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2.1 INTRODUCTION

The modern era of molecular biology began with the discoveryof the double helical
structure of DNA. Today, sequencing nucleic acids, the determination of genetic
information at the most fundamental level, is a major tool ofbiological research [44].
This revolution in biology has created a huge amount of data at great speed by
directly reading DNA sequences. The growth rate of data volume is exponential.
For instance, the volume of DNA and protein sequence data is currently doubling
every 22 months [32]. One important reason for this exceptional growth rate of
biological data is the medical use of such information in thedesign of diagnostics
and therapeutics [22, 31]. For example, identification of genetic markers in DNA
sequences would provide important informations regardingwhich portions of the
DNA are significant, and would allow the researchers to find many disease genes of
interest (by recognizing them from the pattern of inheritance). Naturally, the large
amount of available data poses a serious challenge in storing, retrieving and analyzing
biological information.

A rapidly developing area,computational biology, is emerging to meet the rapidly
increasing computational need. It consists of many important areas such as infor-
mation storage, sequence analysis, evolutionary tree construction, protein structure
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prediction, and so on [22, 31]. It is playing an important role in some biological
research. For example, sequence comparison is one of the most important method-
ological issues and most active research areas in currentbiological sequence analysis.
Without the help of computers, it is almost impossible to compare two or more bio-
logical sequences (typically, at least a few hundred character long). Applications of
sequence comparison methods can be traced back to the well-knownHuman Genome
Project [43], whose objective is to decode this entire DNA sequence and to find the
location and ordering of genetic markers along the length ofthe chromosome. These
genetic markers can be used, for example, to trace the inheritance of chromosomes
in families and thereby to find the location of disease genes.Genetic markers can
be found by finding DNA polymorphisms,i.e., locations where two DNA sequences
“spell” differently. A key step in finding DNA polymorphismsis the calculation of
the genetic distance, which is a measure of the correlation (or similarity) between
two genomes.

In this chapter, we discuss computational complexities andapproximation algo-
rithms for a few DNA sequence analysis problems. We assume that the reader is
familiar with the basic concepts of exact and approximationalgorithms [20, 42], basic
computational complexity classes such as P and NP [23, 26, 36] and basic notions of
molecular biology such as DNA sequences [24, 45].

2.2 NONOVERLAPPING LOCAL ALIGNMENTS

As we have already seen, a fundamental problem in computational molecular biology
is to elucidate similarities between sequences and a cornerstone result in this area
is that given two strings of lengthp and q, there are local alignment algorithms
that will score pairs of substrings for “similarity” according to various biologically
meaningful scoring functions and we can pull out all “similar” or high scoring
substring pairs in timeO(pq + n) wheren is the output size [45]. Having found
the high scoring substring pairs, a global description of the similarity between two
sequences is obtained by choosing the disjoint subset of these pairs of highest total
score. This problem is in general referred to as the “non-overlapping local alignment”
problem. We also mention a more general “d-dimensional version” of this problem
involving d > 2 sequences, where we scored substrings, one from each sequence,
with a similarity score and the goal is to select a collectionof disjoint subsets of these
d-tuples of substrings maximizing the total similarity.

A natural geometric interpretation of the problem is via selecting a set of “inde-
pendent” rectangles in the plane in the following manner [3]. Each output substring
pair being represented as a rectangle; Figure 2.1 shows a pictorial illustration of
the relationship of a rectangle to local similarity betweentwo fragments of two se-
quences. This gives rise to the following combinatorial optimization problem. We
are a given a setS of n positively weighted axis parallel rectangles. Define two
rectangles to be independent if for each axis, the projection of one rectangle does
not overlap that of another. The goal is to select a subsetS′ ⊆ S of independent
rectangles from the given set of rectangles of total maximumweight. Theunweighted
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Fig. 2.1 The rectangleR captures the local similarity (match) between the fragmentsaac
andbbc of the two sequences; weight ofR is the strength of the match.

version of the problem is the one in which the weights of all rectangles are identical.
In thed-dimensional version, we are given a set of positively weighted axis parallel
d-dimensional hyper-rectangles1 such that, for every axis, the projection of a hyper-
rectangle on this axis does not enclose that of another. Defining two hyper-rectangles
to be independent if for every axis, the projection of one hyper-rectangle does not
overlap that of another; the goal is to select a subset ofindependenthyper-rectangles
of total maximum weight from the given set of hyper-rectangles.

The non-overlapping local alignment problem, including its special case as defined
by the IR problem described in Section 2.2.2, is known to be NP-complete. The
best known algorithm for the general version of the nonoverlapping local alignment
problem is due to [8] who provide a2d-approximation for the problem involving
d-dimensional hyper-rectangles. In the sequel, we will discuss two important special
cases of this problem that are biologically relevant.

2.2.1 The Chaining Problem

The chaining problem is the following special case [24, page326]. A subset of
rectangles is called achain if no horizontal or vertical line intersects more than one
rectangle in the subset in the subset and if the rectangles inthe subset can be ordered
such that each rectangle in this order is below and to the right of its predecessor. The
goal is to find a chain of maximum total similarity. This problem can be posed as
finding the longest path in a directed acyclic graph and thereby admits an optimal
solution in O(n2) time wheren is the number of rectangles. However, using a
sparse dynamic programming method, the running time can be further improved to
O(n log n) [27].

1A d-dimensional hyper-rectangle is a Cartesian product ofd intervals.
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2.2.2 The Independent Subset of Rectangles (IR) Problem

In this problem, first formulated by [3], for each axis, the projection of a rectangle on
this axis does not enclose that of another; this restrictionon the input is biologically
justified by a preprocessing of the input data (fragment pairs) to eliminate violations
of the constraint. See Figure 2.2 for an pictorial illustration of the problem.
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Fig. 2.2 An illustration of the IR problem

Consider the graphG formed from the given rectangles in which there is a node for
every rectangle with its weight being the same as that of the rectangle and two nodes
are connected by an edge if and only if their rectangles arenot independent. It is not
difficult to see thatG is a 5-claw free graph [3] and the IR problem is tantamount
to finding amaximum-weightindependent set inG. Many previous approaches have
used this connection of the IR problem to the5-claw free graphs to provide better
approximation algorithms by giving improved approximation algorithms ford-claw
free graphs. For example, using this approach, Bafna et al. [3] provided a polynomial
time approximation algorithm with a performance ratio2 of 13

4
for the IR problem

and Halld́orsson [25] provided a polynomial time approximation algorithm with a
performance ratio of2+ ε (for any constantε > 0) for the unweighted version of the
IR problem3. The current best approximation algorithm for the IR problem is due to
Berman [9] via the same approach which has a performance ratio of 5

2
+ ε (for any

constantε > 0).
Many of the abovementioned algorithms essentially start with an arbitrary solution

and then allows small improvements to enhance the approximation quality of the
solution. In contrast, in this section we review the usage ofa simple greedy two-
phase technique to provide an approximation algorithm for the IR problem with a
performance ratio of3 that runs inO(n log n) time [10, 15]. The two-phase technique

2The performance ratio of an approximation algorithm for the IRproblem is the ratio of the total weights
of rectangles in an optimal solution to that in the solution provided by the approximation algorithm.
3For this and other previous approximation algorithms with anε in the performance ratio, the running
time increases with decreasingε, thereby rendering these algorithms impractical ifε is small. Also, a
straightforward implementation of these algorithms will run in at leastΩ(mn) time.
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was introduced in its more general version as a multi-phase approach in the context of
real-time scheduling of jobs with deadline in [11, 12]; we review the generic nature
of this technique in Section 2.2.2.1. Although this approximation algorithm does not
improve the worst-case performance ratios of previously best algorithms, it is simple
to implement (involving standard simple data structures such as stacks and binary
trees) and runs faster than the algorithms in [3, 9, 25].

2.2.2.1 The Local-ratio and Multi-phase TechniquesThe multi-phase technique
was introduced formally in the context of real-time scheduling of jobs by the inves-
tigators in [11, 12]. Informally and very briefly, this technique works as follows:
(a) We maintain a stackS containing objects that are tentatively in the solution.S is
initially empty before the algorithm starts.
(b) We makek ≥ 1 evaluation passesover the objects. In each evaluation pass:

• we inspect the objects in a specific order that is easy to compute (e.g., rectangles
in the plane in the order of their right vertical side),

• depending on the current content ofS, the contents ofS during the previous
passes as well as the attributes of the current object, we compute a score for
the object,

• we push the object toS if the score is above a certain threshold

(c) We make oneselection passover the objects inS in a specific order (typically,
by popping the elements ofS) and select a subset of the objects inS that satisfy the
feasilibilty criteria of the optimization problem under consideration.

Closely related to the two-phase version of the multi-phasetechnique, but some-
what of more general nature, is thelocal-ratio technique. This technique was first
developed by Bar-Yehuda and Even [7] and later extended by Berman et al. [4] and
Bar-Yehuda [6]. The crux of the technique is as follows [5]. Assume that given an
n-dimensional vector~p, our goal is to find an-dimensionalsolutionvector~x that
maximizes (respectively, minimizes) the inner product~p · ~x subject to some setF of
feasibility constraintson ~x. Assume that we have decomposed the vector~p to two
vectors~p1 and ~p2 with ~p1 + ~p2 = ~p such that, for somer ≥ 1 (respectively,r ≤ 1),
we can find a solution vector~x satisfyingF which r-approximates~p1 and ~p2, that
is, which satisfies both~p1 · ~x ≥ r · max~y{~p1 · ~y} and ~p2 · ~x ≥ r · max~y{~p2 · ~y}
(respectively,~p1 · ~x ≤ r · min~y{~p1 · ~y} and ~p2 · ~x ≤ r · min~y{~p2 · ~y}). Then,~x
alsor-approximates~p. This allows a given problem to be recursively broken down
in subproblems from which one can recover a solution to the original problem. The
local-ratio approach makes it easier to extend the results to a larger class of problems,
while the multi-phase approach allows to obtain better approximation ratios in many
important special cases.

The multi-phase technique was used in the context of job scheduling in [11, 12]
and in the context of opportunity-cost algorithms for combinatorial auctions in [1].
We will discuss the usage the two-phase version of the multi-phase approach in the
context of the IR problem [10, 15] in the next section. In somecases, it is also
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possible to explain the multi-phase or the local-ratio approach using the primal-dual
schema; for example, see [5].

2.2.2.2 Application of the Two-Phase Technique to the IR Problem The follow-
ing notations and terminologies are used for the rest of thissection. An interval[a, b]
is the set[a, b] = {x ∈ R : a ≤ x ≤ b}. A rectangleR is [a, b] × [c, d] for some
two intervals[a, b] and [c, d], where× denotes the Cartesian product. The weight
of a rectangleR is denoted byw(R). We assume that the reader with familiar with
standard techniques and data structures for the design and analysis of algorithms such
as in [20].

LetR1, R2, . . . , Rn be then input rectangles in our collection, whereRi = Xi×Yi

for some two intervalsXi = [di, ei] and Yi = [fi, gi]. Consider the intervals
X1,X2, . . . ,Xn formed by projecting the rectangles on one axis and call two intervals
Xi andXj independent if and only if the corresponding rectanglesRi andRj are
independent. The notationXi ≃ Xj (respectively,Xi 6≃ Xj) is used to denote if
two intervalsXi andXj are independent (respectively, not independent).

To simplify implementation, we first sort the set of numbers{di, ei | 1 ≤ i ≤ n}
(respectively, the set of numbers{fi, gi | 1 ≤ i ≤ n}) and replace each number in
the set by its rank in the sorted list. This does not change anyfeasible solution to
the given problem; however, after thisO(n log n) time preprocessing we can assume
thatdi, ei, fi, gi ∈ {1, 2, . . . , 2n} for all i. This assumption simplifies the design of
data structures for the IR problem.

Now, we adopt the two-phase technique on the intervalsX1,X2, . . . ,Xn. The
precise algorithm is shown in Figure 2.3. The solution to theIR problem consists
of those rectangles whose projections are returned in the solution at the end of the
selection phase.

To show that the algorithm is correct we just need to show thatthe selected
rectangles are mutually independent. This is obviously ensured by the final selection
phase. To implement this algorithm, we need to compute TOTAL(Xi) efficiently.
Using the fact that the intervals are considered in non-decreasing order of their
endpoints, we can reduce this to the problem of maintaining adata structureD for a
set of points in the plane with coordinates from the set{1, 2, . . . , 2n} such that the
following two operations can be performed:

Insert(v, x, y): Insert the point with coordinates(x, y) (with x, y ∈ {1, 2, . . . , 2n})
and valuev in D. Moreover, if Insert(v, x, y) precedes Insert(v′, x′, y′), then
y′ ≥ y.

Query(a, b, c): Given a query range(a, b, c) (witha, b, c ∈ {1, 2, . . . , 2n}∪{−∞,∞}),
find the sum of the values of all points(x, y) in D with a ≤ x ≤ b andy ≥ c.

One can solve this problem inO(n log n) time and space preprocessing andO(log n)
per query by using an appropriately augmented binary searchtree; see [10, 15] for
details. We can therefore implement the entire algorithm inO(n log n) time and
space.

We now sketch the main points of the proof of the performance ratio of Algo-
rithm TPA-IR as detailed in [10, 15]. letB be a solution returned by Algorithm TPA-
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(* definitions *)
a triplet (α, β, γ) is an ordered sequence of three valuesα, β andγ;
L is sequence that contains a triplet(w(Ri), di, ei)

for everyRi = Xi × Yi with Xi = [di, ei];
L is sorted so the values ofei’s are in non-decreasing order;

S is an initially empty stack that stores triplets;
TOTAL(Xj) returns the sum ofv’s of those triplets(v, a, b) ∈Ssuch that[a, b] 6≃ Xj ;

(* evaluation phase *)
for ( each(w(Ri), di, ei) from L )
{

v← w(Ri)− TOTAL([di, ei]);
if ( v > 0 ) push((v, di, ei),S);

}
(* selection phase *)

while ( S is not empty)
{

(v, di, ei)← pop(S);
if ( [di, ei] ≃ X for every intervalX in our solution)

insert[di, ei] to our solution;
}

Fig. 2.3 Algorithm TPA-IR: Adoption of the two-phase technique for the IR problem.
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IR andA be any optimal solution. For a rectangleR ∈ A, let us define thelocal
conflict numberβR to be the number of those rectangles inB that werenot in-
dependent ofR and were examined no earlier thanR by the evaluation phase of
Algorithm TPA-IR and letβ = maxR∈A βR. First, we show that Algorithm TPA-IR
has a performance ratio ofβ. Next, we can show that the performance ratio of
Algorithm TPA-IR is3 by showing that for the IR problem,β = 3. First note that
β = 3 is possible; see Figure 2.4. Now we show thatβ > 3 is impossible. Refer
to Figure 2.4. Remember that rectangles in an optimal solution contributing toβ
must not be independent of our rectangleR and must have their right vertical right
on or to the right of the vertical lineL. Since rectangles in an optimal solution must
be independent of each other, there can be at most one optimalrectangle crossingL
(and, thereby conflicting withR in its projections on thex-axis). Any other optimal
rectangle must lie completely to the right ofL and therefore may conflict withR in
their projections on they-axis only; hence there can be at most two such rectangles.

our rectangle

3 optimal rectangles
L

R

Fig. 2.4 A tight example for Algorithm TPA-IR showingβ = 3 is possible.

2.2.2.3 Further Discussions Algorithm TPA-IR makes a pass on the projections
of the rectangles on thex-axis in a nondecreasing order of the endpoints of the
projections. Can we improve the performance ratio if we run TPA-IR separately on
the projections on thex-axis in left-to-right and in right-to-left order of endpoints
and take the better of the two solutions? Or, even further, wemay try running
Algorithm TPA-IR two more times separately on the projections on they-axis in
top-to-bottom and in bottom-to-top order and take the best of the four solutions. It is
easy to draw an example that shows that even then the worst case performance ratio
will be 3. We already exploited the planar geometry induced by the rectangles for the
IR problem to show thatβ ≤ 3. Further research may be necessary to see whether
we can exploit the geometry of rectangles more to design simple approximation
algorithms with performance ratios better than2.5 in the weighted case or better than
2 in the unweighted case.
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For thed-dimensional version, Algorithm TPA-IR can be applied in anobvious
way to this extended version by considering the projectionsof these hyper-rectangles
on a particular axis. It is not difficult to see thatβ ≤ 2d − 1 for this case [19],
thus giving a worst-case performance ratio of2d − 1. Whether one can design an
algorithm with a performance ratio that increases less drastically (e.g., sublinearly)
with d is still open.

2.3 GENOME TILING PROBLEMS

There are currently over800 complete genome sequences available to the scientific
community, representing the three principal domains of life: bacteria, archaea, and
eukaryota [35]. Genome sequences vary widely in size and composition. In addition
to the thousands of sequences that encode functional proteins and genetic regula-
tory elements, most eukaryotic genomes also possess a largenumber ofnon-coding
sequences which are replicated in high numbers throughout the genome. These
repetitive elements were introduced over evolutionary time and consists of families
of transposable elements that can move from one chromosomallocation to another,
retroviral sequences integrated that are into the genome via an RNA intermediate,
and simple repeat sequences that can originate de novo at anylocation. Nearly50%
of human genomic DNA is associated with repetitive elements. The presence of
repeat sequences can be problematic for both computationaland experimental bi-
ology research. For example, BLAST searches [2] with queries containing repeats
against large sequence databases often result in many spurious subsequence matches,
obscuring significant results and wasting computational resources. Although it is
now standard practice to screen query sequences for repetitive elements, doing so
subdivides the query into a number of smaller sequences thatoften produce a less
specific match than the original. In an experimental context, when genomic sequence
is used to investigate the binding of complementary DNA, repetitive elements can
generate false positive signals and mask true positives by providing highly redundant
DNA binding sites that compete with the meaningful targets of complementary probe
sequences.

Genomic DNA can be screened for repeat sequences using specialized programs
such as RepeatMasker [39] which performs local subsequencealignments [41] against
a database of known repetitive elements [28]. Repeats are then masked within the
query sequence, whereby a single non-nucleotide characteris substituted for the
nucleotides of each repeat instance. This global characterreplacement preserves
the content and relative orientation of the remaining subsequences, which are then
interspersed with character blocks representing the repetitive elements identified
during the screening process.

Although the screening and/or removal of repeats is generally beneficial, ad-
ditional problems may arise from the resulting genomic sequence fragmentation.
Following repeat sequence identification, the remaining high-complexity component
(i.e., non-repetitive DNA) exists as a population of fragments ranging in size from
a few nucleotides to several kilobases. For organisms such as Homo sapiens, where
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the genome contains many thousands of repeat elements, the vast majority of these
high-complexity sequence fragments are below1 Kb in size. This situation presents
a significant impediment to both computational and experimental research. Bioin-
formatics analyses often benefit from the availability of larger contiguous sequences,
typically 1 Kb and larger, for homology searches and gene predictions. Similarly,
very small sequences (< 200 bp) are of limited use in many high-throughput ex-
perimental applications. These constraints provide the basis of the tiling problems
formalized in this section.

DNA microarray design A principal motivation for looking at the tiling problems
considered in this paper is their application to the design of DNA microarrays for
efficient genome analysis. The microarrays we consider hereare constructed from
amplified genomic DNA. Each element consists of a relativelylong (typically 300
bp - 1.2 Kb) sequence of genomic DNA that is acquired via thepolymerase chain
reaction(PCR) [33] in which a segment of DNA may be selectively amplified using a
chemical system that recreates DNA replicationin vitro. Although the size resolution
of these array elements is not as fine as that of high-density oligonucleotide systems,
PCR-based (oramplicon) microarrays provide experimental access to much larger
regions of contiguous genomic DNA. The tiling algorithm described here has recently
been used to design a microarray of this type to represent thecomplete sequence
of human chromosome22 [37]. When considering PCR-based microarrays, we
are concerned with finding the maximum number of high-complexity subsequence
fragments given a genomic DNA sequence whose repetitive elements have been
identified and masked. A maximal-coverage amplicon array can then be designed by
deriving an optimal tile path through the target genomic sequence such that the best
set of fragments is selected for PCR amplification. Determining this tile set allows
one to achieve optimal coverage of high-complexity DNA across the target sequence,
while simultaneously maximizing the number of potential subsequences of sufficient
size to facilitate large-scale biological research.

2.3.1 Problem Statements

Based on the applications discussed in Section 2.3, we now formalize a family of
tiling problems. The following notations are used uniformly throughout the rest of
the paper:

• [i, j) denotes the set of integers{i, i + 1, . . . , j − 1};

• [i, j] = [i, j + 1);

• f [i, j) andf [i, j] denote the elements of an arrayf with indices in[i, j) and
[i, j], respectively.

Our tiling problems build upon a basic genome tiling algorithm which we call the
GTile problemand describe as follows. The input consists of an arrayc[0, n) of real
numbers and two integer size parametersℓ andu. A subarrayB = c[i, j) is called a
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blockof lengthj − i andweightw(B) =
∑j−1

k=i ck, the weight of a set of blocks is
the sum of their weights and a block is called atile if its length belongs to[ℓ, u]. Our
goal is to find a set of pairwise disjoint tiles with the maximum possible weight. The
tiling problems of interest in this paper are variations, restrictions and generalizations
of the GTile problem specified by a certain combinations of the following items:

Compressed versus uncompressed input data:This is motivated by a simple bi-
nary classification of the high-complexity regions of the genome sequence
from their low-complexity counterparts. Now all entries ofc[0, n) is eitherx
or−x for somefixedx > 0. Hence, the input sequence can be more efficiently
represented by simply specifying beginnings and endings ofblocks of identical
values4. In other words, we can compress the input sequencec[0, n) to a
sequence of integers (indices)S[0,m + 1) such that

• S0 = 0, Sm = n + 1, S1 ≥ S0 andSi > Si−1 for all i ∈ [2,m];

• each element ofc[S2j , S2j+1) is x for all 0 ≤ j ≤ ⌊m
2
⌋;

• each element ofc[S2j−1, S2j) is−x for all 0 < j ≤ ⌊m+1

2
⌋.

We note that the input sizem + 1 of such a compressed input data is typically
significantly smallerthann. As a result, we can get significantly faster al-
gorithms if we can design an algorithm for compressed inputswith a running
time nearly linear inm. Furthermore, this also allows one to develop efficient
hybrid approach to solving the tiling problems: first use a crude binary classi-
fication of the regions to quickly obtain an initial set of tiles and then refine the
tiles taking into consideration the relative importances of the high-complexity
elements.

Unbounded versus bounded number of tiles:Another important item of interest
is when the number of tiles that may be used is at most a given value t, which
could be considerably smaller than the number of tiles used by a tiling with no
restrictions on the number of tiles. This is motivated by thepractical consider-
ation that the capacity of a microarray as obtainable by current technology is
bounded.

Overlapping versus non-overlapping tiles: To enhance searching sequence data-
bases for homology searches to allow for the case when potential matches
can be found at tile boundaries, it may be useful to relax the condition of
disjointness of tiles by allowing two tiles to share at mostp elements for some
given (usually small)p > 0. However, to ensure that we do not have too
many overlaps, we need topenalizethem by subtracting the weight of each
overlapped region from the sum of weights of all tiles, wherethe weightof
each overlapped region is the sum of the elements in it. In other words, ifT is

4Notice that a{0, 1} classification of the high-complexity regions from the low-complexity ones is not
suitable since then we do not penalize for covering low-complexity regions and solving the tiling problem
becomes trivial.
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the set of tiles andR is the set of elements ofC that belong to more than one
tile in T , then the weight is

∑
T∈T w(T )−

∑
ci∈R ci.

One dimensional versusd-dimensional: Generalization of the GTile problem in
d dimensions has applications in database designs and related problems [16,
18, 29, 30, 34]5. In this case, we are given ad-dimensional arrayC of size
n1×n2×·×nd with 2d size parametersℓ1, ℓ2, . . . , ℓd, u1, u2, . . . , ud, a tile is
a rectangular subarray ofC of sizep1 × p2 × · · · × pd satisfyingℓi ≤ pi ≤ ui

for all i, the weight of a tile is the sum of all the elements in the tile and our
goal is again to find a set of tiles such that the sum of weights of the tiles is
maximized.

We examine only those combinations of the above four items which are of importance
in our applications. simplify exposition, unless otherwise stated explicitly, the GTile
problem we consider is1-dimensionalwith uncompressedinputs,unboundednumber
of tiles andno overlaps. In addition to the previously defined notations, unless
otherwise stated, we use the following notations and variables with their designated
meanings throughout the rest of the paper:n + 1 is the number of elements of the
(uncompressed)1-dimensional input arrayc[i, j), n1 ≤ n2 ≤ · · · ≤ nd are the sizes
of the dimensions for thed-dimensional input array,w(T ) is the weight for asetof
tiles T , t is the given number of tiles when the number of tiles is bounded andp is
the maximum overlap between two tiles in1-dimension. Finally, all logarithms are
in base2 unless stated otherwise explicitly.

2.3.2 Related Work

Tiling an array of numbers in one or more dimensions under various constraints is a
very active research area (for example, see [16–18, 29, 30, 34, 40]) and has applica-
tions in several areas including database decision support, two-dimensional histogram
computation and resource scheduling. Several techniques,such as the slice-and-dice
approach [16], the shifting technique [26, Chapter 9] and dynamic programming
methods based on binary space partitions [17, 29, 34] have proven useful for these
problems. Our problems are different from the tiling problems in [16, 17, 29, 30,
34, 40]; in particular, we do not require partitioning of theentire array, the array
entries may be negative and there are lower and upper bounds on the size of a tile.
Other papers which most closely relate to our work are the references [38] and [46].
The authors in [38] provide anO(n) time algorithm to find allmaximalscoring
subsequences of a sequence of lengthn. In [46] the authors investigate computing
maximal scoring subsequences which contain no subsequences with weights below
a particular threshold.

5For example, in two dimensions withℓ1 = ℓ2 = 0 andu1 = u2 = ∞ this is precisely the ARRAY-
RPACK problem discussed in [29].
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2.3.3 Synopsis of Results

Our main theoretical results are summarized in Table 2.1; for more details, see our
publications [13, 14]. All of our methods use simple data structures such as a double-
ended queues and are therefore easy to implement. The techniques used for many of
these tiling problems in one dimension use a solution of anOnline Interval Maximum
(OLIM) problem via a windowing scheme reminiscent of that in[21]. However,
the primary consideration in the applications in [21] was reduction of space because
of the online nature of their problems, whereas we are more concerned with time-
complexity issues since our tiling problems are off-line innature (and hence space
for storing the entire input is always used). Moreover, our windowing scheme is
somewhat different from that in [21] since we need to maintain multiple windows of
different sizes and data may not arrive at evenly spaced timeintervals.

Version of GTile TimeO() SpaceO() Approximation Ratio

basic n n exact

overlap is from sn n exact
as-subset of
[0, δ], δ < ℓ

2

compressed m ℓ
u−ℓ

m ℓ
u−ℓ

exact
input

number of min{n log n
ℓ
, nt} n exact

tiles given

d-dimensional
��

u
ℓ

�
ε
�4( u

ℓ
)2ε2

Mε2 M
�
1 − 1

ε

�d

d-dimensional, tM + dM logε M M
�
Πd−1

i=1 (⌊1 + log ni⌋)
�
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⌋
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Table 2.1 [13, 14] A summary of the results for the genome tiling problems. All
the algorithms are either new or direct improvements of any previously known. The
parameter ε > 1 is any arbitrary constant. A s-subset is a subset ofs elements. For the
d-dimensional case,M = Πd

i=1ni(ui−ℓi +1), N = max1≤i≤d ni and u
ℓ

= maxi
ui

ℓi
.

For our biology applications p ≤ 100 < ℓ
2
≪ n, t ≃ n

u+ℓ
, m≪ n and ℓ

u−ℓ
< 6. The

column labeled “Approximation Ratio” indicates whether the algorithm computes the
optimal solution exactly or, for an approximation algorithm, the rat io of the total weight
of our tiling to that of the optimum.

We also summarize the application of the GTile problem to thegenomic sequences
of 5 model eukaryotes. The single largest chromosome from each organism was
considered as representative of the characteristics of that particular genome. Table 2.2
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lists the target chromosomes and their sequence properties. The chromosomes vary
in the degree of repeat density, where the first few examples contain relatively few
repetitive elements in comparison to the two mammalian sequences. In the cases of
C. elegans, A. thaliana, andD. melanogaster, the low repeat content allows us to tile
the sequences fairly well simply by subdividing the remaining high-complexity DNA
into sequence fragments within the appropriate size range.However, as the repeat
density increases in the genomes of higher eukaryotes, so does the fragmentation of
the high-complexity sequence containing genes and regulatory elements of biological
significance. It soon becomes impossible to achieve maximalcoverage of the high-
complexity sequence in the absence of further processing.

The results of applying the tiling algorithm to each chromosome appear in Ta-
ble 2.3. GTile improves the sequence coverage in all cases, easily covering nearly
100% of the high-complexity DNA in the smaller, less complex genomes with few
incorporated repeats. In practice, the coverage will neverreach100% because there
remains a population of small high-complexity sequences whose sizes fall below the
lower bound. In terms of experimental applications, these sequences are too small to
be chemically amplified by PCR and are therefore excluded from consideration.

Organism Chromosome Nucleotides Repeat Repetitive DNA % Repeats High-complexity
elements (bp) (bp) DNA

Caenorhabditis elegans V 20,916,335 16,575 2,414,183 11.5 18,502,152
(nematode)

Arabidopsis thaliana I 30,074,119 14,490 3,557,144 11.8 26,516,975
(flowering plant)

Drosophila melanogaster 3 51,243,003 27,259 3,106,633 6 48,136,370
(fruit fly)

Mus musculus 1 196,842,934 288,551 90,532,869 46 106,310,065
(laboratory mouse)

Homo sapiens 1 246,874,334 308,257 132,580,913 53.7 114,293,421
(human)

Table 2.2 [13, 14] Summary of target chromosome sequences. The sequences increase
in repeat density with the complexity of the genome, causing a greater degree of fragmen-
tation and loss of high-complexity sequence coverage in the unprocessed chromosomes.
This situation is especially problematic in the higher eukaryotes such as human and
mouse.
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Target chromosome Number of Tiles High-complexity DNA (bp) % Coverage Repetitive DNA (bp) % Repeats

Initial sequence coverage

C. eleganschrV 22,842 17,852,822 96.4

A. thalianachrI 30,075 25,972,994 98

D. melanogasterchr3 57,568 47,366,173 98.3

M. musculuschr1 142,165 90,988,520 85.5

H. sapienschr1 151,720 97,191,872 85

GTile, repeat penalty 6:1

C. eleganschrV 19,034 18,299,667 99 237,772 1.28

A. thalianachrI 25,349 26,376,577 99 196,222 0.74

D. melanogasterchr3 46,901 48,056,034 99 453,704 0.93

M. musculuschr1 128,472 96,280,008 90.5 2,314,565 2.34

H. sapienschr1 137,403 101,866,284 89 2,026,782 1.95

GTile, repeat penalty 5:1

C. eleganschrV 18,975 18,329,464 99 290,152 1.55

A. thalianachrI 25,344 26,391,095 99.5 213,917 0.8

D. melanogasterchr3 46,878 48,061,534 99.8 465,573 0.96

M. musculuschr1 127,146 97,953,586 92 4,304,560 4.2

H. sapienschr1 136,457 103,434,234 90.4 3,788,374 3.53

GTile, repeat penalty 4:1

C. eleganschrV 18,891 18,345,048 99 348,086 1.86

A. thalianachrI 25,342 26,396,637 99.5 226,559 0.85

D. melanogasterchr3 46,867 48,062,909 99.8 471,650 0.97

M. musculuschr1 125,787 98,617,314 92.7 5,765,790 5.52

H. sapienschr1 135,305 104,138,841 91 5,247,600 4.79

Table 2.3 [13, 14] GTile results for the 5 model eukaryotic chromosomes. Maximal
coverage of the high-complexity DNA is achieved with minimal repeat nucleotide inclu-
sion, while the number of required tiles decreases. Sets of non-overlapping tiles were
computed for the size range of 300 bp – 1 Kb.
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