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Abstract. Kinship analysis using genetic data is important for many biological applications, including
many in conservation biology. Wide availability of microsatellites has boosted studies in wild populations
that rely on the knowledge of kinship, particularly sibship. While there exist many methods for recon-
structing sibling relationships, almost none account for errors and mutations in microsatellite data, which
are prevalent and affect quality of reconstruction. We present an error-tolerant method for reconstructing
sibling relationships based on the ideas of consensus methods. We test our approach on both real and
simulated data, with both pre-existing and introduced errors. Our method is highly accurate on almost all
simulations, giving over 90% accuracy in most cases. Ours is the first method designed to tolerate errors
while making no assumptions about the population or the sampling.
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1 Introduction

Kinship analysis of wild populations is an important and necessary component of
studying mating systems, dispersal patterns and kin selection. In wild populations,
kinship relationships (lower order pedigree) are typically inferred from microsatel-
lite markers, rather than SNPs which are more commonly used in model organisms
(see [6] for a discussion). There are two main approaches to kinship inference from
microsatellite data: using genetic distance estimates and statistical likelihood meth-
ods [1,8,11,24,25], and enumeration of feasible relationships based on Mendelian
constraints [2,5,6,10,23]. However, with the exception of COLONY [25], none of
the existing kinship reconstruction methods is designed to tolerate genotyping er-
rors or mutation. Yet, both errors and mutation cannot be avoided in practice and
identifying these errors without any prior kinship information is a challenging task.
In [5,6,10,23] we have presented a method for reconstructing sibling relationships
from single generation microsatellite data that optimally identifies the most par-
simonious set of sibling groups subject only to Mendelian inheritance constraints.
We have shown that our method performs comparably or better than other sibling
reconstruction approaches on both biological and simulated data. While our method
was not designed for data with genotyping errors, it did perform relatively well on
data that contained a limited number of errors. In this paper we present a new
approach for reconstructing sibling relationships from microsatellite data designed
explicitly to tolerate genotyping errors and mutation in data.

1.1 Microsatellite Markers

While there are several molecular markers used in population genetics, microsatel-
lites (also known as SSRs, STRs, SSLPs, and VNTRs) are the most commonly used
in population biology for non-model organisms. Microsatellites are repeats of short
DNA sequences distributed throughout the genome. These are co-dominant, un-
linked, multi-allelic markers that offer numerous advantages for population studies.
Generally, phase or haplotype information is not available for microsatellite loci in
non-model organisms.



1.2 Sibling Reconstruction Problem Statement

The main focus of our paper is to design a method that accurately reconstructs sib-
ling groups from microsatellite data of a single generation in presence of genotyping
errors and mutations. We have formally defined the problem of sibling reconstruc-
tion in [6] and we restate it here. Let U = { X7, ...X,,} be a population U of n diploid
individuals of the same generation where each individual is represented by a genetic
(microsatellite) sample at [ loci. That is, X; = (< an,ba >, ..., < ay, by >) and a;;
and b;; are the two alleles of the individual ¢ at locus j represented as some identi-
fying string. The goal is to reconstruct the full sibling groups which is a partition of
individuals into P, ...P,, where individuals in the same partition P; have the same
parents. We assume no knowledge of parental information.

1.3 2-Allele Algorithm

In [6] we presented a combinatorial 2-ALLELE MIN SET COVER algorithm for the
siblings reconstruction problem. We rely on Mendelian inheritance constraints that
dictate that full siblings must share their parents’ alleles at all loci. We formalize
this rule as the 2-ALLELE PROPERTY in [5]: For a set of individuals there exists a
swapping of individuals’ alleles within a locus such that the total number of distinct
alleles on each side at this locus is at most 2. Note, that the 2-allele property is
a necessary constraint for a group of individuals to be siblings but not sufficient.
Notice, also, that any two individuals necessarily satisfy the 2-allele property since
by default the number of alleles on each side of any locus is at most two.

The 2-ALLELE MIN SET COVER algorithm works by first generating all maximal
sibling groups that obey the 2-ALLELE PROPERTY. The algorithm then uses set
cover [20] to find the minimum number of sibling groups necessary to explain the
data.

1.4 Errors in Microsatellite Data

Errors and mutation cannot be verifiably avoided when genotyping wild populations.

While there may be several sources and types of errors (see [14, 18]), we are concerned

primarily with how they affect the sibling reconstruction problem. We now discuss

errors typically present in microsatellite data.

Allelic Dropout occurs when one or both alleles are not amplified during poly-
merase chain reaction (PCR) and is one of the most common errors [14]. If one
of the alleles is not amplified, the result can be taken as a homozygote. The case
when both alleles are missing is easily identifiable and is handled by a simple
extension of the 2-ALLELE ALGORITHM (see section 1.5).

Heterozygous Mistype occurs when two alleles are amplified by PCR but one or
both of them, for a variety of reasons, are not recorded as present. In the context
of sibling reconstruction any allele that was not present in either of the parents
is a mistype.

Homozygous Mistype occurs when only one allele is amplified by PCR, and it is
not any of the parental alleles.

Genetic Mutation is the actual variation in the alleles, also called polymorphism.
This arises from mistakes made during DNA replication. A mutation may also
be classified as Mistypes when reconstructing sibling relationships.

Allele Combination Error occurs when one or both alleles at a locus are present
in the parents (or sibling group) but Mendelian inheritance rules are still violated.



Null Alleles is the lack of any amplification. When no allele is amplified it can be
explicitly marked as a missing allele.

1.5 Accommodating Missing Alleles

To accommodate known missing alleles in the data we denote them by a special
symbol, e.g. a wildcard (*). The 2-ALLELE MIN SET COVER algorithm then proceeds
to construct feasible sibling sets treating the wildcard as any possible allele.

1.6 Consensus Methods

We base our idea of error-tolerant sibling reconstruction on the consensus-based
approach. The idea behind consensus methods is to combine different solutions to
the same problem into one solution, i.e., group decision making. The formal theory
of voting and group decision making dates back to the eighteenth century [12,13]
and modernized by Kenneth J. Arrow in 1951 [3]. Recently mathematical and com-
putational group choice and concensus techniques have been applied to biological
problems, mostly in the context of phylogeny reconstruction [9]. Our solution is
based on using such methods to tolerate genotyping errors. In Section 2.1 we de-
fine consensus in the context of siblings reconstruction problem, and discuss some
approaches and their feasibility.

2 Consensus based approach for error-tolerant siblings reconstruction
We now describe our approach to reconstructing sibling relationships in presence of
genotyping errors. Consider an individual X; which has some genotyping error(s).
Any error that is affecting siblings reconstruction must be preventing X;’s sibling
relationship with at least one other individual X;, who in reality is a sibling. It
is unlikely that an error would cause two unrelated individuals to be paired up as
siblings, unless all error-free loci do not contain enough information. It is possible
that an individual has more than one error, yet it is unlikely that all the errors bias
the solution in the same direction.

Thus, we can discard one locus at a time, assuming it to be erroneous, and obtain
a sibling reconstruction solution based on the remaining loci. If all such solutions
put the individuals X; and X in the same sibling group (i.e., there is a consensus
among those solutions), we consider them to be siblings. The bulk of our error-
tolerant approach is concerned with pairs of individuals that do not consistently end
up in the same sibling group during this process, that is, there is no consensus about
their sibling relationship.

We present a formal definition of consensus in the context of sibling reconstruction
and describe our consensus-based algorithm for error- tolerant sibling reconstruction.

2.1 Consensus Methods for Siblings Reconstruction

Recall that for a population of individuals U = {X;...X,} the goal of a siblings
reconstruction problem is to find a partition of the population into sibling groups
S ={P,...P,} where all individuals are covered with no overlap:

U p=U and  Vj k P;N P, =10
1<j<m
A partition defines an equivalence relationship. Two individuals are equivalent if
they are in the same partition of the solution S.

XZ-Esz <~ dP, €S s.t. XZ'EP]C/\X]‘EP;C



We are now ready to give the definition of a consensus method.

Definition 1. A consensus method for sibling groups is a computable function f
that takes k solutions S = {S1, ..., Sr.} as input and computes one final solution.

Definition 2. A strict consensus [22] C is a partitioning of sibling groups where two
individuals are together only if they were in the same partition for all solutions:

C= {PC,I .. -PC,m} where Xj =c X, — VSl eS Xj =g, X

The strict consensus defines a true equivalence relation and, thus, is a transitive
function:

(Xz =c Xj VAN Xj =c Xk) = X, =X

Any individual that is not consistently placed into a partition in all solutions will be
added as a singleton. Such a consensus solution is reliable for the individuals that
have been placed together in a group, but there may be many singleton groups.*

2.2 Distance-based consensus

The 2-ALLELE ALGORITHM finds the most parsimonious solution with the fewest
number of sibling groups. While the algorithm performs well in absence of errors, it
is not designed to handle errors. Moreover, the resulting sibling groups returned by
the algorithm may overlap. The strict consensus, on the other hand, conservatively
identifies reliable sibling relationships and puts the rest back into singleton groups.
In order to combine the best aspects of both methods we present a distance based
consensus method. We start with a strict consensus of the “leave-one-locus-out”
solutions and search for the nearest good parsimonious solution. In order to search
for such a solution we need quantitative measures to 1) assess quality of a solution,
f4, and 2) calculate the pairwise distance between solutions, f;. Assume that we
have the two functions f, and f;.

fa:S—R and fa:9xS—=R

Since we start with a strict consensus C the partitions in the solution cannot be
refined any further. Therefore to improve the solution, we use the operations of
merging two sets. The following monotonic property must be obeyed by any im-
proved solution C’:

VXZ‘,X]‘ celU X,=¢ Xj = X; =¢ Xj. (]_)

Thus, given a solution C, we look for an improved solution C’ that minimizes fy4(C,C")
and maximizes f,(C’). To combine the two objectives we can formulate the following
optimization problems:

1. Maximize f, with an upper bound on f;

2. Minimize fq with a lower bound on f,

3. Maximize/Minimize some (linear) combination of f; and f,

We prove all of these problems to be NP-Hard in general for arbitrary f, and f;.

4 If we relax the above constraint to require not all but most of the solutions to agree on the equivalence relationship it
gives us a “majority consensus”. While it performs well in other applications, such as phylogeny reconstruction [7], it
is too biased towards loci with errors in the context of sibling reconstruction.



Theorem 1. Let C be a collection of sibling groups and k € R. Let S be the set of
all solutions that are an improvement of C and are obtainable from C by merging
sibling sets. The problem of finding an improved solution C' € S such that

fq(cl): max fq(S)

fa(C,8)<k

18 NP-hard.

Proof. We show that this problem is NP-hard by reducing from the 2-ALLELE MIN
SET COVER problem, which we have proven to be MAX SNP-hard [4]. We start
with a collection C of singleton only sets and aim to minimize the number of sibling
groups.

Formally, for an input U = {X7,...X,,} to the 2-ALLELE MIN SET COVER, the cor-
responding input to the distance-based consensus problem is C = {{X1}, ..., {X,}}
and k = 0. We define the distance function f; to be

0 sibling groups in C can be merged to form €’ without violating 2-allele property at any locus

1 otherwise

fa(C,C) = {

Finally, we define the quality function f,(C") = |U|—|C’|. This ensures the minimum
number of sets to maximize the objective function since |C’'| < |U|.

The bound on f; guarantees that any merged sibgroups obey the 2-allele property
and the quality maximization objective ensures that the solution is a minimum set
cover. U

Thus, finding improved solutions subject to the first objective is NP-hard. We now
show that the second objective is NP-hard as well.

Theorem 2. Let C be a collection of sibling groups and k € R be the lower bound on
fq- Let S be the set of all solutions that are an improvement of C and are obtainable
from C by merging sibling sets. The problem of finding an improved solution C' € S
such that
fd(c7cl) = Iglelél fd(C7S)
Fq(8)>k

18 NP-hard.

Proof. Similar to the proof of Theorem 1 above, we again reduce from the 2-ALLELE
MIN SET COVER problem. Given an input U = {X},...X,,} to the 2-ALLELE MIN
SET COVER, the corresponding input to the distance-based consensus problem is
C={{X1},....{Xn}} and k = n. We define the distance function f; as follows:

0O  sibling groups in C can be merged to form C’ without violating 2-allele property at any locus

fd(cv C/) = {

1 otherwise

We define the quality function f, as the sum of the distance from strict consensus
and the number of sets:

fo(€) = fa(C,C) +1C7.
A reduction from the 2-ALLELE MIN SET COVER problem follows. [0

Lastly, for an arbitrary combination of f, and fg objective 3 is unattainable as well.



Theorem 3. Let C be a collection of sibling groups. Let S be the set of all solutions
that are an improvement of C and are obtainable from C by merging sibling sets and
let g(fy, fa) be a (linear) combination of the functions f, and fy. The problem of
finding an improved solution C' € S such that

9(14(C.C), £,(C) = OPT{g(4(C. S), £(5))}

18 NP-hard.

Proof. This theorem follows from the Theorem 1 (OPT is max) and Theorem 2
(OPT is min). Hence both the minimization and the maximization objectives are
NP-Hard. O

We have shown that the three versions of the problem of finding the closest best
solution to a given solution of the sibling reconstruction problem are NP-hard. In
the next section we present a heuristic approach that efficiently finds good solutions.

3 Greedy Distance-Based Consensus

We now present a greedy algorithm that given a collection of sibling reconstructions
attempts to find a good solution with few sibling groups while allowing for a small
number of errors in the data. The GREEDY CONSENSUS ALGORITHM uses costs
associated with errors in data to define a merging cost and to find and merge the
pair of sibling groups with the minimum (merging) cost. The sibling groups to be
merged are selected by exhaustively examining all pairs of groups and identifying
the merge that results in lowest total merging cost for the merged group. Our quality
function based on the parsimony assumption: we try to find the minimum number
of sibling groups and errors that explain the data. Therefore, to get the minimum
number of sibling groups our quality function is defined as f, = |U| — |C]|.

3.1 Distance Function

We define two functions necessary to calculate the distance f; : the cost and the
benefit of assigning an individual to a sibling group. The cost of an assignment is
used when an individual cannot be assigned to a group without violating the 2-allele
property. The total cost of tolerating errors is computed using user-defined costs for
each type of possible error in data. These costs are provided by the user depending
on the expected error rates and number of loci. By default, these may be uniform.
The benefit of an assignment is determined by the shared alleles and allele pairs of
the new individual, which can be added without violating 2-allele property.

More formally, we assume that we are given as an input the relative costs of the four
distinct error types and the upper bounds on the number of errors per individual,
per sibling group, and per individual in a sibling group. > The cost and the benefit
of assigning an individual X to a sibling group P; is defined as:

benefit If the 2-allele property is not violated in adding X to P,
cost otherwise

fassign(-Pia X) - {

5 Note that COLONY [25], the only other sibling reconstruction method that explicitly tolerates errors in data, requires
considerably more detailed information about the types, costs, and frequencies of errors.



Suppose C = { Py, ..., P,,} is a collection of sibling groups and C’ is a collection of
groups obtained from C by merging groups F; and P;. Then we define the distance
between C and C’ as follows:

fd(C,Cl) :mln{ Z fassign(Pjvx)a Z fassign(PiaX)}

XeP; XeP;

3.2 Greedy Algorithm

Given an upper bound on the number of errors and the relative error costs, GREEDY
CONSENSUS ALGORITHM searches for the solution with the fewest number of sibling
groups and errors necessary to explain the data. We denote by U}; the set of indi-
viduals U with the ith locus omitted. The GREEDY CONSENSUS ALGORITHM has
three phases:

1. Calculate the 2-ALLELE MIN SET COVER solutions for Uj; ... Uy

2. Calculate the strict consensus C of the above solutions

3. Merge sibling groups greedily as allowed by the parameters

Phase 1 runs the 2-ALLELE MIN SET COVER algorithm to obtain solutions for drop-
ping one locus. Any technique for siblings reconstruction may be used here. We
use the 2-ALLELE MIN SET COVER algorithm as the basis since it performs as well
or better than other available methods and makes fewest assumptions [6]. Phase 2
works by examining all the solutions from phase 1 and placing two individuals in the
same sibling group only if all the solutions agree. Unpaired individuals are placed
in singleton groups. Finally, phase 3 works iteratively by merging the closest pair
of sibling groups. This is done by calculating the f; distance for all pairs of sibling
groups at every iteration. The pair that gives the smallest distance is merged. This
continues until the minimum distance is greater than either the maximum editing
cost per sibling group or the average edit cost exceeds maximum average editing cost
per sibling group. Both of these costs are input parameters.

To analyze the computational time complexity of the GREEDY CONSENSUS AL-
GORITHM we consider each phase separately. Computing the 2-ALLELE MIN SET
COVER for each subset of the input is the most expensive part of the algorithm.
The 2-ALLELE MIN SET COVER problem is MAX SNP-hard [4], which means that
it cannot be approximated within some constant factor in polynomial time, unless
P = NP. We use the commercial mixed integer program solver CPLEX® to solve
the problem to optimality. GREEDY CONSENSUS ALGORITHM executes [ runs of
2-ALLELE MIN SET COVER to compute the [ solutions for consensus method.

The consensus part (steps 2-3) of GREEDY CONSENSUS ALGORITHM is polynomial:
The total time for O(n) iterations is O(n3l). Note that our approach is not exclusive
to the 2-ALLELE MIN SET COVER but may be used with a faster algorithm for a
base solution.

4 Experimental Methodology

We tested our approaches on random datasets generated by coupling the random
simulations used in [5, 6, 10] and adding random errors to the dataset. We compared
results of our GREEDY CONSENSUS ALGORITHM with the original 2-ALLELE MIN

5 CPLEX is a registered trademark of ILOG



SET COVER [6] as well as those of the FAMILY FINDER software [8] and a limited
comparison to COLONY software [25].

We also tested our approach on biological datasets with known sibling groups: Tiger
Shrimp Penaeus monodon ([19]), Ants Leptothoraz acervorum [16], and Atlantic
Salmon Salmo salar [17]. Only the Shrimp dataset had original errors in it. We
introduced errors into other datasets to test our approach.

4.1 Random Simulations
We validate our approach using random simulations. We first create random diploid
parents and then generate complete genetic data for offspring varying the number of
males, females, alleles, loci, number of offsprings and juveniles. We then introduce
errors into the data and use various methods to reconstruct the sibling groups.
We compare our results to the actual known sibling groups in the data to assess
accuracy. We measure the error rates using the Gusfield’s partition distance [15].
The base population is generated using uniform distribution as described in [6].
We used the following ranges of parameter settings for the fixed error rate of 10%
of individuals:
— The number of adult females F' and the number of adult males M were equal
and set to 5, 20.
— The number of loci sampled [ = 4,6,8,10
— The number of alleles per locus (for the uniform allele frequency distribution)
a =10, 15.
— The the number of true sibling groups j = 5, 10, 20.
— The maximum number of offspring per couple (for the uniform family size dis-
tribution) o = 5, 10.

4.2 Random Errors

Errors were introduced uniformly at random with a probability of 0.1 of an individual
having an error. Once an individual to have an error is chosen, we choose the locus to
introduce an error uniformly at random. Then the type of error to introduce is chosen
by generating a random number between 0 and 1, and choosing the corresponding
error from Table 1(a). While the probability of 0.1 for having an individual with an
error may seem large, it is meant to exhibit how robust our method is to genotyping
errors. It also is affected by the number of loci since we introduce only one erroneous
locus for an individual. We further test our approach by varying the error rate for
selected parameters.

Table 1. Random Errors and Associated Costs

(b) Costs and relative thresholds used for
(a) Error ranges for the different error types  Greedy Algorithm Simulations

Type of Error Random Number Range| |Cost value
Allelic Dropout [0,0.5] Allelic Dropout 0.34
Heterozygous Mistype (0.5,0.7] Heterozygous Mistype 0.7
Homozygous Mistype (0.7,0.95] Homozygous Mistype 1
Genetic Mutation otherwise Allele Combination Error 0.4
Maximum Editing per individual | 2.0
Maximum Editing per group o0
Maximum Avg Edit Ind in Group| 0.45




The error rates in Table 1(a) has been derived from biological data as well as [14].
The values used in our experiments are shown in Table 1(b).

4.3 Evaluation

We measure the accuracy of the solution by comparing the known sibling sets with
those generated by our algorithm, and calculating the minimum partition distance
[15]. The solution error is the percentage of individuals that would need to be re-
moved to make the reconstructed sibling set equal to the true sibling sets. Note that
the 2-ALLELE MIN SET COVER does not return a partitioning of the individuals,
whereas the GREEDY CONSENSUS ALGORITHM partitions them.

The experiments were run on Intel” Quad Core Xeon Processor (2.66GHz) with
24 GB RAM memory.

4.4 Sibling Group Reconstruction Methods

We compare the performance of the GREEDY CONCENSUS ALGORITHM to the 2-

ALLELE MIN SET COVER algorithm and two other sibship reconstruction methods.

While there are other sibling reconstruction methods available, in our evaluations,

partially presented in [6], Family Finder and COLONY, together with the 2-ALLELE

MiIN SET COVER, were the best.

Family Finder. The approach proposed in [8] is a mixture of likelihood and com-
binatorial techniques. The algorithm constructs a graph with individuals as nodes
and the edges weighted by the pairwise likelihood ratio that the individuals are
siblings versus being unrelated. Very light edges are ignored. Sibling groups are
then dense areas of the graph.

Colony. Wang [25] has proposed the only other known error tolerant approach.
The method uses a simulated annealing algorithm that works by starting with
known sibling groups. Similar to the consensus approach, individuals whose sib-
ling groups are not known are placed into singleton sibling groups. Iteratively
alternate solutions are created by randomly changing group memberships of in-
dividuals. It uses a “cool-down” approach to reduce exploration after a large
number of iterations.

5 Results

We have compared the accuracy of reconstruction of sibling groups by the new
error-tolerant approach to the best existing sibling reconstruction methods. We use
simulated data with a wide range of parameters. On simulated data our GREEDY
CONSENSUS algorithm performs better than all other methods on almost all param-
eters. When the number of loci is small the 2-ALLELE MIN SET COVER performs
better in some cases, but overall the consensus method performs best on simulated
data. Both Family Finder and COLONY are very inaccurate when the number of
loci is small, thus making them expensive for wild populations. For all simulations
with 6 or more loci, our approach was 95% or more accurate, even if the num-
ber of erroneous individuals went up to 20%. Family Finder and COLONY showed
considerable improvement with increase in the number of loci and alleles per locus.
We present the results on simulated data in Figure 1. We show the accuracy as
a function of the number of sampled loci, number of alleles per locus, number of
families, and the size of a family.
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Fig. 1. Results on simulated datasets. Only 50 iterations were used for the COLONY algorithm due to its computational

inefficiency and time constraints.
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On biological data all methods performed comparably well with slight variation
around the 90% accuracy. The concensus approach achieved over 90% accuracy for
all the biological datasets, which was slightly better than the 2-ALLELE MIN SET
COVER.

6 Conclusions

We have proposed an error-tolerant approach for reconstructing sibling relationships
from microsatellite data. Our method is based on the idea of taking a consensus of
partial solutions obtained by omitting one locus at a time and then locally im-
proving the resulting combined solution. We have proven the intractability of any
general formulation of distance based consensus methods. We have proposed a new
combinatorial algorithm for the problem of reconstructing sibling relationships from
single generation microsatellite genetic data in presence of genotyping errors. We
have implemented and tested our approach on both simulated and real data. We
have provided a framework for distance based consensus methods which may be
used with any combination of distance and quality functions, possibly yielding to
better results.

Consensus methods give a partition, unlike a set cover, and the proposed GREEDY
CONSENSUS ALGORITHM has over 95% accuracy for most datasets and performs
comparably or better than other approaches in most cases. Moreover, unlike any
other approach, our method can identify errors in a given dataset.

While Family Finder and COLONY perform comparably well in some scenarios, our
method requires considerably less input, makes fewer assumptions, and is consis-
tently over 90% accurate. Moreover, our method is considerably faster than COLONY
which performs an almost exhaustive search for a global minimum of the likelihood
function. COLONY also requires one of the parents to be monogamous which is an
unrealistic assumption for many species. Family Finder does not perform well for
large families, especially if the allele frequency is low.

6.1 Future Work

Our approach can be combined with a variety of methods for both generating the
input solutions, and to develop a consensus among them. In future we intend to
explore other than greedy optimization objectives to try to avoid local minima in
the distance function.

Our technique can be extended to solve other problems in kinship analysis. Since our
approach is not restricted to the methods used for generating input solutions, it can
be used as a general consensus between different methods of sibling reconstruction.
For example, a tree-based consensus method can be used to merge pedigrees.
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