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1 Introduction

Artificial neural networks are proposed as a tool for machine learning and many results have

been obtained regarding their application to practical problems in robotics control, vision, pat-

tern recognition, grammatical inferences and other areas. Typically, a neural network is trained

during a supervised training session to recognize complex associations between inputs and out-

puts. These associations are incorporated into the weights of the network, which encode a

distributed representation of the information contained in the input patterns. Once trained,

the network will compute an input/output mapping which, if the training data was representa-

tive enough, will closely match the unknown rule producing the original data. The applicability

of learning algorithms such as the backpropagation algorithm, the massive parallelism of com-

putation, as well as noise and fault tolerance, are some of the prominent features of neural

nets.

Feedforward circuits composed of AND, OR, NOT or threshold gates have been thoroughly

studied in theoretical computer science. However, due to the backpropagation algorithm and its

variants, differentiable activation functions such as the standard sigmoid are more commonly

used. The last two decades have seen a resurgence of theoretical techniques to design and

analyze the performance of neural nets as well as novel applications of neural nets to various

applied areas. Theoretical studies towards the computational capabilities of neural nets have

given valuable insights into the mechanisms of these models.

In subsequent discussions, we distinguish between feedforward neural nets and recurrent

neural nets. The architecture of a feedforward net N is described by an interconnection graph

and the activation functions of N . A node (processor or neuron) v of N computes a function

γv

(
k∑

i=1

avi,vuvi + bv

)
(1)

of its inputs uv1, . . . , uvk
. These inputs are either external (i.e., representing the input data)

or internal (i.e., representing the outputs of the immediate predecessors of v). The coefficients

avi,v (resp. bv) in (1) are the weights (resp. threshold) of node v, and the function γv is the

activation function of v. No cycles are allowed in the interconnection graph and the output

of designated nodes provides the output of the network. A recurrent neural net, on the other

hand, allows cycles, thereby providing potentially higher computational capabilities. The state
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uv of node v in a recurrent net is updated over time according to

uv(t + 1) = γv

(
k∑

i=1

avi,vuvi(t) + bv.

)
(2)

In this chapter, we emphasize the exact and approximate representational power of feedfor-

ward and recurrent neural nets. This line of research can be traced back to

Kolmogorov (Kolmogorov 1957), who essentially proved the first existential result on the (ex-

act) representation capabilities of neural nets. The need to work with “well-behaved” activation

functions however enforces approximative representations of target functions and the question

of the approximation power (within limited resources) becomes fundamental.

Certainly there are immediate consequences of representation power of neural nets for learn-

ing, since we cannot learn (approximately) what we cannot represent (approximately). On the

other hand, learning complexity increases with increasing representational power of the under-

lying neural model and care has to be exercised to strike a balance between representational

power on one hand and learning complexity on the other.

Due to space limitations and limitations on the number of references, we discuss only a small

subset of the vast literature on this topic. The rest of the chapter is organized as follows. In

section 2, we introduce the basic notation. The representational power of feedforward, respec-

tively recurrent neural nets is discussed in sections 3 and 4. Section 3.2 gives a brief discussion

of networks of spiking neurons and their relation to sigmoidal nets. Section 5 concludes the

chapter.

2 Models and Basic Definitions

We present notation and basic definitions for subsequent sections. For real-valued functions we

measure the approximation quality of function f by function g (over a domain D ⊆ R
n) by the

Chebychev norm

||f − g||D = sup{|f(x) − g(x)| : x ∈ D}

(the subscript D will be omitted when clear from the context). To emphasize the selection of

activation functions we introduce the concept of Γ-nets for a class Γ of real-valued activation

functions. A Γ-net N assigns only functions in Γ to nodes. We assume that each function in
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Γ is defined on some subset of R and require that Γ contains the identity function by default

(thus allowing weighted additions as node outputs). Finally we restrict our attention to Γ-nets

with a single output node.

The depth of a feedforward net N is the length of the longest path of the (acyclic) intercon-

nection graph of N , and the size of N is the number of nodes. The hidden nodes are all nodes

excluding all input nodes and the output node.

The class of important activation functions is rather large and includes among others the

binary threshold function H(x) =




0 if x ≤ 0

1 if x > 0
, the cosine squasher,the gaussian, the stan-

dard sigmoid σ(x) = 1/(1 + e−x), the hyperbolic tangent, (generalized) radial basis functions,

polynomials and trigonometric polynomials, splines and rational functions.

Care must be exercised when using a neural net with continuous activation functions to

compute a Boolean-valued function, since in general the output node computes a real number.

A standard output convention in this case is as follows (see (Maass 1994)):

Definition 2.1 A Γ-net N computes a Boolean function F : R
n → {0, 1} with separation ε > 0

if there is some t ∈ R such that for any input x ∈ R
n the output node of N computes a value

which is at least t + ε if F (x) = 1, and at most t− ε otherwise.

Recurrent neural nets, unlike their feedforward counterparts, allow loops in their intercon-

nection graph. Certainly asynchronous recurrent nets are an important neural model, but we

assume in (2) that all nodes update synchronously at each time step. Typically, besides internal

and external data lines, some of the inputs and outputs are validation lines, indicating if there

is any input or output present at the time.

3 Computational Power of Feedforward Nets

The simple perceptron as a feedforward neural net with one layer has only limited computational

abilities. For instance, if we restrict ourselves to one-node simple perceptrons and assume

monotone, but otherwise arbitrary, activation functions, then the XOR-function XOR(x1, x2) =

x1 ⊕ x2 cannot be computed.
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On the other hand, if we choose the binary threshold function H as activation function, then

the learning problem for simple perceptrons is efficiently solvable by linear programming. This

positive result is also extendable to a large class of activation functions including the standard

sigmoid. But simple perceptrons should not be underestimated, since the problem of approxi-

mately minimizing the miss-classification ratio (when the target function is not representable

as a simple perceptron) has been shown to be (probably) intractable (Arora et. al. 1997).

However, the power of feedforward nets increases significantly when networks of more layers

are considered. In fact, a result of Kolmogorov (refuting Hilbert’s 13th problem for continuous

functions), when translated into neural net terminology, shows that any continuous function

can be computed exactly by a feedforward net of depth 3.

Theorem 3.1 (Kolmogorov 1957) Let n be a natural number. Then there are continuous

functions h1, . . . , h2n+1 : [0, 1] → R such that any continuous function f : [0, 1]n → R can be

represented as

f(x) =
2n+1∑
j=1

g(
n∑

i=1

αihj(xi)),

where the function g as well as the weights α1, . . . , αn depend on f .

But, unfortunately, the function g depends on the function to be represented. Moreover, the

functions hj are non-differentiable and hence cannot be used by current learning algorithms.

For a further discussion we refer the reader to the survey (Poggio and Girosi 1989).

However, if we only allow everywhere differentiable activation functions (such as the stan-

dard sigmoid), then we can only represent everywhere differentiable target functions. Thus one

has to relax the requirement of exact representation, and demand only that the approximation

error (in an appropriate norm) is small. Applying the Stone-Weierstrass theorem one obtains

for instance (trigonometric) polynomials as universal approximators and hence we get neural

nets with one hidden layer as universal approximators.

Cybenko (Cybenko 1989) considers activation functions from the class of continuous dis-

criminatory functions. This class contains for instance sigmoidal functions, i.e., continuous

functions σ satisfying

σ(t) →




1 as t → +∞

0 as t → −∞
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Theorem 3.2 Let σ be a continuous discriminatory function and let f : [0, 1]n → R be a

continuous target function. Then, for every ε > 0 and for sufficiently large N (where N

depends on the target function f and ε), there exist weights αij , wj and thresholds βj, such that

||f − g|| < ε, where g =
∑N

j=1 wj · σ(
∑n

i=1 αij · xi + βj).

In particular, one hidden layer suffices to approximate any continuous function by sigmoidal

nets within arbitrarily small error. Further results along this line are shown by Hornik, Stinch-

combe and White, Funahashi, Moore and Poggio as well as Poggio and Girosi to mention just

a few. Whereas most arguments in the above mentioned results are non-constructive, Carroll

and Dickinson describe a method using Radon transforms to approximate a given L2 function

to within a givenmean square error.

Barron (Barron 1993) discusses the approximation quality achievable by sigmoidalnets of

small size. In particular, let Bn
r (0) denote the n-dimensional ball with radius r around 0 and

let f : Bn
r (0) → R be the target function. Assume that F is the magnitude distribution of the

Fourier transform of f .

Theorem 3.3 (Barron 1993) Let σ be any sigmoidal function. Then for every probability

measure µ and for every N there exist weights αij, wj and thresholds βj, such that

∫
Bn

r (0)
(f(x) −

N∑
j=1

wj · σ(
n∑

i=1

αij · xi + βj))
2 µ(dx) ≤ (2

∫
r · |w| · F (dw))2

N
.

Set Cf =
∫

r · |w| · F (dw) and the approximation error achievable by sigmoidal nets of size

N is bounded by
(2·Cf)2

N
. However, Cf may depend superpolynomially on n and the curse of

dimensionality may strike. As an aside, the best achievable squared error for linear combinations

of N basis functions will be at least Ω(
Cf

n·N1/n ) for certain functions f (Barron 1993), and hence

neural networks are superior to conventional approximation methods from this point of view.

The above results show that depth-2 feedforward nets are universal approximators. This dra-

matically increased computing power however has a rather negative consequence.

Kharitonov (Kharitonov 1993) shows under certain cryptographic assumptions that no effi-

cient learning algorithm will be able to predict the input-output behavior of binary threshold

nets with a fixed number of layers. This result even holds, when experimentation is allowed,

that is when the learning algorithm is allowed to submit inputs for classification.
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In the next section we compare important activation functions in terms of their approxima-

tion power, when limiting resources such as depth and size. The subsequent section discusses

networks of spiking neurons and lower size-bounds for sigmoidal nets will be mentioned, when

comparing networks of spiking neurons and sigmoidalnets.

3.1 Efficient Approximation by Feedforward Nets

Our discussion will be informal and we refer the reader to (DasGupta and Schnitger 1993)

for details. Our goal is to compare activation functions in terms of the size and the depth

required to obtain tight approximations. Another resource of interest is the Lipschitz-bound of

the net, which is a measure of the numerical stability of the circuit. Informally speaking, for

a net N to have Lipschitz bound L we first demand that all weights and thresholds of N are

bounded in absolute value by L. Moreover we require that each activation function of N has

(the conventional) Lipschitz-bound L on the inputs it receives. Finally, the actually received

inputs have to be bounded away from regions with higher Lipschitz-bounds.

We formalize the notion of having essentially the same approximation power.

Definition 3.1 Let Γ1 and Γ2 be classes of activation functions.

(a) We say that Γ2 simulates Γ1 (denoted by Γ1 ≤ Γ2) if and only if there is a constant k ≥ 1

such that for all Γ1-nets C2 of size at most s, depth at most d and Lipschitz-bound 2s there is

a Γ2-circuit C1 of size at most (s + 1)k, depth at most k · (d + 1) and Lipschitz-bound 2(s+1)k
,

such that

||C1 − C2||[−1,1]n ≤ 2−s.

(b) We say that Γ1 and Γ2 are equivalent if and only if Γ1 ≤ Γ2 and Γ2 ≤ Γ1.

In other words, when simulating classes of gate functions, we allow depth to increase by a

constant factor, size and the logarithm of the Lipschitz-bound to increase polynomially. The

relatively large Lipschitz-bounds should not come as a surprise, since the negative exponential

error 2−s requires correspondingly large weights in the simulating circuit.

Splines (i.e., piecewise polynomial functions) have turned out to be powerful approximators

and they are our benchmark class of activation functions; in particular we assume that a spline
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net of size s has as its activation functions splines of degree at most s with at most one knot.

Which properties does a class Γ of activation functions need to reach the approximation power

of splines? The activation functions should be able to approximate polynomials as well as the

binary threshold H with few layers and relatively few nodes!

Tightly approximating polynomials is not difficult as long as there is at least one “sufficiently

smooth” non-trivial function γ ∈ Γ. The crucial problem is to obtain a tight approximation of

H. It turns out that γ-nets achieve tight approximations of H, whenever

| γ(x) − γ(x + ε) |= O(ε/x2) for x ≥ 1, ε ≥ 0 and |
∫ ∞

1
γ(u2) du| 	= 0.

Call a function with these two properties strongly sigmoidal. We are actually demanding too

much, since it suffices to tightly approximate a strongly sigmoidal function γ by small Γ-nets

with few layers. Let us call a class Γ powerful if there is at least one “sufficiently smooth” non-

trivial function in Γ and if a strongly sigmoidal function can be approximated as demanded

above.

Example of powerful singleton classes include for instance 1
x

as a prime example and more

generally any rational function which is not a polynomial, exp(x) (since exp(−x) is strongly

sigmoidal) and ln(x) (since ln(x+ 1)− ln(x) is strongly sigmoidal), any power xα provided α is

not a natural number, and the standard sigmoid as well as the gaussian exp(−x2).

Theorem 3.4 (a) Assume that Γ is powerful. Then splines ≤ Γ.

(b) The following classes of activation function have equivalent approximation power:

splines (of degree s for nets of size s), any rational function which is not a poly-

nomial, any power xα (provided α is not a natural number), the logarithm (for any

base), exp(x), and the gaussian exp(−x2).

Notable exceptions from the list of equivalent activation functions are polynomials, trigono-

metric polynomials and the binary threshold function H (or more generally low-degree splines).

Low-degree splines turn out to be properly weaker. The same applies to polynomials, even if

we allow any polynomial of degree s as activation function for nets of size s. Finally sine nets

cannot be simulated (as defined in Definition 3.1) for instance by nets of standard sigmoids and
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we conjecture that the reverse is also true, namely that nets of standard sigmoids cannot be

simulated efficiently by sine nets.

What happens if we relax the required approximation quality from 2−s to s−d, when simulat-

ing nets of depth d and size s? Linear splines and the standard sigmoid are still not equivalent,

but the situation changes completely, if we count the number of inputs when determining size

and if we restrict the Lipschitz-bound of the target function to be at most s−d. With this

modification an even larger class of important functions, including linear splines, polynomials

as well as the sine-function, turn out to be equivalent with the standard sigmoid.

The situation for Boolean input and output is somewhat comparable. Maass, Schnitger

and Sontag and subsequently DasGupta and Schnitger construct Boolean functions that are

computed by sigmoidal nets of constant size (i.e., independent of the number of input bits),

whereas H-nets of constant size do not suffice. (See (Maass 1994) for a more detailed discussion.)

However (Maass 1993) shows that spline nets of constant degree, constant depth and polynomial

size (in the number of input bits) can be simulated by H-nets of constant depth and polynomial

size. This simulation holds without any restriction on the weights used by the spline net.

Thus analog computation does help for discrete problems, but apparently by not too much.

For a thorough discussion of discrete neural computation we refer to (Siu et. al. 1994).

3.2 Sigmoidal Nets and Nets of Spiking Neurons

A formal model of networks of spiking neurons is defined in (Maass 1997). The architecture

is described by a directed graph G = (V, E) with V as the set of nodes and E as the set

of edges. We interpret nodes as neurons, edges as synapses and assign to each neuron v a

threshold function Θv : R
+ → R

+. (R+ denotes the set of non-negative reals.) The value of

Θv(t − t′) measures the “reluctance” (or the threshold to be exceeded) of neuron v to fire at

time t (t > t′), assuming that v has fired at time t′. This reluctance can be overcome only if

the potential Pv(t) of neuron v at time t is at least correspondingly as large.

The potential of v at time t depends on the recent firing history of the presynaptic neurons

(or the immediate predecessors) u of v. In particular, if the synapse between neurons u and v

has the efficacy (or weight) wuv, if εuv(t− s) is the response to the firing of neuron u at time s

(s < t) and if the presynaptic neuron u has fired previously for the times in the set Firet
u, then
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the potential at time t is defined as

Pv(t) =
∑

(u,v)∈E

∑
s∈Firetu

wuv · εuv(t− s). (3)

Two models, namely deterministic (resp. noisy) nets of spiking neurons are distinguished.

The deterministic version assumes that neuron v fires, whenever its potentials Pv(t) reaches

Θv(t− t′) (with most recent firing t′), whereas the more realistic noisy version assumes that the

firing probability increases with increasing difference Pv(t) − Θv(t − t).

Thus we can complete the definition of the formal model, assuming that a response function

εuv : R
+ → R as well as the weight wuv is assigned to the synapse between u and v. The model

computes by transforming a spike train of inputs into a spike train of outputs. For instance

assuming temporal coding with constants T and c, the output of a designated neuron with

firing times T + c · t1, . . . , T + c · ∑k
i=1 ti, . . . is defined as t1, . . . ,

∑k
i=1 ti, . . .

The power of spiking neurons shows for the example of the element distinctness function

EDn with real inputs x1, . . . , xn, where EDn(x) =




1 if xi = xj for some i 	= j,

0 if |xi − xj| ≥ 1 for all i 	= j,

arbitrary otherwise.

We assume that the inputs x1, . . . , xn are represented by n input trains of single spikes. Now it

is easy to choose a simple threshold function as well as simple (and indeed identical) response

functions, such that even a single spiking neuron with unit weights is capable of computing

EDn. On the other hand, any sigmoidal net computing EDn requires at least n−4
2

− 1 hid-

den units (Maass 1997). This result is also the strongest lower size-bound for sigmoidal nets

computing a specific function; the argument builds on techniques from (Sontag 1997).

Certainly this one-neuron computation requires time due to the temporal input coding, but

the same applies to sigmoidal networks, since, from the point of neurobiology, the xi’s will be

obtained after sampling the firing rate of their input neurons.

Nets of spiking neurons are capable of simulating H-nets with at most the same size and

hence are properly stronger than H-nets and at least in some cases stronger than sigmoidal

nets. Thus careful timing is an advantage that synchronized models cannot overcome.
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4 Computational Power of Recurrent Nets

The computational power of recurrent nets is investigated in (Siegelmann and Sontag 1994;Siegel-

mann and Sontag 1995) See also (Siegelmann 1998) for a thorough discussion of recurrent nets

and analog computation in general. Recurrent nets include feedforward nets and thus the re-

sults for feedforward nets apply to recurrent nets as well. But recurrent nets gain considerable

more computational power with increasing computation time. In the following, for the sake of

concreteness, we assume that the piecewise-linear function π(x) =




0 if x ≤ 0

x if 0 ≤ x ≤ 1

1 if x ≥ 1

is chosen

as activation function. We concentrate on binary input and assume that the input is provided

one bit at a time.

First of all, if weights and thresholds are integers, then each node computes a bit. Recurrent

net with integer weights thus turn out to be equivalent to finite automata and they recognize

exactly the class of regular language over the binary alphabet {0, 1}.

The computational power increases considerably for rational weights and thresholds. For

instance, a “rational” recurrent net is, up to a polynomial time computation, equivalent to a

Turing machine. In particular, a network that simulates a universal Turing machine does exist

and one could refer to such a network as “universal” in the Turing sense. It is important to

note that the number of nodes in the simulating recurrent net is fixed (i.e., does not grow with

increasing input length).

Irrational weights provide a further boost in computation power. If the netis allowed expo-

nential computation time, then arbitrary Boolean functions (including non-computable func-

tions) are recognizable. However, if only polynomial computation time isallowed, then nets

have less power and recognize exactly the languagescomputable by polynomial-size Boolean

circuits.

5 Conclusions

We have discussed the computing power of neural nets, including universal approximation

results for feedforward and recurrent neural networks as well as efficient approximation by
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feedforward nets with various activation functions.

We have to emphasize that this survey is everything but complete. For instance, important

topics such as the Vapnik-Chervonenkis dimension of neural nets as well as the complexity of

discrete neural computation had to be omitted due to space limitations.

Important open questions relate to proving better upper and lower bounds forsigmoidal

nets computing (or approximating) specific functions and toprovide a better understanding of

size-depth trade-offs for importantfunction classes. Other neural models, such as networks of

spiking neurons,significantly change the computing power and the above questions apply to

these models as well.
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