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16.1 INTRODUCTION

An increasing number of protein structures are becoming available that have either
no known function or knowledge of the proteins functional mechanism is incomplete.
Using experimental methods alone to explore these proteinsin order to determine
their functional mechanism is unfeasible. For this reason,much research has been
put into computational methods for predicting the functionof proteins [5, 31, 44, 34,
14, 53]. One such computational method is functional inference by homology where
annotations from a protein with known function are transferred onto another protein
based on sequence or structural similarities.

Protein sequence comparisons have been used as a straightforward method for
functional inheritance. If two proteins have a high level ofsequence identity, fre-
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quently the two proteins have the same or related biologicalfunction. This obser-
vation has been used as a basis for transferring annotationsfrom a protein that is
well characterized to a protein with unknown function when the two proteins have
high sequence similarity [45, 4, 3]. It is often the case thatonly the protein residues
that are near the functional region of the protein are under evolutionary pressure for
conservation. Therefore, the global sequence similarity may be relatively low while
local regions within the two sequences maintain a higher level of sequence similar-
ity. In this case, probabilistic models such as profiles havebeen constructed using
only the local regions of high sequence similarity [3, 32, 28]. Sequence comparison
methods have the advantage that there are large numbers of sequences deposited into
sequence databases such as SWISS-PROT [11] which provides adequate information
for constructing probabilistic models. However, a relatively high level of sequence
similarity is needed in order to accurately transfer protein function. In fact, problems
begin to arise when the sequence identity between a pair of proteins is less than 60%
[57].

Because proteins often maintain structural similarities even when sequence iden-
tity falls as low as 30% [6], making protein structure more strongly correlated with
protein function than protein sequence [24]. For this reason, many researchers have
begun comparing the three-dimensional structure of proteins in an attempt to uncover
more distant evolutionary relationships among proteins. The SCOP [40] and CATH
[43] databases have organized protein structures hierarchically into different classes
and folds based on their overall similarity in topology and fold. Classification of pro-
tein structures relies heavily on the reliable protein structure comparison methods.
Common structural comparison methods include Dali [27] andCE [47]. However,
structural alignment methods cannot guarantee optimal results and do not have an
interpretability comparable to sequence alignment methods.

Several challenges arise when trying to compare protein structures. First, when
searching for global structural similarity, similar to sequence alignment methods, one
can search for global similarity or similarity within localsurface regions of interest.
Unlike sequence alignment scoring methods which are heavily based on models of
protein evolution [13, 25], scoring systems for structuralalignment must take into
account both the three-dimensional positional deviationsbetween the aligned residues
or atoms, as well as other biologically important shared characteristics. Defining a
robust quantitative measure of similarity is challenging.The difficulty is illustrated
by the variety of structural alignment scoring methods thathave been proposed [23].
Second, many alignment methods assume the ordering of the residues follows that of
the primary sequence [47, 51]. This sequence order dependence can lead to problems
when comparing local surface regions which often have residues and atoms from
different locations on primary sequence fold together to form functional regions in
three-dimensional space. On the global backbone level, theexistence of permuted
proteins, such as the circular permutation [37, 17] also poses significant problems for
sequence order dependent alignment methods. Third, proteins may undergo small
side chain structural fluctuations or larger backbone fluctuationsin vivo which are
not represented in a single static snapshot of a crystallized structure in the Protein
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Data Bank [9]. Many structural alignment methods assume rigid bodies and cannot
take structural changes into account.

In this chapter, we will discuss several issues of structural alignment and then
discuss methods we have implemented for sequence order independent structural
alignment at the global level and at the local surface level.We illustrate the utility
of our methods by showing how our sequence order independentglobal structural
alignment method detects circular permuted proteins. We then show how our local
surface sequence order independent structural alignment method can be used to
construct a basis set of signature pockets of binding surfaces for a specific biological
function. The signature pocket represents structurally conserved surface regions. A
set of signature pockets can then be used to represent a functional family of proteins
for protein function prediction.

16.2 STRUCTURAL ALIGNMENT

Comparing the structure of two proteins is an important problem [23] that may detect
evolutionary relationships between proteins even when sequence identity between two
proteins is relatively low. A widely used method for measuring structural similarity
is the root mean squared distance (RMSD) between the equivalent atoms or residues
of two proteins. If the equivalence relationship is known, arotation matrixR and a
translation vectorT that when applied to one of the protein structures will minimize
the RMSD can be found by solving the minimization problem:

min

NB
∑

i=1

NA
∑

j=1

|T +RBi −Aj |
2, (16.1)

whereNA is the number of points in structureA andNB is the number of points
in structureB. If NA = NB then the least-squares estimation of the parametersR
andT in Eq. 16.1 can be found using singular value decomposition.

The equivalence relationship is usually not knowna priori when aligning to protein
structures. In this case, the structural alignment method is a problem of minimizing
RMSD while maximizing the number of aligned points. Heuristics must be used to
solve this multi-objective optimization problem.

A number of heuristic methods have been developed [56, 1, 49,48, 52, 22, 59]
that can be divided into two main categories.Global methods are used to detect
similarities between the overall fold of two proteins andlocal alignment methods are
used to detect similarities within local regions of interest within the two proteins. Most
current methods are restricted to only finding structural similarities where the order of
the structural elements within the alignment follow the order of the elements within
the primary sequence. Sequence order independent methods ignore the sequential
ordering of the atoms or residues in primary sequence. Thesemethods are better
suited for finding more complex global similarities and can also be employed for
finding all atoms local comparisons. We have implemented both sequence order
independent methods for both global and local structural alignments.
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16.3 GLOBAL SEQUENCE ORDER INDEPENDENT STRUCTURAL
ALIGNMENT

Looking for similarities between the overall fold can elucidate evolutionary or func-
tional relationships between two proteins. However, most of the current methods for
structural comparison are sequence order dependent and arerestricted to comparing
similar topologies between the two backbones. It has been discovered that through-
out evolution, a genetic event can rearrange the topology ofthe backbone. One such
example is the circular permutation. Conceptually, a circular permutation can be
thought of as a ligation of the N- and C-termini of a protein and cleavage somewhere
else on the protein backbone. It has been observed that circular permutations often
maintain a similar three-dimensional spatial arrangementof secondary structures. In
addition to circular permutations, research has shown thatmore complex topologi-
cal rearrangements are possible [37]. Detection of these permuted proteins will be
valuable for studies in homology modeling, protein folding, and for protein design.

16.3.0.1 Sequence Order Independent Global Structural Alignment We have
developed a sequence order independent structural alignment algorithm for detecting
structural similarities between two protein that have undergone topological rearrange-
ment of their backbone structures [17]. Our method is based on fragment assembly
where the two proteins to be aligned are first exhaustively fragmented. Each fragment
λA
i,k from protein structureSA is pair-wise superimposed onto each fragmentλB

j,k

from protein structureSB. The result is a set of fragment pairsχi,j,k, wherei ∈ SA

andj ∈ SB are the indices in the primary sequence of the first residue ofthe two
fragments. The variablek ∈ {5, 6, 7} is the length of the fragment. Each fragment
pair is assigned a similarity score,

σ(χi,j,k) = α[C − s(χi,j,k) ·
cRMSD

k2
] + SCS, (16.2)

wherecRMSD is the measured RMSD value after optimal superposition,α and
C are two constants,s(χi,j,k) is a scaling factor to the measured RMSD values that
depends on the secondary structure of the fragments, andSCS is a BLOSSUM-like
measure of similarity in sequence of the matched fragments [25]. Details of the
scoring method can be found in [17].

The goal of the structural alignment is to find a consistent set of fragment pairs
∆ = {χi1,j1,k1

, χi2,j2,k2
, ..., χit,jt,kt

} that minimizes the overall RMSD. Finding
the optimal combination of fragment pairs is a special case of the well known
maximum weight independent set problem in graph theory. This problem is MAX-
SNP-hard. We employ an approximation algorithm that was originally described for
the scheduling of split-interval graphs [8] and is itself based on a fractional version
of the local-ratio approach.

To begin, a conflict graphG = (V,E) is created, where a vertex is defined for
each aligned fragment pair. Two vertices are connected by anedge if any of the
fragments(λA

i,k, λ
B
i‘,k‘) or (λB

j,k, λ
B
j‘,k‘) from the fragment pair is not disjoint, that is,
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if both fragments from the same protein share one or more residues. For each vertex
representing aligned fragment pairs, we assign three indicator variablesxχ, yχλA

,
andxχ, yχλB

∈ {0, 1} and a closed neighborhoodNbr[χ].xχ indicates whether the
fragment pair should be used (xχ = 1) or not (xχ = 0) in the final alignment.
xχ, yχλA

andxχ, yχλB
are artificial indicator values forλA andλB , which allow

us to encode consistency in the selected fragments. The closed neighborhood of a
vertexχ of G is {χ′|χ, χ‘ ∈ E} ∪ {χ}, which is simplyχ and all vertices that are
connect toχ by an edge.

The sequence order independent structural alignment algorithm can be described
as follows. To begin, initialize the structural alignment∆ equal to the entire set of
aligned fragment pairs. We then:

1. Solve a linear programming (LP) formulation of the problem:
maximize

∑

χ∈∆

σ(χ) · xχ (16.3)

subject to
∑

at∈λA

yχλA
≤ 1 ∀at ∈ SA (16.4)

∑

bt∈λB

yχλB
≤ 1 ∀bt ∈ SB (16.5)

yχλA
− xχ ≤ 1 ∀χ ∈ ∆ (16.6)

yχλB
− xχ ≤ 1 ∀χ ∈ ∆ (16.7)

xχ, yχλA
, yχλB

≤ 1 ∀χ ∈ ∆ (16.8)

2. For every vertexχ ∈ V∆ of G∆, compute itslocal conflict numberαχ =
∑

χ‘∈Nbr∆[χ] xχ‘. Let χmin be the vertex with theminimumlocal conflict
number. Define a new similarity functionσnew from σ as follows:

σnew(χ) =

{

σ(χ), if χ /∈ Nbr∆[χmin]
σ(χ) − σ(χmin) otherwise

3. Create∆new ⊆ ∆ by removing from∆ every substructure pairχ such that
σnew ≤ 0. Push each removed substructure on to a stack in arbitrary order.

4. If ∆new 6= 0 then repeat from step 1, setting∆ = ∆new andσ = σnew .
Otherwise, continue to step 5.

5. Repeatedly pop the stack, adding the substructure pair tothe alignment as long
as the following conditions are met:
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(a) The substructure pair is consistent with all other substructure pairs that
already exists in the selection.

(b) ThecRMSD of the alignment does not change beyond a threshold. This
condition bridges the gap between optimizing a local similarity between
substructures and optimizing the tertiary similarity of the alignment. It
guarantees that each substructure from a substructure pairis in the same
spatial arrangement in the global alignment.

16.3.0.2 Detecting Permuted Proteins This algorithm was implemented in a large
scale study to search for permuted proteins in the Protein Data Bank [9]. A subset of
3,336 protein structures taken from the PDBSELECT90 data set [26] are structurally
aligned in a pair-wise fashion. From the subset of 3,336 proteins, we aligned two
proteins if they met the following conditions (see [17] for details):

1. The difference in their lengths was no more than 75 residues.

2. The two proteins shared approximately the same secondarystructure content.

Within the approximately 200,000 structural alignments performed, we found
many known circular permutations and three novel circular permutations, as well as
a more complex pair of non-cyclic permuted proteins. Here wedescribe the details
of the circular permutation we found between a neucleoplasmin-core and an auxin
binding protein, as well as details of the more complex non-cyclic permutation.

Nucleoplasmin-Core and Auxin Binding ProteinWe found a novel circular per-
mutation between the nucleoplasmin-core protein inXenopu laevis(PDB ID 1k5j,
chain E) [19] and the auxin binding protein in maize (PDB ID11rh, chain A, residues
37-127) [58]. The structural alignment between1k5jE (Fig. 16.1, top) and11rhA
(Fig. 16.1, bottom) consisted of 68 equivalent residues superimposed with an RMSD
of 1.36Å. This alignment is statistically significant with ap-value of 2.7×10−5 after
Bonferroni correction. Details of thep-value calculation can be found in [17]. The
short loop connecting two antiparallel strans in nucleoplasmin-core protein (in circle,
top of Fig. 16.1b) becomes disconnected in auxin binding protein 1 (in circle, bottom
of Fig. 16.1b), and the N- and C- termini of the nucleoplasmin-core protein (in
square, top of Fig. 16.1b) are connected in auxin binding protein 1 (square, bottom
of Fig. 16.1b). For details of other circular permutations we found, including permu-
tations between microphage migration inhibition factor and the C-terminal domain
of arginine repressor, please see [17].

Complex Protein PermutationsBecause of their relevance in understanding the
functional and folding mechanism of proteins, circular permutations have received
much attention [37, 55]. However, the possibility of more complex backbone re-
arrangements were experimentally verified by artificially rearranging the topology
of the ARC repressor and were found to be thermodynamically stable[50]. Very
little is known about this class of permuted proteins, and the detection of non-cyclic
permutations is a challenging task [2, 15, 46, 29].
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Fig. 16.1 A newly discovered circular permutation between nucleoplasmin-core (1k5j,
chain E,top panel), and a fragment of auxin binding protein 1 (residues 37-127) (11rh,
chain A,bottom panel). a

¯
These two proteins align well with a RMSD value of 1.36Åover

68 residues, with a significantp-value of 2.7×10−5 after Bonferroni correction. b
¯

The
loop connecting strand 4 and strand 5 of nucleoplasmin-core(in rectangle, top) becomes
disconnected in auxin binding protein 1. The N- and C- termini of nucleoplasmin-core (in
rectangle, top) become connected in auxin binding protein 1 (inrectangle, bottom). To aide
in visualization of the circular permutation, residues in the N-to-C direction before the cut in
the nucleoplasmin-core protein are coloredred, and residues after the cut are coloredblue. c

¯
The topology diagram of these two proteins. In the original structure of nucleoplasmin-core,
the electron density of the loop connecting strand 4 and strand 5 is missing int eh PDB structure
file. This figure is modified from [17].

Our database search uncovered a naturally occurring non-cyclic permutation be-
tween chain F of AML1/Core binding factor (AML1/CBF, PDB ID1e50, Fig. 16.2a,
top) and chain A of riboflavin synthase (PDB ID1pkv, Fig. 16.2a, bottom). The two
structures align well with an RMSD of 1.23Åat an alignment length of 42 residues,
with a significantp-value of 2.8×10−4 after Bonferroni correction.

The topology diagram of AML1/CBF (Fig. 16.2b) can be transformed into that of
riboflavin synthase (Fig. 16.2f) by the following steps: Remove the loops connecting
strand 1 to helix 2, strand 4 to strand 5, and strand 5 to strand6 (Fig. 16.2c). Connect
the C-terminal end of strand 4 to the original N-terminal (Fig. 16.2d). Connect the
C-terminal end of strand 5 to the N-terminal end of helix 2 (Fig. 16.2e). Connect the
original C-termini to the N-terminal end of strand 5. The N-terminal end of strand
6 becomes the new N-termini and the C-terminal end of strand 1becomes the new
C-termini (Fig. 16.2f).
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Fig. 16.2 A non-cyclic permutation discovered between AML1/Core Binding Factor
(AML1/CBF PDB ID 1e50, Chain F,top) and riboflavin synthase (PDB ID1pkv, chain
A, bottom). a These two proteins structurally align with an RMSD of 1.23Åover 42 residues
and has a significantp-value of 2.8×10−4 after Bonferroni correction. The residues that
were assigned equivalences from the structural alignment are colored blue.b These proteins
are structurally related by a complex permutation. The steps to transform the topology of
AML1/CBF (top) to riboflavin(bottom) are as follows:c Remove the loops connecting strand
1 to helix 2, strand 4 to strand 5, and strand 5 to helix 6;d Connect the C-terminal end of strand
4 to the original N-termini;eConnect the C-terminal end of strand 5 to the N-terminal end of
helix 2; f Connect the original C-termini to the N-terminal end of strand 5. The N-terminal end
of strand 6 becomes the new N-termini and the C-terminal end of strand 1 becomes the new
C-termini. We now have the topology diagram of riboflavin synthase. This figure is modified
from [17].

16.4 LOCAL SEQUENCE ORDER INDEPENDENT STRUCTURAL
ALIGNMENT

The comparison of the global backbone can lead to discovery of distant evolutionary
relationships between proteins. However, when attemptingto detect similar functions
or functional mechanisms between two proteins, global backbone similarity is not a
robust indicator [36, 41, 20]. It can be assumed that the physiochemical properties
of the local region where function takes place (i.e. substrate binding) is under more
evolutionary pressure to be conserved. This assumption hasbeen recently backed up
by several studies [53, 38, 42, 21, 30, 54].

A typical protein contains many concave surface regions, commonly referred to
assurface pockets. However, only a few of the surface pockets supply a unique phys-
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iochemical environment that is conducive for the protein tocarry out its function.
The protein must maintain this surface pocket throughout evolution in order to con-
serve its biological function. For this reason, shared structural similarities between
functional surfacesamong proteins may be a strong indicator of shared biological
function. This has lead to a number of promising studies, in which protein functions
can be inferred by similarity comparison of local binding surfaces [21, 35, 10, 7, 39]

The inherent flexibility of the protein structure makes the problem of structural
comparison of protein surface pockets challenging. A protein is not a static structure
as represented by a Protein Data Bank [9] entry. The whole protein as well as the local
functional surface may undergo various degrees of structural fluctuations. The use
of a single surface pocket structure as a representative template for a specific protein
function can lead to many false negatives. This is due to the inability of a single
representative to capture the full functional characteristics across all conformations
of a protein.

We have addressed this problem by developing an algorithm that can identify the
atoms of a surface pocket that are structurally preserved across a family of protein
structures that have similar function. Using a sequence order independent local
surface alignment method to pair-wise align the functionalpockets across a family of
protein structure, we automatically find the structurally conserved atoms and measure
their fluctuations. We call these structurally conserved atoms thesignature pocket.
More than one signature pocket may result for single functional class. In this case, our
method can automatically create abasis setof signature pockets for that functional
family. These signature pockets can then be used as representatives for scanning a
structure database for functional inference by structuralsimilarity.

16.4.1 Bi-partite Graph Matching Algorithm for Local Surfa ce Comparison

We have modified and implemented a sequence order independent local structural
alignment algorithm based on the maximum weight bi-partitegraph matching for-
mulation developed by Chen et.al. [12].

As mentioned earlier, the structural alignment problem bares down to a problem
of finding an equivalence relation between residues of a reference proteinSR and
a query proteinSQ that when applied will optimize the superposition of the two
structures. The formulation here does this in an iterative two step process. First,
an optimal set of equivalent atoms are determined under the current superposition
using a bi-partite graph representation. Second, the new equivalence relation is used
to determine a new optimal superposition. The two steps are then repeated until a
stopping condition is met.

The equivalence relationship is found between two the atomsof the functional
pocket surfaces by representing the atoms the atoms ofSR andSQ as nodes in a graph.
This graph is bi-partite, meaning that edges only exist between atoms ofSR and atoms
ofSQ. A directed edge is drawn between two nodes if a similarity threshold is met. In
our implementation, the measure of similarity takes into account both spatial distances
and the chemical property similarities between the two corresponding atoms.
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Each edgeei,j connecting nodei and nodej is assigned a weightw(i, j) equal
to the similarity score between the two corresponding atoms(see [] for details). The
optimal equivalence relationship given the current superposition is a subset of the
edges within this bi-partite graph that have maximum combined weight,where at most
one edge can be selected per atom making this a maximum-weight bi-partite graph
matching problem. The solution to this problem can be found using the Hungarian
algorithm [33].

The Hungarian method is as follows. Initially, an overall scoreFall = 0 is set.
Additionally, an artificial source nodes and an artificial destination noded are added
to the bipartite graph. A directed edgees, i with zero weight is added for each of the
atom nodesi fromSR and similarly, directed edgesej, d with zero weight are drawn
from each of the atoms nodes ofSQ. The algorithm then proceeds as follows.

1. Find the shortest distanceF (i) from the source nodes to every other nodei
using the Bellman-Ford [] algorithm.

2. Assign a new weightw′(i, j) to each edge that does not originate from the
source nodes as follows,

w′(i, j) = w(i, j) + [F (i)− F (j)]. (16.9)

3. UpdateFall asF ′

all = Fall − Fd.

4. Reverse the direction of the edges along the shortest pathfrom s to d.

5. If Fall > Fd and a path exists betweens andd then go back to step 1.

The iterative process of the Hungarian algorithm stops wheneither there is no
path froms tod or when the shortest distance from the source node to the destination
nodeF (d) is greater than the current overall scoreFall. At the end of the process,
the graph will consist of a set of directed edges that have been reversed (they now
point from nodes ofSQ to nodes fromSR. These reversed edges represent the new
equivalence relationships between the atoms ofSQ and the atoms ofSR.

The equivalence relationship found by the bi-partite matching algorithm can now
be used to superimpose the two proteins using the singular value decomposition.
After superpositioning the new equivalent atoms, a new bi-partite graph is created
and the process is iterated until the change inRMSD upon superposition falls below
a threshold.

16.4.2 A Basis Set of Binding Surface Signature Pockets

Being able to compare structural similarities between to protein surface regions
can provide insight into shared biological functions. As mentioned earlier, when
dealing with local surface regions one has to be careful whenchoosing a functional
representative pocket due to the inherent flexibility of thebinding surfaces. We have
developed a method that automatically generates a set of functional pocket templates,
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calledsignature pocketsof local surface regions that can be used as a representativea
functional surface for structural comparison. These signature pockets contain broad
structural information and have discriminating ability.

A signature pocket is derived from sequence order independent structural align-
ments of precomputedsurface pockets. Our signature pocketmethod does not require
the atoms of the signature pocket to be present in all member structures. Instead,
signature pockets can be created at varying degrees of partial structural similarity and
can be hierarchically organized according to their structural similarity.

The input of our signature pocket algorithm is a set of functional pockets from
the CASTp database [18]. All vs all pair-wise sequence orderindependent local
surface alignment is performed on the input functional surface pockets. A distance
is calculated based on the RMSD and the chemistry of the paired atoms of the
structural alignment (see [16] for details). The resultingdistance matrix is used by
an agglomerative clustering method. The signature of the functional pocket is then
derived using a recursive process following the hierarchical tree.

The recursive process begins by finding the two closest siblings (pocketsSA and
SB), and combining them into a single structureSAB. During the recursive process,
SA or SB may themselves already be a combination of several structures. When
combining two structures, we follow the criteria below:

1. If two atoms were considered equivalent in a structural alignment, a single
coordinate is created in the new structure to represent bothatoms. The new
coordinate is calculated as the average of the two underlying atom coordinates.

2. If no equivalence was found for an atom during the structural alignment, the
coordinates of that atom are transferred directly into the new pocket structure.

A count of the number of times an atom at the positioni was present in the
underlying set of pockets (N ) is recorded during each step in the recursive process.
A preservation ratioρ(i) is calculated for each atom of the signature pocket by
dividingN by the total number of constituent pockets. In addition, themean distance
of the coordinates of the aligned atoms to their geometric center is recorded as the
location variationυ. At the end of each step, the new structureSAB replaces the
two structuresSAa ndSB in the hierarchical tree and the process is repeated on the
updated hierarchical tree.

The recursive process can be stopped at any point during its traversal of the
hierarchical tree by selecting aρ threshold. Depending on the choice of theρ
threshold, a single or multiple signature pockets can be created. Figure 16.3a shows
a low ρ threshold which results in a set of 3 signature pockets. As the threshold
is raised, fewer signature pockets are created (Fig. 16.3b). A single signature
pocket representing all surface pockets in the data set can be generated by raising the
threshold even further (Fig. 16.3). The set of signature pockets from different clusters
in the hierarchical tree form abasis setthat represents an ensemble of differently
sampled conformations of the surface pockets in the ProteinData Bank. The basis set
of signature pockets can be used to accurately classify and predict enzymes function.
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Fig. 16.3 Different basis sets of signature pockets can be produced atdifferent levels of
structural similarity by raising or lowering the similarity threshold (vertical dashed line).
a A low threshold will produce more signature pockets.b As the threshold is raised, fewer
signature pockets will be created.c A single signature pocket can in principle be created to
represent the full surface pocket data set by raising the threshold.

16.4.2.1 Signature Pockets of NAD Binding Proteins To illustrate how signature
pockets and the basis set help to identify structural elements that are important
for binding and to show their accuracy in functional inference, we discuss a study
performed on the nicotinamide adenine dinucleotide (NAD) bindign proteins. NAD
plays essential roles in metabolisms where it acts as a coenzyme in redox reactions,
including glycolysis and the citric acid cycle.

We obtained a set of 457 NAD binding proteins of diverse fold and diverse evo-
lutionary origin. We extracted the NAD binding surfaces from the CASTp database
of protein pockets [18]. We obtained the hierarchical tree using the results of our
sequence order independent surface alignments. The resulting 9 signature pockets of
the NAD binding pocket form a basis set, shown in Figure16.4.

The signature pockets of NAD contain biological information. The signature
pocket show in Figure 16.4j is based on a cluster of NAD binding proteins that act
on the aldehyde group of donors, the signature pockets in (Fig. 16.4f and g) are for
oxioreductases that act on the CH-CH group of donors, and thesignature pockets of
Figure 16.4e, h, and i are for clusters of alcohol oxioreductases that act on the CH-
OH group of donors. The NAD-binding lyase family is represented in two signature
pockets. The first represents lyases that cleave both C-O andP-O (Fig. 16.4d) and
the second containing lyases that cleave both C-O and CC bonds (Fig. 16.4b). These
two signature pockets from two clusters of lyase conformations have a different class
of conformations of the bound NAD cofactor (extended and compact).

In addition to the structural fold, the signature pockets are also determined by the
conformation of the bound NAD cofactor (Fig. 16.4a). It can be seen in Fig. 16.4b-
j that there are two general conformations of the NAD coenzyme. The coenzymes
labeled C (Fig. 16.4b,c,f,g,h,and j) have a closed conformation,while the conenzymes
labeled X (Fig. 16.4d,e and i) have an extended conformation. This indicates that the
binding pocket may take multiple conformations yet bind thesame substrate in the
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Fig. 16.4 The topology of the hierarchical tree and signature pocketsof the NAD binding
pockets. a The resulting hierarchical tree topology.b–j The resulting signature pockets of
the NAD binding proteins, along with the superimposed NAD molecules that were bound in
the pockets of the member proteins of the respective clusters. The NAD coenzymes have two
distinct conformations. Those in an extended conformationare marked with an X and those
in a compact conformation are marked with a C.
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same general structure. For example, the two structurally distinct signature pockets
shown in Fig. 16.4f and g are derived from proteins that have the same biological
function and SCOP fold. All of these proteins bind to the sameNAD conformation.

We further evaluated the effectiveness of the NAD basis set by determining its ac-
curacy at correctly classifying enzymes as either NAD-binding or non-NAD-binding.
We constructed a testing data set of 576 surface pockets fromthe CASTp database
[18]. This data set is independent of the 457 NAD binding proteins we used to create
the signature pockets. We collected the 576 surface pocketsby selecting the top 3
largest pockets by volume from 142 randomly chosen proteinsand 50 proteins that
have NAD bound in the PDB structure. We then structurally aligned each of the
signature pockets against each of the 576 testing pockets. The testing pocket was
assigned to be an NAD binding pocket if it structurally aligned to one of the nine
NAD signature pockets with a distance under a predefined threshold. Otherwise it
was classified as non-NAD-binding. The results show that thebasis set of 9 signature
pockets can classify the correct NAD binding pocket with sensitivity and specificity
of 0.91 and 0.89, respectively. We performed further testing to determine whether a
single representative NAD binding pocket, as opposed to a basis set, is sufficient for
identifying NAD-binding enzymes. We chose a single pocket representative from
one of the nine clusters at random and attempted to classify our testing data set by
structural alignment. We used the same predefined thresholdused in the basis set
study. This was repeated 9 times using a representative fromeach of the 9 clusters.
We found that the results deteriorated significantly with anaverage sensitivity and
specificity of 0.36 and 0.23, respectively. This strongly indicates that the construc-
tion of a basis set of signature pockets to be used as a structural template provides
significant improvement for functional inference of a set ofevolutionarily diverse
proteins.

16.5 CONCLUSION

We have discussed methods that provide solutions to the problems that arise during
functional inference by structural similarity at both the global level and at the local
surface level. Both of our methods disregard the ordering ofresidues in the proteins
primary sequence, making them sequence order independent.The global method can
be used to address the challenging problem of detecting structural similarities even
after topological rearrangements of the proteins backbone. The fragment assembly
approach based on the formulation of a relaxed integer programming problem and an
algorithm based on scheduling split-interval graphs is guaranteed by an approximation
ratio. We showed that this method is capable of discovering circularly permuted
proteins and other more complex topological rearrangements.

We also described a method for sequence order independent alignment of local
surfaces on proteins. This method is based on a bi-partite graph matching problem.
We further show that the surface alignments can be used to automatically construct
a basis set of signature pockets representing structurallypreserved atoms across a
family of proteins with similar biological function.
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