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1 Introduction

The problems discussed here are motivated by a central concern of contemporary cell biology, that of un-

raveling (or “reverse engineering”) the web of interactions among the components of complex protein and

genetic regulatory networks. Notwithstanding the remarkable progress in genetics and molecular biology in

the sequencing of the genomes of a number of species, the inference and quantification of interconnections in

signaling and genetic networks that are critical to cell function is still a challenging practical and theoretical

problem. High-throughput technologies allow the monitoring the expression levels of sets of genes, and the

activity states of signaling proteins, providing snapshots of the transcriptional and signaling behavior of living

cells. Statistical and machine learning techniques, such as clustering, are often used in order to group genes
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into co-expression patterns, but they are less able to explain functional interactions. An intrinsic difficulty in

capturing such interactions in intact cells by traditional genetic experiments or pharmacological interventions

is that any perturbation to a particular gene or signaling component may rapidly propagate throughout the

network, causing global changes. The question thus arises of how to use the observed global changes to

derive interactions between individual nodes. In this chapter we discuss some computational problems that

arises in the context of experimental design for reverse engineering of protein and gene networks. Biological

networks may have a very large number of species and parameters. For example, the E. coli transcription

network identified in [15] has 577 interactions involving 116 transcription factors and 419 operons. For such

large-scale networks, exhaustive calculations are not practically possible due to combinatorial explosion and

this necessitates the design of provably efficient approximation algorithms.

2 Motivations

We will first pose our problems in linear algebra terms, and then recast it as a combinatorial question. After

that, we will discuss its motivations from systems biology.

2.1 Linear Algebraic Formulations and the Combinatorial Questions

Our problem is described in terms of two matrices A ∈ R
n×n and B ∈ R

n×m such that:

• A is unknown;

• B is initially unknown, but each of its columns B1, B2, . . . , Bm can be retrieved with a unit-cost query;

• the columns of B are in general position, i.e., each subset of ℓ ≤ n columns of B is linearly independent;

• the zero structure of the matrix C = AB = (cij) is known, i.e., a binary matrix C0 =
(

c0
ij

)

∈ {0, 1}n×m

is given, and it is known that cij = 0 for each i, j for which c0
ij = 0.

The objective is to obtain as much information as possible about A (which, in the motivating application,

describes regulatory interactions among genes and/or proteins), while performing “few” queries (each of

which may represent the measuring of a complete pattern of gene expression, done under a different set of

experimental conditions). For each query that we perform, we obtain a column Bi, and then the matrix C0

tells us that certain rows of A have zero inner product with Bi.
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As a concrete example, let us take n = 3, m = 5, and suppose that the known information is given by

the matrix:

C0 =















0 1 0 1 1

1 1 1 0 0

0 0 1 0 1















and the two unknown matrices are:

A =















−1 1 3

2 −1 4

0 0 −1















, B =















4 3 37 1 10

4 5 52 2 16

0 0 −5 0 −1















(the matrix C0 has zero entries wherever AB has a zero entry). Considering the structure of C0, we choose

to perform four queries, corresponding to the four columns 1,3,4,5 of B, thus obtaining the following data:














4 37 1 10

4 52 2 16

0 −5 0 −1















. (1.1)

What can we say about the unknown matrix A? Let us first attempt to identify its first row, which we call

A1. The first row of the matrix C0 tells us that the vector A1 is orthogonal to the first and second columns

of (1.1) (which are the same as the first and third columns of B). This is the only information about A that

we have available, and it is not enough information to uniquely determine A1, because there is an entire

line that is orthogonal to the plane spanned by these two columns, However, we can still find some nonzero

vector in this line, and conclude that A1 is an unknown multiple of this vector. This nonzero vector may be

obtained by simple linear algebra manipulations. For example, we might add a linearly independent column

to the two that we had, obtaining a matrix

B1 =















4 37 0

4 52 0

0 −5 1















,

then pick an arbitrary vector v whose first two entries are zero (to reflect the known orthogonality), let us

say v = [0, 0, 1], and finally solve A1B = v, thus estimating A1 as vB−1:

Â1 = [0, 0, 1]B−1 = [0, 0, 1]















13/15 −37/60 0

−1/15 1/15 0

−1/3 1/3 1















= [−1/3, 1/3, 1] .
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Notice that this differs from the unknown A1 only by a scaling. Similarly, we may employ the last two

columns of (1.1) to estimate the second row A2 of A, again only up to a multiplication by a constant, and

we may use the first and third columns of (1.1) (which are the same as the first and fourth columns of B)

to estimate the last row, A3.

Notice that there are always intrinsic limits to what can be accomplished: if we multiply each row of

A by some nonzero number, then the zero structure of C is unchanged. Thus, as in the example, the

best that we can hope for is to identify the rows of A up to scalings (in abstract mathematical terms, as

elements of the projective space P
n−1). To better understand these geometric constraints, let us reformulate

the problem as follows. Let Ai denote the ith row of A. Then the specification of C0 amounts to the

specification of orthogonality relations Ai · Bj = 0 for each pair i, j for which c0
ij = 0. Suppose that we

decide to query the columns of B indexed by J = {j1, . . . , jℓ} . Then, the information obtained about A may

be summarized as Ai ∈ H
⊥
J,i, where “⊥” indicates orthogonal complement, HJ,i = span {Bj , j ∈ Ji} ,, and

Ji = {j | j ∈ J and c0
ij = 0} .. Suppose now that the set of indices of selected queries J has the property:

each set Ji, i = 1, . . . , n, has cardinality ≥ n− k, (1.2)

for some given integer k. Then, because of the general position assumption, the space HJ,i has dimension

≥ n− k, and hence the space H⊥
J,i has dimension at most k.

The case k = 1

The most desirable special case is that in which k = 1. Then dimH⊥
J,i ≤ 1, hence each Ai is uniquely

determined up to a scalar multiple, which is the best that could be theoretically achieved. Often, in fact,

finding the sign pattern (such as “(+,+,−, 0, 0,−, . . .)”) for each row of A is the main experimental goal

(this would correspond, in our motivating application, to determining if the regulatory interactions affecting

each given gene or protein are inhibitory or catalytic). Assuming that the degenerate case H⊥
J,i = {0} does

not hold (which would determine Ai = 0), once that an arbitrary nonzero element v in the line H⊥
J,i has been

picked, there are only two sign patterns possible for Ai (the pattern of v and that of −v). If, in addition, one

knows at least one nonzero sign in Ai, then the sign structure of the whole row has been uniquely determined

(in the motivating biological question, typically one such sign is indeed known; for example, the diagonal

elements aii, i.e. the ith element of each Ai, is known to be negative, as it represents a degradation rate).

Thus, we will be interested in this question:

find J of minimal cardinality such that |Ji| ≥ n− 1, i = 1, . . . , n. (Q1)

If queries have variable unit costs (different experiments have a different associated cost), this problem must

be modified to that of minimizing a suitable linear combination of costs, instead of the number of queries.

The general case k > 1
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More generally, suppose that the queries that we performed satisfy (1.2), with k > 1 but small k. It

is not true anymore that there are only two possible sign patterns for any given Ai, but the number of

possibilities is still very small. For simplicity, let us assume that we know that no entry of Ai is zero (if

this is not the case, the number of possibilities may increase, but the argument is very similar). We wish

to prove that the possible number of signs is much smaller than 2n. Indeed, suppose that the queries have

been performed, and that we then calculate, based on the obtained Bj ’s, a basis {v1, . . . , vk} of H⊥
J,i (assume

dimH⊥
J,i = k; otherwise pick a smaller k). Thus, the vector Ai is known to have the form

∑k
r=1 λrvr for

some (unknown) real numbers λ1, . . . , λk. We may assume that λ1 6= 0 (since, if Ai =
∑k

r=2 λrvr, the vector

εv1 +
∑k

r=2 λrvr, with small enough ε, has the same sign pattern as Ai, and we are counting the possible sign

patterns). If λ1 > 0, we may divide by λ1 and simply count how many sign patterns there are when λ1 = 1;

we then double this estimate to include the case λ1 < 0. Let vr = col (v1r, . . . , vnr), for each r = 1, . . . , k.

Since no coordinate of Ai is zero, we know that Ai belongs to the set C = R
k−1 \ (L1

⋃

. . .
⋃

Ln) where,

for each 1 ≤ s ≤ n, Ls is the hyperplane in R
k−1 consisting of all those vectors (λ2, . . . , λk) such that

∑k
r=2 λrvsr = −vs1. On each connected component of C, signs patterns are constant. Thus the possible

number of sign patterns is upper bounded by the maximum possible number of connected regions determined

by n hyperplanes in dimension k− 1. A result of L. Schläfli (see [6, 14], and also [17] for a discussion, proof,

and relations to Vapnik-Chervonenkis dimension) states that this number is bounded above by Φ(n, k − 1),

provided that k − 1 ≤ n, where Φ(n, d) is the number of possible subsets of an n-element set with at most

d elements, that is, Φ(n, d) =
∑d

i=0

(

n
i

)

≤ 2nd

d! ≤
(

en
d

)d
. Doubling the estimate to include λ1 < 0, we

have the upper bound 2Φ(n, k− 1). For example, Φ(n, 0) = 1, Φ(n, 1) = n + 1, and Φ(n, 2) = 1
2 (n2 + n + 2).

Thus we have an estimate of 2 sign patterns when k = 1 (as obtained earlier), 2n+2 when k = 2, n2 +n+2

when k = 3, and so forth. In general, the number grows only polynomially in n (for fixed k).

These considerations lead us to formulating the generalized problem, for each fixed k: find J of minimal

cardinality such that |Ji| ≥ n− k for all i = 1, . . . , n. Recalling the definition of Ji, we see that Ji = J
⋂

Ti,

where Ti = {j | c0
ij = 0}. Thus, we can reformulate our question purely combinatorially, as a more general

version of Question (Q1) as follows. Given sets Ti ⊆ {1, . . . ,m} , i = 1, . . . , n, and an integer k < n, the

problem is:

find J ⊆ {1, . . . ,m} of minimal cardinality such that |J
⋂

Ti| ≥ n− k, 1 ≤ i ≤ n. (Q2)

For example, suppose that k = 1, and pick the matrix C0 ∈ {0, 1}n×n in such a way that the columns of C0

are the binary vectors representing all the (n−1)-element subsets of {1, . . . , n} (so m = n); in this case, the

set J must equal {1, . . . ,m} and hence has cardinality n. On the other hand, also with k = 1, if we pick

the matrix C0 in such a way that the columns of C0 are the binary vectors representing all the 2-element

subsets of {1, . . . , n} (so m = n(n− 1)/2), then J must again be the set of all columns (because, since there

are only two zeros in each column, there can only be a total of 2ℓ zeros, ℓ = |J |, in the submatrix indexed
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by J , but we also have that 2ℓ ≥ n(n − 1), since each of the n rows must have ≥ n − 1 zeros); thus in this

case the minimal cardinality is n(n− 1)/2.

2.2 Set Multicover Formulations

The algorithmic questions posed in the previous section can be cast as variations of a generic combinatorial

set multicover problem, defined as follows. Suppose that we are given an universe U , a set of subsets Γ of

U and a positive integer k with | {u ∈ γ | γ ∈ Γ} | ≥ k for every u ∈ U . Then, our problem is the following

integer programming problem:

minimize
∑

γ∈Γ

xγ subject to

∑

u∈γ∈Γ xγ ≥ k for each u ∈ U

xγ ∈ {0, 1} for each γ ∈ Γ

Basic versions of question (Q1) and (Q2) in the next section can be cast in a similar formulation; see refer-

ences [4, 5]. An appropriate on-line variation of the set-multicover problem, as outlined in the reference [3],

is also appropriate for the reverse engineering problems as will be mentioned in the next section.

2.3 Motivations from Systems Biology

The biological motivation stems from an effort by many research groups whose goal is to infer mechanistic

relationships underlying the observed behavior of complex molecular networks. We focus our attention here

solely on one such approach, originally described in [9, 10], further elaborated upon in [2, 16], and reviewed

in [7, 18]. In this approach, the architecture of the network is inferred on the basis of observed global

responses (namely, the steady-state concentrations in changes in the phosphorylation states or activities of

proteins, mRNA levels, or transcription rates) in response to experimental perturbations (representing the

effect of hormones, growth factors, neurotransmitters, or of pharmacological interventions).

In the setup in [9, 10, 16], the time evolution of a vector of state variables x(t) = (x1(t), . . . , xn(t)) is

described by a system of differential equations:

ẋ = f(x, p) ≡

ẋ1 = f1(x1, . . . , xn, p1, . . . , pm)
...

ẋn = fn(x1, . . . , xn, p1, . . . , pm)

where the dot indicates time derivative and p = (p1, . . . , pm) is a vector of parameters, which can be

manipulated but remain constant during any given experiment. The components xi(t) of the state vector

represent quantities that can be in principle measured, such as levels of activity of selected proteins or

transcription rates of certain genes. The parameters pi represent quantities that can be manipulated, perhaps

indirectly, such as levels of hormones or of enzymes whose half-lives are long compared to the rate at which
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the variables evolve. A basic assumption (but see [16] for a time-dependent analysis) is that states converge

to steady state values, and these are the values used for network identification. There is a reference value

p̄ of p, which represents “wild type” (that is, normal) conditions, and a corresponding steady state x̄.

Mathematically, f(x̄, p̄) = 0. We are interested in obtaining information about the Jacobian of the vector

field f evaluated at (x̄, p̄), or at least about the signs of the derivatives ∂fi/∂xj(x̄, p̄). For example, if

∂fi/∂xj > 0, this means that xj has a positive (catalytic) effect upon the rate of formation of xi. The

critical assumption, indeed the main point of [9, 10, 16], is that, while we may not know the form of f , we

often do know that certain parameters pj do not directly affect certain variables xi. This amounts to a priori

biological knowledge of specificity of enzymes and similar data. In the current context, this knowledge is

summarized by the binary matrix C0 =
(

c0
ij

)

∈ {0, 1}n×m, where “c0
ij = 0” means that pj does not appear

in the equation for ẋi, that is, ∂fi/∂pj ≡ 0.

The experimental protocol allows one to perturb any one of the parameters, let us say the kth one,

while leaving the remaining ones constant. (A generalization, to allow for the simultaneous perturbation of

more than one parameter, is of course possible.) For the perturbed vector p ≈ p̄, one then measures the

resulting steady state vector x = ξ(p). Experimentally, this may for instance mean that the concentration

of a certain chemical represented by pk is kept are a slightly altered level, compared to the default value

p̄k; then, the system is allowed to relax to steady state, after which the complete state x is measured, for

example by means of a suitable biological reporting mechanism, such as a microarray used to measure the

expression profile of the variables xi. Mathematically, we suppose that for each vector of parameters p in a

neighborhood of p̄ there is a unique steady state ξ(p) of the system, where ξ is a differentiable function. For

each of the possible m experiments, in which a given pj is perturbed, we may estimate the n “sensitivities”

bij = ∂ξi

∂pj
(p̄) ≈ 1

p̄j−pj
(ξi(p̄ + pjej)− ξi(p̄)) , i = 1, . . . , n, where ej ∈ R

m is the jth canonical basis vector.

We let B denote the matrix consisting of the bij ’s. (See [9, 10] for a discussion of the fact that division by

p̄j − pj , which is undesirable numerically, is not in fact necessary.) Finally, we let A be the Jacobian matrix

∂f/∂x and let C be the negative of the Jacobian matrix ∂f/∂p. From f(ξ(p), p) ≡ 0, taking derivatives with

respect to p, and using the chain rule, we get that C = AB. This brings us to the problem stated in the

previous section; the general position assumption is reasonable, since we are dealing with experimental data.

2.4 Online Versions of Questions of the Type (Q1) or (Q2)

The online versions of the questions of the type (Q1) or (Q2) are more suited to the case when one performs

an experimental protocol which is slightly different from the one described in Section 2.1 and described below:

• Let Ji ⊆ {j | cij = 1} be the indices of the sets chosen in our set-multicover. Then, each j ∈ Ji is

associated with an experiment of the following type:
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– Change (perturb) only the parameter pj .

– For the perturbed vector p ≈ p̄, we measure the resulting steady state value xi = ξi(p). Experi-

mentally, this may for instance mean that the concentration of a certain chemical represented by

pj is kept are a slightly altered level, compared to the default value p̄j ; then, the system is allowed

to relax to steady state, after which the steady state xi is measured, for example by means of

a suitable biological reporting mechanism, such as a fluorescent proteins1. Mathematically, we

suppose that for each vector of parameters p in a neighborhood of p̄ there is a unique steady state

ξi(p) of xi, where ξi is a differentiable function.

– Estimate the corresponding “sensitivity”

bij =
∂ξi

∂pj
(p̄) ≈

1

p̄j − pj
(ξi(p̄ + pjej)− ξi(p̄))

(where ej ∈ R
m is the jth canonical basis vector).

The cost of doing these experiments is amortized against the weights of the sets, the unweighted case being

the simplest case when we just wish to minimize the number of experiments.

These considerations motivate us to look at the online versions of questions (Q1) and (Q2) which can

be abstracted as an online set multicover problem as follows. we have an universe V of elements, a family

S of subsets of V with a positive real cost cS for every S ∈ S, and a “coverage factor” (positive integer) k.

A subset {i0, i1, . . .} ⊆ V of elements are presented online in an arbitrary order. When each element ip is

presented, we are also told the collection of all (at least k) sets Sip
⊆ S and their costs in which ip belongs

and we need to select additional sets from Sip
if necessary such that our collection of selected sets contains

at least k sets that contain the element ip. The goal is to minimize the total cost of the selected sets.

3 Algorithms and Computational Complexities

References [9, 10, 18] survey biological motivations for Jacobian estimation under the assumptions given

above, prove various results, and provide simulations of realistic biological systems in which the technique

successfully recovers the Jacobian. In the next two subsections, we discuss most recent algorithmic develop-

ments for both the offline version and the online version of the problems.

3.1 Offline version

In [4, 5] we investigated the algorithmic complexity of Question (Q2) and provided randomized approximation

algorithms with expected performance ratios of about 2 for k = 1. This was obtained in two steps. In the first

1Fluorescent proteins can be used to know the rate at which a certain gene trabscribes in a cell under a set of conditions.
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step, we showed an equivalence of this problem with the set-multicover formulation outlined in Section 2.2.

We then considered a randomized approximation algorithm for this problem in the following manner via the

“linear programming with nontrivial rounding” approach:

• Let c =































ln a if k = 1

ln(a/(k − 1)) if a/(k − 1) ≥ e2 and k > 1

2 if 1
4 < a/(k − 1) < e2 and k > 1

1 +
√

a
k otherwise

.

• Find a solution vector x∗ ∈ R
|U | to the LP relaxation of the formulation in Section 2.2 via algorithms

such as [8]. Let x∗
j denote the jth component of this solution vector.

• Form a family of sets C0 = {γ : cx∗
γ ≥ 1}.

• Form a family of sets C1 ⊆ S − C0 by selecting a set γ ∈ Γ\C0 with probability cx∗
γ .

• Form a family of sets C2 by greedy choices: if an u ∈ U belongs to fewer than k sets in C0 ∪ C1, choose

any of the remaining sets that contains u.

• Return C = C0 ∪ C1 ∪ C2 as the solution.

Then, we were able to prove the following result on the performance of this algorithm.

Theorem 1.1 The expected performance ratio of our algorithm is given by

1 + ln a, if k = 1

(

1 + e−(k−1)/5
)

ln(a/(k − 1)), if a/(k − 1) ≥ e2 ≈ 7.39 and k > 1

min{ 2 + 2 · e−(k−1)/5, 2 +
(

e−2 + e−9/8
)

· a
k }

≈ min{ 2 + 2 · e−(k−1)/5, 2 + 0.46 · a
k } if 1

4 < a/(k − 1) < e2 and k > 1

1 + 2
√

a
k if a/(k − 1) ≤ 1

4 and k > 1

3.2 Online version

In [3] we describe a new randomized algorithm for the online multicover problem based on a randomized

version of the winnowing approach of [12]. The winnowing algorithm has two scaling factors: a multiplicative

scaling factor µ
cS

that depends on the particular set S containing i and another additive scaling factor |Si|
−1

that depends on the number of sets that contain i. These scaling factors quantify the appropriate level of

“promotion” in the winnowing approach.
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// definition //

D1 for (i ∈ V )

D2 Si ← {s ∈ S : i ∈ S}

// initialization //

I1 T ← ∅ // T is our collection of selected sets //

I2 for (S ∈ S)

I3 αp[S]← 0 // accumulated probability of each set //

// after receiving an element i //

A1 deficit← k − |Si ∩ T | // k is the coverage factor //

A2 if deficit = 0 // we need deficit more sets for i //

A3 finish the processing of i

A4 A ← ∅

A5 repeat deficit times

A6 S ←least cost set from Si − T −A

A7 insert S to A

A8 µ← cS // µ is the cost of the last set added to A //

A9 for (S ∈ Si − T )

A10 p[S]← min
{

µ
cS

(

αp[S] + |Si|
−1

)

, 1
}

// probability for this step //

A11 αp[S]← αp[S] + p[S] // accumulated probability //

A12 with probability p[S]

A13 insert S to T // randomized selection //

A14 deficit← k − |Si ∩ T |

A15 repeat deficit times // greedy selection //

A16 insert a least cost set from Si − T to T

Figure 1.1: Algorithm A-Universal



4 CONCLUSIONS AND FURTHER RESEARCH PROBLEMS 11

This algorithm generalizes and improves some earlier results in [1]. We proved the following performance

bounds for this algorithm.

Theorem 1.2 The expected performance ratio of Algorithm A-Universal is at most log2 m ln d plus lower

order terms, where d is the maximum number of elements in any set and m is the number of sets.

We also discussed in [3] lower bounds on competitive ratios for deterministic algorithms for general k

based on the approaches in [1]

4 Conclusions and Further Research Problems

Obviously, much research remains to be done regarding the algorithmic and computational complexity of

Questions (Q1) and (Q2) and their generalizations, extensions, and specific applications to gene and protein

networks. For example:

• Can we design randomized algorithms with expected performance ratios better than the ones in Theo-

rem 1.1, especially for k ∈ [ω(n), o(n)]? It seems that a different rounding strategy with a considerably

more non-trivial probabilistic analysis may be necessary in order to achieve this goal.

• The set system Γ may have a structure depending on the biological nature of the dependence of the

variables pj on the variable xi’s. This requires a new integer programming formulation in which, for

example, “forbidden” (either mutual or as a group) combination of sets may arise (analogously to

what is done in [11], for a different problem in reverse engineering). For example, a basic version of the

problem that one might consider involves a given set S ⊆ 2U of forbidden combinations and adding the

constraint
∑

γ∈s xγ ≤ 1 for every s ∈ S. Interestingly, the computational complexity of the problem

changes substantially with these additional constraints.

• How do we design deterministic algorithms to derandomize such algorithms efficiently to provide de-

terministic algorithms? The greedy strategy is shown not to work effectively in [4, 5], hence another

strategy may be necessary. A direct derandomization of the randomized algorithm, via standard tech-

niques such as the method of conditional probabilities or the two-point sampling techniques [13], does

not seem to generate a computationally efficient deterministic procedure.
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