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Abstract The curvature of higher-dimensional geometric shapes and topological
spaces is a natural and powerful generalization of its simpler counterpart in planes
and other two-dimensional spaces. Curvature plays a fundamental role in physics,
mathematics and many other areas. However, graphs are discrete objects that do not
necessarily have an associated natural geometric embedding. There are many ways
in which curvature definitions of a continuous surface or other similar space can be
adapted to graphs depending on what kind of local or global properties the mea-
sure is desired to reflect. In this chapter, we review two such measures, namely the
Gromov-hyperbolic curvature measure and a geometric measure based on topolog-
ical associations to higher-dimensional complexes.

1 Introduction

Useful insights for many complex systems are often obtained by representing them
as graphs1 and analyzing them using graph-theoretic and combinatorial tools [50].
For analyzing graphs, researchers have proposed and evaluated a number of es-
tablished graph-theoretic measures such as the degree-based measures, (e.g., degree
distributions), connectivity-based measures, (e.g., clustering coefficients), geodesic-

Tanima Chatterjee
Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA, e-
mail: tchatt2@uic.edu

Bhaskar DasGupta
Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA, e-
mail: bdasgup@uic.edu
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based measures (e.g., betweenness centralities) and other more novel graph-theoretic
measures such as in [2, 6, 41]. To simplify exposition for this chapter, our input is
an undirected weighted or unweighted graph G = (V,E) of n nodes v1, . . . ,vn; the
adjacency matrix for G is denoted by A(G) = [a(G)i, j] where a(G)i, j = 1 (resp.,
a(G)i, j = 0) if

{
vi,v j

}
∈ E (resp., if

{
vi,v j

}
/∈ E). The notations u,v and distH(u,v)

denote a shortest path between nodes u and v, and the distance between nodes u and
v in graph H, respectively.

The graph-theoretic measure discussed in this chapter is an appropriate notion
of “network curvature”. A curvature for a graph G for this chapter is a scalar func-
tion C : G 7→ R. Curvatures are very natural measures of the anomaly of higher
dimensional objects used in mainstream physics and mathematics [10, 13]. How-
ever, graphs are discrete objects that do not necessarily have an associated natu-
ral geometric embedding. There are many ways in which curvature definitions of
a continuous surface or other similar space can be adapted to graphs depending
on what kind of local or global properties the measure is desired to reflect. More
specifically, we discuss Gromov-hyperbolic curvature (based on the properties of
geodesics and higher-order connectivities) and geometric curvatures (based on iden-
tifying network motifs with geometric complexes), both of which encode non-trivial
higher-order correlation among nodes. Some important characteristics of these two
curvature measures are as follows.

I They depend on non-trivial global network properties, as opposed to measures
such as degree distributions or clustering coefficients that are local in nature or
dense subnetworks that use only pairwise correlations.

I They can mostly be computed efficiently in polynomial time, as opposed to
NP-complete measures such as cliques [28], densest-k-subgraphs [28], or some
types of community decompositions such as modularity maximization [20].

I When applied to real-world networks, these curvature measures can explain
many phenomena one frequently encounters in real graph-theoretic applications
that are not easily explained by other measures.

2 Gromov-hyperbolic Curvature

This type of measure for a metric space was originally suggested by Gromov in the
context of group theory [32] by observing that many results concerning the funda-
mental group of a Riemann surface hold true in a more general context. The mea-
sure was first defined for infinite continuous metric space via properties of geodesics
(e.g., see the textbook [13]), but was later also adopted for finite graphs. Usually the
measure is defined via geodesic triangles in the following manner.

Definition 1 (Gromov curvature measure via geodesic triangles). A graph G has
a Gromov curvature (or Gromov hyperbolicity) of δ

def
= δ (G) if and only if for every

three ordered triple of shortest paths (u,v,u,w,v,w), u,v lies in a δ -neighborhood
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of u,w ∪ v,w, i.e., for every node x on u,v, there exists a node y on u,w or v,w such
that distG(x,y)≤ δ .

Definition 2 (the class of δ -Gromov-hyperbolic graphs). An infinite collection
G of graphs belongs to the class of δ -Gromov-hyperbolic graphs (or, simply δ -
hyperbolic graphs) if and only if any graph G ∈ G has a Gromov curvature of at
most δ .

Informally, any infinite metric space has a finite value of δ if it behaves metri-
cally in the large scale as a negatively curved Riemannian manifold, and thus the
value of δ can be related to the standard scalar curvature of a hyperbolic manifold.
For example, a simply connected complete Riemannian manifold whose sectional
curvature is below α < 0 has a value of δ = O((−α )−1/2) (see [58]). This is a
justification of using the value δ as a notion of curvature of any metric space.

For the purpose of designing computational algorithms, it is often useful to con-
sider another alternate but equivalent (“up to a constant multiplicative factor”) way
of defining Gromov curvature for a graph G via the following 4-node conditions.

Definition 3 (equivalent definition of Gromov curvature via 4-node conditions).
For a set {u1,u2,u3,u4} of four nodes, let (π1,π2,π3,π4) be a permutation of
{1,2,3,4} denoting a rearrangement of the indices of nodes such that

distG
(
uπ1 ,uπ2

)

+distG
(
uπ3 ,uπ4

)

= Su1,u2,u3,u4

≤
distG

(
uπ1 ,uπ3

)

+distG
(
uπ2 ,uπ4

)

= Mu1,u2,u3,u4

≤
distG

(
uπ1 ,uπ4

)

+distG
(
uπ2 ,uπ3

)

= Lu1,u2,u3,u4

Let δ̂ = δ̂ (G) = maxu1,u2,u3,u4∈V
{

Lu1,u2,u3,u4 −Mu1,u2,u3,u4

}
/2. Then, if G is a δ -

Gromov-hyperbolic graph then δ/c≤ δ̂ ≤ cδ for some absolute constant c > 0.

In order to account for the fact that sometimes the value of δ̂ (G) may be a
rare deviation from typical values of Lu1,u2,u3,u4 −Mu1,u2,u3,u4 that one would ob-
tain for most combinations of nodes {u1,u2,u3,u4}, the authors in [3] defined the
average Gromov-curvature of a graph G as δave(G) = ∑u1,u2,u3,u4∈V

(
Lu1,u2,u3,u4 −

Mu1,u2,u3,u4

)
/
(n

4

)
such that δave(G) is the expected value of Lu1,u2,u3,u4 −Mu1,u2,u3,u4

when the four nodes u1,u2,u3,u4 are picked independently and uniformly at random
from the set of all nodes.

It is easy to see that if G is a tree then δ (G) = δ̂ (G) = 0, and δ̂ (G) ≤ D/2
where D is the diameter of the given graph. Other examples of graph classes for
which δ (G) and δ̂ (G) are small constants include chordal graphs, cactus of cliques,
AT-free graphs, link graphs of simple polygons, and any class of graphs with a fixed
diameter. On the other hand, theoretical investigations have revealed that expanders,
vertex-transitive graphs and (for certain parameter ranges) classical Erdös-Rényi
random graphs are δ -hyperbolic only for δ = ω(1) [7–9, 44, 47].
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2.1 Topological characteristics of Gromov-hyperbolicity measure

The Gromov-hyperbolicity measure δ (G) enjoys many non-trivial topological char-
acteristics. Some examples are as follows.

. The “δ = o(n)” property is not hereditary (and thus also not monotone). For
example, removing a single node or edge can increase/decrease the value of δ

very sharply.
. A small value of δ does not necessarily imply that the graph is a tree. For

example, all bounded-diameter graphs have δ = O(1) irrespective of whether
they are tree or not (however, graphs with δ = O(1) need not be of bounded
diameter). In general, even for small δ , the metric induced by a δ -hyperbolic
graph may be quite far from a tree metric [17].

. A similar popular measure used in both the bioinformatics and theoretical com-
puter science literature is the tree-width measure first introduced by Robertson
and Seymour [57]. However, as observed in [45] and elsewhere, the two mea-
sures are not correlated.

We end this section with a very important topological consequence of small Gromov-
hyperbolicity values of a graph, popularly known as the “divergence of geodesic
rays” property. The result appears in several forms in prior works such as [3, 7, 13,
32, 44]; we state two such versions. Let B(u,r) denote the set of nodes contained in
a ball of radius r centered at node u in graph G, i.e., B(u,r) = {v |distG(u,v)≤ r}

Fact 1 (Cylinder removal around a geodesic) Assume that G is a δ -hyperbolic
graph. Let p and q be two nodes of G such that distG(p,q) = β > 6, and let p′,q′

be nodes on a shortest path between p and q such that distG(p, p′) = distG(p′,q′) =
distG(q′,q) = β/3. For any 0<α < 1/4, let C be set of nodes at a distance of αβ−1
of a shortest path p′,q′ between p′ and q′, i.e., let C =

{
u |∃v∈ p′,q′ : distG(u,v) =

αβ −1
}

. Let G−C be the graph obtained from G by removing the nodes in C . Then,
distG−C

(p,q)≥ (β/60)2αβ/δ .

Fact 2 (Exponential divergence of geodesic rays) Assume that G is a δ -hyperbolic
graph. Suppose that we are given the following:

• three integers κ ≥ 4, α > 0, r > 3κδ , and
• five nodes v,u1,u2,u3,u4 such that distG(v,u1) = distG(v,u2) = r,

distG(u1,u2) ≥ 3κδ , distG(v,u3) = distG(v,u4) = r + α , and distG(u1,u4) =
distG(u2,u3) = α .

Consider any path Q between u3 and u4 that does not involve a node in⋃
0≤ j≤r+α B(v, j). Then, the length |Q| of the path Q satisfies |Q|>2

α

6δ
+κ+1.

For example, these facts are used by Benjamini in [7] to show that graph classes
with a constant value of δ cannot be expanders and also by Malyshev in [44] to show
that expander graphs must have Gromov-hyperbolicity at least proportional to their
diameter. Further works on the effect of the hyperbolicity measure δ on expansion
and cut-size bounds on graphs and its algorithmic implications are reported in [22].
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2.2 Gromov curvature of real-world networks

Recently, there has been a surge of empirical works measuring and analyzing the
Gromov curvature δ of networks, and many real-world networks (e.g., preferential
attachment networks, networks of high power transceivers in wireless sensor net-
works, communication networks at the IP layer and at other levels) were observed
to have a small constant value of δ [5, 34, 36, 46, 55]. Moreover, extreme conges-
tion at a small number of nodes in a large traffic network that uses the shortest-path
routing was shown in [37] to be caused by a small value of δ of the network. The
authors in [3] computed Gromov hyperbolicity values for 11 biological networks
(3 transcriptional regulatory, 5 signalling, 1 metabolic, 1 immune response and 1
oriented protein-protein-interaction networks) and 9 social networks. They reported
that the hyperbolicity values of all except one network are small and statistically
significant. They also reported several interesting experimentally-validated implica-
tions of these hyperbolicity values, such as

. Independent pathways that connect a signal to the same output node (e.g., tran-
scription factor) are rare, and if multiple pathways exist then they are intercon-
nected through cross-talks.

. All the biological networks have central influential small-size node neighbor-
hoods that can be selected to find knock-out nodes to cut off specific up- or
down-regulation.

2.3 Efficient computation of Gromov curvature

Using Definition 3 directly one can compute δ (G) in O
(
n4
)

time, but this time com-
plexity is prohibitive for large graphs. For faster computation, one needs to define
Gromov curvature via an equivalent but more algorithmically amenable formulation
as follows.

Definition 4 (equivalent definition of Gromov curvature via Gromov product
nodes). [32] For any three nodes u, v and r, the Gromov-product of u and v anchored
at r is defined by

(u|v)r =
1
2

(
dist(u,r)+dist(v,r)−dist(u,v)

)

Define the value of Gromov-hyperbolicity “anchored” at a node r as:

δr = max
u,v,w

{
min

{
(u|w)r, (v|w)r

}
− (u|v)r

}

Then, the value of Gromov-hyperbolicity of a graph G is defined as

δ
def
= δ (G) = max

r
{δr}
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The value of δ (G) computed via Definition 4 is identical to the one computed via
geodesic triangles in Definition 1. It was also shown in [32] that δ (G)≤ δr ≤ 2δ (G)
for any r. Let ω be the value such that two n× n matrices can be multiplied in
O(nω) time; the smallest current value of ω is 2.373 [62]. The (max,min)-matrix
multiplication of two n×n matrices A and B, denoted by A>B, is defined as:

A>B[i, j] = max
k

min
{

A[i,k], B[k, j]
}

Duan and Pettie in [23] showed that A > B can be computed in O(n(3+ω)/2) =
O(n2.688) time. Subsequently, Fournier, Ismail and Vigneron [26] showed that com-
putation of δr can be cast as as computing a (max,min)-matrix multiplication
problem; as a result, one can compute δ (G) and a 2-approximation of δ (G) in
O(n(5+ω)/2) = O(n3.69) and in O(n(3+ω)/2) = O(n2.69) time, respectively. Faster
less accurate approximation is also known, e.g., Chalopin et al. [14] showed that a
8-approximation of δ (G) can be computed in O(n2) time. On the other hand, an ex-
act computation of δ (G) involves computing the ”all-pairs-shortest-path” problem
which is widely conjectured to take at least Ω(n3) time (and, can be done in O(n3)
time [19]).

2.4 Algorithmic implications of small Gromov curvature

A small value of Gromov curvature δ is often crucial for algorithmic designs; for
example, several routing-related problems or the diameter estimation problem be-
come easier for graphs with small δ values [16–18, 29]. DasGupta et al. in [22]
discussed further implications of small values of δ for several graph-theoretic prob-
lems. In particular, they showed that a large family of s-t cuts having at most d O(δ )

cut-edges can be found in polynomial time in δ -hyperbolic graphs of n nodes when
d is the maximum degree of any node except s, t and any node within a distance
of 35δ of s and the distance between s and t is at least Ω(δ logn), and used such
a result to design an approximation algorithm for minimizing bottleneck edges in a
graph.

2.5 Statistical validation of Gromov curvature via “scaled” version

Suppose that δ (G) has been computed for a given graph G of n nodes and it is
indeed a small value compared to the size of the graph. One major task for em-
pirical researchers is then to determine more precisely if δ (H) is indeed a small
number independent of the size of H for every graph H in the class of graphs G )
to which G belongs (as opposed to δ (H) being small specifically only for the par-
ticular graph H = G in G ). For this purpose, we can make use of a “scaled” ver-
sion of Gromov curvature [35, 36, 46]. The basic idea is to “scale” the values of
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Name Notation µu1,u2,u3,u4 ε

diameter-scaled curvature δD maxi, j∈{1,2,3,4}
{

distG
(
ui,u j

)}
0.2929

L-scaled curvature δ L Lu1,u2,u3,u4

√
2−1

2
√

2

(L+M+S)-scaled curvature δ L+M+S Lu1,u2,u3,u4 +Mu1,u2,u3,u4 +Su1,u2,u3,u4 0.0607

Fig. 1 [35] Various scaled Gromov curvatures.

Lu1,u2,u3,u4 −Mu1,u2,u3,u4 in Definition 3 by a suitable scaling factor µu1,u2,u3,u4 such
that there exists a constant 0 < ε < 1 with the following property:

the maximum achievable value of
(
Lu1,u2,u3,u4 −Mu1,u2,u3,u4

)
/µu1,u2,u3,u4 is ε in the standard

hyperbolic space or in the Euclidean space, and
(
Lu1,u2,u3,u4 −Mu1,u2,u3,u4

)
/µu1,u2,u3,u4 goes

beyond ε in positively curved spaces .

By using theoretical or empirical calculations, the authors in [35] provide the
bounds shown in Fig. 1. Following the ideas espoused in [3, 35], assuming G is a
connected graph we can use the following criterion to determine if δ (H) is indeed
a small number independent of the size of H for every graph H ∈ G :

Let 0 < η < 1 be a value indicating the confidence level of our criterion. Then, δ (H) is a
small number independent of the size of H for every graph H ∈ G if and only if

∀Y ∈ {D , L, L+M+S} : ∆
Y(G) =

number of subset of four nodes{
ui,u j,uk,u`

}
such that δ Y

ui,u j ,uk ,u` > ε
(n

4

) < 1−η

In the above criterion, larger values of η indicate better confidence levels. An
alternative method would be to use the procedure outlines in Section 3.7.

3 Geometric Curvature

There are many well-known measures of curvature of a continuous surface or other
similar spaces (e.g., curvature of a manifold) that are widely used in many branches
of physics and mathematics. In section 2 we discussed how to relate Gromov curva-
ture to such other curvature notions indirectly via introduction of its scaled version.
In this section, we describe a notion of geometric curvatures of graphs by using a
correspondence with topological objects in higher dimension.

3.1 Basic topological concepts

In this section we review some basic concepts from topology; see introductory text-
books such as [27, 33] for further information. For concreteness of exposition, let
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the underlying metric space be the rrr-dimensional real space RrRrRr be for some integer
r > 1r > 1r > 1. See Fig. 2 for some illustrations of these concepts in R3.

. A subset S⊆ Rr is convex if and only if for any pair x,y ∈ S, the convex combi-
nation of x and y is also in S (i.e., λx+(1−λ )y ∈ S for any real 0≤ λ ≤ 1).

. A set of k+1 points x0, . . . ,xk ∈Rr are called affinely independent if and only if
for all α0, . . . ,αk ∈R ∑

k
j=0 α jx j = 0 and ∑

k
j=0 α j = 0 implies α0 = · · ·=αk = 0.

. The k-simplex generated by a set of k+1 affinely independent points x0, . . . ,xk ∈
Rr is the subset of Rr S

(
x0, . . . ,xk

)
=
{

∑
k
j=0 α jx j |∀ j : α j ≥ 0 and ∑

k
j=0 α j =

1
}

generated by all convex combinations of x0, . . . ,xk. For example, the equa-
tion of a k-simplex with unit intercepts is given by ∑

k
j=0 x j = 1 with x j ≥ 0 for

all 0≤ j ≤ k.

I Each (`+1)-subset
{

xi0 , . . . ,xi`

}
⊆
{

x0, . . . ,xk
}

defines the `-simplex
S
(
xi0 , . . . ,xi`

)
that is called a face of dimension ` (or a `-face) of S

(
x0, . . . ,xk

)
.

A (k− 1)-face, 1-face and 0-face is called a facet, an edge and a node, re-
spectively.

. A (closed) halfspace is a set of points satisfying ∑
r
j=1 a jx j ≤ b for some

a1, . . . ,ar,b ∈ R. The convex set obtained by a bounded non-empty intersec-
tion of a finite number of halfspaces is called a convex polytope (called a convex
polygon in two dimensions).

I If the intersection of a halfspace and a convex polytope is a subset of the
halfspace then it is called a face of the polytope. Of particular interests are
faces of dimensions r−1, 1 and 0, which are called facets, edges and nodes
of the polytope, respectively.

. We can define a partial order relation ≺f between faces of various dimensions
of a simplex or a convex polytope in the usual manner: a `-face f` is a parent
of a `′-face f̂`

′
(denoted by f̂`

′≺f f
`) if f̂`

′
is contained in f`. Similarly, two `-

faces f` and f̂` are parallel (denoted by f` ‖f f̂`) if they have either at least one
common immediate predecessor or at least one common immediate successor
(in the partial order ≺f) but not both

. A simplicial complex (or just a complex) is a topological space constructed by
the union of simplexes via topological associations.

z

x

y

convex polytope of
intersection of halfspaces
x + y + z ≤ 4

x ≤ 2
z ≤ 3

3y + z ≤ 6
x, y, z ≥ 0

parallel
1-faces

3-simplex S
(

x0, x1, x2, x3

)

x0

x1

x2

x3

0-face
(node)

1-face
(edge)

2-face

Fig. 2 (modified from [54]) Illustrations of some topological concepts discussed in Section 3.1
over R3.
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3.2 Topological association of networks with a complex

Informally, a complex is “glued” from nodes, edges, cycles and other sub-graphs of
the given graph via topological identification. There are many alternate ways such
topological associations can be performed. Here we describe a simple association
as used in [21]; for other possible alternative associations the reader is referred to
papers such as [11, 25, 63, 64].

To begin our topological association, we (topologically) associate a q-simplex
with a (q + 1)-clique Kq+1; for example, 0-simplexes, 1-simplexes, 2-simplexes
and 3-simplexes are associated with nodes, edges, 3-cycles (triangles) and 4-cliques,
respectively. Next, we would also need the concept of an “order” of a simplex for
more non-trivial topological association. Consider a p-face f p of a q-simplex. An
order d association of such a face, which we will denote by the notation f p

d with
the additional subscript d, is associated with a sub-graph of at most d nodes that is
obtained by starting with Kp+1 and then optionally replacing each edge by a path
between the two nodes. For example,

. f 0
d is a node of G for all d ≥ 1.

. f 1
2 is an edge, and f 1

d for d > 2 is a path having at most d nodes between two
nodes adjacent in G.

. f 2
3 is a triangle (cycle of 3 nodes or a 3-cycle), and f 2

d for d > 3 is obtained from
3 nodes by connecting every pair of nodes by a path such that the total number
of nodes in the sub-graph is at most d.

Naturally, the higher the values of p and q are, the more complex are the topological
associations.

3.3 Defining geometric curvatures for elementary components of
given graph

By elementary components of a graph, we mean sub-graphs of small size such as
edges, triangles, 4-cycles and so forth. In this section, we discuss the case when the
elementary components are edges; the other cases can be found in the previously
cited references. As discussed in Section 3.2, geometric curvatures are defined by
“extrapolating” graphs to higher-dimensional complexes via topological associa-
tion. For these associations, it is often useful to assign a positive “weight” from the
interval [0,1] to every pair of nodes (1-simplexes) and to every node (0-simplexes)
of the graph G = (V,E). If G comes with its own node or edge weights, we may use
them directly after normalizing them such that all weights lie between 0 and 1. Oth-
erwise, some choices for these weights that may be appropriate are the following:

(a) For every pair of nodes ei, j = {vi,v j}, a natural choice for the weight would be
wedge(ei, j) = 1 (resp., wedge(ei, j) = 0) if {vi,v j} ∈ E (resp., {vi,v j} /∈ E). One
may also consider more refined choices, e.g., wedge(ei, j) = 1/distG(vi,v j) or a
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“distance-thresholded” version of it, that may be useful in the study of social
networks of the “small world” type [63].

(b) A natural choice for the weight of a node vi would be wnode(vi) = 1. A more
sophisticated choice that one may consider is

wnode(vi) =
∑v j :wedge({vi,v j})≥γ wedge({vi,v j})∣∣{wedge(e) |e ∈ E and wedge(e)≥ γ

}∣∣

that provides more weight to nodes with higher weighted-degree [63].

Once we have fixed a weighting scheme for 0-simplexes and 1-simplexes, we can
assign weights to higher-dimensional objects such as k-faces as follows:

222-faces: For a triangle, say S (v1,v2,v3) with ei, j = {vi,v j} for i, j ∈ {1,2,3}, we
may assign its weight based on the area of the triangle [64]:

w(S (v1,v2,v3)) =
[

s
(

∏
i, j∈{1,2,3}

i 6= j

(
s−wedge(ei, j)

))]1/2
where s =∑

i, j∈{1,2,3}
i6= j

wedge(ei, j)

2

For a polygon of p sides with p > 3, we can first do a triangulation of the
polygon and then add the weights of these triangles to get the weight for the
entire polygon.

kkk-faces for k > 2: We can compute the weight by adding the weights of the (k−
1)-subfaces of this face (for the degenerate case, we will consider subfaces of
dimensions lower than k−1 also). Alternately, for some cases, we may also use
direct combinatorial formulae for the volume.

Let w(f) denote the weight of an arbitrary face f.

1-complex-based geometric curvature for a pair of nodes

A graph is naturally defined by 1-simplexes (edges) and 0-simplexes (nodes). Thus,
without further topological association, a 1-complex-based Forman’s combinatorial
Ricci curvature for a pair of nodes {vi,v j} is given by [25, 63]:

C1
i, j =





0, if wedge(ei, j) = 0

wedge(ei, j)

[
wnode(vi)

wedge(ei, j)
+

wnode(v j)

wedge(ei, j)
—

∑
ei, j1 ,ei1 , j

wedge(ei, j1 )6=0
wedge(ei1 , j)6=0


 wnode(vi)√(

wedge(ei, j)wedge(ei, j1)
) +

wnode(v j)√(
wedge(ei, j)wedge(ei1, j)

)



]
,

otherwise
(1)
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2-complex-based geometric curvature for a pair of nodes

For 2-complex-based geometric curvatures, we also include topological associa-
tions with 2-simplexes (cycles of 3 nodes). Let C (vi,v j,vk) denote a cycle of length
3 consisting of the edges {vi,v j}, {v j,vk} and {vi,vk}. Note that in Equation (1)
the edges ei, j1 and ei1, j in the summation actually satisfy ei, j1‖f ei, j and ei1, j‖f ei, j.
This observation helps us to lead to Forman’s combinatorial Ricci curvature for 2-
complexes [64]:

C2
i, j=





0, if wedge(ei, j) = 0

wedge(ei, j)

[(
∑
vk 6=vi,v j

w(S (vi,v j,vk))

wedge(ei, j)

)
+

wnode(vi)

wedge(ei, j)
+

wnode(v j)

wedge(ei, j)

—∑
ei1 , j1:ei1 , j1‖fei, j
wedge(ei1 , j1 )6=0

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣∑vk 6=vi,v j
w(S (vi,v j ,vk))6=0

√
wedge(ei, j)wedge(ei, j1)

w(S (vi,v j,vk))
+∑

v∈{vi,v j}∩{vi1 ,v j1}

wnode(v)√
(wedge(ei, j)wedge(ei1, j1))

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

]
,

otherwise
(2)

Higher-dimensional geometric curvature for a pair of nodes

k-complex-based curvature Ck
i, j for k > 2 can be defined in a similar manner (e.g., a

clique of k+1 nodes correspond to a k-simplex).

3.4 Overall (scalar) curvature value for a network

One can compute a single scalar value C of geometric curvature based on the values
of Ck

i, j values using curvature functions defined by Bloch [11], by using Euler char-
acteristics [21] or similar other methods. We discuss the simplest unweighted Euler
characteristics based scalar graph curvature as used by DasGupta et al. in [21]. Let
F k

d be the set of all f k
d ’s that are topologically associated as described in Section 3.2.

With such associations via p-faces of order d, the Euler characteristics of the graph
G = (V,E) and consequently the curvature can be defined as

Cp
d(G)

def
=

p

∑
k=0

(−1)k ∣∣F k
d

∣∣

It is easy to see that both C0
d(G) and C1

d(G) are too simplistic to be of use in practice.
Considering the next higher value of p, namely p = 2, and letting C (G) denote the
number of cycles of at most d+1 nodes in G, we get the following scalar curvature
measure for a given graph G = (V,E):

C2
d(G) = |V |− |E|+ |C (G)| (3)
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3.5 Computation of geometric curvatures

Let G = (V,E) be the given connected graph with n nodes and m edges. Using
Equations (1) and (2) and appropriate data structures, C1

i, j and C2
i, j can be computed

roughly in O(m2) and O(m3) times, respectively. More generally, Ck
i, j can be com-

puted in O
(
mO(k)

)
time and C2

d(G) in Equation (3) can be computed in O(md) time.

3.6 Real-world networks and geometric curvatures

The usefulness of geometric curvatures for real-world networks was demonstrated
in publications such as [59, 63, 64]. Some of these results are as follows.

. Samal et al. in [59] empirically compared geometric curvatures of the type dis-
cussed in this chapter with another notion of network curvature, namely the
Ollivier’s discretization of Ricci curvature [53]. Although the Ollivier-Ricci
curvature measures were developed based on quite different properties of the
classical smooth notion as compared to the geometric curvatures discussed in
this chapter, somewhat surprisingly they found that these two measures are cor-
related for many real networks. However, as the authors themselves cautioned
in [53], their results should not be construed as implying that one of these cur-
vature measures can be used as a universal substitute for the other measure, but
merely that for many real networks using one of these that allow faster imple-
mentation may suffice.

. Weber, Saucan and Jost in [64] computed a specific version of the geomet-
ric curvatures discussed in this chapter (the “Euler characteristics” with only
up to 2-faces of degree 3) for several real-world networks, such as Zachary’s
karate club, social interactions of dolphins and E. coli transcription networks,
and showed that networks with a high number of high-degree faces have posi-
tive Euler characteristics whereas low numbers of high-degree faces might hint
on negative Euler characteristics.

3.7 Statistical validations for all curvature measures

We may test the statistical significance of any curvature measure C(G) by computing
its statistical significance value (commonly called p-value) with respect to a null hy-
pothesis model of the network. For this purpose, we may use a method as described
below that is similar to that used by many other researchers in the network science
literature (e.g., see [2, 60]). For each graph G, we we will generate a large number
q of random graphs G1, . . . ,Gq of the same type as G. There are many methods for
generating such random graphs. Two such methods are as follows.
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Generative null-hypothesis models: One most frequently reported topological char-
acteristics of graphs is the distribution of degrees of nodes. We may select ap-
propriate degree distributions for our given class of graphs that is consistent
with the findings in prior literature. For example, based on the known topolog-
ical characterizations for biological transcriptional and signaling networks we
may use the following degree distributions [1, 30, 43]: (a) the in-degree dis-
tribution is exponential, and (b) the out-degree distribution is governed by a
power-law. Random networks with prescribed degree distributions can be gen-
erated using the method by Newman et al. [52].

Non-generative null-hypothesis models: For graphs where a consensus degree
distribution may be difficult to ascertain, we can use the following methods:

. We may generate random networks using a Markov-chain algorithm [38]
by repeatedly swapping randomly chosen compatible pairs of connections
in G.

. We may generate random networks from the degree-distribution of G using
the method pioneered by Newman and others in [31, 42, 48, 49, 51] that
preserves in expectation the degree distribution of each node.

Once the random graphs G1, . . . ,Gq have been generated, we first compute the val-
ues of C(G1),. . . ,C(Gq), and next use a suitable statistical test to determine the
probability that C(G) belongs to the same distribution as C(G1),. . . ,C(Gq).

4 Two applications of curvature analysis of graphs

In this section, we discuss two applications for curvature measures in graphs,
namely in finding critical elementary components and in detecting change-points.

4.1 Detecting critical elementary components of networks

Often real-world networks may have so-called critical elementary components (or
simply critical components) whose absence alter some significant non-trivial global
property of these networks. For example, there is a rich history in finding various
types of critical components of a networks dating back to quantifications of fault-
tolerances or redundancies in electronic circuits or routing networks. Recent ex-
amples of practical application of determining critical components in the context of
systems biology include quantifying redundancies in biological networks [2, 40, 61]
and confirming the existence of central influential neighborhoods in biological net-
works [3]. Network curvatures can be applied to these kinds of problems by using
the curvature measure as the non-trivial global property of a network. We discuss be-
low a simple formalization of these types of problems as used in [21] where edges
are elementary components and they can only be added or deleted but not both.
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Thus, in this setting, the basic question is to find a subset (optionally among a set of
prescribed edges) whose deletion may change the network curvature significantly.
This question was formalized as the extremal anomaly detection problem in [21] in
the following manner.

Definition 5 (Extremal Anomaly Detection Problem (EADP)). [21] Given a con-
nected graph G= (V,E), a curvature measure C : G 7→R, an edge subset Ẽ ⊆ E such
that G\ Ẽ is connected, and a real number γ < C(G) (resp., γ > C(G)) find an edge
subset Ê ⊆ Ẽ of minimum cardinality such that C(G\ Ê)≤ γ (resp., C(G\ Ê)≥ γ).

4.2 Detecting change points in dynamic networks

Another application similar to that in Section 4.1 is related to change point detection
in dynamic (i.e., time-evolving) networks. Dynamic networks are networks whose
elementary components (such as nodes or edges) are added or removed as the net-
work evolves over time. Examples of such networks include biological signal trans-
duction networks with node dynamics, biochemical reaction networks and dynamic
social networks. The anomaly detection or change-point detection problem for such
networks involve finding elementary components whose addition and/or removal al-
ters a significant topological property of the network between two successive time
steps. There is an extensive history of research works dealing with change point
detection problems over the last several decades in the “non-network” context of
time series data [4, 39] with applications to areas such as medical condition mon-
itoring [12, 65], weather change detection [24, 56] and speech recognition [15].
Again using edges as elementary components and the assumption that edges can
only be added or deleted but not both, a simple formalization of these type of prob-
lems under the name “Targeted Anomaly Detection Problem” appeared in [21]. The
formalization is as follows.

Definition 6 (Targeted Anomaly Detection Problem (TADP)). [21] Given two
connected graphs G1 = (V,E1) and G2 = (V,E2) with E2 ⊂ E1 and a curvature mea-
sure C : G 7→ R, an edge subset E3 ⊆ E1 \ E2 of minimum cardinality such that
C(G1 \E3) = C(G2).

For both these applications (i.e., for both the problems EADP and TADP stated in
the previous two sub-sections), the authors in [21] prove several algorithmic results
for both the cases when C is the Gromov curvature and when C is the geometric
curvature given by Equation (3) with fixed d. Informally, some of the results proved
in [21] are as follows:

. When C is the Gromov curvature, it is NP-hard to design a polynomial-time
algorithm to approximate both EADP and TADP within a factor of cn for some
constants c > 0, where n is the number of nodes (the hardness result for EADP
holds only for the case when γ > C).

. The following results hold when C is the geometric curvature:
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. EADP is NP-hard but admits a non-trivial approximation algorithm when
either γ is sufficient larger than C or γ is not too far below C.

. Polynomial time approximation of TADP within a factor of 2 is hard.

5 Conclusion

Notions of curvatures play a fundamental role in physics and mathematics for vi-
sualizing higher-dimensional geometric shapes and topological spaces. However,
usage of curvature measures for networks is not yet very common due to several
reasons such as lack of preferred geometric interpretation of networks and lack of
experimental evidences that may lead to specific desired curvature properties. In
this chapter we have reviewed two curvature measures for networks, namely the
Gromov-hyperbolic and the geometric curvature measures, and two motivating ap-
plications of these curvature measures, and we hope that this review will act as a
stimulator and motivator of further theoretical or empirical research on the exciting
interplay between notions of curvatures from network and non-network domains.
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