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ABSTRACT

We analyze networks of functional correlations between brain regions to identify changes in their structure caused by Attention
Deficit Hyperactivity Disorder (ADHD). We express the task for finding changes as a network anomaly detection problem
on temporal networks. We propose the use of a curvature measure based on the Forman-Ricci curvature, which expresses
higher-order correlations among two connected nodes. Our theoretical result on comparing this Forman-Ricci curvature with
another well-known notion of network curvature, namely the Ollivier-Ricci curvature, lends further justification to the assertions
that these two notions of network curvatures are not well correlated and therefore one of these curvature measures cannot be
used as an universal substitute for the other measure. Our experimental results indicate nine critical edges whose curvature
differs dramatically in brains of ADHD patients compared to healthy brains. The importance of these edges is supported by
existing neuroscience evidence. We demonstrate that comparative analysis of curvature identifies changes that more traditional
approaches, for example analysis of edge weights, would not be able to identify.

Introduction and motivation
It is by now a common research practice to study the properties of complex interconnected systems by representing them as
heterogeneous networks and then using various network-theoretic tools for their analysis1, 2. Such heterogeneous networks
may vary in diversity from simple undirected networks to edge-labeled directed networks. One such class of network models
are temporal networks3 (networks whose edges vary over time) where elementary components of the network (such as nodes
or edges) are added and/or removed as the network evolves over time. Examples of such networks include biological signal
transduction networks with node dynamics, biochemical reaction networks, infectious disease contact networks, and time-
evolving correlation networks3. Typically, such networks may have a set of critical elementary components (or simply “critical”
components) whose presence or absence alters a significant global property of these networks between two time steps. Finding
such a set of critical components in the context of temporal networks is more popularly called the anomaly detection or the
change-point detection problem in statistics, computer science or data mining literature4, 5, and prior widely used application
areas of these problems include medical condition monitoring6, 7, weather change detection8, 9 and speech recognition10, 11.

In this paper, we will use the two terms “graph” and “network” interchangeably. We provide a formal definition of the
network anomaly detection problem following a mathematical framework similar to what is described in12. To identify critical
components of a temporal network, one first needs to provide details for the following four specific items:

(i) the network model under consideration,

(ii) a definition of the elementary components of the network, and

(iii) how the network changes over time,

(iv) the property of the network that will be used to identify critical components.

Let t ≥ 0 be the time variable. For this paper, the details of these four items are as follows:

(i)′ The temporal network model considered in this paper is a complete undirected graph G(t) = (V,E,w(t)) with a
fixed set of n nodes V , a set of (all possible) edges E = {{u,v}|u,v ∈ V, u 6= v}, and an edge-weight function
w : E× [0,∞) 7→ R+∪{0} that assigns a non-negative real number w(e, t) to each edge e ∈ E for every time t. We will



use the notations w(u,v, t), w(v,u, t) and w(e, t) interchangeably to indicate the weight of an edge e = {u,v} at time t.
Note that alternatively we could also view G(t) as a n×n connectivity matrix A(t) = [au,v(t)] where the (u,v)th entry of
the matrix is given by au,v(t) = w(u,v, t).

(ii)′ The elementary components are the edges of the network, or equivalently following the convention as described above,
they are every pair of nodes in the network.

(iii)′ The network changes over time by modification of these elementary components, i.e., the network changes over time by
changing the weights of edges while keeping the same set of nodes. Note that a change of the weight of an edge from
zero to a non-zero value is interpreted as the addition of a new edge, whereas a change of the weight of an edge from a
non-zero value to zero is interpreted as the deletion of an existing edge.

(iv)′ The property of the network studied in this paper is the curvature of G given by a suitable version of the Forman’s
combinatorialization of Ricci curvature for networks (henceforth will be referred to simply as the “Forman-Ricci
curvature”)13–17. For now, assume that the Forman-Ricci curvature for a complete graph G(t) = (V,E,w(t)) at time t is
a real-valued scalar function CG :

(
V ×V \{(u,u) |u ∈V}

)
× [0,∞) 7→ R that maps every pair of nodes of G at time t

to a real number with the assumption that

. CG(u,v, t) = CG(v,u, t), i.e., CG(u,v, t) is symmetric with respect to its first two arguments, and

. CG(u,v, t) = 0 if w(u,v, t) = 0.

Then, our network anomaly detection problem can be defined as follows.

Given two complete graphs G(t1) = (V,E,w(t1)) and G(t2) = (V,E,w(t2)), find one or more pair(s) of nodes u,v
such that the value of |CG(u,v, t1)−CG(u,v, t2)| is sufficiently large.

In the above formulation of the network anomaly detection problem, we want |CG(u,v, t1)−CG(u,v, t2)| to be sufficiently
large since we want to identify large changes in the network to be more confident that the network is altered. This is equivalent
to identifying connected components of the network with similar curvature values in the two time steps and focusing on the
bridges among these components. Further technical details are provided later in the “Methods and Materials” section. Here we
solve the network anomaly detection problem in the context of changes of the human brain network caused by Attention Deficit
Hyperactivity Disorder (ADHD). ADHD is one of the most common neuro-developmental disorders of childhood impacting
parts of the brain that help us plan, focus on, and execute tasks. ADHD impacts approximately 11% of children and 5% of
adults in the US alone. It is usually first diagnosed in childhood and often lasts into adulthood. Children with ADHD may have
trouble paying attention, exhibit controlling impulsive behaviors, or be overly active. Unfortunately, the causes and risk factors
for ADHD are still unknown, and as of yet there is no single clinical test that helps diagnose ADHD before its onset. There
are several published neuroimaging studies that link the behavioral symptoms of ADHD to altered connections between brain
regions. In the last few years, network analysis methods have been extensively used for studying properties of human brain
networks18–21. The human brain can be divided into different regions based on functional or anatomical properties22. One
can consider these regions as nodes of a brain network and define the edges as functional correlations among brain regions.
Two prior graph theoretical studies of ADHD23, 24 reported changes at the global level of the entire brain but did not study any
altered connection patterns between different regions in the brain. In this paper we use our curvature-based network anomaly
detection algorithms to detect statistically significant altered connection patterns between different regions of the brain.

Another related work25 characterized the brain networks affected by Autism Spectrum Disorder (ASD) using Ollivier-Ricci
curvature. Individuals with ASD have altered white matter developmental patterns compared to individuals without ASD. White
matter development can be altered by neuro-inflammation, which in turn is associated with abnormalities in cerebrospinal fluid
circulation. Autologous cord blood infusion, a potential therapy, is believed to reduce neuro-inflammation and promote white
matter development, thus triggering a reconfiguration of connectivity patterns in the brain. Simhal et al.25 used the Ollivier-Ricci
network curvature (based on the mass transportation distance) to quantify the changes in the brain network after administering
ASD patients a single infusion of autologous umbilical cord blood. They calculated the Spearman correlation between changes
in clinical behavioral scores and changes in curvature following treatment, and identified a relationship between clinical
improvement and altered curvature in three white matter pathways that are implicated in social and communication abilities.
We, on the other hand, use the combinatorial Forman-Ricci network curvature to determine and quantify the local and global
changes in the brain network due to the onset of ADHD and highlight the target nodes and edges which undergo major alterations
due to the disease. We believe that our work in localizing the changes in the brain network will aid biomedical science in
targeting specific treatment of the disease before the behavioral symptoms manifest.
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Notational simplifications

For simplified exposition and ensuring that notations are minimalistic, we will use the following conventions in suitable
places through the article including supplementary documents.

. We may omit the time variable t from the argument of G, w, CG, or any other notation that uses t in its argument if it is
completely clear from the context.

. We may interpret an edge e with w(e, t) = 0 as an edge that is actually not present in the given graph at time t.

. If we use the above conventions, then we will further simplify exposition by renaming the two (complete) input graphs
G(t1) = (V,E,w(t1)) and G(t2) = (V,E,w(t2)) of the network anomaly detection problem as G1 = (V,E1,w1) and
G2 = (V,E2,w2), respectively, where

. E1 = E \{e |w(e, t1) = 0},

. E2 = E \{e |w(e, t2) = 0},

. w1 : {(u,v) |u,v ∈V, u 6= v} 7→ R+∪{0} is given by w1(u,v) = w(u,v, t1), and

. w2 : {(u,v) |u,v ∈V, u 6= v} 7→ R+∪{0} is given by w2(u,v) = w(u,v, t2).

Brief history of various notions of curvature for networks

Various notions of curvature are already widely used in disciplines such as physics and mathematics to study properties of
high-dimensional objects of certain types 26, 27. However, extensions of these curvature concepts to graphs and hyper-graphs are
quite non-trivial for several reasons such as the discreteness and the lack of a preferred geometric embedding for combinatorial
objects. There are several ways previous researchers have attempted to formulate such an extension in addition to what is used
in this paper; we briefly review two such major approaches. We note that the references cited at various places in the paper
also show that these kinds of network curvature measures can encode non-trivial topological properties that are not expressed
by more established graph-theoretic measures such as degree distributions, clustering coefficients or betweenness centralities.
Moreover, some of these references also show that these curvature measures can explain many phenomena one frequently
encounters in real network-theoretic applications that are not easily explained by other measures.

The first kind of extension that gives rise to network curvatures involves some appropriate discretization of the Ricci
curvature for a Riemannian manifold to capture metric properties of the manifold. Typically, these extensions defines a curvature
value for every edge of a graph. In addition to the Forman-Ricci discretization used in this paper, another relevant and more
direct discretization is the Ollivier’s discretization of Ricci curvature (the “Ollivier-Ricci” curvature)28–31. Roughly speaking,
the Ollivier-Ricci curvature is calculated by defining a probability distribution on the neighborhoods of two nodes of an edge
and then calculating the difference between the weight of the edge and the L1 Wasserstein distance between the two above
distributions. This kind of curvature is very different compared to the Forman-Ricci curvature used in this paper.

In another direction and historically much before the discretizations of Ricci curvature were formulated, Gromov and others
defined a notion of network curvature (the ”Gromov-hyperbolic” curvature) via geodesic triangles that captures properties of
the set of exact and approximate geodesics of the entire network26, 32. There is a large body of research works dealing with
various aspects of this measure, e.g., see12, 33–37. The Gromov-hyperbolic curvature is a global measure in the sense that it
assigns a scalar value to the entire graph, and therefore is not directly suitable for comparing components of two graphs.

There are also other notions of network curvatures explored in past literatures. For example, Chow and Luo38 provided a
notion of network curvature based on circle packings.

Methods and Materials

Formal definition of 222-complex based Forman-Ricci network curvature
This paper used the combinatorial complex-based Forman-Ricci network curvature as defined below. For other notions of
network curvatures, we refer the reader to references26, 28, 30. Assume that G = (V,E,w) is the given graph with n nodes
and m edges. For a formal definition we require some basic concepts from topology as available in introductory textbooks
such as39, 40; for convenience of the reader, we summarize these concepts in supplementary document S1. Conceptually, we
define Forman-Ricci curvature of a network by “extrapolating” the network to higher-dimensional complexes via topological
association13. To define such a topological association, the following definitions and assumptions are used for a simplicial
complex:
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. We define a partial order relation ≺ between faces of various dimensions of a simplex or a convex polytope in the usual
manner: a `-face f` is a parent of a `′-face f̂`

′
(denoted by f̂`

′≺ f`) if f̂`
′

is contained in f`. Also, two `-faces f` and f̂`

are parallel (denoted by f` ‖ f̂`) if they have either at least one common immediate predecessor or at least one common
immediate successor (in the partial order ≺) but not both.

. We assume that there exists a weight function ω(f) that assigns a non-negative weight (real number) to every face f.
We will provide precise details of our implementation of the weight function in the next sub-section.

Informally, the higher-dimensional complex in the topological association is obtained by “gluing” nodes, edges, cycles and
other sub-graphs of the given graph. There are many alternate ways such topological associations can be performed12–14, 41, 42.
Our topological association is similar to that used in12 and is described as follows. For q ∈ {0,1,2}, we topologically associate
a q-simplex with a (q+ 1)-clique Kq+1, i.e., 0-simplexes, 1-simplexes and 2-simplexes are associated with nodes, edges
and 3-cycles (triangles), respectively. Next, we use the concept of an order of a 2-simplex for more non-trivial topological
association. Consider a p-face f p of a q-simplex for q ∈ {0,1,2}. An order d association of such a face, which we will denote
by the notation f p

d with the additional subscript d, is associated with a sub-graph of at most d nodes that is obtained by starting
with Kp+1 and then optionally replacing each edge by a path between the two nodes. In other words,

. f 0
d is a node of G for all d ≥ 1.

. f 1
2 is an edge, and f 1

d for d > 2 is a path having at most d nodes between two nodes adjacent in G.

. f 2
3 is a triangle (cycle of 3 nodes or a 3-cycle), and f 2

d for d > 3 is obtained from 3 nodes in a 3-cycle by connecting
every pair of nodes by a path such that the total number of nodes in the sub-graph is at most d.

For a node v, an edge e and a cycle C, let the notations v∼ e and e∼C indicate that v is an end-point of e and e is an edge of
C, respectively. The basic formula of the 2-complex based order d Forman-Ricci curvature of an edge e = {u,v} ∈ E is given
by13:

C2,d
G (e) def

= C2,d
G (u,v) = ω(e)




 ∑

e∼ f 2
d

ω(e)
ω( f 2

d )
+ ∑

v∼e

ω(v)
ω(e)


— ∑

e′||e

∣∣∣∣∣∣ ∑
e′,e∼ f 2

d

√
ω(e)ω(e′)
ω( f 2

d )
— ∑

v∼e,v∼e′

ω(v)√
ω(e)ω(e′)

∣∣∣∣∣∣


 (1)

Note that C2,d
G (u,v) = 0 if ω(e) = 0 as stated previously in the “Introduction” section.

Based on our need, we make one slight modification of the above formula. Finding all edges e′ such that e′ is parallel to an
edge e would involve an worst-case running time of O(nd) which is quite prohibitive for us since we select d as 5. To make our
calculations computationally tractable we therefore take only those edges parallel to e that belong to the same face, i.e., instead
of ∑e′||e we use ∑e′||e,e′,e∼ f 2

d
. Note that two parallel edges e.e′ belonging to the same face cannot have a common end-point.

Thus, the simplified formula used in this paper is the following:

C2,d
G (e) def

= C2,d
G (u,v) = ω(e)




 ∑

e∼ f 2
d

ω(e)
ω( f 2

d )
+ ∑

v∼e

ω(v)
ω(e)


— ∑

e′||e,e′,e∼ f 2
d

√
ω(e)ω(e′)
ω( f 2

d )


 (2)

Equation (2) may look complicated at first glance to some readers. For the convenience of the reader, we illustrate the calculation
of C2,5

G (e) for a small-size graph in supplementary document S2.
Let C2,d

G (e)(1) and C2,d
G (e)(2) be the values of C2,d

G (e) as computed by (1) and (2), respectively. What properties should a
graph possess so that the two values C2,d

G (e)(1) and C2,d
G (e)(2) are identical? Call an edge e′ adjacent to the edge e if e and e′

share a node, i.e., if e′ is of the form {u,v′} or {u′,v} for some u′ 6= u or v′ 6= v. We define an edge e′ to be an order d hanging
edge with respect to an edge e = {u,v} (or, simply a hanging edge if other parameters are clear from the context) provided it
satisfies the following two conditions (see Figure 1 for an illustration):

. The edges e and e′ are adjacent.

. G does not contain a (simple) cycle of length (number of edges) at most d containing the edges e and e′.

Proposition 1. If G has no hanging edges with respect to e then C2,d
G (e)(1) = C2,d

G (e)(2).

A proof of Proposition 1 is provided in supplementary document S3; note that the claim in Proposition 1 does not depend
on the weights of the faces. Some examples of graph classes that satisfy the condition in Proposition 1 are as follows (these are
just some examples, and do not necessarily list every possible graph class that satisfy the condition):
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. The class of complete k-partite graphs for any k ≥ 3 satisfy the condition in Proposition 1.

. The class of complete bipartite graphs with every partition having at least two nodes satisfy the condition in Proposition 1
for any d ≥ 4.

. Any biconnected graph of circumference at most d satisfy the condition in Proposition 1.

. The class of standard hypercube graphs43 satisfy the condition in Proposition 1 for any d ≥ 4. To see this, let n = 2k

and let G = (V,E) be the standard k-dimensional hypercube where V = {(b1, . . . ,bk) |b1, . . . ,bk ∈ {0,1}} and two
nodes are connected by an edge if and only if they differ in exactly one coordinate. Let u = (x1,x2,x3, . . . ,xk), v =
(1− x1,x2,x3, . . . ,xk), and u′ = (1− x1,1− x2,x3, . . . ,xk). Then, a cycle of length at most 4 containing the edges e and e′

consists of the edges {u,v},{v,u′},{u′,u′′},{u′′,u} where u′′ = (x1,1− x2,x3, . . . ,xk).

. Increasing d allows more graph classes to satisfy the condition in Proposition 1. For the largest possible value of d,
namely when d = n, all biconnected graphs satisfy the condition in Proposition 1.

. Consider the classical Erdös-Rényi random graph model44 G(n, p), namely the class of random graphs, parameterized
by p, in which each possible edge {u,v} is selected independently for inclusion in G with a probability of p for
some 0 < p < 1, and for convenience let the notation diam(H) denote the diameter of a graph H. The random graph
G(n, p)\{u,v} obtained from G(n, p) by deleting the two nodes u and v and all the edges incident on these two nodes is
itself an Erdös-Rényi random graph on n−2 nodes with the same p (since edges are selected independently). Note that
G(n, p) satisfies the condition in Proposition 1 if diam(G(n, p)\{u,v})≤ d−3, and there are at most

(n
2

)
< n2/2 choices

of the two nodes u and v. Thus, using known extremal results for diam(G(n, p)) and the union bound for probabilities
we get the following bounds (the standard phrase “with high probability (w.h.p.)” in probabilistic methods refers to a
probability of at least 1−o(1), i.e., a probability whose limit is 1 as n tends to infinity):

. If p ≥ 2log2 n
n then for all sufficiently large n G(n, p) satisfies the condition in Proposition 1 w.h.p. for all

d ≥ 2log2 n
log2 log2 n . For this result we need to use the bounds in Theorem 7.1 and Theorem 7.2 in45.

. If p is a fixed constant less than 1 then for all sufficiently large n G(n, p) satisfies the condition in Proposition 1
w.h.p. for all d. For this result we need to use the bounds in Corollary 10.11 in46.

Existence of a cycle C of at most d edges containing the edges e and e′ implies the existence of a path P between u′ and
v of α ≤ d−2 edges {u,u1},{u1,u2}, . . . ,{uα−1,u′} where the nodes u1, . . . ,uα−1 are distinct from the nodes u′ and v. As
mentioned in the “Introduction” section, our graph could be viewed as an n×n connectivity matrix A = [au,v] where zero entries
correspond to edges not present in the graph. Viewed in this context, satisfying the condition in Proposition 1 is tantamount to
satisfying the following claim:

for every ordered sequence of α−1≤ d−3 nodes from V \{u,v,u′}, say the nodes u1, . . . ,uα−1, at least one of
the α quantities (henceforth to be referred to as the “weights of the sequence”) w(u,u1),w(u1,u2), . . . ,w(uα−1,u′)
must be zero.

The total number Λ of ordered sequences of at most d−3 nodes from V \{u,v,u′} is given by Λ = ∑
d−3
j=1

(n−3
j

)
j!. Since Λ

rapidly grows with n and d, it is unlikely that each of these Λ ordered sequences will have at least one zero weight, unless n and
d are relatively small or unless the connectivity matrix A has a large number of zeroes. For the connectivity matrix considered
in this paper, n = 200 and d = 5, giving Λ =

(197
2

)
×2+

(197
1

)
= 38809, a very large number.

Details of the ADHD brain networks analyzed in this study
The data for our empirical analysis was collected from the UCLA Multimodal Connectivity Database47 as available via
the website http://umcd.humanconnectomeproject.org. This is a web based data repository with specific data
analysis tools. The data here are in the form of connectivity matrices derived from neuroimaging data. The site is administered
by MGH/UCLA Human Connectome Project. The source of the data %added[comment=newly added] available via various
links in the website are of various imaging modalities such as fMRI, DTI, structural MRI and EEG, however the imaging
modality for the specific study that we use is only fMRI. The data is also divided into various subject groups, ages, gender and
spans different disorders such as Alzheimer’s, Autism, and ADHD. Further details are available in supplementary document S5.
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Algorithmic and other specific details of our analysis of the ADHD brain networks
Since computation of C2,d

G (e) via Equation (2) requires (implicit or explicit) enumeration of cycles of up to d edges, the running
time is prohibitive for arbitrary correlation matrices and arbitrarily large d. Thus, to reduce the time complexity we made the
following decisions so that curvatures and z-scores can be computed within reasonable time:

. We selected d = 5 so that using appropriate data structures we could still get the empirical results discussed in this paper
within reasonable time.

. The original connectivity matrix had 200 nodes with a total of 34036 non-zero entries (edges). In order to reduce the
computation time, we sparsified the given correlation matrix by zero-ing out all entries that are less than a threshold of
0.4. We observed that for a threshold of 0.3, the total number of non-zero entries was 27701 and our algorithm took a
very long time to compute the edge curvatures. However, for a threshold of 0.4, the total number of non-zero entries was
25220 and the time taken was reduced to a manageable level. We also observed that for a higher threshold of 0.57 the
graph corresponding to the non-zero entries in the thresholded connectivity matrix became disconnected, and the total
number of non-zero edges was significantly reduced to 8800.

The computation of C2,5
G (e) requires a value for the weight ω( f 2

d ) for d ∈ {4,5}. To satisfy this demand, we only considered
those cycles that are “chordal”, i.e., they can be built by merging triangles along their common edge. We then specify the
weight function ω for the given graph G = (V,E,w) in the following manner:

. The weight ω(e) of an edge e ∈ E is the correlation value of the edge, i.e., ω(e) = w(e).

. The weight ω(v) of a node v ∈V is the average of the correlation values of the edges incident on v, i.e., ω(v) = ∑v∼e w(e)
deg(v)

where deg(v) is the degree of node v.

. The weight of a triangle (3-cycle) f 2
3 consisting of edges e1,e2,e3 is ω( f 2

3 ) = (w(e1)+w(e2)+w(e3))/3.

. The weight ω( f 2
d ) for d ∈ {4,5} were obtained by adding the weights of triangles from which f 2

d was built.

Evaluation of statistical significance
As briefly mentioned in the “Introduction” section, given the two graphs G1 = (V1,E1,w1) and G2 = (V2,E2,w2) and a pair of
nodes u,v such that the absolute value of ∆u,v = C2,5

G1
(u,v)−C2,5

G2
(u,v) is sufficiently large, we need to evaluate the statistical

significance of this difference. For this purpose, we need a subroutine that, given a brain network G = (V,E,w) and a pair
of nodes u,v ∈ V , generates a random network Gu,v similar to G in the sense that the random network keeps the relation
between the nodes u and v (i.e., if {u,v} ∈ E then the edge is always kept but otherwise u and v are never connected by an
edge), and preserves the first-order topological characteristics (such as the degree sequence) of G but randomizes higher-order
statistics (such as distribution of paths) of G. Due to the absence of accurate generative null models for brain networks, we
use the well-known and widely used Markov-chain algorithm for generating random networks48 that starts with the given
network G, and repeatedly swaps randomly chosen pairs of connections up to η times for a sufficiently large positive integer
η (for our specific implementation we selected η = 5|E|). For the convenience of the reader, we provide the pseudo-code of
the Markov-chain algorithm in supplementary document S4. This approach was used in papers such as49, 50. Given such a
subroutine for generating random networks, we use the following generic method which is by now standard in the network
science literature dealing with various types of biological networks49–51. We repeat the following step 100 times: during the jth

iteration we generate two independent random networks Gu,v
1, j and G

u,v
2, j from G1 and G2, respectively, and calculate the value

∆̃u,v, j = C2,5
G

u,v
1, j
(u,v)−C2,5

G
u,v
2, j
(u,v). We then calculate the standard Z-score52 of the observed value ∆u,v with respect to the 100

samples ∆̃u,v,1, ∆̃u,v,2, . . . , ∆̃u,v,100 as the desired statistical significance, and use a standard cut-off of 2 for labeling the Z-score as
the criteria for being statistically significant. Using a Z-score to relate a property of an actual network to the distribution of the
same property in an ensemble of randomized networks is a well established and popular method in network science, e.g., see53.

Results
For our results, G1 = (V,E1,w1) and G2 = (V,E2,w2) correspond to the mean connectivity matrix of the 27 healthy individuals
and the 24 diseased (ADHD) patients, respectively, and henceforth will be referred to as the “control network” and the “disease
network”, respectively. We implemented a program in PYTHON to efficiently compute C2,5, and used it to compute the values
of C2,5

G1
(u,v) and C2,5

G2
(u,v) for every pair of nodes u and v.
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Theoretical results
Comparison of Ollivier-Ricci curvature and Forman-Ricci curvature
References such as28, 54 provide precise mathematical definitions of the Ollivier-Ricci curvature of a graph; for the convenience
of the reader we do summarize these definitions in supplementary document S6. Let CO-R

G (e) denote the value of Ollivier-Ricci
curvature of an edge e of a given graph G = (V,E). It is not possible to directly compare the numerical values of C2,d

G (e) and
CO-R

G (e) for a given graph G since CO-R
G (e) is a value in the range [−2,1]54 but C2,d

G (e) is a value in the range [−`,`′] for two
numbers `,`′ > 0 that depends on n and m via the topology of G. However, under the standard assumption that the zero value
of a curvature represents the default flat curvature, one would expect the signs of the two curvatures to be not correlated if they
indeed represent different discretization of the Ricci curvature for a Riemannian manifold. For further discussion, we recall the
standard definition of the sign function sgn:

sgn(x) =





1, if x > 0
undefined, if x = 0

−1, otherwise

The following theorem shows the lack of correspondence of the signs of the two curvatures.

Theorem 1. For every s1,s2 ∈ {−1,1} and for every d ≥ 5 the following claim is true: there exists an infinite family G of
graphs such that for every graph G ∈G it holds that sgn(C2,d

G (e)) = s1 and sgn(CO-R
G (e)) = s2 for some edge e of G.

The proof of Theorem 1 is lengthy, requires review of some definitions and notations of prior literature, and uses Theorem
13.3 and its corollary in55; we therefore provide the proof in supplementary document S6. To the best of our knowledge, the
result in Theorem 1 has not been formally proved before.

On a related note, Samal et al.17 empirically compared CO-R
G (e)) to some version of the Forman-Ricci curvature, and found

that those two measures were correlated for a few real networks (similar assertions were also very briefly mentioned in56).
However, as Samal et al.17 themselves cautioned, their results should not be construed as implying that one of these curvature
measures can be used as a universal substitute for the other measure, but merely that for some real networks using one of
those measures that allow faster implementation may suffice. Our results in Theorem 1 lends further theoretical justification to
their caution. There is no contradiction between our theoretical results and the empirical observations in17, 56. To provide
an analogy, consider the standard simplex algorithm for the linear programming problem. It has been theoretically proved
that there exists examples of inputs for which for which simplex takes exponential time57. However, it is also a well-known
observation that simplex runs in polynomial time for many empirical data58, and there is no contradiction between these two
kinds of knowledge.

Empirical results
First-order statistics of edge curvatures of control and disease networks
To begin, we display the first-order statistics of the curvatures of edges for the two networks in Figure 2. These results shows
that average curvature values of the two networks are not significantly different due to many edges of similar curvature values.

Edges with large statistically significant curvature differences
In accordance with the framework of our network anomaly detection problem as defined in the “Introduction” section, we next
calculated the curvature differences ∆u,v = C2,5

G1
(u,v)−C2,5

G2
(u,v) for every pair of nodes u,v ∈V . The average and the standard

deviation of the ∆u,v values were found to be 0.384 and 6.9, respectively. Since the standard deviation was close to 7, we
selected a value about twice the standard deviation (15) as a suitable cutoff for detecting drastic changes in curvature between
corresponding edges. We found 32 pairs of nodes u,v which satisfied |∆u,v|> 15, and each such pair of node u,v correspond to
an edge e = {u,v} ∈ E1∩E2 (i.e., node pairs with non-zero correlation values) in both the control network G1 and the disease
network G2 (and henceforth referred to as the 32 “outlier edges”). These edges and their corresponding curvature differences in
the disease and control networks are shown in Table 1. Following are a few observations about these 32 outlier edges:

1. The top 2 outlier edges (i.e., the outlier edges with the largest and the second largest |∆e| values) belong to both the
occipital region and to the parietal lobe region of the human brain.

2. 7 out of these 32 outlier edges lie in the occipital region of the brain.

3. 7 out of these 32 outlier edges belong to the parietal lobe region of the brain.

4. 12 out of these 32 outlier edges lie in the left frontal pole region of the brain.
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The above findings show that most of the extreme curvature changes happen in the occipital cortex and the frontal cortex regions
of the brain. This is consistent with previous neuroimaging studies of ADHD involving voxel-wise estimation of regional tissue
volume changes by Wang et al.59. Their statistical results showed significant volume alteration in the brains of the patients with
ADHD. While there were significant volume reductions in the prefrontal, parietal and temporal regions, volume enlargements
were observed in the occipital regions and posterial lateral ventricle. Along the same line, more recently Sun et al. in60 in
2017 conducted a comparative study by building a model using anatomic and diffusion-tensor MRI of different regions of the
brains of children with ADHD with that of children without the disease via MRI. They found that there were differences in the
cortical shape of the frontal lobe and areas in the occipital lobe along with central cortex in the brains of ADHD patients with
those in (age and sex-matched) control groups.

We next focus our attention to the top 5 outlier edges (based on the |∆e| values) and 4 additional edges that connect brain
regions spanned by a high number of outlier edges. In Table 2 we show these 9 outlier edges with their ∆e values and, using the
approach outlined in the ”Methods and Materials” section, the corresponding z-scores of the ∆e-values. Based on the standard
assumption that a z-score of absolute value at least 2 is statistically significant, we note that 4 of the 9 outlier edges in Table 2
have statistically significant curvature differences. We make the following observations regarding these 4 edges with large and
statistically significant curvature differences:

(a) The curvature values of all the four edges are higher in the disease network compared to the control network.

(b) One of the four edges, namely the topmost edge in Table 2, belong to the occipital region and the superior parietal lobule
region of the brain.

The occipital region of the brain is involved in visual processing activities such as object recognition, memory formation
and distance perception, whereas the superior parietal lobule is important in planning movements, spatial reasoning and
attention. As we have already mentioned before, the importance of these regions in ADHD development is consistent
with previous studies by Wang et al.59.

(c) The remaining three edges, namely the second, third and fourth edges from the top in Table 2, belong to the occipital
region and the frontal operculum region of the brain.

Generally speaking, the frontal operculum plays a role in thought, cognition, and planning behavior; for example, see
the paper61 regarding the role of operculum in cognition and the subsequent changes in ADHD patients. Studies such
as62 suggest that the frontal operculum is a critical node in a brain network controlling activities in other brain areas to
perform a wide array of cognitive tasks. Activities in the frontal operculum are involved in predicting the efficacy of
future tasks, and also in cessation of engagement in a task. Decreased functional connectivities between the left frontal
inferior operculum and other areas of brain were studied in63.

In addition, for illustrative purposes, we show in Figure 3 the histogram of the frequency of the difference of edge curvatures
among corresponding randomly generated network pairs of disease and control networks in a given range for the edge between
L_Precuneous_Ctx_Superior_Lateral_Occipital_Ctx_128 and
R_Superior_Lateral_Occipital_Ctx_Superior_Parietal_Lobule_Precuneous_Ctx_143. As can be seen, the actual
curvature difference of this edge is indeed an outlier with respect to the curvature differences of this edge in the random
networks.

Edge curvature vs. edge weight for anomaly detection
A natural question that arises here is the following: “why not simply use the edge-weights to find out significant differences
between the disease and control network?” Previous studies such as64 have indicated that edge weight by itself is not a
sufficiently informative measure, for example the set of nodes with the highest sum of edge weights do not capture all the hubs
in the brain networks. It is thus of interest to see the differences in edge weights between the corresponding edges in the two
networks, and check if a measure as simple as the edge weight difference could also encode the higher order correlations that
the curvature method encodes. Let us denote this difference of edge weights between the control and disease networks by Λe.
We need to be careful to ensure a fair comparison between the ∆e and the Λe values since the Λe values lie in the same range of
[−1,1], but this is not necessarily the case for the ∆e values. Thus, for a fair comparison between the two sets of values, we
“normalize” the ∆e values to lie in the same range of [−1,1] using the linear map η : ∆e 7→ 2∆e−high−low

high−low where high and low are
the maximum and minimum, respectively, of ∆e values over all edges e.

Figure 4 shows the first-order statistics of the normalized curvatures differences and the edge weight differences over all
pairs of nodes in the disease and the control network. For both curvature differences and edge weight differences the standard
deviations are very small, indicating that most individual values for them are concentrated within a small interval around their
average values of 0.119 and 0, respectively. Table 3 shows the edge weight differences and the normalized curvature differences
of the nine outlier edges reported in Table 2 between the diseased and control networks. As can be seen, the absolute values
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of all the actual edge weight differences are significantly smaller than the absolute values of their corresponding normalized
curvature differences, and therefore edge weight differences would not have detected the same critical edges as our curvature
differences.

Discussion
Using the Forman-Ricci curvature measure as given by (2) in the framework of network anomaly detection, in this paper we
have identified edges in brain networks of ADHD patients versus healthy humans that exhibit statistically significant changes
of the curvature measure. Our usage of the Forman-Ricci curvature measure focused on 2-complex based associations of
order 5 with a specific scheme for computing weights of faces. The empirical analysis can be further improved by using
k-complex based associations of order d for higher values of k and d. However, a practical limitation of the extent to which
such refinements can be carried out in practice stems from the computational complexity issues. Another improvement may
come from using different weighting scheme for the faces; for example, for our case Heron’s formula could not be used to
provide weights of 3-cycles because it leads to complex numbers, but this obstacle may be avoided for other kinds of data.

Another direction for extension of our works in this paper would be to apply the Forman-Ricci curvature measure to analyze
networks for other diseases such as schizophrenia, alzheimer’s disease or epilepsy. A further but equally important extension
in this direction would be to use curvature measures to analyze the progression of a disease when suitable temporal data are
available. For example, suppose that we have the brain network data over k time steps spanning the progress of a disease in
a patient. This provides a series of networks Gt for t = 1, . . . ,k, and applying our analysis methods over successive pairs of
networks Gt ,Gt−1 for t = 2, . . . ,k may provide insights into the progression of interactions of various parts of the brain as the
onset of the disease progresses in a patient. This type of analysis has been done by prior researchers using other more standard
network measures, e.g., authors in65, 66 showed that seizures evolve from a more random to regular and then back to random
network structure before termination, but curvature analysis methods are likely to provide further non-trivial insights into the
temporal structure of these networks.

A third direction of future research would be to compare another discretization of Ricci curvature, namely the Ollivier-
Ricci curvature that was mentioned in Theorem 1, with the Forman-Ricci curvature in the context of our anomaly detection
framework to compare the edges detected by the two measures. As we mentioned before, Samal et al.17 did empirically
compare the Ollivier-Ricci curvature to some version of the Forman-Ricci curvature for a few real networks, we believe a more
comprehensive comparison may reveal salient distinguishing characteristics of these two curvatures for brain networks.

Finally, a further future research direction could be to investigate the biomedical significance of the curvature changes of
the critical connections identified by curvature analysis methods such as ours.

Data availability

The data for our empirical analysis is publicly available from the UCLA Multimodal Connectivity Database47 via the website
http://umcd.humanconnectomeproject.org.
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Figure 1. Illustration of a edge e′ that is a hanging edge (of order d for any d) with respect to the edge e.

Mean = 1.36

Standard deviation = 5.64

Maximum = 99.60

Minimum = − 16.63

Edge curvature distribution for control network

(a)

Mean = 1.75

Standard deviation = 8.40

Maximum = 140.78

Minimum = − 19.21

Edge curvature distribution for disease network

(b)

Figure 2. (a) Histogram showing the frequency of the edge curvatures in a given range for the control network. (b) Histogram
showing the frequency of the edge curvatures in a given range for the disease network. For both (a) and (b), the heights of the
bars along the y-axis indicate the number of samples belonging to the ranges given along the x-axis.
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Figure 3. Histogram showing the frequency of the difference of edge curvatures among corresponding randomly generated
network pairs of disease and control networks in a given range for the edge between
L_Precuneous_Ctx_Superior_Lateral_Occipital_Ctx_128 and
R_Superior_Lateral_Occipital_Ctx_Superior_Parietal_Lobule_Precuneous_Ctx_143 (the topmost edge in Table 2).
The maroon bar indicates the range in which the curvature difference between the actual disease and control network belongs to
while the blue bar indicates the population mean. The heights of the bars along the y-axis indicate the number of samples
belonging to the ranges given along the x-axis.

Edge weight difference

Mean = 0.00

Standard deviation = 0.10

Maximum = 0.77

Minimum = − 0.68

(a)

Normalized curvature difference

Mean = 0.12

Standard deviation = 0.06

Maximum = 1.00

Minimum = − 0.92

(b)

Figure 4. First-order statistics of the normalized curvatures differences and the edge weight differences over all pairs of nodes
in the disease and the control network.
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Curvature
difference

Edge name ∆e∆e∆e

R_Superior_Parietal_Lobule_Lateral_Occipital_Ctx_12,
R_Superior_Lateral_Occipital_Ctx_Superior_Parietal_Lobule_Precuneous_Ctx_143 97.478

L_Precuneous_Ctx_Superior_Lateral_Occipital_Ctx_128,
R_Superior_Lateral_Occipital_Ctx_Superior_Parietal_Lobule_Precuneous_Ctx_143 −116.717

R_Insular_Ctx_Frontal_Oper_Ctx_3,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 −87.363

L_Frontal_Pole_1, L_Posterior_MTG_32 −24.669

L_Frontal_Pole_1, L_Frontal_Pole_47 −62.764

L_Frontal_Pole_1, L_Frontal_Pole_57 −28.782

L_Frontal_Pole_1, L_Superior_Lateral_Occipital_Ctx_Angular_Gyrus_68 −18.273

L_Frontal_Pole_1, L_Superior_Lateral_Occipital_Ctx_Agular_Gyrus_90 −15.575

L_Frontal_Pole_1, L_Frontal_Pole_FOC_92 −29.940

L_Frontal_Pole_1, R_SFG_120 −16.636

L_Frontal_Pole_1, L_Frontal_Pole_122 −22.667

L_Frontal_Pole_1, M_ACC_127 −30.620

L_Frontal_Pole_1, R_Frontal_pole_133 −44.584

L_Frontal_Pole_1, R_PCC_148 −15.524

L_Frontal_Pole_1, R_Frontal_Pole_197 42.766

R_Superior_Lateral_Occipital_Ctx_Precuneous_Ctx_20, L_Superior_Lateral_Occipital_Ctx_Precuneous_Ctx_98 45.556

R_Superior_Lateral_Occipital_Ctx_Precuneous_Ctx_20, L_Precuneous_Ctx_Superior_Lateral_Occipital_Ctx_128 −48.615

R_Occipital_Pole_Occipital_Fusiform_Gyrus_25, R_Inferior_Lateral_Occipital_Ctx_101 −30.764

L_Precentral_60, R_Postcentral_Superior_Parietal_Lobule_Precuneous_Ctx_158 −54.354

M_Juxtapositional_Lobule_Ctx_75,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 −105.182

R_Postcentral_Precentral_76, R_Postcentral_Superior_Parietal_Lobule_Precuneous_Ctx_158 −28.090

L_Postcentral_81, R_Postcentral_Superior_Parietal_Lobule_Precuneous_Ctx_158 −70.806

R_Insular_Ctx_Central_Opercular_Ctx_Putamen_89,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 −18.388

R_Planum_Polare_Anterior_STG_Temporal_Pole_Insular_Cortex_105,
R_Parietal_Operculum_Ctx_Planum_Temporale_Central_Operculum_Ctx_Heschls_193 17.111

R_Planum_Polare_Anterior_STG_Temporal_Pole_Insular_Cortex_105,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 −17.616

L_Insular_Ctx_Central_Opercular_Ctx_Heschls_110,
R_Parietal_Operculum_Ctx_Planum_Temporale_Central_Operculum_Ctx_Heschls_193 −23.146

R_SFG_120, R_Frontal_Pole_197 −67.154

L_Lingual_Gyrus_TOFFC_129, R_TOFFC_168 21.590

R_Posterior_STG_Planum_Temporale_Central_Opercular_Ctx_152,
R_Parietal_Operculum_Ctx_Planum_Temporale_Central_Operculum_Ctx_Heschls_193 55.522

M_ACC_156, L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 −113.466

L_Temporal_Pole_Anterior_ITG_163, R_Anterior_ITG_171 −18.316

R_TOFFC_168, R_Lingual_Gyrus_Occipital_Fusiform_Gyrus_179 22.628

Table 1. The 32 outlier edges and their corresponding corresponding differences. The edge names are given in the format “u,v”
where u and v are the names of the nodes in the network.
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Forman-Ricci curvature

Control Diseased Difference zzz-score
Edge name C2,5

G1
(e)C2,5

G1
(e)C2,5

G1
(e) C2,5

G2
(e)C2,5

G2
(e)C2,5

G2
(e) ∆e∆e∆e of ∆e∆e∆e

L_Precuneous_Ctx_Superior_Lateral_Occipital_Ctx_128,
R_Superior_Lateral_Occipital_Ctx_Superior_Parietal_Lobule_Precuneous_Ctx_143 24.06624.06624.066 140.784140.784140.784 −116.717−116.717−116.717 3.33.33.3

M_ACC_156,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 1.0501.0501.050 114.517114.517114.517 −113.466−113.466−113.466 2.32.32.3

M_Juxtapositional_Lobule_Ctx_75,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 1.3381.3381.338 106.521106.521106.521 −105.182−105.182−105.182 2.32.32.3

R_Insular_Ctx_Frontal_Oper_Ctx_3,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 1.4211.4211.421 88.78588.78588.785 −87.363−87.363−87.363 2.52.52.5

L_Postcentral_81, R_Postcentral_Superior_Parietal_Lobule_Precuneous_Ctx_158 38.621 109.428 −70.806 1.8

R_Frontal_Pole_1, L_Frontal_Pole_122 10.066 32.734 −22.667 1.4

R_Superior_Parietal_Lobule_Lateral_Occipital_Ctx_12,
R_Superior_Lateral_Occipital_Ctx_Superior_Parietal_Lobule_Precuneous_Ctx_143 99.605 2.126 97.478 −1.3

R_Superior_Lateral_Occipital_Ctx_Precuneous_Ctx_20,
L_Superior_Lateral_Occipital_Ctx_Precuneous_Ctx_98 47.386 1.829 45.556 −1.8

R_Superior_Lateral_Occipital_Ctx_Precuneous_Ctx_20,
L_Precuneous_Ctx_Superior_Lateral_Occipital_Ctx_128 0.698 49.314 −48.615 1.5

Table 2. 9 outlier edges with their curvature values and z-scores. The top 5 edges in the table are the top 5 of the 32 outlier
edges, and the remaining 4 edges are selected from connecting those brain regions spanned by higher number of outlier edges.
The edge names are given in the format “u,v” where u and v are the names of the nodes in the network. A z-score of absolute
value at least 2 is generally considered to be statistically significant. Statistically significant curvature differences are shown in
bold blue.

16/28



Edge Name

Edge
weight

difference
ΛeΛeΛe

Normalized
curvature
difference

η(∆e)η(∆e)η(∆e)

L_Precuneous_Ctx_Superior_Lateral_Occipital_Ctx_128,
R_Superior_Lateral_Occipital_Ctx_Superior_Parietal_Lobule_Precuneous_Ctx_143 −0.059 −0.927

M_ACC_156,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 −0.303 −0.898

M_Juxtapositional_Lobule_Ctx_75,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 −0.142 −0.823

R_Insular_Ctx_Frontal_Oper_Ctx_3,
L_Central_Opercular_Ctx_Frontal_Operculum_Ctx_Insular_Ctx_Putamen_198 −0.194 −0.663

L_Postcentral_81, R_Postcentral_Superior_Parietal_Lobule_Precuneous_Ctx_158 −0.106 −0.514

R_Frontal_Pole_1, L_Frontal_Pole_122 −0.017 −0.081

R_Superior_Parietal_Lobule_Lateral_Occipital_Ctx_12,
R_Superior_Lateral_Occipital_Ctx_Superior_Parietal_Lobule_Precuneous_Ctx_143 −0.081 1.000

R_Superior_Lateral_Occipital_Ctx_Precuneous_Ctx_20,
L_Superior_Lateral_Occipital_Ctx_Precuneous_Ctx_98 −0.031 0.533

R_Superior_Lateral_Occipital_Ctx_Precuneous_Ctx_20,
L_Precuneous_Ctx_Superior_Lateral_Occipital_Ctx_128 −0.107 −0.314

Table 3. The edge weight differences and the normalized curvature differences of the 9 outlier edges reported in in Table 2
between the disease and the control network. The edge names are given in the format “u,v” where u and v are the names of the
nodes in the network.
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Supplementary document S1

Summary of basic topological concepts

Here we review some basic concepts from topology; see introductory textbooks such as39, 40 for further information. For
concreteness of exposition, let the underlying metric space be the r-dimensional real space Rr be for some integer r > 1.

. A subset S ⊆ Rr is convex if and only if for any pair x,y ∈ S, the convex combination of x and y is also in S (i.e.,
λx+(1−λ )y ∈ S for any real 0≤ λ ≤ 1).

. A set of k+1 points x0, . . . ,xk ∈ Rr are called affinely independent if and only if for all α0, . . . ,αk ∈ R ∑
k
j=0 α jx j = 0

and ∑
k
j=0 α j = 0 implies α0 = · · ·= αk = 0.

. The k-simplex generated by a set of k+1 affinely independent points x0, . . . ,xk ∈ Rr is the subset of Rr S
(
x0, . . . ,xk

)
={

∑
k
j=0 α jx j |∀ j : α j ≥ 0 and ∑

k
j=0 α j = 1

}
generated by all convex combinations of x0, . . . ,xk. For example, the equation

of a k-simplex with unit intercepts is given by ∑
k
j=0 x j = 1 with x j ≥ 0 for all 0≤ j ≤ k.

. Each (`+ 1)-subset
{

xi0 , . . . ,xi`

}
⊆
{

x0, . . . ,xk
}

defines the `-simplex S
(
xi0 , . . . ,xi`

)
that is called a face of

dimension ` (or a `-face) of S
(
x0, . . . ,xk

)
. A (k−1)-face, 1-face and 0-face is called a facet, an edge and a node,

respectively.

. A (closed) halfspace is a set of points satisfying ∑
r
j=1 a jx j ≤ b for some a1, . . . ,ar,b ∈ R. The convex set obtained by a

bounded non-empty intersection of a finite number of halfspaces is called a convex polytope (called a convex polygon in
two dimensions).

. If the intersection of a halfspace and a convex polytope is a subset of the halfspace then it is called a face of the
polytope. Of particular interests are faces of dimensions r−1, 1 and 0, which are called facets, edges and nodes of
the polytope, respectively.

. A simplicial complex (or just a complex) is a topological space constructed by the union of simplexes.
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Supplementary document S2

Illustration of calculation of C2,5
G (e) for a simple six-node network

Consider the 6-node graph shown in Figure S1, and assume that all edge weights are 1/2. We label various components of
Equation (2) as follows:

C2,d
G (e) = ω(e)

[(
∑

e∼ f 2
d

ω(e)
ω( f 2

d )

︸ ︷︷ ︸
Term 1

+ ∑
v∼e

ω(v)
ω(e)

︸ ︷︷ ︸
Term 2

)
— ∑

e′||e,e′,e∼ f 2
d

√
ω(e)ω(e′)
ω( f 2

d )

︸ ︷︷ ︸
Term 3

]

The various steps in the calculations for our graph G = (V,E,w) are as follows (see Figure S1 for visual illustrations):

. The only f 2
3 containing the edge e is the 3-cycle C2,3,4, the two f 2

4 s containing the edge e are the 4-cycles C2,3,4,5 and
C3,2,4,6, and the only f 2

5 containing the edge e is the 5-cycle C3,2,5,4,6. The calculations of the relevant weight functions
ω(·) are as follows:

ω(u2) =
w({u2,u1})+w({u2,u3})+w({u2,u4})+w({u2,u5})

deg(u2)
= 1/2, ω(u3) =

w({u3,u2})+w({u3,u4})+w({u3,u6})
deg(u3)

= 1/2

ω(e′) = w(e′) = 1/2 for every edge e′ ∈ E

ω(C2,3,4) =
ω(e)+ω(e3)+ω(e4)

3 = 1/2, ω(C2,4,5) =
ω(e1)+ω(e2)+ω(e4)

3 = 1/2, ω(C3,4,6) =
ω(e3)+ω(e5)+ω(e6)

3 = 1/2

ω(C2,4,5) =
ω(e1)+ω(e2)+ω(e4)

3 = 1/2

ω(C2,3,4,5) = ω(C2,3,4)+ω(C2,4,5) = 1, ω(C3,2,4,6) = ω(C2,3,4)+ω(C3,4,6) = 1

ω(C3,2,5,4,6) = ω(C2,3,4)+ω(C2,4,5)+ω(C3,4,6) = 3/2

. The total contributions of edge e to Term 1 and Term 2 are as follows:

Contribution to Term 1 is α1 =
ω(e)

ω(C2,3,4)
+ ω(e)

ω(C2,3,4,5)
+ ω(e)

ω(C3,2,4,6)
+ ω(e)

ω(C3,2,5,4,6)
= 7/3

Contribution to Term 2 is α2 =
ω(u2)
ω(e) + ω(u3)

ω(e) = 2

. The calculations for Term 3 for various parallel edges are as follows:

. The edge e2 is parallel to e in C2,3,4,5 and C3,2,5,4,6. The corresponding total contribution to Term 3 is as follows:

γ1 =

√
ω(e)ω(e2)

ω(C2,3,4,5)
+

√
ω(e)ω(e2)

ω(C3,2,5,4,6)
= 5/6

. The edge e5 is parallel to e in C3,2,4,6 and C3,2,5,4,6. The corresponding total contribution to Term 3 is as follows:

γ2 =

√
ω(e)ω(e2)

ω(C3,2,4,6)
+

√
ω(e)ω(e2)

ω(C3,2,5,4,6)
= 5/6

. The final curvature value is then given by C2,5
G (e) = ω(e)× [α1 +α2− γ1− γ2] = 4/3.

20/28



Supplementary document S3

Proof of Proposition 1

Note that

∣∣∣∣∣∣ ∑
(e′||e)∧(e′,e∼ f 2

d )

√
ω(e)ω(e′)
ω( f 2

d )

∣∣∣∣∣∣
is the same as ∑

(e′||e)∧(e′,e∼ f 2
d )

√
ω(e)ω(e′)
ω( f 2

d )
since all weights are positive numbers. Thus, it follows

from a direct comparison of (1) and (2) that C2,d
G (e)(1) = C2,d

G (e)(2) if the quantity ϒ = ∑
e′||e,v∼e,v∼e′

ω(v)√
ω(e)ω(e′)

is zero. Obviously,

ϒ is zero if there is no such edge e′ that satisfies the condition “Φ ≡ (e′||e)∧ (v ∼ e)∧ (v ∼ e′)” of the summation in the
calculation of ϒ. Φ is satisfied if and only if both the following conditions are satisfied:

(a) (v∼ e)∧ (v∼ e′) is true, i.e., edges e and e′ are adjacent. Assume, without loss of generality, that e′ = {u′,v} for the
next condition.

(b) Edges e and e′ are parallel edges. Since the edges e and e′ have a common child (node) in the partial order ≺, the
definition of parallel edges implies that e and e′ must not have a common parent f 2

d in the partial order ≺. Since f 2
d in

our topological association is a cycle of d edges, it follows that there is no cycle of length (number of edges) at most
d in G containing the edges e and e′.

The proof is completed by noting that if G has no hanging edge that Φ is not satisfied since either (a) or (b) is not satisfied.
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Supplementary document S4

Pseudo-code of the Markov-chain algorithm for generating random networks
repeat

select a pair of distinct edges e1 = {u1,v1},e2 = {u2,v2} ∈ E \{u,v} randomly uniformly
if {u1,v1}∩{u2,v2}= /0 then

if {u1,v2} /∈ E and {v1,u2} /∈ E then
add the pair of edges e′1 = {u1,v2} and e′2 = {v1,u2} to E; set w(e′1)← w(e1) and w(e′2)← w(e2)
remove the pair of edges e1 and e2 from E

else
if {u1,u2} /∈ E and {v1,v2} /∈ E then

add the pair of edges e′1 = {u1,u2} and e′2 = {v1,v2} to E; set w(e′1)← w(e1) and w(e′2)← w(e2)
remove the pair of edges e1 and e2 from E

endif
until η pairs of edges have been swapped
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Supplementary document S5

Details of data format collected from UCLA Multimodal Connectivity Database
The data that we used was in the form of two sets of mean/consensus matrices that are essentially the mean of the connectivity
matrices of 27 healthy and 24 diseased patients respectively. The brain was categorized into 200 regions, hence each matrix
had 200 nodes. Both the disease as well as control matrix had the same set of nodes. Each matrix comes in the form of the
following text files:

. ADHD_grp_mean_24_region_names_abbrev_file.txt : This file essentially represents the abbreviations of the brain
region names for the ADHD patients.

. ADHD_grp_mean_24_region_names_full_file.txt : This file contains the full names of the brain regions of the ADHD
patients.

. ADHD_grp_mean_24_region_xyz_centers_file.txt : This file contains the (x,y,z) coordinates of the brain regions of
the ADHD patients.

. ADHD_grp_mean_24_connectivity_matrix_file.txt : This file contains the actual mean connectivity matrix for the
ADHD patients.

. CON_group_mean_27_region_names_abbrev_file.txt : This file contains the abbreviations of the brain region
names for the control group.

. CON_group_mean_27_region_names_full_file.txt : This file contains the full names of the brain regions of the
control group.

. CON_grp_mean_27_region_xyz_centers_file.txt : This file contains the (x,y,z) coordinates of the brain regions of
the control group.

. CON_group_mean_27_connectivity_matrix_file.txt : This file contains the actual mean connectivity matrix for the
control group.
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Supplementary document S6

Proof of Theorem 1
We label various components of Equation (2) as follows:

C2,d
G (e) = ω(e)

[(
∑

e∼ f 2
d

ω(e)
ω( f 2

d )

︸ ︷︷ ︸
Term 1

+ ∑
v∼e

ω(v)
ω(e)

︸ ︷︷ ︸
Term 2

)
— ∑

e′||e,e′,e∼ f 2
d

√
ω(e)ω(e′)
ω( f 2

d )

︸ ︷︷ ︸
Term 3

]
(3)

All of our constructions will satisfy the following claim: edge e′ is parallel to e if and only if both e and e′ belongs to some f 2
d .

Thus, our proof will hold irrespective of whether we use (1) or (2) for the calculation of C2,d
G (e)). For a fair comparison of the

two curvatures using the definitions in54 for the Ollivier-Ricci curvature, we will ensure that all edge weights in our constructions
are 1, implying ω(v) = 1 for all v ∈V . For this case, we simplify (3) in the following manner. Let F2

d = { f 2
d |e ∈ f 2

d } be the
set of 2-faces of order d containing the edge e, and let η2

d = |F2
d |. Our constructions will ensure that all 2-faces of order d

containing the edge e are triangulated for any d > 3 so that our weighting scheme described in the “Methods and Materials”
section is applicable to these faces; in particular this implies that ω( f 2

d ) = d− 2 for all d ≥ 3. Term 2 in (3) evaluates to
precisely 2 for our case. For any d ≥ 3, a d-cycle f 2

d ∈F2
d contributes 1

ω( f 2
d )

= 1
d−2 = to Term 1. Moreover, since such a f 2

d has

exactly d−3 edges parallel to e, it contributes d−3/ω( f 2
d )

1
d−2 = d−3

d−2 to Term 3. Thus the total contribution over all d-cycles for
any specific d ≥ 3 is

( 1
d−2 − d−3

d−2

)
η2

d =
( 4−d

d−2

)
η2

d . Thus the curvature equation for our constructions simplify to the following:

C2,d
G (e)) = 2+ ∑

d≥3

(
4−d
d−2

)
η

2
d = 2+η

2
3 −∑

d≥5

(
d−4
d−2

)
η

2
d (4)

Next we briefly review key definitions and notations from54 as needed in our proof of Theorem 1; for further details see the
original paper54. Let G = (V,E) be a given undirected unweighted graph. The following two notations are used subsequently:

. Nbr(v) = {u |{v,u} ∈ E} and deg(v) = |Nbr(v) | are the set of neighbors and the degree, respectively, of a node v ∈V .

. distG(u,v) is the distance (i.e., number of edges in a shortest path) between the nodes u and v in G.

Fix an edge {u,v} ∈ E. Let Vu,v = {u,v}∪Nbr(u)∪Nbr(v), and define two probability distributions Pu and Pv over the nodes
in Vu,v = {u,v} as follows:

Pu(x) =

{
1

1+deg(u) , if x ∈ {u}∪Nbr(u)
0, otherwise

Pv(x) =

{
1

1+deg(v) , if x ∈ {v}∪Nbr(v)
0, otherwise

The Earth Mover’s Distance corresponding to these two probability distributions, denoted by EMD(Vu,v,Pu,Pv), is the value
of the objective function of an optimal solution of the following linear program with a variable zu,v for every pair of nodes
u,v ∈Vu,v:

minimize ∑u∈Vu,v ∑v∈Vu,v distG(u,v)zu,v

subject to

∑v∈Vu,v zu′,v = Pu(u′), for each u′ ∈Vu,v

∑u∈Vu,v zu,v′ = Pv(v′), for each v′ ∈Vu,v

zu,v ≥ 0, for all u,v ∈Vu,v

The Ollivier-Ricci curvature is then defined as CO-R
G (e) = 1− EMD(Vu,v,Pu,Pv). For calculation of CO-R

G (e) for our
constructions, it will be useful to prove the following result.

Lemma 1. Fix γ ∈ {1,2,3}. Consider an edge e = {u,v} of the graph G = (V,E) such that deg(u) = deg(v) = α > 1 and
distG(u′,v′) = γ for every u′ ∈Nbr(u)\(Nbr(v)∪{v}) and v′ ∈Nbr(v)\(Nbr(u)∪{u}). Then, letting β = |Nbr(u)\(Nbr(v)∪
{v})|= |v′ ∈ Nbr(v)\ (Nbr(u)∪{u})| it follows that

EMD(Vu,v,Pu,Pv) =
γ β

α +1
≡ CO-R

G (e) = 1−EMD(Vu,v,Pu,Pv) = 1− γ β

α +1
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Proof. Consider the edge-weighted complete bipartite graph H = (A,B,F,w), where there is a node au′ ∈ A for every node
u′ ∈ Nbr(u)∪{u}, there is a node bv′ ∈ A for every node v′ ∈ Nbr(v)∪{v}, and the weight function w : A×B 7→ {0,1,2,3}
is given by w(u′,v′) = distG(u′,v′). Build a directed single-source single-sink flow network55 H f = from H in the following
manner: add a new source node s and a new sink node t, add an arc (directed edge) from s to every node of A of weight zero
and capacity 1, add an arc from every node of B to t of weight zero and capacity 1, orient every edge {au′ ,bv′} ∈ F from
au′ to bv′ and set its capacity to 1. Since |A| = |B| = α + 1, we have Pu(u′) = Pv(v′) = 1

α+1 for all u′ ∈ Nbr(u)∪{u} and
v′ ∈ Nbr(v)∪{v}. Thus, since H is a complete bipartite graph, by a simple scaling it follows that EMD(Vu,v,Pu,Pv) =

M
α+1

where M is the total weight of a minimum-weight maximum s-t flow on H f . Since the node-arc incidence matrix of a directed
graph is totally unimodular, the flow value of every arc of any extreme-point optimal solution of the minimum-weight maximum
s-t flow on H f is integral and therefore 0 or 1 (see Theorem 13.3 and its corollary in55). This integrality of flow values and the
fact that H is a complete bipartite graph imply M is also the total weight of a minimum-weight perfect matching of H.

We now estimate the total weight M of a minimum-weight perfect matching of H in the following manner. Let A′ =
{au′ |u′ ∈ {u,v}∪ (Nbr(u)∩Nbr(v))} and B′ = {bv′ |v′ ∈ {u,v}∪ (Nbr(u)∩Nbr(v))}. Note that the edge-weights of H satisfy
the following based on our assumptions: distG(au′ ,bv′) = 0 if au′ ∈ A′, bv′ ∈ B′, u′ = v′. We claim that there exists a minimum-
weight perfect matching of H that uses the edges {au′ ,bu′} for all u′ ∈ {u,v}∪(Nbr(u)∩Nbr(v))}. For a contradiction, suppose
that the edge {au′ ,bu′} is not used for some u′ ∈ {u,v}∪ (Nbr(u)∩Nbr(v))}. Since our solution is a perfect matching, the
nodes au′ and bu′ must be matched to some other nodes, say to nodes bv′′ ∈ B and au′′ ∈ A, respectively. Then, if we instead
use the edges {au′ ,bu′} and {au′′ ,bv′′} then using the total weight of this modified perfect matching is no more than that of the
original perfect matching since

w(au′ ,bu′)+w(au′′ ,bv′′) = w(au′′ ,bv′′)≤ w(au′′ ,bu′)+w(au′ ,bu′)+w(au′ ,bv′′) = w(au′′ ,bu′)+w(au′ ,bv′′)

Thus, there exists a perfect matching that {au′ ,bu′} for all u′ ∈ {u,v} ∪ (Nbr(u)∩Nbr(v))} of total weight 0, and some
perfect matching of the nodes in A \A′ and B \B′. Since distG(au′ ,bv′) = γ for all au′ ∈ A \A′ and bv′ ∈ B \B′, we get
M = γ×|A\A′|= γ β , and the desired bound follows.

We now continue with the proof of Theorem 1.

Proof for s1 = 1, s2 = 1
Consider the n-node graph as shown in Figure S2a where n > 2. Since η2

3 = 1 and η2
d = 0 for all d ≥ 5, using (4) we

get C2,d
G (e)) = 2+η2

3 = 3 > 0. For the Ollivier-Ricci curvature, note that (in the notations of Lemma 1 and54) β = 0 giving
CO-R

G (e) = 1 > 0.

Proof for s1 = 1, s2 =−1
Consider the n-node graph as shown in Figure S2b where n > 25. By straightforward calculation η2

3 = 6, η2
5 = 15, η2

d = 0

for all d > 5, and thus using (4) we get C2,d
G (e)) = 2+η2

3 −
η2

5
3 = 3 > 0. For the Ollivier-Ricci curvature, note that (in the

notations of Lemma 1 and54) α = 16, β = 9 and γ = 2, giving CO-R
G (e) = 1− 2×9

17 =− 1
17 < 0.

Proof for s1 =−1, s2 = 1
Consider the n-node graph as shown in Figure S2c where n > 5. By straightforward calculation η2

3 = 4, η2
5 = η2

6 = 24,

η2
d = 0 for all d > 6, and thus using (4) we get C2,d

G (e)) = 2+η2
3 −

η2
5

3 −
η2

6
2 =−14 < 0. For the Ollivier-Ricci curvature, note

that (in the notations of Lemma 1 and54) β = 0 giving CO-R
G (e) = 1 > 0.

Proof for s1 =−1, s2 =−1
Consider the n-node graph as shown in Figure S2d where n > 10. By straightforward calculation η2

3 = 1, η2
5 = 16, η2

d = 0

for all d > 5, and thus using (4) we get C2,d
G (e)) = 2+η2

3 −
η2

5
3 =− 7

3 < 0. For the Ollivier-Ricci curvature, note that (in the
notations of54) α = 6, β = 4 and γ = 2, giving CO-R

G (e) = 1− 2×4
7 =− 1

7 < 0.
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u1 u2 u3 u4 u5 u6

u1 0 1/2 0 0 0 0
u2

1/2 0 1/2 1/2 1/2 0
u3 0 1/2 0 1/2 0 1/2

u4 0 1/2 1/2 0 1/2 1/2

u5 0 1/2 0 1/2 0 0
u6 0 0 1/2 1/2 0 0


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u3 u2

3-cycle
C2,3,4

e1

e

e2

e3

u4

u3

u5

u2

e2||e2||e2||eee

4-cycle
C2,3,4,5

e5

e6

e

e4

u4

u3 u2

u6

e5||e5||e5||eee

4-cycle
C3,2,4,6

e

e1

e2

e5

e6

u4

u3

u5

u2

u6

e5||e5||e5||eee e2||e2||e2||eee

5-cycle
C3,2,5,4,6

(c)

Figure S1. A simple example for illustration of calculation of C2,5(e). (a) The given graph and the edge e (all edge weights
are 1/2). (b) The connectivity matrix for the graph. (c) Listing of all f 2

d ’s (for d ∈ {3,4,5}) along with the relevant parallel
edges used in the calculation of C2,5(e).
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Figure S2. a. A n-node graph for which sgn(C2,d
G (e)) = sgn(CO-R

G (e)) = 1. b. A n-node graph for which sgn(C2,d
G (e)) = 1

and sgn(CO-R
G (e)) =−1. c. A n-node graph for which sgn(C2,d

G (e)) =−1 and sgn(CO-R
G (e)) = 1. d. A n-node graph for which

sgn(C2,d
G (e)) = sgn(CO-R

G (e)) =−1.
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