1} denote
a d-ary predicate, and letFQ,m be a distribution overd-local functions from{0,1}n to {0,1}m by defining
the randomd-local function fH,Q : {0,1}n 7→ {0,1}m to be the function whoseith output is computed by
applying the predicateQ to thed inputs that are indexed by theith hyper-edge ofH. Finally, theκ densest
sub-hypergraph problem (DSκ ) is defined as follows:given an hyper-graph G= (V,F) with n= |V| and
m= |F| such that every hyper-edge containsexactlyd nodes and an integerκ > 0, select a subset V′ ⊆V
of exactlyκ nodes which maximizes

∣

∣

{

{u1,u2, . . . ,ud} ∈ F |u1,u2, . . . ,ud ∈V ′
}∣

∣.
The essence of the complexity-theoretic assumption is thatif, for a suitable choice ofQ, FQ,m is a

collection of one-way functions, thenDSκ is hard to approximate. More precisely, the assumption is:
(???) If FQ,m is 1/o(1/

√
n logn)-pseudorandom, then forκ = n1− c−3

2d for some constantc > 3 there exists
instancesG= (V,F) of DSκ with m≥ nc such that it is not possible to decide in polynomial time if there

is a solution ofDSκ with at least
(1+o(1))m

n
(c−3)

2 (1− 1
d)

edges (the “yes” instance), or if every solution ofDSκ has

at most
(1−o(1))m

n
c−3

2

edges (the “no” instance).

Theorem 16.1. Under the technical assumption(???), DSI∗(G,2,κ) cannot be approximated within a ratio
of nδ for some constantδ > 0 even if G is a DAG.

Proof. Given an instanceG= (V,F) of DSκ as stated in(???), we construct an instance graph
−→
G = (

−→
V ,
−→
F )

as follows:

• For every nodeu∈V, we have a node−→u ∈−→V , and for every edgee= {u1,u2, . . . ,ud} ∈ F, we have a
node−→e (also denoted by

−−−−−−−−−−→{u1,u2, . . . ,ud} ) in
−→
V . Thus, the total number of nodes of

−→
G is |−→V |=m+n.

• For every hyper-edgee= (u1,u2, . . . ,ud) ∈ F, we haved edges(e,u1),(e,u2), . . . ,(e,ud) ∈
−→
F . We set

the weight (share of internal asset) of every edge(e,ui) to 2. Thus,|I |= 2dm.

Let the share of external assets for a node (bank)−→y ∈ −→V be denoted byE−→y (thus,∑−→y ∈−→V E−→y = E). We
will select the remaining network parameters as follows. For eache∈ F , E−→e = 1.99d, and for eachu∈V,
E−→u = 0. Thus,E = 1.99dm. Finally, we setΦ = 1 andγ = 1/2. We prove the following:

(completeness)If DSκ has a solution withα ≥
(

1+o(1)
)

m

n
c−3

2 (1− 1
d)

hyper-edges then then

DSI∗
(−→

G,2,κ
)

≥ κ +α .

(soundness)If everysolution ofDSκ has at mostβ =

(

1−o(1)
)

m

n
c−3

2

hyper-edges then

DSI∗
(−→

G,2,κ
)

≤ κ +β .
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Note that withc= 5 (and, thusm≥ n5), and sufficiently larged andn, we have

κ +α
κ +β

=

n1− c−3
2d +

(

1+o(1)
)

m

n
c−3

2 (1− 1
d)

n1− c−3
2d +

(

1−o(1)
)

m

n
c−3

2

=
n1− 1

d +

(

1+o(1)
)

m

n1− 1
d

n1− 1
d +

(

1−o(1)
)

m
n

≥
(

1−o(1)
)

n1/d

which proves the theorem withδ = 1/d.

Proof of Completeness (DSκ has a solution withα hyper-edges)

LetV ′⊆V be a solution ofDSκ with at leastα hyper-edges. We shock all the nodes inVshock= {−→u |u∈V ′}.
Every shocked node−→u fails at t = 1 sinceΦ (b−→u − ι−→u +E−→u ) = 2degin(

−→u ) > degin(
−→u ) = γ (b−→u +E−→u ).

Now, consider a hyper-edgee= (u1,u2, . . . ,ud) ∈ F such thatu1,u2, . . . ,ud ∈V ′. Then, the node−→e fails at
t = 2 since

d

∑
i=1

min
{

Φ
(

b−→ui
− ι−→ui

+E−→ui

)

− γ
(

b−→ui
+E−→ui

)

, b−→ui

}

degin(
−→ui )

= d > 0.995d = γ (b−→e +E−→e )

Proof of Soundness (every solution ofDSκ has at mostβ hyper-edges)

We will prove the logically equivalent contrapositive of our claim, i.e., we will show that ifDSI∗
(−→

G,2,κ
)

>

β + κ thenDSκ has a solution of with strictly more thanβ hyper-edges. First, note that we can assume
without loss of generality that, for any hyper-edgee∈ F, the node−→e is not shocked. Otherwise, if we shock
node−→e , then it does not fail since att = 1 sinceΦ (b−→e − ι−→e +E−→e ) = −0.01d < 0.995d = γ (b−→e +E−→e ),
and in fact doing so increases its equity to 1.005d. Since the equity of−→e increased by shocking it, if this
node failed in the given solution then it would also fail if itwas not shocked. So, we can instead shock a
node−→u that was not shocked in the given solution; such a node must exist sinceκ < n.

Note that we have already shown in the proof of the completeness part that, for anye= (u1,u2, . . . ,ud)∈
F, if the d nodes−→u1,

−→u2, . . . ,
−→ud are shocked then−→e fails att = 2. Thus, our proof is complete provided we

show that such a node−→e doesnot fail at t = 2 if at leastone of the nodes−→u1,
−→u2, . . . ,

−→ud is not shocked. Let
S⊂ {−→u1,

−→u2, . . . ,
−→ud} be the set of shocked nodes among thesed nodes. Then,−→e does not fail att = 2 since

∑
ui∈S

min
{

Φ
(

b−→ui
− ι−→ui

+E−→ui

)

− γ
(

b−→ui
+E−→ui

)

, b−→ui

}

degin(
−→ui )

≤ d−1≤ 0.995d = γ (b−→e +E−→e )

for all sufficiently larged. �

17 Software Availability

An interactive software (called FIN-STAB) implementing anexpanded version of the shock propagation
algorithm shown in Table 1 is available from the website
http://www2.cs.uic.edu/˜dasgupta/financial-simulator-files
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18 Conclusions

In this paper, we have formalized a model for idiosyncratic propagation of shocks to a banking network,
defined two possible stability measures, provided their computational properties and discussed the implica-
tions of our results on the banking system. We view our work asa necessary first step towards understanding
vulnerabilities of banking systems due to sudden loss of external assets, and hope that it will generate suf-
ficient interests in both the banking network community and the network algorithms community to further
investigate and refine these stability issues.
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APPENDIX

For the benefit of the reader, we provide explanations for a few finance terminologies frequently used in
this paper.

External asset: refers to the case of financial institutions borrowing from investors and similar outside
entities.

Interbank exposure: refers to the case of financial institutions borrowing from other financial institutions.

Net worth or equity: a fixed proportion of the total asset of a bank. In general, higher equity imply better
stability for an individual bank.
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