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2.1 INTRODUCTION

The modern era of molecular biology began with the discoeéiire double helical
structure of DNA. Today, sequencing nucleic acids, therdsteation of genetic
information at the most fundamental level, is a major toddiofogical research [44].
This revolution in biology has created a huge amount of datgreat speed by
directly reading DNA sequences. The growth rate of datanelis exponential.
For instance, the volume of DNA and protein sequence datarigtly doubling
every 22 months [32]. One important reason for this exceptigrowth rate of
biological data is the medical use of such information indlesign of diagnostics
and therapeutics [22, 31]. For example, identification afedie markers in DNA
sequences would provide important informations regaravhéch portions of the
DNA are significant, and would allow the researchers to findyrdisease genes of
interest (by recognizing them from the pattern of inhexdgn Naturally, the large
amount of available data poses a serious challenge in gtoétrieving and analyzing
biological information.

A rapidly developing areaomputational biologyis emerging to meet the rapidly
increasing computational need. It consists of many impbra@eas such as infor-
mation storage, sequence analysis, evolutionary tredromtison, protein structure



prediction, and so on [22,31]. It is playing an importanterah some biological
research. For example, sequence comparison is one of thtempmstant method-
ological issues and most active research areas in curi@ogical sequence analysis
Without the help of computers, it is almost impossible to pane two or more bio-
logical sequences (typically, at least a few hundred chardeng). Applications of
sequence comparison methods can be traced back to thewegllkiuman Genome
Project[43], whose objective is to decode this entire DNA sequemekta find the
location and ordering of genetic markers along the length@thromosome. These
genetic markers can be used, for example, to trace the faheé of chromosomes
in families and thereby to find the location of disease geri&snetic markers can
be found by finding DNA polymorphismgg., locations where two DNA sequences
“spell” differently. A key step in finding DNA polymorphisnis the calculation of
the genetic distancewhich is a measure of the correlation (or similarity) betwe
two genomes.

In this chapter, we discuss computational complexities agutoximation algo-
rithms for a few DNA sequence analysis problems. We assuatethie reader is
familiar with the basic concepts of exact and approximagigorithms [20, 42], basic
computational complexity classes such as P and NP [23, 2&r8bbasic notions of
molecular biology such as DNA sequences [24, 45].

2.2 NONOVERLAPPING LOCAL ALIGNMENTS

As we have already seen, a fundamental problem in compnégdtioolecular biology
is to elucidate similarities between sequences and a ciomer result in this area
is that given two strings of length and ¢, there are local alignment algorithms
that will score pairs of substrings for “similarity” accang to various biologically
meaningful scoring functions and we can pull out all “simiilar high scoring
substring pairs in timé&(pg + n) wheren is the output size [45]. Having found
the high scoring substring pairs, a global description efgimilarity between two
sequences is obtained by choosing the disjoint subset sé thairs of highest total
score. This problemisin general referred to as the “nomtapping local alignment”
problem. We also mention a more generéldimensional version” of this problem
involving d > 2 sequences, where we scatsubstrings, one from each sequence,
with a similarity score and the goal is to select a collectibdisjoint subsets of these
d-tuples of substrings maximizing the total similarity.

A natural geometric interpretation of the problem is vieesthg a set of “inde-
pendent” rectangles in the plane in the following manner EBjch output substring
pair being represented as a rectangle; Figure 2.1 showst@igldllustration of
the relationship of a rectangle to local similarity betwéen fragments of two se-
guences. This gives rise to the following combinatoriaiimtation problem. We
are a given a sef of n positively weighted axis parallel rectangles. Define two
rectangles to be independent if for each axis, the projeaifoone rectangle does
not overlap that of another. The goal is to select a subse&t S of independent
rectangles from the given set of rectangles of total maxinugight. Theunweighted



NONOVERLAPPING LOCAL ALIGNMENTS iii

a a

E
(@]

Fig. 2.1 The rectangleR captures the local similarity (match) between the fragmenis
andbbc of the two sequences; weight &F is the strength of the match.

version of the problem is the one in which the weights of altaagles are identical.
In the d-dimensional version, we are given a set of positively weddhaxis parallel
d-dimensional hyper-rectangfesuch that, for every axis, the projection of a hyper-
rectangle on this axis does not enclose that of another. iDgfiwo hyper-rectangles
to be independent if for every axis, the projection of onedmectangle does not
overlap that of another; the goal is to select a subsigtdd#pendeniyper-rectangles
of total maximum weight from the given set of hyper-rectasg|

The non-overlapping local alignment problem, includirsgsppecial case as defined
by the IR problem described in Section 2.2.2, is known to bechifplete. The
best known algorithm for the general version of the nonaying local alignment
problem is due to [8] who provide 2d-approximation for the problem involving
d-dimensional hyper-rectangles. In the sequel, we willasadwo important special
cases of this problem that are biologically relevant.

2.2.1 The Chaining Problem

The chaining problem is the following special case [24, pa2@. A subset of
rectangles is called ehainif no horizontal or vertical line intersects more than one
rectangle in the subset in the subset and if the rectangtbe isubset can be ordered
such that each rectangle in this order is below and to the oigks predecessor. The
goal is to find a chain of maximum total similarity. This prebi can be posed as
finding the longest path in a directed acyclic graph and theselmits an optimal
solution in O(n?) time wheren is the number of rectangles. However, using a
sparse dynamic programming method, the running time canlest improved to
O(nlogn) [27].

1A d-dimensional hyper-rectangle is a Cartesian produdtiatervals.



2.2.2 The Independent Subset of Rectangles (IR) Problem

In this problem, first formulated by [3], for each axis, thejection of a rectangle on
this axis does not enclose that of another; this restriaiothe input is biologically
justified by a preprocessing of the input data (fragmentpé#ireliminate violations
of the constraint. See Figure 2.2 for an pictorial illustratof the problem.
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Fig. 2.2 Aniillustration of the IR problem

Consider the grapty formed from the given rectangles in which there is a node for
every rectangle with its weight being the same as that ofébngle and two nodes
are connected by an edge if and only if their rectanglesiatindependent. It is not
difficult to see thatz is a5-claw free graph [3] and the IR problem is tantamount
to finding amaximum-weighindependent set i¥. Many previous approaches have
used this connection of the IR problem to thelaw free graphs to provide better
approximation algorithms by giving improved approximategorithms ford-claw
free graphs. For example, using this approach, Bafna ]agdrgvided a polynomial
time approximation algorithm with a performance rétaf % for the IR problem
and Halldbrsson [25] provided a polynomial time approximation aigon with a
performance ratio d + ¢ (for any constant > 0) for the unweighted version of the
IR problen®. The current best approximation algorithm for the IR prabie due to
Berman [9] via the same approach which has a performanccecrhg + ¢ (for any
constant > 0).

Many of the abovementioned algorithms essentially stdht an arbitrary solution
and then allows small improvements to enhance the appréximguality of the
solution. In contrast, in this section we review the usaga simple greedy two-
phase technique to provide an approximation algorithmHerIR problem with a
performance ratio df that runs inD(n log n) time [10, 15]. The two-phase technique

2The performance ratio of an approximation algorithm for thgtBblem is the ratio of the total weights
of rectangles in an optimal solution to that in the solutioovided by the approximation algorithm.

3For this and other previous approximation algorithms withedn the performance ratio, the running
time increases with decreasiagthereby rendering these algorithms impractica i small. Also, a
straightforward implementation of these algorithms will rorat leas€2(mn) time.
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was introduced in its more general version as a multi-phpgeoach in the context of
real-time scheduling of jobs with deadline in [11, 12]; weiesv the generic nature
of this technique in Section 2.2.2.1. Although this appmeadion algorithm does not
improve the worst-case performance ratios of previousy algorithms, it is simple

to implement (involving standard simple data structureshsas stacks and binary
trees) and runs faster than the algorithms in [3, 9, 25].

2.2.2.1 The Local-ratio and Multi-phase TechniquesThe multi-phase technique
was introduced formally in the context of real-time schauybf jobs by the inves-
tigators in [11, 12]. Informally and very briefly, this tedhone works as follows:

(a) We maintain a stack containing objects that are tentatively in the soluti8ns
initially empty before the algorithm starts.

(b) We makek > 1 evaluation passesver the objects. In each evaluation pass:

e we inspect the objects in a specific order that is easy to ctagug, rectangles
in the plane in the order of their right vertical side),

e depending on the current content®fthe contents of during the previous
passes as well as the attributes of the current object, weuiena score for
the object,

e we push the object t8 if the score is above a certain threshold

(c) We make oneselection passver the objects irs in a specific order (typically,
by popping the elements &) and select a subset of the objectsithat satisfy the
feasilibilty criteria of the optimization problem underreideration.

Closely related to the two-phase version of the multi-ptiasknique, but some-
what of more general nature, is thexal-ratio technique. This technique was first
developed by Bar-Yehuda and Even [7] and later extended byn&eet al. [4] and
Bar-Yehuda [6]. The crux of the technique is as follows [S5ksAime that given an
n-dimensional vectop, our goal is to find a:-dimensionalsolutionvector # that
maximizes (respectively, minimizes) the inner producg subject to some sef of
feasibility constrainton Z. Assume that we have decomposed the vegtior two
vectorsp; andp; with p1 + p5 = p'such that, for some > 1 (respectivelyy < 1),
we can find a solution vectaf satisfyingF which r-approximate$; andp3, that
is, which satisfies both; - & > r - maxz{pi - ¥} andps - & > r - maxg{ps - J}
(respectivelypi - &£ < r - ming{pi - ¥} andp; - £ < r - ming{p5 - ¢}). Then,&
alsor-approximateg. This allows a given problem to be recursively broken down
in subproblems from which one can recover a solution to tiggral problem. The
local-ratio approach makes it easier to extend the resuétsarger class of problems,
while the multi-phase approach allows to obtain better agpration ratios in many
important special cases.

The multi-phase technique was used in the context of jobdsdimg in [11, 12]
and in the context of opportunity-cost algorithms for conatorial auctions in [1].
We will discuss the usage the two-phase version of the mbkise approach in the
context of the IR problem [10, 15] in the next section. In sotases, it is also
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possible to explain the multi-phase or the local-ratio apph using the primal-dual
schema; for example, see [5].

2.2.2.2 Application of the Two-Phase Technique to the IR Bfem The follow-

ing notations and terminologies are used for the rest ofthision. An intervala, b]

is the seffa,b] = {x € R: a < 2 < b}. ArectangleR is [a,b] X [c,d] for some
two intervals|a, b] and|c, d], wherex denotes the Cartesian product. The weight
of a rectangler is denoted byw(R). We assume that the reader with familiar with
standard techniques and data structures for the desigmaiy$ss of algorithms such
as in [20].

LetRy, Rs, ..., R, betheninputrectanglesin our collection, whele = X; xY;
for some two intervalsX; = [d;,e;] andY; = [fi,¢;]. Consider the intervals
Xy, X5, ..., X, formed by projecting the rectangles on one axis and callteyvals
X; and X; independent if and only if the corresponding rectandtesand R; are
independent. The notatiol; ~ X; (respectively,X; # X;) is used to denote if
two intervalsX; and X ; are independent (respectively, not independent).

To simplify implementation, we first sort the set of numbgis e; | 1 < i < n}
(respectively, the set of numbefg;,g; | 1 < i < n}) and replace each number in
the set by its rank in the sorted list. This does not changefeasible solution to
the given problem; however, after thiXn log n) time preprocessing we can assume
thatd;, e;, fi, 9: € {1,2,...,2n} for all i. This assumption simplifies the design of
data structures for the IR problem.

Now, we adopt the two-phase technique on the intersalsXs, ..., X,,. The
precise algorithm is shown in Figure 2.3. The solution tolfRgroblem consists
of those rectangles whose projections are returned in thico at the end of the
selection phase.

To show that the algorithm is correct we just need to show thatselected
rectangles are mutually independent. This is obviouslyetsby the final selection
phase. To implement this algorithm, we need to compute TATA). efficiently.
Using the fact that the intervals are considered in noneseing order of their
endpoints, we can reduce this to the problem of maintainidata structuré® for a
set of points in the plane with coordinates from the{ge®, ..., 2n} such that the
following two operations can be performed:

Insert(v, z,y): Insertthe point with coordinatés, y) (withz,y € {1,2,...,2n})
and valuev in D. Moreover, if Insertv, z, y) precedes Inseit’, z’, y'), then

Y >y.

Query(a, b, c): Givenaqueryrangg,b,c) (witha,b,c € {1,2,...,2n}U{—o00,0}),
find the sum of the values of all points, y) in D with a <z < bandy > c.

One can solve this problem ®(n log n) time and space preprocessing &dog n)
per query by using an appropriately augmented binary sdegeh see [10, 15] for
details. We can therefore implement the entire algorithn®{m logn) time and
space.

We now sketch the main points of the proof of the performarmti® of Algo-
rithm TPA-IR as detailed in [10, 15]. Ig8 be a solution returned by Algorithm TPA-
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(* definitions *)
atriplet («, 3,) is an ordered sequence of three valueg and~;
L is sequence that contains a triplet(R;), d;, e;)
foreveryR, = X; x Y; with X; = [d;, e;];
L is sorted so the values ef’s are in non-decreasing order;
Sis an initially empty stack that stores triplets;
TOTAL (X ) returns the sum af’s of those triplet§v, a, b) €Ssuch thafa, b] # X;;
(* evaluation phase *)
for (each(w(R;),d;,e;) fromL )

if (v>0)push(v,d;,e;),S);
}
(* selection phase *)
while ( Sis not empty)

{
v, di, ei) — pO[XS),
if ([d;,e;] ~ X for every intervalX in our solution)
insert[d;, e;] to our solution;
}

Fig. 2.3 Algorithm TPA-IR: Adoption of the two-phase technique for the IR prohlem
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IR and A be any optimal solution. For a rectanglee A, let us define théocal
conflict numberSg to be the number of those rectanglesinthat werenot in-
dependent of? and were examined no earlier thar by the evaluation phase of
Algorithm TPA-IR and let3 = maxgc 4 Or. First, we show that Algorithm TPA-IR
has a performance ratio gf. Next, we can show that the performance ratio of
Algorithm TPA-IR is 3 by showing that for the IR probleni = 3. First note that

8 = 3 is possible; see Figure 2.4. Now we show thBat- 3 is impossible. Refer
to Figure 2.4. Remember that rectangles in an optimal swiutbntributing tos
must not be independent of our rectan@lend must have their right vertical right
on or to the right of the vertical liné. Since rectangles in an optimal solution must
be independent of each other, there can be at most one opéotahgle crossing
(and, thereby conflicting witl® in its projections on the-axis). Any other optimal
rectangle must lie completely to the right bfand therefore may conflict witR in
their projections on thg-axis only; hence there can be at most two such rectangles.

3 optimal rectangle

---r

our rectangle

Fig. 2.4 A tight example for Algorithm TPA-IR showing = 3 is possible.

2.2.2.3 Further Discussions Algorithm TPA-IR makes a pass on the projections
of the rectangles on the-axis in a nondecreasing order of the endpoints of the
projections. Can we improve the performance ratio if we r@TR separately on
the projections on the-axis in left-to-right and in right-to-left order of endpus
and take the better of the two solutions? Or, even furthermag try running
Algorithm TPA-IR two more times separately on the projectian they-axis in
top-to-bottom and in bottom-to-top order and take the betteofour solutions. It is
easy to draw an example that shows that even then the woespea®rmance ratio
will be 3. We already exploited the planar geometry induced by thtangtes for the

IR problem to show that < 3. Further research may be necessary to see whether
we can exploit the geometry of rectangles more to design Isirapproximation
algorithms with performance ratios better tttahin the weighted case or better than
2 in the unweighted case.
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For thed-dimensional version, Algorithm TPA-IR can be applied inabvious
way to this extended version by considering the projectiditisese hyper-rectangles
on a particular axis. It is not difficult to see that< 2d — 1 for this case [19],
thus giving a worst-case performance ratic2df— 1. Whether one can design an
algorithm with a performance ratio that increases lesstidedly (e.g, sublinearly)
with d is still open.

2.3 GENOME TILING PROBLEMS

There are currently oved00 complete genome sequences available to the scientific
community, representing the three principal domains ef lifacteria, archaea, and
eukaryota [35]. Genome sequences vary widely in size angbosition. In addition
to the thousands of sequences that encode functional psodeid genetic regula-
tory elements, most eukaryotic genomes also possess anlangieer ofnon-coding
sequences which are replicated in high numbers througheugénome. These
repetitive elements were introduced over evolutionaryetand consists of families
of transposable elements that can move from one chromodooaion to another,
retroviral sequences integrated that are into the genomarviRNA intermediate,
and simple repeat sequences that can originate de novo &icatipn. Nearly50%

of human genomic DNA is associated with repetitive elemerfhe presence of
repeat sequences can be problematic for both computatmmbexperimental bi-
ology research. For example, BLAST searches [2] with gges@ntaining repeats
against large sequence databases often resultin mangspstibsequence matches,
obscuring significant results and wasting computationsbueces. Although it is
now standard practice to screen query sequences for repatiements, doing so
subdivides the query into a number of smaller sequenceofteat produce a less
specific match than the original. In an experimental contelken genomic sequence
is used to investigate the binding of complementary DNAgtigpe elements can
generate false positive signals and mask true positivesdwding highly redundant
DNA binding sites that compete with the meaningful targétsoonplementary probe
seguences.

Genomic DNA can be screened for repeat sequences usingkpettiprograms
such as RepeatMasker [39] which performs local subsequadigoenents [41] against
a database of known repetitive elements [28]. Repeats arerttasked within the
guery sequence, whereby a single non-nucleotide charactrbstituted for the
nucleotides of each repeat instance. This global charaeptacement preserves
the content and relative orientation of the remaining sgbeeces, which are then
interspersed with character blocks representing the itegetlements identified
during the screening process.

Although the screening and/or removal of repeats is gelyebaineficial, ad-
ditional problems may arise from the resulting genomic sege fragmentation.
Following repeat sequence identification, the remainigépftomplexity component
(i.e., non-repetitive DNA) exists as a population of fragnseranging in size from
a few nucleotides to several kilobases. For organisms ssiElomo sapienswhere



the genome contains many thousands of repeat elementsashengjority of these
high-complexity sequence fragments are belob in size. This situation presents
a significant impediment to both computational and expemialeresearch. Bioin-
formatics analyses often benefit from the availability efj&x contiguous sequences,
typically 1 Kb and larger, for homology searches and gene predictioimsilasly,
very small sequences<(200 bp) are of limited use in many high-throughput ex-
perimental applications. These constraints provide tteishaf the tiling problems
formalized in this section.

DNA microarray design A principal motivation for looking at the tiling problems
considered in this paper is their application to the desigBMA microarrays for
efficient genome analysis. The microarrays we consider &iereonstructed from
amplified genomic DNA. Each element consists of a relativehg (typically 300

bp - 1.2 Kb) sequence of genomic DNA that is acquired via fludymerase chain
reaction(PCR) [33] in which a segment of DNA may be selectively amgtifusing a
chemical system that recreates DNA replicaiionitro. Although the size resolution
of these array elements is not as fine as that of high-deritymucleotide systems,
PCR-based (oamplicon) microarrays provide experimental access to much larger
regions of contiguous genomic DNA. The tiling algorithm ddlsed here has recently
been used to design a microarray of this type to representdhmplete sequence
of human chromosome2 [37]. When considering PCR-based microarrays, we
are concerned with finding the maximum number of high-comiplesubsequence
fragments given a genomic DNA sequence whose repetitivmezies have been
identified and masked. A maximal-coverage amplicon arraytiven be designed by
deriving an optimal tile path through the target genomiaisege such that the best
set of fragments is selected for PCR amplification. Deteimgithis tile set allows
one to achieve optimal coverage of high-complexity DNA asrhe target sequence,
while simultaneously maximizing the number of potentiddseguences of sufficient
size to facilitate large-scale biological research.

2.3.1 Problem Statements

Based on the applications discussed in Section 2.3, we nowalze a family of
tiling problems. The following notations are used unifoyrttiroughout the rest of
the paper:

e [i,j) denotes the set of integefg i + 1,...,5 — 1};
o [i,j]=[i,i+1);

e f[i,j) and f[i, j] denote the elements of an arrAyith indices in[z, j) and
[i, 7], respectively.

Our tiling problems build upon a basic genome tiling algaritwhich we call the
GTile problemand describe as follows. The input consists of an atféyn) of real
numbers and two integer size parameteasdu. A subarrayB = c[i, j) is called a
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blockof lengthj — i andweightw(B) = Z{;ﬁ ¢k, the weight of a set of blocks is
the sum of their weights and a block is calletilaif its length belongs td¢, u]. Our
goal is to find a set of pairwise disjoint tiles with the maximpossible weight. The
tiling problems of interest in this paper are variationstrietions and generalizations
of the GTile problem specified by a certain combinations efftillowing items:

Compressed versus uncompressed input datarhis is motivated by a simple bi-
nary classification of the high-complexity regions of theng@e sequence
from their low-complexity counterparts. Now all entries«f, n) is eitherz
or —z for somefixedz > 0. Hence, the input sequence can be more efficiently
represented by simply specifying beginnings and endingtoaks of identical
value$. In other words, we can compress the input sequefite:) to a
sequence of integers (indice$)0, m + 1) such that

e 50=0,5,=n+1,5 > SpandS; > S;,_; foralli [Q,m];
e each element af[Sy;, Saj,1) isz forall0 < j < [ ];
e each element of[Sy;_1, S;) is —z forall 0 < j < [ ].

We note that the input size + 1 of such a compressed input data is typically
significantly smallethann. As a result, we can get significantly faster al-
gorithms if we can design an algorithm for compressed inpitts a running
time nearly linear inn. Furthermore, this also allows one to develop efficient
hybrid approach to solving the tiling problems: first usewderbinary classi-
fication of the regions to quickly obtain an initial set oésland then refine the
tiles taking into consideration the relative importancethe high-complexity
elements.

Unbounded versus bounded number of tiles:Another important item of interest
is when the number of tiles that may be used is at most a giviere ¥avhich
could be considerably smaller than the number of tiles ugedtting with no
restrictions on the number of tiles. This is motivated bygrectical consider-
ation that the capacity of a microarray as obtainable byeniirtechnology is
bounded.

Overlapping versus non-overlapping tiles: To enhance searching sequence data-
bases for homology searches to allow for the case when patematches
can be found at tile boundaries, it may be useful to relax thadition of
disjointness of tiles by allowing two tiles to share at mpstements for some
given (usually smalllp > 0. However, to ensure that we do not have too
many overlaps, we need fmenalizethem by subtracting the weight of each
overlapped region from the sum of weights of all tiles, whiéreweight of
each overlapped region is the sum of the elements in it. laratiords, if7 is

“Notice that a{0, 1} classification of the high-complexity regions from the loargplexity ones is not
suitable since then we do not penalize for covering low-cexipf regions and solving the tiling problem
becomes trivial.
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the set of tiles an® is the set of elements & that belong to more than one
tile in 7, then the weight i$ . w(T) — > . cx Ci-

One dimensional versusi-dimensional: Generalization of the GTile problem in
d dimensions has applications in database designs anddgledblems [16,
18,29, 30, 34]. In this case, we are given&dimensional arrayC of size
ny X ng X - X ng With 2d size parametery , ls, ..., g, uy, us, . . . , uq, atieis
a rectangular subarray @f of sizep; x ps x -+ x pg satisfying?; < p; < u;
for all 4, the weight of a tile is the sum of all the elements in the titel aur
goal is again to find a set of tiles such that the sum of weighthetiles is
maximized.

We examine only those combinations of the above four itenmstwdre of importance
in our applications. simplify exposition, unless othemvitated explicitly, the GTile
problem we consider is-dimensionalvith uncompresseithputs,unboundechumber
of tiles andno overlaps In addition to the previously defined notations, unless
otherwise stated, we use the following notations and vhasalvith their designated
meanings throughout the rest of the paper- 1 is the number of elements of the
(uncompressed)-dimensional input array[i, j), n1 < ny < --- < ngy are the sizes
of the dimensions for thé-dimensional input arrayy(7) is the weight for asetof
tiles 7, t is the given number of tiles when the number of tiles is bodraiedp is
the maximum overlap between two tileslirdimension. Finally, all logarithms are
in base2 unless stated otherwise explicitly.

2.3.2 Related Work

Tiling an array of numbers in one or more dimensions unddouarconstraints is a
very active research area (for example, see [16-18, 29430808 and has applica-
tions in several areas including database decision syppordimensional histogram
computation and resource scheduling. Several techniguek,as the slice-and-dice
approach [16], the shifting technique [26, Chapter 9] andagyic programming
methods based on binary space partitions [17, 29, 34] haweepruseful for these
problems. Our problems are different from the tiling probgein [16,17, 29, 30,
34, 40]; in particular, we do not require partitioning of teetire array, the array
entries may be negative and there are lower and upper bountie size of a tile.
Other papers which most closely relate to our work are thereetces [38] and [46].
The authors in [38] provide a®(n) time algorithm to find allmaximalscoring
subsequences of a sequence of lengthn [46] the authors investigate computing
maximal scoring subsequences which contain no subsequeritteweights below
a particular threshold.

5For example, in two dimensions with = ¢ = 0 andu; = us = oo this is precisely the ARRAY-
RPACK problem discussed in [29].
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2.3.3 Synopsis of Results

Our main theoretical results are summarized in Table 2rmfore details, see our
publications [13, 14]. All of our methods use simple datactures such as a double-
ended queues and are therefore easy to implement. Thedqeelsnised for many of
these tiling problems in one dimension use a solution daline Interval Maximum
(OLIM) problem via a windowing scheme reminiscent of thaf2i]. However,
the primary consideration in the applications in [21] watuetion of space because
of the online nature of their problems, whereas we are moneeroed with time-
complexity issues since our tiling problems are off-linenature (and hence space
for storing the entire input is always used). Moreover, oimdewing scheme is
somewhat different from that in [21] since we need to maimtaultiple windows of
different sizes and data may not arrive at evenly spacedititeevals.

| Version of GTile || Time O() \ SpaceO() \ Approximation Ratio |
| basic I n | n | exact |
overlap is from sn n exact
a s-subset of
[0,0],6 < £
compressed m-t, m—t; exact
input
number of min{nlog 7, nt} n exact
tiles given
w\2_2
-dimensional Le) e € 1-2
a-dimensional || (%) )"+ are2 v (-b |
-1
d-dimensional, || M + dM log® M M (= (L1 + 1og i)
log N
+leo;1gogN
number of
1 — & — . —1I
tiles given M@ DT g | T DT L gy (Hf;ll (Ll + logT’”J))

Table 2.1 [13,14] A summary of the results for the genome tiling prblems. All
the algorithms are either new or direct improvements of any previosly known. The
parametere > 1is any arbitrary constant A s-subset is a subset of elements. For the
d-dimensional caseM = 1< n;(u; —¢;+1), N = maxi<ij<qn;and § = max; 7;—
For our biology applications p < 100 < g Ln,t~ MLH m < n and ﬁ < 6. The
column labeled “Approximation Ratio” indicates whether the algorithm computes the
optimal solution exactly or, for an approximation algorithm, the ratio of the total weight

of our tiling to that of the optimum.

We also summarize the application of the GTile problem t@#momic sequences
of 5 model eukaryotes. The single largest chromosome from eaganism was
considered as representative of the characteristicsigdinacular genome. Table 2.2
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lists the target chromosomes and their sequence propefiwschromosomes vary
in the degree of repeat density, where the first few exampletam relatively few
repetitive elements in comparison to the two mammalianeecgs. In the cases of
C. elegansA. thaliang andD. melanogasterthe low repeat content allows us to tile
the sequences fairly well simply by subdividing the remagrigh-complexity DNA
into sequence fragments within the appropriate size raktpsvever, as the repeat
density increases in the genomes of higher eukaryotes,estte fragmentation of
the high-complexity sequence containing genes and regylatements of biological
significance. It soon becomes impossible to achieve maxémadrage of the high-
complexity sequence in the absence of further processing.

The results of applying the tiling algorithm to each chrooms appear in Ta-
ble 2.3. GTile improves the sequence coverage in all cassfly €overing nearly
100% of the high-complexity DNA in the smaller, less complex geres with few
incorporated repeats. In practice, the coverage will nex@ch100% because there
remains a population of small high-complexity sequencessaisizes fall below the
lower bound. In terms of experimental applications, thesgiences are too small to
be chemically amplified by PCR and are therefore excluded fronsideration.

Organism Chromosome Nucleotides Repeat Repetitive DNA % Repeats High-complexity \
elements (bp) (bp) DNA |

Caenorhabditis elegans \Y 20,916,335 16,575 2,414,183 115 18,502,152
(nematode)
Arabidopsis thaliana | 30,074,119 14,490 3,657,144 118 26,516,975
(flowering plant)
Drosophila melanogaster 3 51,243,003 27,259 3,106,633 6 48,136,370
(fruit fly)
Mus musculus 1 196,842,934 288,551 90,532,869 46 106,310,065
(laboratory mouse)

‘ ‘ ‘ 132,580,913 ‘ 53.7 ‘ 114,293,421 ‘

Homo sapiens 1 246,874,334 308,257
(human)

Table 2.2 [13,14] Summary of target chromosome sequences. &kequences increase
in repeat density with the complexity of the genome, causing a great degree of fragmen-
tation and loss of high-complexity sequence coverage in the unpressed chromosomes.
This situation is especially problematic in the higher eukaryotes such sashuman and
mouse.
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| Targetchromosome || Numberof Tiles | High-complexity DNA (bp) | % Coverage | Repetitive DNA (bp) | % Repeats |
| 1] Initial sequence coverage |

| C.eleganghrv [l 22,842 | 17,852,822 | 9.4 | | |
| A thalianachr! Il 30,075 | 25,972,994 | 9% | | |
| D.melanogastechr3 || 57,568 | 47,366,173 | 983 | | |
| M.musculughrl || 142,165 | 90,988,520 | 855 | | |
| H.sapienhrl [l 151,720 | 97,191,872 | 85 | | |

1] GTile, repeat penalty 6:1

| C.eleganshrv Il 19,034 | 18,299,667 | 99 | 237,772 | 1.28 |
| A thalianachrl [l 25,349 | 26,376,577 | 99 | 196,222 | 074 |
| D.melanogastechr3 || 46,901 | 48,056,034 | 99 | 453,704 | 093 |
| M. musculughrl [l 128,472 | 96,280,008 | 905 | 2,314,565 | 2.34 |
| H. sapienschrl [l 137,408 | 101,866,284 | 89 | 2,026,782 | 1.95 |
| 1] GTile, repeat penalty 5:1 |

| C.eleganghrv [l 18,975 | 18,329,464 | 99 | 290,152 | 155 |
| A thalianachri [l 25,344 | 26,391,095 | 995 | 213,917 | 08 |
| D.melanogastechr3 || 46,878 | 48,061,534 | 99.8 | 465,573 | 096 |
| M. musculughri [l 127,146 | 97,953,586 | 92 | 4,304,560 | 42 |
| H.sapienshrl Il 136,457 | 103,434,234 | 904 | 3,788,374 | 353 |
| 1] GTile, repeat penalty 4:1 |

| C.eleganghrv [l 18,891 | 18,345,048 | 99 | 348,086 | 1.86 |
| A thalianachrl Il 25342 | 26,396,637 | 995 | 226,559 | 0.85 |
| D.melanogastechr3 || 46,867 | 48,062,909 | 99.8 | 471,650 | 097 |
| M.musculughrl || 125,787 | 98,617,314 | 927 | 5,765,790 | 552 |
| H.sapienghrl [l 135,305 | 104,138,841 | 9 | 5,247,600 | 479 |

Table 2.3 [13,14] GTile results for the 5 model eukaryotic chromasmes. Maximal
coverage of the high-complexity DNA is achieved with minimal repeat acleotide inclu-
sion, while the number of required tiles decreases. Sets of non-alegpping tiles were
computed for the size range of 300 bp — 1 Kb.
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