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Applications

More and more research effort has been done to study
the non-cooperative games recently. Among these various
forms of games, the unicast/multicast routing game [2,5,6]
and multicast cost sharing game [1,3,4] have received
a considerable amount of attentions over the past few year
due to its application in the Internet. However, both uni-
cast/multicast routing game and multicast cost sharing
game are one folded: the unicast/multicast routing game
does not take the receivers into account while the mul-
ticast cost sharing game does not treat the links as non-
cooperative. In this paper, they study the scenario, which
was called multicast system, in which both the links and
the receivers could be non-cooperative. Solving this prob-
lem paving a way for the real world commercial multicast
and unicast application. A few examples are, but not lim-
ited to, the multicast of the video content in wireless mesh
network and commercial WiFi system; the multicast rout-
ing in the core Internet.

Open Problems

A number of problems related to the work of Wang, Liand
Chu [7] remain open. The first and foremost, the upper
bound and lower bound on « still have a gap of r if the
multicast system is «-stable; and a gap of 2r if the multicast
system is az-Nash stable.

The second, Wang, Li and Chu only showed the exis-
tence of the Nash Equilibrium under their systems. They
have not characterized the convergence of the Nash Equi-
librium and the strategies of the user, which are not only
interesting but also important problems.
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Problem Definition

In this chapter, the authors state results on some transfor-
mation based distances for evolutionary trees. Several dis-
tance models for evolutionary trees have been proposed
in the literature. Among them, the best known is per-
haps the nearest neighbor interchange (nni) distance in-
troduced independently in [10] and [9]. The authors will
focus on the nni distance and a closely related distance
called the subtree-transfer distance originally introduced
in [5,6]. Several papers that involved DasGupta, He, Jiang,
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Li, Tromp and Zhang essentially showed the following re-

sults:

e A correspondence between the nni distance and the
linear-cost subtree-transfer distance on unweighted
trees;

e Computing the nni distance is NP-hard, but admits
a fixed-parameter tractability and a logarithmic ratio
approximation algorithms;

e A 2-approximation algorithm for the linear-cost sub-
tree-transfer distance on weighted evolutionary trees.

The authors first define the nni and linear-cost subtree-

transfer distances for unweighted trees. Then the authors

extend the nni and linear-cost subtree-transfer distances
to weighted trees. For the purpose of this chapter, an evo-
lutionary tree (also called phylogeny) is an unordered tree,
has uniquely labeled leaves and unlabeled interior nodes,
can be unrooted or rooted, can be unweighted or weighted,
and has all internal nodes of degree 3.

Unweighted Trees

An nni operation swaps two subtrees that are separated by
an internal edge (u, v), as shown in Fig. 1.

The nni operation is said to operate on this internal
edge. The nni distance, Dpyi(T7. T2), between two trees T
and T is defined as the minimum number of nni opera-
tions required to transform one tree into the other.

An nni operation can also be viewed as moving a sub-
tree past a neighboring internal node. A more general op-
eration is to transfer a subtree from one place to another
arbitrary place. Figure 2 shows such a subtree-transfer op-
eration.

The subtree-transfer distance between two trees T
and T, is the minimum number of subtrees one need
to move to transform T into T, [5,6,7]. It is sometimes
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An example of subtree-transfer

appropriate in practice to discriminate among subtree-
transfer operations as they occur with different frequen-
cies. In this case, one can charge each subtree-transfer op-
eration a cost equal to the distance (the number of nodes
passed) that the subtree has moved in the current tree.
The linear-cost subtree-transfer distance, Dy (T7, T), be-
tween two trees T} and T is then the minimum total cost
required to transform T’ into T by subtree-transfer oper-
ations [1,2].

Weighted Trees

Both the linear-cost subtree-transfer and nni models can
be naturally extended to weighted trees. The extension for
nni is straightforward: an nni operation is simply charged
a cost equal to the weight of the edge it operates on. For
feasibility of weighted nni transformation between two
given weighted trees T and T, one also requires that the
following conditions are satisfied: (1) for each leaf label
a, the weight of the edge in T incident on a is the same
as the weight of the edge in T incident on a and (2) the
multisets of weights of internal edges of T} and T’ are the
same.

In the case of linear-cost subtree-transfer, although the
idea is immediate, i. e., a moving subtree should be charged
for the weighted distance it travels, the formal definition
needs some care and is given below. Consider (unrooted)
trees in which each edge e has a weight w(e) > 0. To en-
sure feasibility of transforming a tree into another, One re-
quires the total weight of all edges to equal one. A subtree-
transfer is now defined as follows. Select a subtree S of
T at a given node u and select an edge e & S. Split the
edge e into two edges e; and e, with weights w(e;) and
w(ey) (w(er), w(ey) > 0, w(ey) + w(ey) = w(e)), and move
S to the common end-point of e; and e,. Finally, merge
the two remaining edges ¢’ and ¢’ adjacent to u into one
edge with weight w(e’) + w(e”). The cost of this subtree-
transfer is the total weight of all the edges over which S
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Subtree-transfer on weighted phylogenies. Tree b is obtained from tree a with one subtree-transfer

is moved. Figure 1 gives an example. The edge-weights of
the given tree are normalized so that their total sum is 1.
The subtree S is transferred to split the edge e4 to eg and
e; such that w(eg), w(e;) > 0 and w(eg) + w(ey) = w(ey);
finally, the two edges e; and e, are merged to es such
that w(es) = w(e1) + w(ez). The cost of transferring S is
w(ea) + w(es) + w(ee).

Note that for weighted trees, the linear-cost subtree-
transfer model is more general than the nni model in
the sense that one can slide a subtree along an edge with
subtree-transfers. Such an operation is not realizable with
nni moves.

Key Results

Let Ty and T be the two trees, each with n nodes, that are
being used in the distance computation.

Theorem 1 ([2,3,4]) Assume that T; and T, are un-

weighted. Then, the following results hold:

® Dyuui(Th, T3) = Die(T1, T2).

o Computing D,,i(Ti, T,) is NP-complete.

o Suppose that Dy,i(Th, T,) < d. Then, an optimal se-
quence of nni operations transforming T; into T, can
be computed in O(n?logn + n - 2234/2) time.

® Du,i(Ti, T>) can be approximated to within a factor of
log n + O(1) in polynomial time.

Theorem 2 ([1,2,3,4]) Assume that T; and T, are

weighted. Then, the following results hold:

o D,,i(Ty, T>) can be approximated to within a factor of
6+ 6log n in O(n?log n) time.

o Assume that T; and T, are allowed to have leaves that
are not necessarily uniquely labeled. Then, computing
Dy+(Ty, Ty) is NP-hard.

o Dy (T, Ty) can be approximated to within a factor of 2
in O(n* log n) time.

Applications

The results reported here are on transformation based dis-
tances for evolutionary trees. Such a tree is can be rooted
if the evolutionary origin is known and can be weighted

if the evolutionary length on each edge is known. Recon-
structing the correct evolutionary tree for a set of species
is one of the fundamental yet difficult problems in evo-
lutionary genetics. Over the past few decades, many ap-
proaches for reconstructing evolutionary trees have been
developed, including (not exhaustively) parsimony, com-
patibility, distance and maximum likelihood approaches.
The outcomes of these methods usually depend on the
data and the amount of computational resources applied.
As a result, in practice they often lead to different trees on
the same set of species [8]. It is thus of interest to com-
pare evolutionary trees produced by different methods, or
by the same method on different data.

Another motivation for investigating the linear-cost
subtree transfer distance comes from the following mo-
tivation. When recombination of DNA sequences occurs
in an evolution, two sequences meet and generate a new
sequence, consisting of genetic material taken left of the
recombination point from the first sequence and right of
the point from the second sequence [5,6]. From a phylo-
genetic viewpoint, before the recombination, the ances-
tral material on the present sequence was located on two
sequences, one having all the material to the left of the
recombination point and another having all the material
to the right of the breaking point. As a result, the evo-
lutionary history can no longer be described by a single
tree. The recombination event partitions the sequences
into two neighboring regions. The history for the left and
the right regions could be described by separate evolution-
ary trees. The recombination makes the two evolutionary
trees describing neighboring regions differ. However, two
neighbor trees cannot be arbitrarily different, one must
be obtainable from the other by a subtree-transfer oper-
ation. When more than one recombination occurs, one
can describe an evolutionary history using a list of evo-
lutionary trees, each corresponds to some region of the
sequences and each can be obtained by several subtree-
transfer operations from its predecessor [6]. The com-
putation of a linear-cost subtree-transfer distance is use-
ful in reconstructing such a list of trees based on parsi-
mony [5,6].
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Open Problems

1. Is there a constant ratio approximation algorithm for
the nni distance on unweighted evolutionary trees or is
the O(log n)-approximation the best possible?

2. Is the linear-cost subtree-transfer distance NP-hard to
compute on weighted evolutionary trees if leaf labels
are not allowed to be non-unique?

3. Can one improve the approximation ratio for linear-
cost subtree-transfer distance on weighted evolutionary
trees?
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Problem Definition

Let G = (V, E) be an n-vertex, m-edge directed graph (di-
graph), whose edges are associated with a real-valued cost
function wt : E — R. The cost, wt(P), of a path P in G is
the sum of the costs of the edges of P. A simple path C
whose starting and ending vertices coincide is called a cy-
cle. If wt(C) < 0, then C s called a negative cycle. The goal
of the negative cycle problem is to detect whether there
is such a cycle in a given digraph G with real-valued edge
costs, and if indeed exists to output the cycle.

The negative cycle problem is closely related to the
shortest path problem. In the latter, a minimum cost path
between two vertices s and ¢ is sought. It is easy to see that
an s-t shortest path exists if and only if no s-t path in G
contains a negative cycle [1,13]. It is also well-known that
shortest paths from a given vertex s to all other vertices
form a tree called shortest path tree [1,13].

Key Results

For the case of general digraphs, the best algorithm to
solve the negative cycle problem (or to compute the short-
est path tree, if such a cycle does not exist) is the classi-
cal Bellman—Ford algorithm that takes O(nm) time (see
e.g. [1]). Alternative methods with the same time com-
plexity are given in [4,7,12,13]. Moreover, in [11, Chap. 7]
an extension of the Bellman—Ford algorithm is described
which, in addition to detecting and reporting the existing
negative cycles (if any), builds a shortest path tree rooted
a some vertex s reaching those vertices u whose shortest s-
u path does not contain a negative cycle. If edge costs are
integers larger than —L (L > 2), then a better algorithm
was given in [6] that runs in O(m+/nlog L) time, and it is
based on bit scaling.

A simple deterministic algorithm that runs in
O(n? log n) expected time with high probability is given
in [10] for a large class of input distributions, where
the edge costs are chosen randomly according to the
endpoint-independent model (this model includes the
common case where all edge costs are chosen indepen-
dently from the same distribution).





