
On the Intractability of Loading Neural Networks

Bhaskar DasGupta�

Dept� of Computer Science
University of Minnesota

Minneapolis� MN ����������
email� dasgupta�cs�umn�edu

Hava T� Siegelmanny

Dept� of Computer Science
Rutgers University

New Brunswick� NJ ����	
email� siegelma�paul�rutgers�edu

Eduardo Sontag y

Dept� of Mathematics
Rutgers University

New Brunswick� NJ ����	
email� sontag�control�rutgers�edu

� Introduction

Neural networks have been proposed as a tool for machine learning� In this role�
a network is trained to recognize complex associations between inputs and outputs
that were presented during a supervised training cycle� These associations are incor

porated into the weights of the network� which encode a distributed representation
of the information that was contained in the patterns� Once trained� the network
will compute an input�output mapping which� if the training data was representa

tive enough� will closely match the unknown rule which produced the original data�
Massive parallelism of computation� as well as noise and fault tolerance� are often
o�ered as justi
cations for the use of neural nets as learning paradigms�

By �neural network� we always mean� in this chapter� feedforward ones of the
type routinely employed in arti
cial neural nets applications� That is� a net consists
of a number of processors ��nodes� or �neurons�� each of which computes a function
of the type

y � �

�
kX

i��

aiui � b

�
���

of its inputs u�� � � � � uk� These inputs are either external �input data is fed through
them� or they represent the outputs y of other nodes� No cycles are allowed in the
connection graph �feedforward nets rather than �recurrent� nets� and the output
of one designated node is understood to provide the output value produced by the
entire network for a given vector of input values� The possible coe�cients ai and b
appearing in the di�erent nodes are the weights of the network� and the functions �
appearing in the various nodes are the node or activation functions� An architecture
speci
es the interconnection structure and the ��s� but not the actual numerical
values of the weights themselves�

�Research supported in part by NSF Grant CCR��������	
yResearch supported in part by US Air Force Grant AFOSR�����	
	

�

This chapter deals with basic theoretical questions regarding learning by neural
networks� There are three types of such questions that one may ask� all closely
related and complementary to each other� We next describe all three� keeping for
the end the one that is the focus of this chapter�

A possible line of work deals with sample complexity questions� that is� the
quanti
cation of the amount of information �number of samples� needed in order
to characterize a given unknown mapping� Some recent references to such work�
establishing sample complexity results� and hence �weak learnability� in the Valiant
model� for neural nets� are the papers ��� ��� ��� ���� the
rst of these references
deals with networks that employ hard threshold activations� the second and third
cover continuous activation functions of a type �piecewise polynomial� close to those
used in this chapter� and the last one provides results for networks employing the
standard sigmoid activation function�

A di�erent perspective to learnability questions takes a numerical analysis or
approximation theoretic point of view� There one asks questions such as how many
hidden units are necessary in order to approximate well� that is to say� with a
small overall error� an unknown function� This type of research ignores the training
question itself� asking instead what is the best one could do� in this sense of overall
error� if the best possible network with a given architecture were to be eventually
found� Some recent papers along these lines are ��� ��� ��� which deal with single
hidden layer nets� and ���� which dealt with multiple hidden layers�

Yet another direction in which to approach theoretical questions regarding learn

ing by neural networks� and the one that concerns us here� originates with the work
of Judd �see for instance ��	� ���� as well as the related work �	� ��� 	���� Judd� like
us� was motivated by the observation that the �backpropagation� algorithm often
runs very slowly� especially for high
dimensional data� Recall that this algorithm is
used in order to
nd a network �that is�
nd the weights� assuming a
xed archi

tecture� that reproduces the observed data� Of course� many modi
cations of the
vanilla �backprop� approach are possible� using more sophisticated techniques such
as high
order �Newton�� conjugate gradient� or sequential quadratic programming
methods� However� the �curse of dimensionality� seems to arise as a computational
obstruction to all these training techniques as well� when attempting to learn arbi

trary data using a standard feedforward network� For the simpler case of linearly
separable data� the perceptron algorithm and linear programming techniques help to

nd a network �with no �hidden units�� relatively fast� Thus one may ask if there
exists a fundamental barrier to training by general feedforward networks� a bar

rier that is insurmountable no matter which particular algorithm one uses� �Those
techniques which adapt the architecture to the data� such as cascade correlation or
incremental techniques� would not be subject to such a barrier��

In this chapter� we consider the tractability of the training problem� that is� of the
question �essentially quoting Judd�� �Given a network architecture �interconnection
graph as well as choice of activation function� and a set of training examples� does
there exist a set of weights so that the network produces the correct output for all
examples��

�

The simplest neural network� i�e�� the perceptron� consists of one threshold neu

ron only� It is easily veri
ed that the computational time of the loading problem
in this case is polynomial in the size of the training set irrespective of whether the
input takes continuous or discrete values� This can be achieved via a linear program

ming technique �see ���� for further results in this direction�� On the other
hand�
loading recurrent networks �i�e� networks with feedback loops� is a hard problem� In
����� Siegelmann and Sontag showed the existence of a
nite size recurrent network
made of a speci
c saturated linear neurons which is Turing universal� Thus� the
loading problem is undecidable for such nets� Furthermore� in ����� they showed
that if real numbers are allowed in the weights of these speci
c networks �rather
than rational ones� the network is equivalent to a non
uniform version of Turing
machines �i�e� Turing machine with advice� which is stronger than the common
model� Kilian and Siegelmann ���� proved universality for the sigmoidal network
and a large class of sigmoidal
type nets� They concluded that Turing
universality
is a common property among recurrent nets �and not only for the speci
c case of
the saturated linear function�� A di�erent power is demonstrated by the recurrent
threshold nets� It was proved in ��	� that the problem of determining whether a
recurrent network with threshold units �that is� the number of states in the network
is
nite� has a stable con
guration is P
hard� Bruck and Goodman��� showed that a
recurrent threshold network of polynomial size cannot solve NP
complete problems
unless NP�co
NP� The result was further extended by Yao���� who showed that
a polynomial size threshold recurrent network cannot solve NP
complete problems
even approximately within a guaranteed performance ratio unless NP�co
NP�

In the rest of this chapter� we focus on feedforward nets only� We show that�
for networks employing a simple� saturated piecewise linear activation function� and
two hidden units only� the loading problem is NP
complete� Recall that if one
establishes that a problem is NP
complete then one has shown� in the standard way
done in computer science� that the problem is at least as hard as most problems
widely believed to be hard �the �traveling salesman� problem� Boolean satis
ability
problem� and so forth�� This shows that� indeed� any possible neural net learning
algorithm �for this activation function� based on
xed architectures faces severe
computational barriers� Furthermore� our result implies non
learnability in the PAC
sense under the complexity
theoretic assumption of RP �� NP � We generalize our
result to another similar architecture�

The work most closely related to ours is that due to Blum and Rivest� see �	��
They showed a similar NP
completeness result for networks having the same archi

tecture but where the activation functions are all of a hard threshold type� that is�
they provide a binary output y equal to � if the sum in equation ��� is positive�
and � otherwise� In their papers� Blum and Rivest explicitly pose as an open prob

lem the question of establishing NP
completeness� for this architecture� when the
activation function is �sigmoidal� and they conjecture that this is indeed the case�
�For the far more complicated architectures considered in Judd�s work� in contrast�
enough measurements of internal variables are provided that there is essentially no
di�erence between results for varying activations� and the issue does not arise there�
However� it is not clear what are the consequences for practical algorithms when the

	

obstructions to learning are due to considering such architectures� In any case� we
address here the open problem exactly as posed by Blum and Rivest��

It turns out that a de
nite answer to the question posed by Blum and Rivest is
not possible� It is shown in ���� that for certain activation functions �� the problem
can be solved in constant time� independently of the input size� and hence the ques

tion is not NP
complete� In fact� there exist �sigmoidal� functions� innocent
looking
qualitatively �bounded� in
nite di�erentiable and even analytic� and so forth� for
which any set of data can be loaded� and hence for which the loading problem is not
NP
complete� The functions used in the construction in ���� are however extremely
arti
cial and in no way likely to appear in practical implementations� Nonetheless�
the mere existence of such examples means that the mathematical question is far
from trivial�

The main open question� then� is to understand if �reasonable� activation func

tions lead to NP
completeness results similar to the ones in the work by Blum and
Rivest or if they are closer to the other extreme� the purely mathematical con

struct in ����� The most puzzling case is that of the standard sigmoid function�
���� � e�x�� For that case we do not know the answer yet� but we conjecture that
NP
completeness will indeed hold� It is the purpose of this chapter to show an
NP
completeness result for piecewise linear or �saturating� activation function that
has appeared in the neural networks literature� especially in the context of hard

ware implementations� and which is relatively simpler to analyze than the standard
sigmoid�

We view our result as a
rst step in dealing with the general case of arbitrary
piecewise linear functions� and as a further step towards elucidating the complexity
of the problem in general�

The rest of the chapter is organized as follows�

� In section � we introduce the model and summarize some previous results� We
also distinguish the case of
xed versus varying input dimensions �and analog
versus binary inputs�� and observe that the problem is solvable in polynomial
time when the input dimension is
xed using standard linear
programming
techniques �see ���� for further positive results on PAC
learnability when the
input dimension is a
xed constant and the activation functions are piecewise
polynomials�� In the remaining part of the chapter we concentrate on the case
when the input dimension is not constant�

� In section 	 we prove the hardness of the loading problem for the � �
node
architecture and use this result to show the impossibility of learnability for
varying input dimension under the assumption of RP �� NP �

� In section � we conclude with some open problems�

Before turning to the next section� we provide a short overview on complex

ity classes and probabilistic learnability� Readers familiar with this material are
recommended to skip to Section ��

�

��� Some complexity classes

We informally discuss some well known structural
complexity classes �the reader
is referred to any standard text on structural complexity classes �e�g� ��� ���� for
more details�� Here� whenever we say polynomial time we mean polynomial time
in the length of any reasonable encoding of the input �see ��� for a discussion of
a �reasonable� encoding of the inputs�� and problems referred to here are always
decision problems�

A problem is in the class P when there is a polynomial time algorithm which
solves the problem� A problem is in NP when a �guessed� solution for the problem
can be veri
ed in polynomial time� A problem X is NP
hard i� any problem Y in
NP can be transformed in polynomial time f to X� such that given an instance I of
Y � I has a solution i� f�I� has a solution� A problem is NP
complete i� it is both NP
and NP
hard� Examples of NP
complete problems include the traveling salesperson
problem� the Boolean satis
ability problem and the set
splitting problem�

A problem X is in the complexity class RP ��random polynomial�� with error
parameter � if and only if there is a polynomial time algorithm A such that for every
instance I of X the following holds�

If I is a �yes� instance of X then A outputs �yes� with probability at
least �� � for some constant � � � � �� and if I is a �no� instance of X
then A always outputs �no��

It is well known that P � RP � NP � but whether any of the inclusions is proper
is an important open question in structural complexity theory�

��� Probabilistic learnability

Let n � N � A concept is a function f � f�� �gn � f�� �g� We focus on
functions computable by architectures �de
ned in section ����� hence� we use the
terms function and architecture interchangeably� The set of inputs f����� � fx j
x � f�� �gn� f�x� � �g is the set of negative examples� where the set of inputs
f����� � fx j x � f�� �gn� f�x� � �g is the set of positive examples�

Let Cn be the set Boolean functions on n variables de
ned by a speci
c architec

ture A� Then C � ��i��Cn is a class of representations achievable by the architecture
A for all binary input strings� For example� C may be the class of Boolean formulae
computable by one hidden
layer net with two sigmoidal hidden units and thresh

old output unit� Given some function f � C� POS�f� �resp� NEG�f�� denotes
the source of positive �resp� negative� examples for f � Whenever POS�f� �resp�
NEG�f�� is called� a positive or ��� �resp� negative or ���� example is provided
according to some arbitrary probability distribution D� �resp� D�� satisfying the
condition�

X
x�f�����

D��x� � �

�

X
x�f�����

D��x� � �

A learning algorithm is an algorithm that may access POS�f� and NEG�f��
Each access to POS�f� or NEG�f� is counted as one step� A class C of represen

tations of an architecture A is said to be ��� ���learnable i�� for some given
xed
constants � � �� � � �� there is a learning algorithm L such that for all n � N � all
functions f � Cn� and all possible distributions D� and D��

�a� L halts in number of steps polynomial in n� �
�
� �
�
� and jjAjj �where jjAjj denotes

the size of the architecture A��

�b� L outputs a hypothesis g � Cn such that with probability at least � � � the
following conditions are satis
ed�

X
x�g�����

D��x� � �

X
x�g�����

D��x� � �

A class C of representations of an architecture A is said to be learnable���� i� it
is ��� ��
learnable for all � and � �where � � �� � � ���

Remark ��� Hence� to prove that a class of representations of an architecture A is
not learnable� it is su�cient to prove that it is not ��� ���learnable for some particular
values of � and �� and some particular distributions D� and D��

As we will see later� our results on NP
completeness of the loading problem
will imply a non
learnability of the corresponding concept under the assumption of
RP �� NP �

� Preliminaries and previous works

In this section we de
ne our model of computation precisely and state some previous
results for this model�

��� Feedforward networks and the loading problem

Let � be a class of real
valued functions� where each function is de
ned on some
subset of IR� A �
net C is an unbounded fan
in directed acyclic graph� To each

�

vertex v� an activation function �v � � is assigned� and we assume that C has a
single sink w�

The network C computes a function fC � ��� ��n � IR as follows� The components
of the input vector x � �x�� � � � � xn� � ��� ��n are assigned to the sources of C� Let
v�� � � � � vk be the immediate predecessors of a vertex v� The input for v is then
sv�x� �

Pk
i�� aiyi � bv� where yi is the value assigned to vi and a and b are the

weights of v� We assign the value �v�sv�x�� to v� Then fC � sz is the function
computed by C where z is the unique sink of C�

The architecture A of the �
net C is the structure of the underlying directed
acyclic graph� Hence each architecture A de
nes a behavior function 	A that maps
from the r real weights �corresponding to all the weights and thresholds of the
underlying directed acyclic graph� and the input string into a binary output� We
denote such a behavior as the function 	A�IR

r� ��� ��n� �� f�� �g � The set of inputs
which cause the output of the network to be � �resp� �� are termed as the set of
negative �resp� positive� examples� The size of the architecture A is the number of
nodes and connections of A plus the maximum number of bits needed to represent
any weight of A�

The loading problem is de
ned as follows� Given an architecture A and a set
of positive and negative examples M � f�x� y� j x � ��� ��n� y � f�� �gg� so that
jM j � O�n��
nd weights
w so that for all pairs �x� y� �M �

	A�
w� x� � y �

The decision version of the loading problem is to decide �rather than to
nd the
weights� whether such weights exist that load M onto A�

Since the sink z of C is assumed to output only zero or one for the purpose of
loading� we may henceforth assume that sink z is a threshold gate without any loss
of generality�

For the purpose of this chapter we will be concerned with a very simple archi

tecture as described in the next section�

��� The k ��node architecture

Here we focus on � hidden layer ��HL� architectures� The k �
node architecture is
a �HL architecture with k hidden �
units �for some � � ��� and an output node
with the threshold activation H� The � �
node architecture consists of two hidden
nodes N� and N� that compute�

N��
a�
x� � ��
nX
i��

aixi��

N��
b�
x� � ��
nX
i��

bixi��

respectively�

�

The output node N� computes the threshold function of the inputs received from
the two hidden nodes� namely a binary threshold function of the form

N��N�� N�� �� 	� �� �

�
� �N��
a�
x� � 	N��
b�
x�
 �

� �N��
a�
x� � 	N��
b�
x� � �

for some parameters �� 	� and �� Figure � illustrates a � �
node architecture�

mm

m

C
C
C
CO

Q
Q

Q
Q

Qk

�
�
���

�
�
�
���

�
�
�
�
���

�
�
���

	
	
	
	

�

J
J
J�

�
�
�

n���

N�

N�N�

Figure �� A � ��node architecture

The two activations function classes � that we consider are the threshold func

tions H

H�x� �

�
� if x � �
� if x
 �

and the piecewise linear or �saturating� activation functions � de
ned as

��x� �

���
��
� if x � �
x if � � x � �
� if x
 � �

���

Another model� called the ��cascade architecture� was investigated by Lin and
Vitter���� �see
g� ��� A �
cascade architecture consists of two processors N� and
N� each of which computes a binary threshold function H� The output of the node
N� in the hidden layer is provided to the input of the output node N�� Moreover�
all the inputs are connected to both the nodes N� and N�� Obviously� this is equiv

alent to the � �
node architecture where the hidden node N� and the output node
N� computes the binary threshold function H� and the remaining hidden node N�

computes the identity function � �i�e�� ��x� � x for all x��

The �
cascade net is more economical in terms of the size of the architecture than
the � H
node architecture since they have lesser number of nodes and edges� Also�
from the di�erent classi
cations that can be produced by the �
cascade network as
mentioned in ����� it follows that they can realize all the classi
cations realizable by
the � H
node architecture and some additional classi
cations which cannot be real

ized by the � H
node architecture� Hence� the �
cascade network is more powerful
than the � H
node architecture in its classi
cation capabilities as well�

�

. . .

...

1 2 n

N 2

N 1

Figure �� A �
cascade network� Both the nodes N� and N� are threshold units�

��� Loading The k H�Node Network� Previous Work

We summarize the results known for loading a �
hidden layer threshold network �i�e�
a k H
node architecture for some integer k
 ��� We consider two kinds of inputs�
analog and binary� An analog input is in ��� ��d� where d is a
xed constant� also
called the input dimension� In the binary case� the input is in f�� �gn when n an
input parameter�

Consider the geometrical view of the loading problem for such a network� Every
threshold neuron de
nes a hyperplane� and we ask if there exists a set of hyperplanes
that separate the points in the d
dimensional space which are labeled ��� from the
points there which are separated as ���� The following de
nition is due to Megiddo
�����

De�nition ��� k�Polyhedral Separability� Given two sets of points A and B in
IRd� and an integer k� decide whether there exist k hyperplanes

Hj � fp � �x
j�Tp � xj�g� �x

j � IRd� xj� � IR� j � �� � � � � k�

that separate the sets through a Boolean formula� That is� associate a Boolean
variable vj with each hyperplane Hj � The variable vj is true at a point p if �xj�Tp

xj�� false if �x

j�Tp � xj�� and unde
ned at points lying on the hyperplane itself� A
Boolean formula � � ��v�� � � � � vk� that separates the sets A and B is true for each
point a � A and false for each b � B�

One hidden layer net with k hidden units separates the space by k hyperplanes�
However� not any Boolean formula of them is permitted� but only those which can
be de
ned by a threshold neuron� i�e�� the ones which are linearly separable in the
quadrants�

�

When the input is analog �and the input dimension is hence constant�� loading a
�
hidden layer network requires a polynomial time only in the size of the training set�
This result is achieved by utilizing a result described by Megiddo ����� Furthermore�
such nets are also learnable as was proven by Maass in ����� Megiddo proved�
in the same paper� that when the inputs are in Z� �that is� integer values with
unbounded dimensions� then problem turns to be NP
complete� even for the simple
� H
node architecture� Blum and Rivest�	� showed when the inputs are binary and
the training set is sparse �i�e� if n is the length of the longest string in the training
set M � then jM j is polynomial in n� the loading problem is NP
Complete for the �
H
node architecture� In another related paper� Lin and Vitter���� proved a slightly
stronger result by showing that the loading problem of �
cascade threshold net is
NP
complete�

Next� we summarize some of the proof techniques of the above stated previous
work�

����� Varying Input Dimensions �and Binary Inputs�� Loading The �
H�node Network is NP�Complete� Blum and Rivest

Theorem � ��� Loading the � H�node network is NP�Complete for the case of vary�
ing input dimensions�

The problem is in NP since the maximum number of bits required to represent
each weight is O�n log n� �see� for example� ������ To show that the problem is
complete in NP� the following geometrical view of the problem is considered�

LetM be the training set� and n is the length of the longest string inM � Assume
that jM j � O�n��

�� A training example �ij� oj� can be thought of as a point in n� �
dimensional
Boolean space f�� �gn��� labeled ��� �

�� The zeroes of the functions N�� N� can be thought of as n
dimensional hyper

planes in this space�

	� The two hidden nodes de
ne two hyperplanes which divide the n
dimensional
space into four quadrant �may be degenerate� according to the ��� sides of
each of them�

�� The output node computes a threshold function on these quadrants�

Hence� the loading problem for the � H
node architecture is equivalent to the
following problem� Given a collection of labeled points in f�� �gn� does there exist
either

�� A single hyperplane separating positive and negative points�

�� Two hyperplanes so that one quadrant consists of all positive points and no
negative point�

��

	� Two hyperplanes so that one quadrant consists of all negative points and no
positive point�

An outline of their proof is as follows� First they proved that the second
case� which they term as the quadrant of positive Boolean example problem� is NP

complete by giving a reduction from the set
splitting problem which is known to be
NP
complete���� To complete the proof for the � H
node network� they enlarged the
dimension of the problem by a small constant and enlarged the given training set
by a constant factor to disallow cases � and 	� For more details� see �	��

����� Fixed Input Dimension� Loading The k H�Node Network is Poly�
nomial Time

Theorem � Let k
 � be an integer constant� Then� it is possible to load any k
H�node architecture in polynomial time in the analog�input �	xed dimension
 case�

Before proving this result� we summarize the related result of Megiddo in ����
regarding polyhedral separability in
xed dimension and hyperplanes�

Lemma ��� ���� Let d� k be constants� and Z represents the integers numbers� M
is a set of points in Zd which are labeled ���� Then� there exists an algorithm to
decide whether a set of classi
ed pointsM can be separated by k hyperplanes which
takes time polynomial in jM j�

Proof� The following two propositions are proved there�

Proposition ��� ���� pp� 	��� The hyperplanes H��H�� � � � �Hk separate the sets
A and B through a Boolean formula i� for every pair of points a � A and b � B�
there exists a hyperplane Hi such that a and b lie on di�erent sides of it�

Proposition ��	 ���� pp� 		�� Suppose A and B are sets of points in IRd with
integer coordinates� and suppose there exists a hyperplane H � fp � Rd � yT � y�g
that separates A from B with yTa � y� for a � A� Then� there exists a hyperplane
H � fp � Rd � yTp � y�g� a positive rational number r� and integers jA� jB �jA� jB 	
�� jA � jB � d� �� such that�

�� For every a � A� xTa � x� � r�

�� For every b � B� xTb 	 x� � r�

	� For at least jA points a � A� and jB points b � B� xTa � x� � r and xTb �
x� � r�

�The last proposition is proven to be equivalent to a linear programming problem of
maximizing r 	 � over the bounded area� xTa � x�� r� xTb 	 x�� r� �� � xj � ��
which requires polynomial time only��

��

Assume the sets A�B � Zd are separable with k hyperplanes� Then� there exist k
pairs of subsets Ai� Bi �

S
Ai � A�

S
Bi � B� and k hyperplanes Hi �i � �� � � � k� such

that Hi separates Ai from Bi� By proposition ���� there exist such hyperplanes that
satisfy also the equalities stated in the proposition� Furthermore� each candidate
hyperplane is determined by some
nite set of at most d � � points and at most d
equalities xj � ��� �� We can enumerate in polynomial time of the sum jAj� jBj
all the relevant con
gurations of the k hyperplanes� By proposition ��	� it takes
polynomial time to check whether the hyperplanes separate A and B� Hence� the
algorithm requires only polynomial time in jM j��

Proof of Theorem �� The computational view of the loading problem of analog
input is very similar to the model of Lemma ���� However� in this case the points
are in ��� ��d rather than Zd� The second discrepancy is that the output of the k
H
node architecture is a linear threshold function of the hyperplanes rather than an
arbitrary Boolean function� The proof of Lemma ��� holds for the analog input as
well� We add a polynomial algorithm to test each separating con
guration of the
hyperplanes to assure that the output of the network is indeed a linear threshold
function of the hyperplanes��

� The Loading Problem For The � ��node Ar�

chitecture With Varying Input Dimensions�

One can generalize Theorem � and show that it is possible to load the � �
node
architecture with analog inputs �with
xed input dimensions� in polynomial time�
In this section we show that the loading problem for the � �
node architecture is
NP
complete when �binary� inputs of arbitrary dimension are considered� The main
theorem of this section is as follows�

Theorem ��� The loading problem for the � ��node architecture �L�AP
 with �bi�
nary
 inputs of varying dimension is NP�complete�

A corollary of the above theorem is as follows�

Corollary ��� The class of Boolean functions computable by the � ��node architec�
ture with �binary
 inputs of varying dimension is not learnable� unless RP � NP �

To prove theorem 	�� we reduce a restricted version of the set splitting problem�
which is known to be NP
complete���� to this problem in polynomial time� However�
due to the continuity of this activation function� many technical di�culties arise�
The proof is organized as follows�

�� Providing a geometric view of the problem �subsection 	����

�� Introducing the �k� l�
set splitting problem and the symmetric �
SAT problem
�subsection 	����

��

	� Proving the existence of a polynomial algorithm that transforms a solution
of the �	�	�
set splitting problem into a solution of its associated ���	�
set
splitting problem �using the symmetric �
SAT problem� �subsection 	�	��

�� De
ning the 	
hyperplane problem and proving it is NP
complete by reducing
from the ���	�
set splitting problem �subsection 	����

�� Proving that the L�AP is NP
complete� This is done using all the above
items�subsection 	����

In subsection 	��� we prove the corollary�

��� A Geometric View Of The Loading Problem

M 1

M 2

P 1

P 2

(0,1)

(1,1)

(0,0)

(1,0)

(a) (b)

(c) (d)

+

-

-

-

+

+
-

-

+

+

-

-

Figure 	� Di�erent classi
cations produced by the 	
node network�

We start by categorizing the di�erent types of classi
cations produced by the � �

node architecture� Without loss of generality we assume �� 	 �� � �if � � � or 	 � �
the network reduces to a simple perceptron which can be trained in polynomial
time�� Consider the � hyperplanes M� �

Pn
i�� aixi � �� M� �

Pn
i�� aixi � �� P� �Pn

i�� bixi � �� and P� �
Pn

i�� bixi � � �refer to
g� 	�� Let �c�� c�� denote the
set of points in the �n � ��
dimensional facet corresponding to

Pn
i�� aixi � c� andPn

i�� bixi � c�� As all points belonging to one facet are labeled equally� we consider
�labeling the facets� rather than the single points�

Type �� All facets are labeled either ��� or ���� In that case� all the examples are
labeled ��� or ���� respectively�

Type �� Exactly one facet is labeled ���� Assume that this facet is ������ Then�
two di�erent types of separations exist�

�	

�a� There exist two halfspaces H� and H� such that all the ��� points belong
to H�
H� and all the ��� points belong to H� �H� �H� and H� may be
identical��

�b� There exist three hyperplanes of the following form �
g� 	�b���

H� � ��
nX
i��

aixi�
 �

H� � 	�
nX
i��

bixi�
 �

H� �
nX
i��

��ai � 	bi�xi
 �

where �
 �� �� 	 � � � � �hence �
 ���� and all the ��� and ��� points
belong to H�
H�
H� and H� �H� �H�� respectively �here� as well� H�

and H� may be identical��

If any other facet is marked ���� a similar separation is produced�

Type �� Two facets are marked ��� and the remaining two are labeled ���� Because
the labeling must be linearly separable� only the following types of classi
ca

tions are possible�

�a� ��� �� and ��� �� are ��� �
g� 	�d��� Then� the input space is partitioned
via the three halfspaces�

H� � ��
nX

i��

aixi�
 � � 	

H� � ��
nX
i��

aixi�
 �

H� �
nX
i��

��ai � 	bi�xi
 �

	
 �� � � � � �� � � 	 � �

If 	 � � then all the ��� and ��� points lie in H� � �H�
H�� and H� �
�H�
H��� respectively�

If 	
 � then all the ��� and ��� points lie in H� � �H�
H�� and H� �
�H�
H��� respectively�

��

�b� ��� �� and ��� �� are ��� �
g� 	�c��� Then� the input space is partitioned
via the three halfspaces�

H� � 	�
nX
i��

bixi�
 � � �

H� � 	�
nX
i��

bixi�
 �

H� �
nX
i��

��ai � 	bi�xi
 �

�
 �� 	 � � � �� � � 	 � �

If � � � then all the ��� and ��� points lie in H� � �H�
H�� and H� �
�H�
H��� respectively�

If �
 � then all the ��� and ��� points lie in H� � �H�
H�� and H� �
�H�
H��� respectively�

�c� ��� �� and ��� �� are ��� �similar to
g� 	�d� with the labeling of ��� and
��� points interchanged�� This is the symmetrically opposite case of type
	�a��

�d� ��� �� and ��� �� are ��� �similar to
g� 	�c� with the labeling of ��� and
��� points interchanged�� This is the symmetrically opposite case of type
	�b��

Type 	� Three facets are labeled ���� This case is symmetrically opposite to type
�� and thus details are precluded� Note that two types are possible in type
�� namely type ��a� and type ��b�� depending upon whether two or three
halfspaces are involved� respectively �similar to type ���

��� The Set Splitting and Symmetric ��SAT Problems

The following problem is referred to as the �k� l�
set splitting problem �SSP� for
k 	 ��

INSTANCE� A set S � fsi j � � i � ng� and a collection C � fcj j � � j � mg
of subsets of S� all of exactly size l�

QUESTION� Are there k sets S�� � � � � Sk� such that Si�Sj � � for i �� j� �k
i��Si �

S� and cj �� Si for � � i � k and � � j � m�

��

Note that the �k� l�
SSP is solvable in polynomial time if both k � � and l � ��
but remains NP
complete if k 	 � and l � 	 �see �����

For later purposes we consider the symmetric �
SAT problem�

INSTANCE� Variables v�� v��

 � vn and a collection D of one or two literal dis

junctive clauses satisfying the condition�

�i� j ��vi � ��vj�� �� D� � ����vi� � vj� �� D�

QUESTION� Decide whether there exists a satisfying assignment� and
nd one if
exists�

Note that the clause �xi � xj� �resp� ���xi� � ��xj��� is equivalent to both the
implications ��xi � xj� and ��xj � xi� �resp� �xi � �xj� and �xj � �xi�� while
the clause xi �resp� �xi� is equivalent to the implication ��xi � xi� �resp� �xi �
�xi� � only� These two forms of disjunction and implication are used interchangeably�
In a manner similar to ����� we create a directed graph G � �V�E�� where where V �
fdi� di j vi is a variableg� and E � f�li� lj� j �i� j � f�� � � � � ng�� �li � fdi��dig�� �lj �
fdj ��djg�� �li � lj� � Dg� Note that an edge �x� y� in E is directed from x to y�
In the symmetric �
SAT problem� the graph G has the following crucial property�

��� Complemented and uncomplemented vertices alternate in any path� This is
because the edges in G are only of the form �di� dj� or �di� dj� for some two
indices i and j �i � j is possible��

The following algorithm
nds a satis
able assignment if exists or� stops if there
is no one�

�� Denote by � the transitive closure of �� For any variable vi such that vi �
�vi �resp �vi � vi� set vi to false �resp� true��

�� Repeat until there is no edge directed into a false literal or from a true literal�

� Pick an edge directed into a false literal� i�e� of the type dr � �ds �resp�
�dr � ds� so that the variable vs is set to true �resp� false� and set vr to
false �resp� true��

� Pick an edge directed from a true literal� i�e� of the type dr � �ds �resp�
�dr � ds� so that the variable vr is set to true �resp� false� and set vs to
false �resp� true��

	� If there is still an unassigned variable� set it arbitrarily and return to step ��
Otherwise� halt�

The above algorithm produces a satisfying assignment provided the following
condition holds �see� for example� ���� pp� 	��
	�����

��

The instance of the ��SAT problem has a solution if and only if there
is no directed cycle in G which contains both the vertices di and di for
some i�

It is easy to check the above condition in O�j V j� � O�n� time by
nding the
strongly connected components of G� Hence� computing a satisfying assignment
�or� reporting that no such assignment exists� can be done in time polynomial in
the input size�

��� The �k� l��Reduction Problem

We prove that under certain conditions� a solution of the �k� l�
set splitting instance
�S�C� can be transformed into a solution of the associated �k��� l�
set splitting
problem� More formally� we de
ne the �k� l�
reduction problem ��k� l�
RP� as follows�

INSTANCE� An instance �S�C� of the �k� l�
SSP� and a solution �S�� S�� � � � � Sk��

QUESTION� Decide whether there exists a solution �S��� S
�
�� � � � � S

�
k��� to the as

sociated �k��� l�
SSP and construct one if exists� where� for all i� j � f�� �� � � � � k �
�g i �� j�

S�i � Si � Ti

Ti � Sk

�Ti � Tj� � � i �� j

�k��
p��Tp � Sk

We next state the existence of a polynomial algorithm for the �	� 	�
reduction
problem� Since we are interested in placing elements of S� in S� or S�� we focus
on sets having at least one element of S�� Since �S�� S�� S�� is a solution of the
�	� 	�
SSP� no set contains 	 elements of S�� Let C � � fcj j � � i � mg � C be
the collection of sets which contain at least one element of S�� Obviously� �j�cj ��
S��
 �cj �� S��
 �cj �� S���

Let A � fai j � � i � jSjg and B � fbi j � � i � jSjg be two disjoint sets� Each
element of A �B is to be colored �red� or �blue� so that the overall coloring satis
es
the valid coloring conditions�

�a� For each set fxi� xj� xpg � C �� where xi� xj � S�� at least one of ai or aj should
be colored red if xp � S� and at least one of bi or bj has to be colored red if
xp � S��

�b� For each i� � � i � jSj� at least one of ai or bi has to be colored blue�

�c� For each set fxi� xj� xpg such that xp � S� and xi� xj � S� �resp� xi� xj � S���
ap �resp� bp� must be colored red�

��

Theorem ��� The following two statements are true�

�a� The �	� 	��reduction problem is polynomially solvable�

�b� If the �	� 	��RP has no solution� no valid coloring of A
S
B exists�

Proof�
�a� We show how to reduce the �	� 	�
reduction problem in polynomial time to the
symmetric �
SAT� As the later is polynomially solvable� part �a� will be proven�
Assume an instance �S�C� S�� S�� S�� is given and �S��� S

�
�� is to be found� For each

element xi � S� assign a variable vi� vi � TRUE �resp� vi � FALSE� indicates
that the element xi is placed in S� �resp� S��� For each set ck � fxi� xj� xpg� where
xi� xj � S�� if xp is in S�� create the clause �vi��vj �indicating both vi and vj should
not be true� since otherwise ck � S���� if xp is in S� create the clause vi � vj� for each
set ck � fxi� xj� xpg� where xi� xj � S� �resp� � S��� create the clause �vp �resp� vp��
Let D be the collection of all such clauses� This instance of the symmetric �
SAT
problem has a satisfying assignment if and only if the �	� 	�
RP has a solution� for
each variable vj� vj is true �resp� false� in the satisfying assignment if and only if xj
is assigned into S� �resp� S���

�b� Construct the graph G from the collection of clauses D as described in section
	��� If no satisfying assignment exists� the graph G has a directed cycle containing
both di and di for some i� We show that in that case no valid coloring of all the
elements of A � B is possible� rearrange the indices and names of the variable� if
necessary� so that the cycle contains d� and d�� and �due to property ��� of G of
section 	��� is of the form d� � d� � d� �

 � dr � d� � d�� � d�� � d�� �

 � ds� � d�� where r and s

� are two positive integers and x� y denotes an edge
directed from vertex x to vertex y in G �not all of the indices �� �� � � � � r� ��� ��� � � � � s�

need to be distinct�� Next� we consider the following � cases�

Case �� Assume a� is colored red� Hence� b� must be colored blue due to coloring
condition �b��

Consider the path from P from d� to d� �i�e�� the path d� � d�� where �
denotes the sequence of one or more edges in G�� The following subcases are
possible�

Case ���� P contains at least one edge of the form dt� � dt� or dt� � dt� for
some index t�� Consider the 	rst such edge along P as we traverse from
d� to d��

Case ������ The edge is of the form dt� � dt�� �that is� the associated
clause is �xt��� Consider the path P � � d� � dt�� P � is of the form
d� � d�� � d�� �

 � dt��� � dt� and t� is odd �t� � � is possible��
Now� due to coloring condition �a� and �b�� bt� is colored red �see
below��

��

i � � i � �� i � �� � � � i � t� � � i � t�

ai � blue red

 red
bi � blue red blue

 blue red

On the other hand� at� is colored red due to coloring condition �c�
and the edge dt� � dt�� But� coloring condition �b� prevents both at�
and bt� to be colored red�

Case ������ The edge is of the form dt� � dt� �that is� the associated
clause is xt��� Consider the path P � � d� � dt�� P � is of the form
d� � d�� � d�� �

 � dt��� � dt� and t� is even� Now� due to
coloring condition �a� and �b�� at� is colored red �see below��

i � � i � �� i � �� � � � i � t� � � i � t�

ai � blue red

 blue red
bi � blue red blue

 red

On the other hand� bt� is colored red due to coloring condition �c�
and the edge dt� � dt�� But� coloring condition �b� prevents both at�

and bt� to be colored red�

Case ���� P contains no edge of the form dt� � dt� or dt� � dt� for any index
t��

Then� s� is even� and because of the coloring conditions �a� and �b� we
must have bs� colored blue �see below��

i � � i � �� i � �� � � � i � s� � � i � s�

ai � blue red

 blue
bi � blue red blue

 red blue

Now� b� must be colored red because of the edge ds� � d�� a contradiction�

Case �� Assume a� is colored blue�

This case is symmetric to Case � if we consider the path d� � d� instead of
the path d� � d��

Hence� part �b� is proved� �

��� The ��hyperplane Problem

We prove the following problem� which we term as the 	
hyperplane problem �	HP��
to be NP
complete�

INSTANCE� A set of points in an n
dimensional hypercube labeled ��� and ����

QUESTION� Does there exist a separation of one or more of the following forms�

��

�a� A set of two halfspaces
a
x
 a� and H� �
b
x
 b� such that all the ��� points
are in H�
H�� and all the ��� points belong to H� �H��

�b� A set of 	 halfspaces H� �
a
x
 a�� H� �
b
x
 b� and H� �
�a� b�
x
 c� such
that all the ��� points belong to H�
H�
H� and all the ��� points belong to
H� �H� �H��

Theorem ��� The ��hyperplane problem is NP�complete�

Proof� We
rst notice that this problem is in NP as an a�rmative solution can be
veri
ed in polynomial time� To prove NP
completeness of the 	HL� we reduce the
���	�
set splitting problem to it�

Given an instance I of the ���	�
SSP�

I� S � fsig� C � fcjg� cj � S� j S j� n� j cj j� 	 for all j

we create the instance I � of the 	
hyperplane problem �like in �	���

� The origin ��n� is labeled ���� for each element sj � the point pj having
� in the jth coordinate only is labeled ���� and for each clause cl �
fsi� sj� skg� we label with ��� the point pijk which has � in its ith� jth�
and kth coordinates�

We next prove that

An instance I � of the 	
hyperplane problem has a solution if and only if instance
I of the ���	�
SSP has a solution�

�

Given a solution �S�� S�� of the ���	�
SSP� we create the following two halfspaces�
H� �

Pn
i�� aixi
 ��

�� where ai � �� if si � S� and ai � � otherwise� H� �
Pn

i�� bixi

��

�� where bi � �� if si � S� and bi � � otherwise� This is a solution type �a� of
the 	
hyperplane problem�

�

�A� If there is a separation of type �a�� the solution of the set
splitting is analogous
to �	�� Let S� and S� be the set of ��� points pj separated from the origin by H�

and H�� respectively �any point separated by both is placed arbitrarily in one of
them�� To show that this separation is indeed a valid solution� assume a subset
cd � fxi� xj� xkg so that pi� pj � pk are separated from the origin by H�� Then�
also cd is separated from the origin by the same hyperplane� contradicting its
positive labeling�

�B� Otherwise� let H� �
Pn

i�� aixi
 ��
�
� H� �

Pn
i�� bixi
 ��

�
and H� �

Pn
i���ai �

bi�xi
 c be the three solution halfspaces of type �b�� where �
 c �since the
origin is labeled ����� We show how to construct a solution of the set splitting
problem�

��

Let S� and S� be the set of ��� points pj separated from the origin by H� and
H�� respectively �any point separated by both is placed arbitrarily in one of
the sets�� and let S� be the set of points pj separated from the origin by H�

but by neither H� nor H�� If S� � � then S� and S� imply a solution as in
�A� above� Otherwise� the following properties hold�

�I� There cannot be a set cj � fsx� sy� szg where px� py and pz all belong to
S�� Otherwise� ax� ay� az � c � �� and the ��� point corresponding to cj is
classi
ed ��� by H�� Similarly� no set cj exists that is included in either
S� or S��

�II� Consider a set fsx� sy� szg� where px� py � S�� pz � S�� Since az � �
�
�
and

az � ax� ay
 ��
�� we conclude ax � ay
 �� Hence� at least one of ax or

ay must be strictly positive� Similarly� if pz � S�� at least one of bx� by is
strictly positive�

�III� Consider any element sx of S�� Since the associated point px is classi
ed
as ��� by H�� ax� bx � c � �� Hence� at least one of ax and bx is negative
for each px�

�IV� If there is a set fsx� sy� szg where sx � S�� and sy� sz � S� �resp� sy� sz �
S�� then ax �resp� bx� is positive� This is because since sy� sz � S� �resp�
sy� sz � S��� ay� az � �

�
� �resp� by� bz � �

�
��� but ax�ay�az
 ��

� �resp�
bx � by � bz
 ��

�
�� and hence ax

�
�
�resp� bx

�
�
��

As for condition �I�� �S�� S�� S�� can be viewed as a solution of the �	�	�
SSP�
We show that this solution can be transformed into a solution of the required
���	�
SSP�

Let A � fai j � � i � tg� B � fbi j � � i � tg� S�� S� and S� be as in
theorem 	��� Each element x of A�B is colored red �resp� blue� if x
 � �resp�
x � ��� Conditions �a�� �b� and �c� of valid coloring of A � B hold because
of conditions �II�� �III� and �IV� above� Thus� �S�� S�� S�� is transformed into
�S��� S

�
�� a solution of the ���	�
SSP� �

��� Loading The � ��node Architecture is NP�complete

Next� we prove that loading the � �
node architecture is NP
complete� We do so
by comparing it to the 	
hyperplane problem� To this end� we construct a gadget
that will allow the architecture to produce only separations of type � �section 	����
which are similar to those of the 	HP�

We construct such a gadget with two steps�
rst� in Lemma 	��� we exclude
separation of type 	� and then in Lemma 	�� we exclude separations of type ��

Lemma ��� Consider the ��dimensional hypercube in which ����
� �
�

 are labeled
���� and �
��
� ���

 are labeled ���� Then the following statements are true�

�a� There do not exist three halfspaces H�� H�� H� as described in type 	�a
��d
 in
section ��
 which correctly classify this set of points�

��

�b� There exist two halfspaces of the form H� �
a
x
 a� and H� �
b
x
 b�� where
a�� b� � �� such that all the ��� and ��� points belong to H�
H� and H� �H��
respectively�

Lemma ��� Consider the labeled set A� ������
� �
���

� ���
�

 are labeled ����
and �����

� ���
��
� �
����
� �
�
�

 are labeled ���� Then� there does not exist a
separation of these points by type � halfspaces as described in section ��
�

The proofs of Lemmas 	�� and 	�� involve a detailed case analysis and hence
omitted� they are available in ����

Consider the same classi
cation again on a 	
dimensional hypercube� ��������
�������� and ������� are labeled ���� and �������� �������� �������� and ������� are
labeled ���� Then� the following statements are true due to the result in �	��

�a� No single hyperplane can correctly classify the ��� and ��� points�

�b� No two halfspaces H� and H� exist such that all the ��� points belong toH��H�

and all the ��� points belong to H�
H��

�c� There exist two halfspaces H� �
P�

i�� �ixi
 �� and H� �
P�

i�� 	ixi
 	� such
that all the ��� points lie in H�
 H�� and all the ��� points lie in H� � H�

�where X � �x�� x�� x�� is the input��

Now� we can show that the loading problem for the � �
node architecture is
NP
complete�

Proof of theorem ���� First we observe that the problem is in NP as follows�
The classi
cations of the labeled points produced by the � �
node architecture �as
discussed in section 	��� are 	
polyhedrally separable� Hence� from the result of ����
we can restrict all the weights to have at most O�n log n� bits� Hence� a �guessed�
solution can be veri
ed in polynomial time�

Next� we show that the problem is NP
complete� Consider an instance I � �S�C�
of the ���	�
SSP� We transform it into an instance I � of the problem of loading the
� �
node architecture as follows� we label points on the �jSj��� hypercube similar
to as is � �section 	����

The origin ��jSj��� is labeled ���� for each element sj � the point pj hav

ing � in the jth coordinate only is labeled ���� and for each clause
cl � fsi� sj� skg� we label with ��� the point pijk which has � in its ith�
jth� and kth coordinates� The points ��n� �� �� �� �� ��� ��n� �� �� �� �� ���
��n� �� �� �� �� �� and ��n� �� �� �� �� �� are marked ���� and the points
��n� �� �� �� �� ��� ��n� �� �� �� �� ��� ��n� �� �� �� �� ��� ��n� �� �� �� �� ��� ��n� �� �� �� �� ��
and ��n� �� �� �� �� �� are labeled ����

��

Next� we show that a solution for I exists i� there exists a solution to I �� Given
a solution to the ���	�
SSP� by lemma 	���part�b�� and the result in �	� the two
solution halfspaces to I � are as follows �assume the last � dimensions are xn�� to
xn����

H� � �
nX
i��

aixi�� xn�� � xn�� � xn�� � xn�	 � xn��
 �
�

�

H� � �
nX
i��

bixi� � xn�� � xn�� � xn�� � xn�	 � xn��
 �
�

�

where

ai �

�
�� if si � S�
� otherwise

bi �

�
�� if si � S�
� otherwise

We map the two solution halfspaces into the � �
node architecture as follows��

N� � �����
nX
i��

aixi�� xn�� � xn�� � xn�� � xn�	 � xn���� �

N� � �����
nX
i��

bixi� � xn�� � xn�� � xn�� � xn�	 � xn���� �

N� �

�
� �N� �N�
 ��
� �N� �N� � �� �

Conversely� given a solution to I �� by Lemma 	���part �a��� Lemma 	�� and the
result in �	� �as discussed above� the only type of classi
cation produced by the �
�
node architecture consistent with the classi
cations on the lower � dimensions is
of type ��a� �with H� �� H�� or ��b� only� which was shown to be NP
complete in
theorem 	�	� �

Remark ��� From the above proof of theorem ��
 it is clear that the NP�
completeness result holds even if all the weights are constrained to lie in the set
f������ �g� Thus the hardness of the loading problem holds even if all the weights
are �small� constants�

��� Learning the � ��node Architecture

Here� we prove corollary 	�� which states that the functions computable by the �
�
node architecture is not learnable unless RP � NP � As it is not believed that NP

�	

and RP are equal� the corollary implies that most likely the � �
node architecture
is not learnable �i�e� there are particular values of � and � it is not ��� ��
learnable��

Proof of Corollary ���� The proof uses a similar technique to the one applied
in the proof of theorem � of ����� We assume that the functions computed by the
� �
node architecture are learnable and show that it implies an RP algorithm for
solving a known NP
complete problem� that is� NP�RP�

Given a instance I � �S�C� of the ��� 	�
SSP� we create an instance I � of the
� �
node architecture and a set of labeled points M �this was used in the proof of
theorem 	����

The origin ��jSj��� is labeled ���� for each element sj � the point pj hav

ing � in the jth coordinate only is labeled ���� and for each clause
cl � fsi� sj� skg� we label with

��� the point pijk which has � in its i
th�

jth� and kth coordinates� The points ��n� �� �� �� �� ��� ��n� �� �� �� �� ���
��n� �� �� �� �� �� and ��n� �� �� �� �� �� are marked ���� and the points
��n� �� �� �� �� ��� ��n� �� �� �� �� ��� ��n� �� �� �� �� ��� ��n� �� �� �� �� ��� ��n� �� �� �� �� ��
and ��n� �� �� �� �� �� are labeled ����

Let D� �resp� D�� be the uniform distribution over these ��� �resp� ���� points�
Choose � � minf �

jSj��
� �
jCj�	

g� and � � � � �� To prove the corollary it is su�cient

to show that for the above choice of �� �� D� and D�� ��� ��
learnability of the �
�
node architecture can be used to decide the outcome of the ��� 	�
SSP in random
polynomial time�

� Suppose I is an instance of the ��� 	�
SSP and let �S�� S�� be its solution� Then�
from the proof of the �only if� part of Theorem 	�� �see previous subsection��
there exists a solution to I � which is consistent with the labeled points of M �
So� if the � �
node architecture is ��� ��
learnable� then due to choice of � and
� �and� by Theorem 	���� the probabilistic learning algorithm must produce a
solution which is consistent with M with probability at least � � �� thereby
providing a probabilistic solution of the ��� 	�
SSP� That is� if the answer to
the ��� 	�
SSP question is �YES�� then we answer �YES� with probability at
least � � ��

� Now� suppose that there is no solution possible for the given instance of the
��� 	�
SSP� Then� by Theorem 	��� there is no solution of the � �
node architec

ture which is consistent with M � Hence� the learning algorithm must always
either produce a solution which is not consistent with M � or fail to halt in
time polynomial in n� �

�
� and �

�
� In either case we can detect that the learning

algorithm was inconsistent with labeled points or did not halt in stipulated
time� and answer �NO�� In other words� if the answer to the ��� 	�
SSP is
�NO�� we always answer �NO��

Since the ��� 	�
SSP is NP
complete �i�e�� any problem in NP has a polynomial
time transformation to ��� 	�
SSP�� it follows that any problem in NP has a random

��

polynomial time solution� i�e�� NP � RP � But it is well
known that RP � NP �
hence we have RP � NP � �

� Conclusion and Open Problems

We have shown that the loading problem is NP
complete even for a simple feedfor

ward network with a speci
c �saturated linear � �analog type� activation functions�
This adds to the previously known results stating that the loading of a simple net
with discrete activations is NP
complete ��	�� and a net with a speci
c �somehow
arti
cial� analog activation function has a fast loading ������� It is possible to extend
the NP
completeness result when a
xed polynomial number of threshold units are
added in the hidden layer� provided the function computed by the output node is
restricted� the reader is refered to ��� for details� Unfortunately� our proof does not
seem to generalize for standard sigmoid or other similar activation functions� The
following open problems may be worth investigating further�

� Does the NP
completeness result hold for the � �
node architecture� where
��x� � �

��e�x
is the standard sigmoid function�

� What is the complexity of the loading problem for networks with more layers�
Note that hardness of the loading problem for networks with one hidden layers
does not necessarily imply the same for networks with more hidden layers� In
fact� it is already known that there are functions which cannot be computed
by threshold networks with one hidden layer and a constant number of nodes�
but can be computed by threshold networks with two hidden layers and a
constant number of nodes�����

� Is there a charecterization of the activation functions for which the loading
problem is intractable�

References

��� Barron� A�R�� �Approximation and estimation bounds for arti
cial neural net

works�� Proc� �th Annual Workshop on Computational Learning Theory� Mor

gan Kaufmann� ����� pp� ��	
����

��� Baum� E�B�� and Haussler� D�� �What size net gives valid generalization���
Neural Computation� �������� ���
���

�	� Blum� A�� and Rivest� R� L�� �Training a 	
node neural network is NP

complete�� in Advances in Neural Information Processing Systems � �D�S�
Touretzky� ed�� Morgan Kaufmann� San Mateo� CA� ����� pp� �
��� also
as �Training a 	
Node Neural Network is NP
Complete�� Neural Networks�

������� ���
����

��

��� Bruck� J�� and Goodman� J� W�� �On the power of neural networks for solving
hard problems�� Journal of Complexity� �������� ���
�	��

��� Darken� C�� Donahue� M�� Gurvits� L�� and Sontag� E�� �Rate of approximation
results motivated by robust neural network learning�� Proc� �th ACMWorkshop
on Computational Learning Theory� Santa Cruz� July ���	� pp� 	�	
	���

��� DasGupta� B�� and Schnitger� G�� �The power of approximating� a comparison
of activation functions�� in Advances in Neural Information Processing Systems
� �Giles� C�L�� Hanson� S�J�� and Cowan� J�D�� eds�� Morgan Kaufmann� San
Mateo� CA� ���	� pp� ���
����

��� DasGupta� B�� Siegelmann� H� T�� and Sontag� E�� �On the Complexity of Train

ing Neural Networks with Continuous Activation Functions�� Tech Report !
�	
��� Department of Computer Science� University of Minnesota� September�
���	�

��� Fischer� P� and Simon� H� U�� �On Learning Ring
Sum Expansions�� SIAM J�
Computing� ��� �������� ���
����

��� Garey� M� R�� and Johnson� D�� Computers and Intractability� A Guide to the
Theory of NP�Completeness� W�H�Freeman and Company� San Francisco� �����

���� Gill� J�� �Computational Complexity of Probabilistic Turing Machines�� SIAM
J� Computing�
� 	������� ���
����

���� Goldberg� P�� and Jerrum� M�� �Bounding the Vapnik
Chervonenkis dimension
of concept classes parametrized by real numbers�� Proc� �th ACM Workshop
on Computational Learning Theory� Santa Cruz� July ���	� pp� 	��
	���

���� Jones� K�L�� �A simple lemma on greedy approximation in Hilbert space and
convergence rates for projection pursuit regression and neural network train

ing�� Annals of Statistics� to appear�

��	� Judd� J�S�� �On the complexity of learning shallow neural networks�� J� of
Complexity� 	������� ���
����

���� Judd� J�S�� Neural Network Design and the Complexity of Learning� MIT Press�
Cambridge� MA� �����

���� Kearns� M�� Li� M�� Pitt� L�� and Valiant� L�� �On the learnability of Boolean
formulae�� Proc� of the
�th ACM Symp� Theory of Computing� ����� pp� ���

����

���� Kilian� J� and Siegelmann� H� T�� �ComputabilityWith The Classical Sigmoid��
Proc� of the �th ACM Workshop on Computational Learning Theory� Santa
Cruz� July ���	� pp� �	�
��	�

���� Lin� J
H�� and Vitter� J� S�� �Complexity results on learning by neural net

works�� Machine Learning� �������� ���
�	��

��

���� Macintyre� A�� and Sontag� E� D�� �Finiteness results for sigmoidal "neural�
networks�� Proc� ��th Annual Symp� Theory Computing� San Diego� May ���	�
pp� 	��
		��

���� Maass� W�� �Bounds for the computational power and learning complexity of
analog neural nets�� Proc� of the ��th ACM Symp� Theory of Computing� May
���	� pp� 		�
	�� �

���� Maass� W�� Schnitger� G�� and Sontag� E� D�� �On the computational power of
sigmoid versus boolean threshold circuits�� Proc� of the ��nd Annual Symp� on
Foundations of Computer Science������ pp� ���
����

���� Megiddo� M�� �On the complexity of polyhedral separability�� Discrete Com�
putational Geometry� �������� 	��
		��

���� Muroga� S�� Threshold Logic and its Applications� John Wiley � Sons Inc��
�����

��	� Papadimitriou� C� H�� Sch#a�er� A� A�� and Yannakakis M�� �On the Complexity
of Local Search�� Proc� ��nd Annual Symp� Theory Computing� ����� pp� �	�

����

���� Papadimitriou� C�H�� and Steiglitz� K�� Combinatorial Optimization� Algo�
rithms and Complexity� Prentice
Hall� Englewood Cli�s� �����

���� Roychowdhury V� P�� Siu K�
Y�� and Kailath T�� �Classi
cation of Linearly
Non
Separable Patterns by Linear Threshold Elements�� to appear in IEEE
Trans� on Neural Networks�

���� Siegelmann H� T�� and Sontag E� D�� �On the computational power of neural
nets�� Proc� �th ACM Workshop on Computational Learning Theory� Pitts

burgh� July� �����

���� Siegelmann H� T� and Sontag� E� D�� �Neural networks with Real Weights�
Analog Computational Complexity�� TCS journal� to appear�

���� Sontag� E�D�� �Feedforward nets for interpolation and classi
cation�� J� Comp�
Syst� Sci�� 	
������� ��
���

���� Yao� X�� �Finding Approximate Solutions to NP
hard Problems by Neural Net

works is hard�� Information Processing Letters� 	�������� �	
���

�	�� Zhang� X
D�� �Complexity of neural network learning in the real number
model�� preprint� Comp� Sci� Dept�� U� Mass�� �����

��

