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Abstract. In this paper we introduce a new method of combined syn-
thesis and inference of biological signal transduction networks. A main
idea of our method lies in representing observed causal relationships as
network paths and using techniques from combinatorial optimization to
find the sparsest graph consistent with all experimental observations.
Our contributions are twofold: on the theoretical and algorithmic side,
we formalize our approach, study its computational complexity and prove
new results for exact and approximate solutions of the computationally
hard transitive reduction substep of the approach. On the application
side, we validate the biological usability of our approach by successfully
applying it to a previously published signal transduction network by Li
et al. [20] and show that our algorithm for the transitive reduction sub-
step performs well on graphs with a structure similar to those observed
in transcriptional regulatory and signal transduction networks.

1 Introduction

Most biological characteristics of a cell arise from the complex interactions
between its numerous constituents such as DNA, RNA, proteins and small
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molecules [3]. Cells use signaling pathways and regulatory mechanisms to co-
ordinate multiple functions, allowing them to respond to and acclimate to an
ever-changing environment. Genome-wide experimental methods now identify
interactions among thousands of proteins [11, 12, 18, 19]; however these experi-
ments are rarely conducted in the specific cell type of interest and are not able
to probe the directionality of the interactions (i.e., to distinguish between the
regulatory source and target). Identification of every reaction and regulatory
interaction participating even in a relatively simple function of a single-celled
organism requires a concerted and decades-long effort. Consequently, the state
of the art understanding of many signaling processes is limited to the knowledge
of key mediators and of their positive or negative effects on the whole process.

Experimental information about the involvement of a specific component in a
given signal transduction network can be partitioned into three categories. First,
biochemical evidence that provides information on enzymatic activity or protein-
protein interactions. This first category is a direct interaction, e.g., binding of
two proteins or a transcription factor activating the transcription of a gene or a
chemical reaction with a single reactant and single product. Second, pharmaco-
logical evidence, in which a chemical is used either to mimic the elimination of a
particular component, or to exogenously provide a certain component, leads to
observed relationships that are not direct interactions but indirect causal effects
most probably resulting from a chain of interactions and reactions. For example,
binding of a chemical to a receptor protein starts a cascade of protein-protein
interactions and chemical reactions that ultimately results in the transcription of
a gene. Observing gene transcription after exogeneous application of the chem-
ical allows inferring a causal relationship between the chemical and the gene
that however is not a direct interaction. Third, genetic evidence of differential
responses to a stimulus in wild-type organisms versus a mutant organism im-
plicates the product of the mutated gene in the signal transduction process.
This category is a three-component inference that in a minority of cases could
correspond to a single reaction (namely, when the stimulus is the reactant of
the reaction, the mutated gene encodes the enzyme catalysing the reaction and
the studied output is the product of the reaction), but more often it is indirect.
As stated above, the last two types of inference do not give direct interactions
but indirect causal relationships that correspond to reachability relationships in
the unknown interaction network. Here we describe a method for synthesizing
indirect (path-level) information into a consistent network by constructing the
sparsest graph that maintains all reachability relationships.

This method’s novelty over other network inference approaches is that it
does not require expression information (as all reverse engineering approaches
do, for a review see [5]). Moreover, our method significantly expands the capa-
bility for incorporating indirect (pathway-level) information. Previous methods
of synthesizing signal transduction networks [21] only include direct biochemical
interactions, and are therefore restricted by the incompleteness of the experi-
mental knowledge on pairwise interactions. Our method is able to incorporate



indirect causal effects as network paths with known starting and end vertices
and (yet) unknown intermediary vertices.

The first step of our method is to distill experimental conclusions into quali-
tative regulatory relations between cellular components. Following [8, 20], we dis-
tinguish between positive and negative regulation, usually denoted by the verbs
“promote” and “inhibit” and represented graphically as → and ⊣. Biochemical
and pharmacological evidence is represented as component-to-component rela-
tionships, such as “A promotes B”, and is incorporated as a directed arc from
A to B. Arcs corresponding to direct interactions are marked as such. Genetic
evidence leads to double causal inferences of the type “C promotes the process
through which A promotes B”. The only way this statement can correspond
to a direct interaction is if C is an enzyme catalyzing a reaction in which A
is transformed into B. We represent supported enzyme-catalized reactions as
both A (the substrate) and C (the enzyme) activating B (the product). If the
interaction between A and B is direct and C is not a catalyst of the A-B in-
teraction, we assume that C activates A. In all other cases we assume that the
three-node indirect inference corresponds to an intersection of two paths (A ⇒ B
and C ⇒ B) in the interaction network; in other words, we assume that C acti-
vates an unknown intermediary (pseudo)-vertex of the AB path. The main idea
of our method is finding the minimal graph, both in terms of pseudo vertex
numbers and non-critical edge numbers, that is consistent with all reachability
relationships between real vertices. The algorithms involved are of two kinds:
(i) transitive reduction of the resulting graph subject to the constraints that no
edges flagged as direct are eliminated and (ii) pseudo-vertex collapse subject to
the constraints that real vertices are not eliminated.

Note that we are not claiming that real signal transduction networks are the
sparsest possible; our goal is to minimize false positive (spurious) inferences, even
if risking false negatives. Thus we want to be as close as possible to a “tree topol-
ogy” while supporting all experimental observations. The implicit assumption of
chain-like or tree-like topologies permeates the traditional molecular biology lit-
erature: signal transduction and metabolic pathways were assumed to be close
to linear chains, genes were assumed to be regulated by one or two transcription
factors [3]. According to current observations the reality is not far: the average
in/out degree of transcriptional regulatory networks[18, 23] and the mammalian
signal transduction network [21] is close to 1.

2 A Formal Description of the Network Synthesis

The goal of this section is to introduce a formal framework of the network syn-
thesis procedure that is sufficiently general in nature, and amenable to algorith-
mic analysis and consequent automation. First, we need to describe a graph-
theoretic problem which we refer to as the binary transitive reduction (BTR)
problem. We are given a directed graph G = (V,E) with an edge labeling func-

tion w : E 7→ {0, 1}. Biologically, edge labels 0 and 1 in edges u
0
→v and u

1
→v

correspond to the “u promotes v” and “u inhibits v”, respectively.



The following definitions and notations are used throughout the paper. All
paths are (possibly self-intersecting) directed paths unless otherwise stated. A
non-self-intersecting path or cycle is called a simple path or cycle. If edge labels
are removed or not mentioned, they are assumed to be 0 for the purpose of any
problem that needs them. The parity of a path P from vertex u to vertex v is
∑

e∈P w(e) (mod 2). A path of parity 0 (resp., 1) is called a path of even (resp,
odd) parity. The same notions carries over to cycles in an obvious manner. The

notation u
x
⇒ v denotes a path from u to v of parity x ∈ {0, 1}. If we do not

care about the parity, we simply denote the path as u ⇒ v. An edge will simply
be denoted by u

x
→ v or u → v. For a subset of edges E′ ⊆ E, reachable(E′) is

the set of all ordered triples (u, v, x) such that u
x
⇒ v is a path of the restricted

subgraph (V,E′).

The BTR problem is defined as follows. An input instance is a directed
graph G = (V,E) with an edge labeling function w : E 7→ {0, 1} and a set of
critical edges Ecritical ⊆ E. A valid solution is a subgraph G′ = (V,E′) where
Ecritical ⊆ E′ ⊆ E and reachable(E′) =reachable(E). The objective is to find
a valid solution that minimizes |E′|. Intuitively, the BTR problem is useful for
determining a sparsest graph consistent with a set of experimental observations.
The set of “critical edges” represent edges which are known to be direct interac-
tions with concrete evidence. By maximizing sparseness we do not simply mean
to minimize the number of edges per se, but seek to minimize the number of
spurious feed-forward loops (i.e., a node regulating another both directly and
indirectly). Thus we want to be as close as possible to a “tree topology” while
supporting the experimental observations.

We also need to define one more problem that will be used in the formal
framework of the network synthesis approach. The pseudo-vertex collapse
(PVC) problem is defined as follows. An input instance is a directed graph
G = (V,E) with an edge labeling function w : E 7→ {0, 1} and a subset V ′ ⊂ V
of vertices called pseudo-vertices. The vertices in V \V ′ are called “real” vertices.

For any vertex v, let in(v) = {(u, x) |u
x
⇒v, x ∈ {0, 1}} \ {v} and let out(v) =

{(u, x) | v
x
⇒u, x ∈ {0, 1}} \ {v}. Collapsing two vertices u and v is permissible

provided both are not “real” vertices and in(u) =in(v) and out(u) =out(v). If
permissible, the collapse of two vertices u and v creates a new vertex w, makes
every incoming (resp. outgoing) edges to (resp. from) either u or v an incoming
(resp. outgoing) edge from w, removes any parallel edge that may result from
the collapse operation and also removes both vertices u and v. A valid solution
of the problem is then any graph G′′ = (V ′′, E′′) that can be obtained from G
by a sequence of permissible collapse operations and the objective is to find a
valid solution that minimizes |V ′′|. Intuitively, the PVC problem is useful for
reducing the pseudo-vertex set to the the minimal set that maintains the graph
consistent with all indirect experimental observations. As in the case of the BTR
problem, our goal is to minimize false positive (spurious) inferences of additional
components in the network.



A formal framework for the network synthesis procedure is presented in Fig-
ure 1. As described in Section 1, in the first step we incorporate biochemical inter-
action or causal evidence as labeled edges, noting the critical edges corresponding
to direct interactions. Then we perform a binary transitive reduction to eliminate
spurious inferred edges (i.e., edges that can be explained by paths of the same

label). In step two we incorporate double causal relationships A
x
→ (B

y
→ C) by

(i) adding a new edge A
x
→ B if B

y
→ C is a critical edge, (ii) doing nothing

if existing paths in the network already explain the relationship, or (iii) adding
a new pseudo-vertex and three new edges. To correctly incorporate the parity

of the A
x+y (mod 2)

−→ C relationship, B
y
→ C paths, with y (mod 2) = 0, will be

broken into two edges with 0 parity, while paths of odd parity will be broken
into an edge of a = 0 parity and an edge of b = 1 parity, summarized in a concise
way by the equation b = a+ b = y (mod 2). The unnecessary redundancy of the
resulting graph is reduced by performing pseudo-vertex collapse, then a second
round of binary transitive reduction. Intuitively, the approach in Figure 1 first
expands the network by the addition of the pseudo-vertices at the intersection of
the two paths corresponding to three-node inferences, then uses the additional
information available in the network to collapse these pseudo-vertices, i.e., to
identify them with real vertices or with each other. The PVC is the heart of the
algorithm, the final BTR is akin to a final cleanup step; thus it is important to
perform PVC before BTR in Step 2.2 of Figure 1.

1 [encoding single causal inferences]

1.1 Build a network for each causal inference of the type A
0
→B or A

1
→B

noting each critical edge.
1.2 Solve the BTR problem for this network.

2 [encoding double causal inferences]

2.1 Consider each indirect causal relationship A
x
→ (B

y
→ C) where x, y ∈

{0, 1}. We add new nodes and/or edges in the network based on the fol-
lowing cases:
– If B

y
→ C ∈ Ecritical, then we add A

x
→ (B

y
→ C).

– If there is no subgraph of the form

A

⇓ x

B
a
⇒ D

b
⇒ C

for some node D

where b = a+b = y (mod 2) then add the subgraph

A

↓ x

B
a
→ P

b
→ C

to

the network where a new “pseudo-node” P is added and b = a+ b = y

(mod 2).
2.2 Solve the PVC problem for the resulting graph.

3 [final reduction] Solve the BTR problem for the network.

Fig. 1. The overall network synthesis approach.



Proposition 1 All the steps in the network synthesis procedure except the steps
that involve BTR can be solved in polynomial time.

3 Summary of Pertinent Previous Works

The idea of transitive reduction, though in a more simplistic setting and/or in-
tegrated in an approach different from what appears in this paper, has been
used by a few researchers before. For example, in [25] Wagner’s goal is to find
the network from the reachability information. He constructs uniformly random
graphs and scale-free networks in a range of connectivities (average degrees), and
matches their reachability information to the range of gene reachability infor-
mation found from yeast perturbation studies. He concludes that the expected
number of direct regulatory interactions per gene is around 1 (if the underlying
graph is uniformly random) or less than 0.5 (if the underlying graph is scale
free with a degree exponent of 2). Chen et al. in [6] use time-dependent gene
expression information to determine candidate activators and inhibitors of each
gene, then prune the edges by assuming that no single gene functions both as ac-
tivator and inhibitor. This assumption is too restrictive given that transcription
factors can have both activation and inhibition domains, and the same protein-
level interactions (for example phosphorylation by a kinase) can have positive or
negative functional character depending on the target. Li et al. in [20] manually
synthesize a plant signal transduction network from indirect (single and double)
inferences introducing a first version of pseudo-vertex collapse. They assume

that if A
0
→B, A

0
→C and C

0
→(A

0
→B), the most parsimonious explanation is that

A
0
→C

0
→B. The reader is referred to the excellent surveys in [9, 15] for further

general information on biological network inference and modelling.

Special cases of the BTR problem have been looked at by the theoretical
computer science community in a different context of designing reliable commu-
nication networks. Obviously, BTR is NP-complete since the special case with
all-zero edge labels includes the problem of finding a directed Hamiltonian cycle
in a graph. If Ecritical = ∅, BTR with all-zero edge labels is known as the mini-
mum equivalent digraph (MED) problem. MED is known to be MAX-SNP-hard,
admits a polynomial time algorithm with an approximation ratio of 1.617+ε for
any constant ε > 0 [16] and can be solved in polynomial time for directed acyclic
graphs [1]. More recently, Vetta [24] has claimed a 3

2 -approximation for the MED
problem. A weighted version of the MED problem admits a 2-approximation [10];
this implies a 2-approximation for the BTR problem when all-zero edge labels.

In a previous publication [4], we considered the BTR problem, generalized
it to a so-called p-ary transitive reduction problem and provided an approxi-
mation algorithm for this generalization. In particular, we designed a 2 + o(1)-
approximation for the generalized problem, observed that the general problem
can be solved in polynomial time if the input graph is a DAG and provided a
1.78-approximation for the BTR problem when all edge labels are zero but crit-
ical edges are allowed. The results in [4] are purely theoretical in nature with no



experimental or implementation results, moreover the network synthesis process
described in Figure 1 does not appear in [4]. All the theoretical results reported
in this paper are disjoint from the results reported in [4].

4 New Algorithmic Results for BTR

Theorem 1 BTR can be solved in polynomial time if the graph has no cycles
of length more than 3.

Theorem 2 The GREEDY procedure, namely the following approach:

Definition an edge u
x
→v is redundant if there is an alternate path u

x
⇒v

GREEDY
while (there exists a redundant edge) delete the redundant edge

is a 3-approximation for the BTR problem. Moreover, there are input instances
of BTR for which GREEDY has an approximation ratio of at least 2.

5 Our Implemention for the BTR Problem

Given an instance graph G = (V,E) of the BTR problem, one can design a
straightforward dynamic programming approach to determine, for every u, v ∈ V
and every x ∈ {0, 1}, if u

x
⇒v exists in G. The worst-case running time of the

algorithm is O(|V |3). To solve the BTR problem within a acceptable time com-
plexity while ensuring a good accuracy, we have implemented the following two
major approaches. In Approach 1 (applicable for smaller graphs), if the number
of nodes in the graph is at most a threshold N , we implemented the GREEDY
heuristic of Theorem 2 on the entire graph. The heuristic is implemented by
iteratively selecting a new non-critical edge e = u → v for removal, tentatively
removing it from G and checking if the resulting graph has a path u

x
⇒v. If so,

we remove the edge; otherwise, we keep it and mark it so that we never select it
again. We stop when we have no more edges to select for deletion. In Approach 2
(applicable for larger graphs), if the number of nodes in the graph is above the
threshold N , we first use Approach 1 for every strongly connected component of
G. Then we use two procedures Tcycle−to−gadget and Tgadget−to−cycle, described
in the proof of Theorem 2 in the full version of this paper, to identify the remain-
ing edges that can be deleted. To speed up our implementations and to improve
accuracy, we also use some algorithmic engineering approaches. For example, we
stop the Floyd-Warshall iteration in Approach 1 as soon as an alternate path
u

x
⇒v is discovered, we randomize the selection of the next edge for removal and,

in Approach 2, if the strongly connected component has very few vertices, calcu-
late an exact solution of BTR on this component exhaustively. Both Approach 1
and Approach 2 are guaranteed to be a 3-approximate solution by Theorem 2.
However, in Approach 1 there is no bias towards a particular candidate edge for
removal among all candidate edges; in contrast, in Approach 2 a bias is intro-
duced via removal of duplicate edges in the gadget replacement procedure. Thus,



the two approaches may return slightly different solutions in practice. Choosing
N to be 150, our implementation takes mostly negligible time to run on
networks with up to thousands of nodes, taking time of the order of seconds for
the manually curated network that is described in Section 6 to about a minute
for the 1000 node random biological networks described in Section 7 on which
we tested the performance of our implementations. Theoretical worst-case esti-
mates of the running times of the two approaches are as follows. Approach 1
runs in O(d · |V |3) time where d is the number of non-critical edges. By us-
ing a linear-time solution of the BTR problem on a DAG, Approach 2 runs in
O(m2 + |E|+

∑m

i=1 di ·n
3
i ) time where the given graph has m strongly connected

components and di (ni) are the number of non-critical edges (vertices) in the ith

strongly connected component.

6 Synthesizing ABA-induced Stomatal Closure Network

Network inference algorithms applied to gene expression (microarray) data based
on several types of analysis lead to indirect causal relationships among genes.
Large-scale repositories for microarray data for several organisms such as Many
Microbe Microarrays, NASCArrays and Gene Expression Omnibus contain ex-
pression information for thousands of genes under tens to hundreds of experimen-
tal conditions. Our methods are applicable for filtering redundant information
by binary transitive reduction of indirect pairwise data and for incorporating
differential gene expression under experimental perturbations by pseudo-vertex
collapse. Signal transduction pathway repositories such as TRANSPATH and
protein interaction databases contain up to thousands of interactions, a large
number of which are not supported by direct binding evidence. Our methods
can be used to selectively filter redundant information while keeping all direct
interactions.

In this section we discuss our computational results on synthesizing experi-
mental results into a consistent guard cell signal transduction network for ABA-
induced stomatal closure using our detailed procedure described in Section 2 and
compare it with the manually curated network obtained in [20]. Our starting
point is the list of experimentally observed causal relationships in ABA-induced
closure collected by Li et al. and published as Table S1 in [20]. This table contains
around 140 interactions and causal inferences, both of type “A promotes B” and
“C promotes process(A promotes B)”. We augment this list with critical edges
drawn from biophysical/biochemical knowledge on enzymatic reactions and ion
flows and with simplifying hypotheses made by Li et al., both described in Text
S1 of [20].

The synthesis of the network is carried out using the formal method described
in Section 2. We also formalize an additional rule specific to the context of this
network (and implicitly assumed by [20]) regarding enzyme-catalyzed reactions.
We follow Li et al. in representing each of these reactions by two directed critical
edges, one from the reaction substrate to the product and one from the enzyme
to the product. As the reactants (substrates) of the reactions in [20] are abun-
dant, the only way to regulate the product is by regulating the enzyme. The
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Fig. 2. (a) The network manually synthesized by Li et al. [20]. (b) The network
synthesized in this paper. A pseudo-vertex is displayed as ⊛.

enzyme, being a catalyst, is always promoting the product’s synthesis, thus pos-
itive indirect regulation of a product will be interpreted as positive regulation of
the enzyme, and negative indirect regulation of the product will be interpreted
as negative regulation of the enzyme. In graph-theoretic terms, this leads to the
following rule. We have a subset Eenzymatic ⊆ Ecritical of edges that are all la-

beled 0. Suppose that we have a path A
a
→ x

b
→ B, an edge C

0
→ B ∈ Eenzymatic.

Then, we identify the node C with x by collapsing them together and set the
parities of the edges A → (x = C) and (x = C) → B based on the following
two cases: if a + b = 0 (mod 2) then both A → (x = C) and (x = C) → B have
zero parities, otherwise if a + b = 1 (mod 2) then A → (x = C) has parity 1
and (x = C) → B has parity 0. The manually synthesized network of Li et al.
includes a pseudo-vertex for each non-critical edge, indicating the existence of
unknown biological mediators. For the ease of comparison we omit these degree
two pseudo-vertices. The two networks are shown in Figures 2 (a)–(b). Here is
a brief summary of an overall comparison of the two networks:

– [20] has 54 vertices and 92 edges; our network has 57 vertices (3 extra pseudo-
vertices) but only 84 edges. The two networks have 71 common edges.

– Both [20] and our network has identical strongly connected component (SCC)
of vertices. There is one SCC of size 18 (KOUT Depolarization KAP CaIM
Ca2+c Ca2+ATPase HATPase KEV PLC InsP3 NOS NO GC cGMP AD-
PRc cADPR CIS AnionEM), one SCC of size 3 (Atrboh ROS ABI1), one
SCC of size 2 (GPA1 AGB1) and the rest of the SCCs are of size 1 each.

– All the paths present in the [20] reconstruction are present in our network as

well. Our network has the extra path ROP10
1
⇒Closure that Li et al. cited in

their Table S1 but did not include in their network due to weak supporting
evidence.



Thus the two networks are highly similar but diverge on a number of edges.

Li et al. keep a few graph-theoretically redundant edges such as ABA
0
→PLC,

PA
1
→ABI1 and ROS

0
→CaIM that would be explainable by feedback processes.

Some of our edges such as NO
0
→AnionEM correspond to paths in Li et al.’s recon-

struction. Our graph contains the full pseudo-vertex-using representation of the

process AtPP2C
1
→(ABA

0
→Closure) that Li et al. simplifies to AtPP2C

1
→ABA.

We have pHc
0
→ROS and ROS

0
⇒Atrboh where [20] has pH

0
→Atrboh and a posi-

tive feedback loop on Atrboh. All these discrepancies are due not to algorithmic
deficiencies but to human decisions. Finally, the entire network synthesis process
was done within a few seconds by our implemented algorithm.

7 BTR Algorithm’s Performance on Simulated Networks

A variety of cellular interaction and regulatory networks have been mapped and

Fig. 3. A plot of the empirical performance of our
BTR algorithm on the 561 simulated interaction
networks. E′ is our solution, OPT is the loose
lower bound on the minimum number of edges and

100 ×
(

|E′|
OPT − 1

)

is the percentage of additional

edges that our algorithm keeps. On an average, we
use no more than 5.5% more edges than the opti-
mum (with about 4.8% as the standard deviation).

graph theoretically charac-
terized. One of the most
frequently reported graph
measures is the distribu-
tion of node degrees, i.e.,
the distribution of the num-
ber of incoming or outgo-
ing edges per node. A va-
riety of networks, includ-
ing many cellular interac-
tion networks, are hetero-
geneous (diverse) in terms
of node degrees and ex-
hibit a degree distribu-
tion that is close to a
power-law or a mixture of
a power law and an ex-
ponential distribution[2, 11,
14, 19, 21]. Transcriptional
regulatory networks exhibit
a power-law out-degree dis-
tribution, while the in-
degree distribution is more
restricted [18, 23]. To test our algorithm on a network similar to the observed
features, we generate random networks with a prescribed degree distribution us-
ing the methods in [22]. We base the degree distributions on the yeast transcrip-
tional regulatory network that has a maximum out-degree ∼ 150 and maximum
in-degree ∼ 15 [18]. In our generated network the distribution of in-degree of
the network is exponential, i.e., Pr[in-degree= x]= Le−Lx with L between 1/2
and 1/3 and the maximum in-degree is 12. The distribution of out-degree of the
network is governed by a power-law, i.e., for x ≥ 1 Pr[out-degree= x]= cx−c

and for x = 0 Pr[out-degree= 0]≥ c with c between 2 and 3 and the maximum



out-degree is 200. We varied the ratio of excitory to inhibitory edges between
2 and 4. Since there are no known biological estimates of critical edges, we
tried a few small and large values, such as 1%, 2% and 50%, for the percent-
age of edges that are critical to catch qualitatively all regions of dynamics of
the network that are of interest. 7 To empirically test the performance of our
algorithm, we used the (rather loose) lower bound OPT for the optimal solution
OPT≥ max{n + s − c, t,L} where n is the number of vertices, s is the number
of strongly connected components, c is the number of connected components of
the underlying undirected graph, t is the number of those edges u

x
→v such that

either u
x
→v ∈ Ecritical or there is no alternate path u

x
⇒v in the graph and L is a

lower bound described in the full version of the paper.

number of nodes average number of edges

(range) to
ta
l

ex
ci
to
ry

in
hi
bi
to
ry

cr
iti

ca
l

98–100 206 147 59 31

250–282 690 552 138 33

882-907 2489 1991 498 118

Fig. 4. Basic statistics of the simulated
networks used in Figure 3.

We tested the performance of our
BTR algorithm on 561 randomly gen-
erated networks varying the number of
vertices between roughly 100 and 900.
A summary of the performance is shown
in Figure 3 indicating that our tran-
sitive reduction procedure returns so-
lutions close to optimal in many cases
even with such a simple lower bound of
OPT. The running time of BTR on an
individual network is negligible (from
about one second for a 100 node net-
works to about no more than a minute
for a 1000 node network). A summary
of the various statistics of these 561 networks is given in Figure 4. To verify
the performance of our BTR algorithm we perturb most of these networks with
increasing amounts of additional random edges chosen such they do not change
the optimal solution of the original graph. In most cases, our algorithm returns
a solution that is either optimal or very close to the original network on which
additional edges are added.

Software. See http://www.cs.uic.edu/~dasgupta/network-synthesis/.
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