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16.1 INTRODUCTION

An increasing number of protein structures are becomindadla that have either
no known function or knowledge of the proteins functionathmnism is incomplete.
Using experimental methods alone to explore these proteinsder to determine
their functional mechanism is unfeasible. For this reasouch research has been
put into computational methods for predicting the functidproteins [5, 31, 44, 34,
14, 53]. One such computational method is functional infeesby homology where
annotations from a protein with known function are transf@monto another protein
based on sequence or structural similarities.
Protein sequence comparisons have been used as a stnaigintfanethod for

functional inheritance. If two proteins have a high levelsefjuence identity, fre-



guently the two proteins have the same or related biolodicadtion. This obser-
vation has been used as a basis for transferring annotdtimmsa protein that is
well characterized to a protein with unknown function whea two proteins have
high sequence similarity [45, 4, 3]. Itis often the case tirdy the protein residues
that are near the functional region of the protein are und@ugonary pressure for
conservation. Therefore, the global sequence similaréy be relatively low while
local regions within the two sequences maintain a highezllef/sequence similar-
ity. In this case, probabilistic models such as profiles Haeen constructed using
only the local regions of high sequence similarity [3, 32, ZB2quence comparison
methods have the advantage that there are large numberuefises deposited into
sequence databases such as SWISS-PROT [11] which prodiegsate information
for constructing probabilistic models. However, a relatyhigh level of sequence
similarity is needed in order to accurately transfer profanction. In fact, problems
begin to arise when the sequence identity between a paiotdips is less than 60%
[57].

Because proteins often maintain structural similaritesnevhen sequence iden-
tity falls as low as 30% [6], making protein structure mom@sgly correlated with
protein function than protein sequence [24]. For this reastany researchers have
begun comparing the three-dimensional structure of prstaian attemptto uncover
more distant evolutionary relationships among proteitse $COP [40] and CATH
[43] databases have organized protein structures higcaitlyhinto different classes
and folds based on their overall similarity in topology aotiif Classification of pro-
tein structures relies heavily on the reliable proteindtite comparison methods.
Common structural comparison methods include Dali [27] @&d[47]. However,
structural alignment methods cannot guarantee optimaltsesand do not have an
interpretability comparable to sequence alignment method

Several challenges arise when trying to compare proteirctsres. First, when
searching for global structural similarity, similar to segce alignment methods, one
can search for global similarity or similarity within locsilirface regions of interest.
Unlike sequence alignment scoring methods which are hebaed on models of
protein evolution [13, 25], scoring systems for structaigynment must take into
accountboth the three-dimensional positional deviati@mt&een the aligned residues
or atoms, as well as other biologically important sharedattaristics. Defining a
robust quantitative measure of similarity is challengiigpe difficulty is illustrated
by the variety of structural alignment scoring methods b@ate been proposed [23].
Second, many alignment methods assume the ordering ofdiueies follows that of
the primary sequence [47, 51]. This sequence order depeadan lead to problems
when comparing local surface regions which often have wvesicand atoms from
different locations on primary sequence fold together tonféunctional regions in
three-dimensional space. On the global backbone levekxtstence of permuted
proteins, such as the circular permutation [37, 17] alsegsgnificant problems for
sequence order dependent alignment methods. Third, psoteay undergo small
side chain structural fluctuations or larger backbone fatadnsin vivo which are
not represented in a single static snapshot of a crystdlBaeicture in the Protein
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Data Bank [9]. Many structural alignment methods assunid higdies and cannot
take structural changes into account.

In this chapter, we will discuss several issues of struttalignment and then
discuss methods we have implemented for sequence ordgreindent structural
alignment at the global level and at the local surface leVés. illustrate the utility
of our methods by showing how our sequence order indepermgianal structural
alignment method detects circular permuted proteins. Wa gihow how our local
surface sequence order independent structural alignmettiath can be used to
construct a basis set of signature pockets of binding sesféar a specific biological
function. The signature pocket represents structuralhseoved surface regions. A
set of signature pockets can then be used to represent éofuedamily of proteins
for protein function prediction.

16.2 STRUCTURAL ALIGNMENT

Comparing the structure of two proteins is an important fmel23] that may detect
evolutionary relationships between proteins even wheunesseg identity between two
proteins is relatively low. A widely used method for measgrstructural similarity
is the root mean squared distance (RMSD) between the equohatioms or residues
of two proteins. If the equivalence relationship is knowmogation matrixk and a
translation vectof” that when applied to one of the protein structures will mizin
the RMSD can be found by solving the minimization problem:

Np Na

min T+ RB; — A, (16.1)
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whereN 4 is the number of points in structuréand N g is the number of points
in structureB. If Ny = Np then the least-squares estimation of the paraméters
andT in Eg. 16.1 can be found using singular value decomposition.

The equivalence relationship is usually not knanpriori when aligning to protein
structures. In this case, the structural alignment meth@dproblem of minimizing
RMSD while maximizing the number of aligned points. Heucsimust be used to
solve this multi-objective optimization problem.

A number of heuristic methods have been developed [56, 148952, 22, 59]
that can be divided into two main categorieSlobal methods are used to detect
similarities between the overall fold of two proteins dadal alignment methods are
used to detect similarities within local regions of intékeithin the two proteins. Most
current methods are restricted to only finding structurallsirities where the order of
the structural elements within the alignment follow theeasrdf the elements within
the primary sequence. Sequence order independent metjroute ithe sequential
ordering of the atoms or residues in primary sequence. Timetbods are better
suited for finding more complex global similarities and cdsoeébe employed for
finding all atoms local comparisons. We have implementedh lsefjuence order
independent methods for both global and local structurghaients.



16.3 GLOBAL SEQUENCE ORDER INDEPENDENT STRUCTURAL
ALIGNMENT

Looking for similarities between the overall fold can elileie evolutionary or func-
tional relationships between two proteins. However, mbgt® current methods for
structural comparison are sequence order dependent anestnieted to comparing
similar topologies between the two backbones. It has besrodéred that through-
out evolution, a genetic event can rearrange the topologiyeohackbone. One such
example is the circular permutation. Conceptually, a ¢incpermutation can be
thought of as a ligation of the N- and C-termini of a proteid ateavage somewhere
else on the protein backbone. It has been observed thatariermutations often
maintain a similar three-dimensional spatial arrangeroesg¢condary structures. In
addition to circular permutations, research has shownrttwae complex topologi-
cal rearrangements are possible [37]. Detection of thesayied proteins will be
valuable for studies in homology modeling, protein foldiagd for protein design.

16.3.0.1 Sequence Order Independent Global Structural Alignment We have
developed a sequence order independent structural aligraigerithm for detecting
structural similarities between two protein that have ugdee topological rearrange-
ment of their backbone structures [17]. Our method is basefdagment assembly
where the two proteins to be aligned are first exhaustivalyrfrented. Each fragment
A4, from protein structures 4 is pair-wise superimposed onto each fragnwﬁg
from protein structuré’gz. The result is a set of fragment pajrs; ., wherei € S4
andj € Sg are the indices in the primary sequence of the first residubefwo
fragments. The variable € {5, 6, 7} is the length of the fragment. Each fragment
pair is assigned a similarity score,

cRMSD

U(Xi,j,k) = a[C — S(Xi,j,k) 2 ] + SCS, (162)

wherecRM S D is the measured RMSD value after optimal superpositioand
C are two constants;(x;, ;) is a scaling factor to the measured RMSD values that
depends on the secondary structure of the fragments§affdis a BLOSSUM-like
measure of similarity in sequence of the matched fragmetis [Details of the
scoring method can be found in [17].

The goal of the structural alignment is to find a consistehbféragment pairs
A = {Xi1 g1, k1> Xis,ja.kas - Xieje,ke ; that minimizes the overall RMSD. Finding
the optimal combination of fragment pairs is a special caséhe well known
maximum weight independent set problem in graph theorys phoblem is MAX-
SNP-hard. We employ an approximation algorithm that wagioaily described for
the scheduling of split-interval graphs [8] and is itselféd on a fractional version
of the local-ratio approach.

To begin, a conflict grapliy = (V, E) is created, where a vertex is defined for
each aligned fragment pair. Two vertices are connected bydge if any of the
fragmentg Ay, A2 ) or (A\F,, A ) from the fragment pair is not disjoint, that is,
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if both fragments from the same protein share one or morduesi For each vertex
representing aligned fragment pairs, we assign threeatafizvariablesc,, yy,
andzy, yy, , € {0,1} and a closed neighborhoddbr[x].z, indicates whether the
fragment pair should be used,( = 1) or not (¢, = 0) in the final alignment.
Ty, Yxr, andzy,yy,  are artificial indicator values foks and Ap, which allow
us to encode consistency in the selected fragments. Thedclrsighborhood of a
vertexy of G is {x'|x, x* € E} U {x}, which is simplyy and all vertices that are
connect toy by an edge.

The sequence order independent structural alignmentitdgocan be described
as follows. To begin, initialize the structural alignmextequal to the entire set of
aligned fragment pairs. We then:

1. Solve a linear programming (LP) formulation of the prabie

maximize
> olx) -y (16.3)
XEA
subject to
Yy, S1 Var€Sa (16.4)
aEXA
> Y, <1 Wb €Sp (16.5)
breENB
Yxrn, — Tx <1 VxeA (16.6)
Yry —Ix <1 VxeA (16.7)
Ty Yxa,bn, 1 VX €A (16.8)

2. For every vertexy € Va of Ga, compute itslocal conflict number, =
Zx‘GNbTA[x] Tyt Let xmin be the vertex with theninimumlocal conflict
number. Define a new similarity functief),.,, from o as follows:

o(x), if x & Nbra[Xmin]
Onew (X) = { U(i) — U(Xmln) Ot[)'lcerWiSe o

3. CreateA,,..,, € A by removing fromA every substructure pajy such that
onew < 0. Push each removed substructure on to a stack in arbitreley.or

4. If Apew # 0 then repeat from step 1, settily = A, e, @Ndo = 0pen-
Otherwise, continue to step 5.

5. Repeatedly pop the stack, adding the substructure pihie @lignment as long
as the following conditions are met:



vi

(a) The substructure pair is consistent with all other ulssiire pairs that
already exists in the selection.

(b) ThecRM SD of the alignment does not change beyond a threshold. This
condition bridges the gap between optimizing a local sirtyldetween
substructures and optimizing the tertiary similarity of tilignment. It
guarantees that each substructure from a substructurs praithe same
spatial arrangement in the global alignment.

16.3.0.2 Detecting Permuted Proteins This algorithm was implementedin alarge
scale study to search for permuted proteins in the Proteia Bank [9]. A subset of
3,336 protein structures taken from the PDBSELECT90 dat@&gare structurally
aligned in a pair-wise fashion. From the subset of 3,336gimet we aligned two
proteins if they met the following conditions (see [17] fatdils):

1. The difference in their lengths was no more than 75 residue
2. The two proteins shared approximately the same secosttagture content.

Within the approximately 200,000 structural alignmentsfgrened, we found
many known circular permutations and three novel circudanqutations, as well as
a more complex pair of non-cyclic permuted proteins. Heredegcribe the details
of the circular permutation we found between a neucleoplasmre and an auxin
binding protein, as well as details of the more complex ngelic permutation.

Nucleoplasmin-Core and Auxin Binding Proteite found a novel circular per-
mutation between the nucleoplasmin-core proteiXémopu laevigPDB ID 1k53,
chain E) [19] and the auxin binding protein in maize (PDBLXh, chain A, residues
37-127) [58]. The structural alignment betwestd jE (Fig. 16.1, top) and 1rhA
(Fig. 16.1, bottom) consisted of 68 equivalent residuessoposed with an RMSD
of 1.36A. This alignment is statistically significant withyavalue of 2. 10~ after
Bonferroni correction. Details of the-value calculation can be found in [17]. The
shortloop connecting two antiparallel strans in nuclesipla-core protein (in circle,
top of Fig. 16.1b) becomes disconnected in auxin bindinggimd. (in circle, bottom
of Fig. 16.1b), and the N- and C- termini of the nucleoplasgone protein (in
square, top of Fig. 16.1b) are connected in auxin bindinggmd. (square, bottom
of Fig. 16.1b). For details of other circular permutatioresfaund, including permu-
tations between microphage migration inhibition factod &ime C-terminal domain
of arginine repressor, please see [17].

Complex Protein PermutationsBecause of their relevance in understanding the
functional and folding mechanism of proteins, circularrpatations have received
much attention [37, 55]. However, the possibility of morengiex backbone re-
arrangements were experimentally verified by artificiabanranging the topology
of the ARC repressor and were found to be thermodynamictdlyle/50]. Very
little is known about this class of permuted proteins, areddétection of non-cyclic
permutations is a challenging task [2, 15, 46, 29].
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Fig. 16.1 A newly discovered circular permutation between nuclespia-core (k5j,
chain E,top pane}, and a fragment of auxin binding protein 1 (residues 37y¥27rh,
chain A, bottom panél aThese two proteins align well with a RMSD value of 1/86ver
68 residues, with a significant-value of 2.7 10~° after Bonferroni correction. _he
loop connecting strand 4 and strand 5 of nucleoplasmin-(areectangle top) becomes
disconnected in auxin binding protein 1. The N- and C- tefmafmucleoplasmin-core (in
rectangletop) become connected in auxin binding protein lréetanglebotton). To aide
in visualization of the circular permutation, residueshia N-to-C direction before the cut in
the nucleoplasmin-core protein are colored, and residues after the cut are colotdde c
The topology diagram of these two proteins. In the origitalcture of nucleoplasmin-core,
the electron density of the loop connecting strand 4 andd®as missing int eh PDB structure
file. This figure is modified from [17].

Our database search uncovered a naturally occurring ndic@ermutation be-
tween chain F of AML1/Core binding factor (AML1/CBF, PDB 1250, Fig. 16.2a,
top) and chain A of riboflavin synthase (PDB tpkv, Fig. 16.2a, bottom). The two
structures align well with an RMSD of 1.4%at an alignment length of 42 residues,
with a significantp-value of 2.8<10~* after Bonferroni correction.

The topology diagram of AML1/CBF (Fig. 16.2b) can be tramsfed into that of
riboflavin synthase (Fig. 16.2f) by the following steps: Remthe loops connecting
strand 1 to helix 2, strand 4 to strand 5, and strand 5 to s8¢Ri). 16.2c). Connect
the C-terminal end of strand 4 to the original N-terminab(F16.2d). Connect the
C-terminal end of strand 5 to the N-terminal end of helix 2)(Fi6.2e). Connect the
original C-termini to the N-terminal end of strand 5. Theétrhinal end of strand
6 becomes the new N-termini and the C-terminal end of strabecbmes the new
C-termini (Fig. 16.2f).
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Fig. 16.2 A non-cyclic permutation discovered between AML1/Core ddiy Factor
(AML1/CBF PDB ID 1e50, Chain F,top) and riboflavin synthase (PDB IRpkv, chain

A, bottom). aThese two proteins structurally align with an RMSD of 1/8ver 42 residues
and has a significant-value of 2.8<10~* after Bonferroni correction. The residues that
were assigned equivalences from the structural alignnrent@ored blueb These proteins
are structurally related by a complex permutation. Thesstepransform the topology of
AML1/CBF (top) to riboflavinfottom) are as follows:c Remove the loops connecting strand
1to helix 2, strand 4 to strand 5, and strand 5 to helist Gonnect the C-terminal end of strand
4 to the original N-terminig Connect the C-terminal end of strand 5 to the N-terminal énd o
helix 2;f Connect the original C-termini to the N-terminal end of stt&. The N-terminal end
of strand 6 becomes the new N-termini and the C-terminal éstiand 1 becomes the new
C-termini. We now have the topology diagram of riboflavinthase. This figure is modified
from [17].

16.4 LOCAL SEQUENCE ORDER INDEPENDENT STRUCTURAL
ALIGNMENT

The comparison of the global backbone can lead to discovatigtant evolutionary
relationships between proteins. However, when attempaidgtect similar functions
or functional mechanisms between two proteins, global back similarity is not a
robust indicator [36, 41, 20]. It can be assumed that theipbliemical properties
of the local region where function takes place (i.e. substoanding) is under more
evolutionary pressure to be conserved. This assumptiobdesrecently backed up
by several studies [53, 38, 42, 21, 30, 54].

A typical protein contains many concave surface regionsyroonly referred to
assurface pocketdHowever, only a few of the surface pockets supply a uniqysph
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iochemical environment that is conducive for the proteircaory out its function.
The protein must maintain this surface pocket throughoolution in order to con-
serve its biological function. For this reason, sharedcstmal similarities between
functional surfacemmong proteins may be a strong indicator of shared biolbgica
function. This has lead to a number of promising studies,hictvprotein functions
can be inferred by similarity comparison of local bindingfages [21, 35, 10, 7, 39]

The inherent flexibility of the protein structure makes telglem of structural
comparison of protein surface pockets challenging. A jmagenot a static structure
as represented by a Protein Data Bank [9] entry. The whotejoras well as the local
functional surface may undergo various degrees of strakfluctuations. The use
of a single surface pocket structure as a representatiyelagerfor a specific protein
function can lead to many false negatives. This is due torihbility of a single
representative to capture the full functional charadiessacross all conformations
of a protein.

We have addressed this problem by developing an algorithbttn identify the
atoms of a surface pocket that are structurally preservezsa@ family of protein
structures that have similar function. Using a sequencerartependent local
surface alignment method to pair-wise align the functigakets across a family of
protein structure, we automatically find the structuratipserved atoms and measure
their fluctuations. We call these structurally conservexirat thesignature pocket
More than one signature pocket may result for single funetiolass. In this case, our
method can automatically creatdasis sebf signature pockets for that functional
family. These signature pockets can then be used as repmges for scanning a
structure database for functional inference by structsirailarity.

16.4.1 Bi-partite Graph Matching Algorithm for Local Surfa ce Comparison

We have modified and implemented a sequence order indepeodahstructural
alignment algorithm based on the maximum weight bi-pagi&ph matching for-
mulation developed by Chen et.al. [12].

As mentioned earlier, the structural alignment problenebalown to a problem
of finding an equivalence relation between residues of aeate proteinSg and
a query proteinSg that when applied will optimize the superposition of the two
structures. The formulation here does this in an iterative $tep process. First,
an optimal set of equivalent atoms are determined underuhent superposition
using a bi-partite graph representation. Second, the newadgnce relation is used
to determine a new optimal superposition. The two stepshame tepeated until a
stopping condition is met.

The equivalence relationship is found between two the atoihtke functional
pocket surfaces by representing the atoms the atosig ahdS as nodesin a graph.
This graphis bi-partite, meaning that edges only exist betwvatoms of r and atoms
of Sg. Adirected edge is drawn between two nodes if a similaritgghold is met. In
our implementation, the measure of similarity takes intmamt both spatial distances
and the chemical property similarities between the twoesponding atoms.



Each edge:; ; connecting node and nodej is assigned a weight(, j) equal
to the similarity score between the two corresponding at@®es [] for details). The
optimal equivalence relationship given the current supsitipn is a subset of the
edges within this bi-partite graph that have maximum comtbimeight, where at most
one edge can be selected per atom making this a maximum-mighrtite graph
matching problem. The solution to this problem can be fousidgithe Hungarian
algorithm [33].

The Hungarian method is as follows. Initially, an overalbiscF,;; = 0 is set.
Additionally, an artificial source nodeand an artificial destination nodeare added
to the bipartite graph. A directed edge i with zero weight is added for each of the
atom nodes from Sr and similarly, directed edgeg, d with zero weight are drawn
from each of the atoms nodes 8. The algorithm then proceeds as follows.

1. Find the shortest distandg(i) from the source node to every other node
using the Bellman-Ford [] algorithm.

2. Assign a new weightv' (7, j) to each edge that does not originate from the
source node as follows,

w'(i, ) = w(i, ) + [F(i) = F(5)]. (16.9)

3. UpdateF,; asF;” = Fy — Fy.
4. Reverse the direction of the edges along the shortesfioeaths to d.

5. If F,;; > F,; and a path exists betweerandd then go back to step 1.

The iterative process of the Hungarian algorithm stops wdithrer there is no
path froms to d or when the shortest distance from the source node to thindtsh
nodeF(d) is greater than the current overall scdtg;. At the end of the process,
the graph will consist of a set of directed edges that have beeersed (they now
point from nodes of, to nodes fromSz. These reversed edges represent the new
equivalence relationships between the atomSgfind the atoms of .

The equivalence relationship found by the bi-partite matglalgorithm can now
be used to superimpose the two proteins using the singulae viecomposition.
After superpositioning the new equivalent atoms, a newabstifg graph is created
and the processis iterated until the chang&.i .S D upon superposition falls below
a threshold.

16.4.2 A Basis Set of Binding Surface Signature Pockets

Being able to compare structural similarities between totgin surface regions
can provide insight into shared biological functions. Asnti@ned earlier, when
dealing with local surface regions one has to be careful vaheosing a functional
representative pocket due to the inherent flexibility oftthrding surfaces. We have
developed a method that automatically generates a setafdmal pocket templates,
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calledsignature pocketsf local surface regions that can be used as a represerdative
functional surface for structural comparison. These gigegpockets contain broad
structural information and have discriminating ability.

A signature pocket is derived from sequence order indepgrsiieictural align-
ments of precomputed surface pockets. Our signature powktbibd does not require
the atoms of the signature pocket to be present in all memhestgres. Instead,
signature pockets can be created at varying degrees adlsrtictural similarity and
can be hierarchically organized according to their stmattsimilarity.

The input of our signature pocket algorithm is a set of fumdi pockets from
the CASTp database [18]. All vs all pair-wise sequence omigependent local
surface alignment is performed on the input functionalaefpockets. A distance
is calculated based on the RMSD and the chemistry of the go@items of the
structural alignment (see [16] for details). The resulfitigtance matrix is used by
an agglomerative clustering method. The signature of thetfonal pocket is then
derived using a recursive process following the hieramtiee.

The recursive process begins by finding the two closeshgjbl{pockets$ 4 and
Sg), and combining them into a single structétgs. During the recursive process,
S, or Sp may themselves already be a combination of several stegtuwhen
combining two structures, we follow the criteria below:

1. If two atoms were considered equivalent in a structurghahtent, a single
coordinate is created in the new structure to representdtotns. The new
coordinate is calculated as the average of the two undergtiom coordinates.

2. If no equivalence was found for an atom during the stradtalignment, the
coordinates of that atom are transferred directly into #& pocket structure.

A count of the number of times an atom at the positiowas present in the
underlying set of pockets\) is recorded during each step in the recursive process.
A preservation ratiop(i) is calculated for each atom of the signature pocket by
dividing IV by the total number of constituent pockets. In additiontiean distance
of the coordinates of the aligned atoms to their geometmterdas recorded as the
location variationv. At the end of each step, the new structiStes replaces the
two structuresS,a ndSp in the hierarchical tree and the process is repeated on the
updated hierarchical tree.

The recursive process can be stopped at any point duringaiersal of the
hierarchical tree by selecting @ threshold. Depending on the choice of the
threshold, a single or multiple signature pockets can batedce Figure 16.3a shows
a low p threshold which results in a set of 3 signature pockets. A&stliheshold
is raised, fewer signature pockets are created (Fig. 16.3bkingle signature
pocket representing all surface pockets in the data setegeerated by raising the
threshold even further (Fig. 16.3). The set of signaturd&ptsdfrom different clusters
in the hierarchical tree form hasis sethat represents an ensemble of differently
sampled conformations of the surface pockets in the PrBigia Bank. The basis set
of signature pockets can be used to accurately classify i@uigb enzymes function.
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Fig. 16.3 Different basis sets of signature pockets can be producetiffatent levels of
structural similarity by raising or lowering the similarithreshold yertical dashed ling

a A low threshold will produce more signature pockelsAs the threshold is raised, fewer
signature pockets will be created.A single signature pocket can in principle be created to
represent the full surface pocket data set by raising thestiold.

16.4.2.1 Signature Pocketsof NAD Binding Proteins  To illustrate how signature
pockets and the basis set help to identify structural elésnérat are important
for binding and to show their accuracy in functional infezenwe discuss a study
performed on the nicotinamide adenine dinucleotide (NADYgn proteins. NAD
plays essential roles in metabolisms where it acts as a goenin redox reactions,
including glycolysis and the citric acid cycle.

We obtained a set of 457 NAD binding proteins of diverse faid diverse evo-
lutionary origin. We extracted the NAD binding surfacesirthe CASTp database
of protein pockets [18]. We obtained the hierarchical tremg the results of our
sequence order independent surface alignments. Theings2ibignature pockets of
the NAD binding pocket form a basis set, shown in Figure16.4.

The signature pockets of NAD contain biological informatioThe signature
pocket show in Figure 16.4j is based on a cluster of NAD bigdiroteins that act
on the aldehyde group of donors, the signature pockets ¢n (F6.4f and g) are for
oxioreductases that act on the CH-CH group of donors, ansigiiature pockets of
Figure 16.4e, h, and i are for clusters of alcohol oxioredses that act on the CH-
OH group of donors. The NAD-binding lyase family is represekin two signature
pockets. The first represents lyases that cleave both C-®abdFig. 16.4d) and
the second containing lyases that cleave both C-O and CGsl{eigl 16.4b). These
two signature pockets from two clusters of lyase conforamathave a different class
of conformations of the bound NAD cofactor (extended and gact).

In addition to the structural fold, the signature pocketsalso determined by the
conformation of the bound NAD cofactor (Fig. 16.4a). It candeen in Fig. 16.4b-
j that there are two general conformations of the NAD coereyifhe coenzymes
labeled C (Fig. 16.4b,c,f,g,h,and ) have a closed conftomavhile the conenzymes
labeled X (Fig. 16.4d,e and i) have an extended conformafibis indicates that the
binding pocket may take multiple conformations yet bind $hene substrate in the
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(a)

Signature Pocket Inhibitor

L] Gl [ B ELE] [

Description

Lyase

EC.#:421.4684.1.1.35

SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

Isomarase

EC.#:51.32

SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

Lyase

EC.#:4234 84613

SCOP ID: e.22.1.1

SCOP Fold: Dehydroquinate synthase-like
MNote: Rossman fold topology binds NAD

CH-OH oxioreductase

EC. 11137811127

SCOP ID: d.162.1.1

SCOP Fold: LDH C-terminal domain-like
Mote: Rossman fold domain

CH-CH oxioreductase

EC. #1319

SCOP ID:c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

CH-CH oxioreductase

EC.#:13189

SCOPID:c212

SCOP Fold: NAD(P)-binding Rossman fold

CH-OH oxioreductase

EC. #1.1.135&1.1.1.141 & 1.1.1.178
SCOP ID: c.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

CH-OH oxioreductase

EC. #1111

SCOP ID: ¢.2.1.2

SCOP Fold: NAD(P)-binding Rossman fold

Aldahyde oxioreductase
EC.#:121.12

SCOP ID: d.81.1.1

SCOP Fold: FwdE/GAPDH domain-like
Mote: Ressman fold domain

xiii

Fig. 16.4 The topology of the hierarchical tree and signature poctietae NAD binding

pockets. a The resulting hierarchical tree topologh—j The resulting signature pockets of
the NAD binding proteins, along with the superimposed NADienales that were bound in
the pockets of the member proteins of the respective ckistére NAD coenzymes have two
distinct conformations. Those in an extended conformagi@nmarked with an X and those
in a compact conformation are marked with a C.
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same general structure. For example, the two structuratindt signature pockets
shown in Fig. 16.4f and g are derived from proteins that hleesame biological
function and SCOP fold. All of these proteins bind to the sédA® conformation.

We further evaluated the effectiveness of the NAD basisdelermining its ac-
curacy at correctly classifying enzymes as either NAD-lrig@r non-NAD-binding.
We constructed a testing data set of 576 surface pocketsthrer@ASTp database
[18]. This data set is independent of the 457 NAD binding @ireg we used to create
the signature pockets. We collected the 576 surface pobketslecting the top 3
largest pockets by volume from 142 randomly chosen protaiinks50 proteins that
have NAD bound in the PDB structure. We then structurallgreéd each of the
signature pockets against each of the 576 testing pockéts.tékting pocket was
assigned to be an NAD binding pocket if it structurally akginto one of the nine
NAD signature pockets with a distance under a predefinedltlotd. Otherwise it
was classified as non-NAD-binding. The results show thabb&sés set of 9 signature
pockets can classify the correct NAD binding pocket withssiarity and specificity
of 0.91 and 0.89, respectively. We performed further tgstindetermine whether a
single representative NAD binding pocket, as opposed tei Isat, is sufficient for
identifying NAD-binding enzymes. We chose a single poclegiresentative from
one of the nine clusters at random and attempted to classifyesting data set by
structural alignment. We used the same predefined thresiseld in the basis set
study. This was repeated 9 times using a representativedeain of the 9 clusters.
We found that the results deteriorated significantly withagarage sensitivity and
specificity of 0.36 and 0.23, respectively. This stronglgioates that the construc-
tion of a basis set of signature pockets to be used as a swut#mplate provides
significant improvement for functional inference of a setegblutionarily diverse
proteins.

16.5 CONCLUSION

We have discussed methods that provide solutions to thdgmmaithat arise during
functional inference by structural similarity at both tHelgal level and at the local
surface level. Both of our methods disregard the orderimgsitlues in the proteins
primary sequence, making them sequence order indepenidentjlobal method can
be used to address the challenging problem of detectingtstal similarities even
after topological rearrangements of the proteins backbdhe fragment assembly
approach based on the formulation of a relaxed integer progring problem and an
algorithm based on scheduling split-interval graphs isgtged by an approximation
ratio. We showed that this method is capable of discoverirularly permuted
proteins and other more complex topological rearrangesnent

We also described a method for sequence order independgminaint of local
surfaces on proteins. This method is based on a bi-partighgmatching problem.
We further show that the surface alignments can be used ¢oratically construct
a basis set of signature pockets representing structypedlyerved atoms across a
family of proteins with similar biological function.
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