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bstract

A useful approach to the mathematical analysis of large-scale biological networks is based upon their decompositions into mono-
one dynamical systems. This paper deals with two computational problems associated to finding decompositions which are optimal
n an appropriate sense. In graph-theoretic language, the problems can be recast in terms of maximal sign-consistent subgraphs.
he theoretical results include polynomial-time approximation algorithms as well as constant-ratio inapproximability results. One
f the algorithms, which has a worst-case guarantee of 87.9% from optimality, is based on the semidefinite programming relaxation
C
T

pproach of Goemans–Williamson [Goemans, M., Williamson, D., 1995. Improved approximation algorithms for maximum cut and
atisfiability problems using semidefinite programming. J. ACM 42 (6), 1115–1145]. The algorithm was implemented and tested on
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Drosophila segmentation network and an Epidermal Growth
o optimally.

2006 Elsevier Ireland Ltd. All rights reserved.

. Introduction

In living cells, networks of proteins, RNA, DNA,
etabolites, and other species process environmental

ignals, control internal events such as gene expres-
ion, and produce appropriate cellular responses. The
U
N

C
O

R
Reld of systems (molecular) biology is largely concerned

ith the study of such networks, viewed as dynamical
ystems. One approach to their mathematical analysis
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Er Receptor pathway model, and it was found to perform close

relies upon viewing them as made up of subsystems
whose behavior is simpler and easier to understand. Cou-
pled with appropriate interconnection rules, the hope is
that emergent properties of the complete system can be
deduced from the understanding of these subsystems.
Diagrammatically, we picture this as in Fig. 1, which
shows a full system as composed of four subsystems.

A particularly appealing class of candidates for “sim-
pler behaved” subsystems are monotone systems, as in
Hirsch (1985, 1983) and Smith (1995). Monotone sys-
tems are a class of dynamical systems for which patho-
logical behavior (“chaos”) is ruled out. Even though
they may have arbitrarily large dimensionality, mono-
tone systems behave in many ways like one-dimensional
systems. For instance, in monotone systems, bounded
BIO 2594 1–18

trajectories generically converge to steady states, and 45

there are no stable oscillatory behaviors. More precisely, 46

see below, one must extend the notion of monotone sys- 47

tem so as to incorporate input and output channels, as 48

ed.

omplexity results for decompositions of biological networks
ystems.2006.08.001

mailto:dasgupta@cs.uic.edu
mailto:yzhang3@cs.uic.edu
mailto:genciso@mbi.osu.edu
mailto:sontag@math.rutgers.edu
dx.doi.org/10.1016/j.biosystems.2006.08.001
dx.doi.org/10.1016/j.biosystems.2006.08.001


T

BIO 2594 1–18

2 B. DasGupta et al. / BioSystem

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

a given system. 109
C

Fig. 1. A system composed of four subsystems.

introduced and initially developed in Angeli and Sontag
(2003); inputs and outputs are required so that intercon-
nections like those shown in Fig. 1 can be defined.

Monotonicity is closely related, as explained later,
to positive and feedback loops in systems. The topic
of analyzing the behaviors of such feedback loops is a
long-standing one in biology in the context of regula-
tion, metabolism, and development; a classical reference
in that regard is the work (Monod and Jacob, 1961)
of Monod and Jacob in 1961. See also, for example,
Angeli et al. (2004), Angeli and Sontag (2004), Cinquin
and Demongeot (2002), Lewis et al. (1977), Meinhardt
(1978), Plathe et al. (1995), Remy et al. (2003), Snoussi
(1998) and Thomas (1978).

An interconnection of monotone subsystems, that is
to say, an entire system made up of monotone compo-
nents, may or may not be monotone: “positive feedback”
(in a sense that can be made precise) preserves mono-
tonicity, while “negative feedback” destroys it. Thus,
oscillators such as circadian rhythm generators require
negative feedback loops in order for periodic orbits to
arise, and hence are not themselves monotone systems,
although they can be decomposed into monotone sub-
U
N

C
O

R
R

Esystems (cf. Angeli and Sontag, 2004). A rich theory is
beginning to arise, characterizing the behavior of non-
monotone interconnections. For example, Angeli and
Sontag (2003) shows how to preserve convergence to

Fig. 2. A consistent and an

Please cite this article as: Bhaskar DasGupta et al., Algorithmic and
into monotone subsystems, BioSystems (2006), doi:10.1016/j.bios
E
D

 P
R

O
O

F

s xxx (2006) xxx–xxx

equilibria; see also the follow-up papers (Angeli et al.,
2004; Enciso et al., 2005; Enciso and Sontag, 2006;
Gedeon and Sontag, 2005; De Leenheer et al., 2005).
Even for monotone interconnections, the decomposi-
tion approach is very useful, as it permits locating and
characterizing the stability of steady states based upon
input/output behaviors of components, as described in
Angeli and Sontag (2004); see also the follow-up papers
(Angeli et al., 2004; Enciso and Sontag, 2005; De Leen-
heer and Malisoff, 2006).

Moreover, a key point brought up in Sontag (2004,
2005) is that new techniques for monotone systems in
many situations allow one to characterize the behavior
of an entire system, based upon the “qualitative” knowl-
edge represented by general network topology and the
inhibitory or activating character of interconnections,
combined with only a relatively small amount of quan-
titative data. The latter data may consist of steady-state
responses of components (dose-response curves and so
forth), and there is no need to know the precise form
of dynamics or parameters such as kinetic constants in
order to obtain global stability conclusions.

In Section 2 of this paper, we briefly discuss mono-
tonicity of systems described by ordinary differential
equations (the study of monotonicity can be extended
to partial differential equations, delay-differential equa-
tions, and even more arbitrary dynamical systems, see
e.g. Enciso and Sontag, 2006 in the context of mono-
tone systems with inputs and outputs). We explain there
how the study of monotone systems, and more generally
of decompositions into monotone systems, relates to a
sign-consistency property for the graph which describes
how each state variable influences each other variable in
BIO 2594 1–18

inconsistent graph.

Generally, a graph, whose edges are labeled by “+” 110

or “−” signs (sometimes one writes +1, −1 instead of 111

+, −, or uses respectively activating “→” or inhibiting
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Fig. 3. Pulling-out inconsistent connections.

�” arrows as shown in Fig. 2), is said to be sign-
onsistent if all paths between any two nodes have the
ame net sign, or equivalently, all closed loops have pos-
tive parity, i.e. an even number, possibly 0, of negative
dges. (For technical reasons, one ignores the direction
f arrows, looking only at undirected graphs; see more
etails in Section 2.) Thus, the first graph in Fig. 2 is
onsistent, but the second one, which differs in just one
dge from the first one, is not (two paths with differ-
nt parity are possible from node 1 to node 4, a direct
dd one as well as an even one transversing nodes 2 and
). Self-loops, which in biochemical systems often rep-
esent degradation terms, are ignored in this definition.
We discuss this point further below.)

When applying decomposition theorems such as
hose described in Angeli et al. (2004), Angeli et al.
2004), Angeli and Sontag (2003, 2004), Enciso et al.
2005), Enciso and Sontag (2005), Enciso and Sontag
2006), Gedeon and Sontag (2005), De Leenheer et al.
2005) and De Leenheer and Malisoff (2006), Sontag
2004, 2005), it tends to be the case that the fewer the
umber of interconnections among components, the eas-
er it is to obtain useful conclusions. One may view a
ecomposition into interconnections of monotone sub-
ystems as the “pulling out” of “inconsistent” connec-
ions among monotone components, the original system
eing a “negative feedback” loop around an otherwise
onsistent system, as represented in Fig. 3. In this inter-
retation, the number of interconnections among mono-
one components corresponds to the number of variables
eing fed-back. In addition, and independently from the
heory developed in the above references, one might
peculate that nature tends to favor systems that are
ecomposable into small monotone interconnections (or
quivalently, have a small number of inconsistent paths).
here are two reasons for this.

From a dynamical systems perspective, negative feed-
ack loops, although required for homeostasis and for
eriodic behavior, have potentially destabilizing effects,
specially if there are signal propagation delays; thus,
inimizing their number is desirable.
Another advantage of consistency is as follows

Sontag, in preparation). Suppose that the nodes in the
Uraphs shown in Fig. 2 represent concentrations of a
hemical species in a cell, such as receptors in a certain
ctivated state or transcription factors. Assume now that
perturbation instantaneously increases the value of the

Please cite this article as: Bhaskar DasGupta et al., Algorithmic and c
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concentration of node 1. For the graph on the left, the
instantaneous effect on the other nodes is predictable:
nodes 2 and 6 will increase, while nodes 3, 4, and 5
will decrease. This unambiguous global effect holds true
regardless of the actual algebraic forms of reactions, val-
ues of parameters such and kinetic constants, etc. In
contrast, consider the graph shown on the right. Now
the net effect of an increase in node 1 is ambiguous. It is
impossible to know if node 4 will be repressed (because
of the direct edge from 1 to 4) or activated (because of
the indirect path). There is no way to resolve this ambi-
guity unless equations and precise parameter values are
assigned to the arrows. Since cells of the same type differ
in precise parameter values, due to varying concentra-
tions of ATP, enzymes, and other chemicals, two cells of
the same type may react in different ways to the same
“stimulus” (increase in concentration of chemical 1).
While such epigenetic diversity is sometimes desirable,
it makes behavior less predictable. From an evolutionary
viewpoint, a “change in wiring” due to a mutation will
have an ambiguous effect, in this inconsistent network.

Of course, one should not expect large networks to be
globally consistent. However, if the number of inconsis-
tencies in a biological interaction graph is small, it may
well be the case that the network is in fact consistent
in a practical sense. For example, a gene regulatory net-
work represents all potential effects among genes. These
effects are mediated by proteins which themselves may
need to be “activated” in order to perform their func-
tion, and this activation may, in turn, depend on certain
extracellular ligands being present. Thus, depending on
the particular combination of external signals present,
different subgraphs of the original graph describe the
system under those conditions, and these graphs may be
individually consistent. For example, for the system in
Fig. 2, the edge from 1 to 2 may not be present under envi-
ronmental conditions A, while the edge from 2 to 3 may
not be present under conditions B. Thus, under either
conditions, A or B, the graph would be consistent, even
though the entire network is not. See Sontag (in prepa-
ration) for more discussion of these issues. In summary,
consistency in biological networks may be desirable, and
therefore one might conjecture that true biological net-
works tend to maximize it. Evidence that this is indeed
the case is provided by Ma’ayan et al. (in preparation),
where the authors compare certain biological networks
and appropriately randomized versions of them and show
that the original networks are closer to being consistent,
BIO 2594 1–18

when consistency is measured using a simple heuristic. 207

In the last section of this paper, we apply our algorithms 208

to perform a similar analysis, and once again derive the 209

conclusion that nature seems to favor consistency. 210
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Fig. 4. Dropping the diagonal edge gives consistency.

Thus, we are led to the subject of this paper, namely
computing the smallest number of edges that have to
be removed so that there remains a consistent graph.
For example, for the particular graph shown in Fig. 4
the answer is that one edge (the diagonal positive one)
suffices (in this case, the solution is unique: no single
other edge would suffice; in other problems, there may
be more than one optimizing solutions).

There has been other work dealing with efficient
knock-out strategies in biochemical reaction networks,
also formulated, as in this paper, as edge deletion prob-
lems. As an example, we mention the recent paper
(Klamt, 2006), which dealt with the question of iden-
tifying a minimal set of reactions whose removal would
block the operation of a prespecified reaction. The prob-
lem that we consider is completely different, however.

In this paper, we will study the computational com-
plexity of the question of how many edges must be
removed in order to obtain consistency, and we pro-
vide a relaxation-based polynomial-time approximation
algorithm guaranteed to solve the problem to about
87.9% of the optimum solution, which is based on
the semidefinite programming relaxation approach of
Goemans–Williamson Goemans and Williamson (1995)
(A variant of the problem is discussed as well.) We also
observe that it is not possible to have a polynomial-time
algorithm with performance too close to the optimal.
While our emphasis is on theory, one of the algorithms
was implemented, and we show results of its applica-
tion to a Drosophila segmentation network and to an
Epidermal Growth Factor Receptor pathway model. It
turns out that, when applying the algorithm, often the
solution is much closer to optimal than the worst-case
guarantee of 87.9%, and indeed often gives an optimal
solution.

The remainder of this paper is organized as follows.
Section 2 briefly discusses monotonicity. The discussion
is self-contained for the purposes of this paper, and ref-
erences are given to the dynamical systems results that
motivate the problem studied here. The connection to
Uconsistency is also explained there. Section 3 discusses
the associated graph-theoretic problems and notions of
approximability used in the paper, leading to the state-
ment of our main theoretical results in Section 4, which

Please cite this article as: Bhaskar DasGupta et al., Algorithmic and
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are proved in Section 5. Section 6 contains the men-
tioned examples of application of the algorithm. Finally,
in Section 6.3 we consider a yeast gene regulatory net-
work and various randomized versions of it, concluding
that the original network is far closer to consistent than
may be expected from chance alone. Several technical
proofs are separately provided in Appendix A.

2. Monotone systems and consistency

We will illustrate the motivation for the problem stud-
ied here using systems of ordinary differential equations

ẋ = F (x) (1)

(the dot indicates time derivative, and x = x(t) is a vec-
tor), although the discussion applies as well to more
general types of dynamical systems such as delay-
differential systems or certain systems of reaction-
diffusion partial differential equations. In applications
to biological networks, the component xi(t) of the vec-
tor x = x(t) indicates the concentration of the ith species
in the model at time t.

We will restrict attention to models in which the direct
effect that one given variable in the model has over
another is unambiguous, in the sense that it is always
inhibitory or always promoting. Thus, if protein A binds
to the promoter region of gene B, we assume that it does
so either to prevent the transcription of the gene or to
facilitate it, no matter what are the respective concen-
trations. Mathematically, what we are saying is that we
require that for every i, j = 1, . . . , n, i �= j, the partial
derivative ∂Fi/∂xj be either ≥ 0 at all states or ≤ 0 at all
states.

Let us briefly discuss this non-ambiguity assump-
tion. First of all, we remark that this assumption does
not prevent protein A from having an indirect influ-
ence, through other molecules, perhaps dimmers of A
itself, that can ultimately lead to the opposite effect
on gene B from that of a direct connection. Indeed,
this is the whole point of studying graph consistency.
Second, in biomolecular networks, ambiguous signs in
Jacobians often represent heterogeneous mechanisms.
For example, take the case where protein A enhances the
transcription rate of gene B only if it is present at low con-
centrations, but represses B if its concentration is larger
than some threshold. A careful study of the chemical
mechanism often reveals the existence of an interme-
diate form (perhaps a homodimer) that is responsible
BIO 2594 1–18

for this ambiguous effect. (Mathematically, an example 300

is a rate of transcription k1a − k2a
2, where a denotes 301

the concentration of A.) Introducing a new species into 302

the model (mathematically, an additional state variable 303

complexity results for decompositions of biological networks
ystems.2006.08.001

dx.doi.org/10.1016/j.biosystems.2006.08.001


C
T

B

oSystem

r304

p305

o306

c307

w308

r309

F310

d311

e312

o313

l314

J315

I316

i317

o318

g319

f320

v321

s322

t323

w324

t325

t326

327

(328

y329

a330

r331

o332

w333

i334

n335

s336

(337

p338

i339

340

o341

l342

f343

i344

o345

≤346

1347

e348

l349

p350

S351

s352

L353

s354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398
N
C

O
R

R
E

IO 2594 1–18

B. DasGupta et al. / Bi

epresenting this intermediate form) reduces one to the
roblem in which Jacobian entries are unambiguous. (In
ur example, we would write the rate as k1a − k2c, where
is the concentration of the dimer. In addition, there
ould be a new equation such as dc/dt = k3a

2 − k4c

epresenting formation of the dimer and its degradation.)
inally, we note that small-scale negative loops are abun-
ant in nature. Self-loops or “auto repression” are an
xtreme example of these, and appear as a consequence
f degradation and other effects. Regarding such self-
oops, observe that the requirement of a fixed sign for
acobian entries is not imposed on diagonal elements.
n fact, these elements play no role in the graph to be
ntroduced next, nor on monotonicity—the properties
f monotone systems are not affected by them. More
enerally, it is often the case that small loops represent
ast dynamics which may be collapsed into a self-loops
ia time-scale decomposition (singular perturbations or,
pecifically for enzymes, “quasi-steady state approxima-
ions”) and hence may be viewed and diagonal terms
hich may be safely ignored. This is a modeling ques-

ion, to be settled before the algorithms studied here are
o be applied.

Given any partial order ≤ defined on Rn, a system
1) is said to be monotone with respect to ≤ if x0 ≤
0 implies x(t) ≤ y(t) for every t ≥ 0. Here x(t), y(t)
re the solutions of (1) with initial conditions x0, y0,
espectively. Of course, whether a system is monotone
r not depends on the partial order being considered, but
e one says simply that a system is monotone if the order

s clear from the context. Monotonicity with respect to
ontrivial orders rules out chaotic attractors and even
table periodic orbits; see Hirsch (1985, 1983), Smith
1995), and is, as discussed in the introduction, a useful
roperty for components when analyzing larger systems
n terms of subsystems.

A useful way to define partial orders in Rn, and the
nly one to be further considered in this paper, is as fol-
ows. Given a tuple s = (s1, . . . , sn), where si ∈ {1, −1}
or every i, we say that x ≤s y if sixi ≤ siyi for every
. For instance, the “cooperative order” is the orthant
rder ≤s generated by s = (1, . . . , 1). This is the order

defined by x ≤ y if and only if xi ≤ yi for all i =
, . . . , n. It is not difficult to verify if a system is coop-
rative with respect to an orthant order; the following
emma, known as “Kamke’s condition,” is not hard to
rove, see Smith (1995) for details (also Angeli and
ontag, 2003 in the more general context of monotone
Uystems with input and output channels).

emma 1. Consider an orthant order ≤s generated by
= (s1, . . . , sn). A system (1) is monotone with respect
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to ≤s if and only if

sisj
∂Fj

∂xi

≥ 0, i, j = 1, . . . , n, i �= j. (2)

To provide intuition, let us sketch the sufficiency part
of the proof for the special case of the cooperative
order. Suppose by contradiction that the system is not
monotone, and that therefore there is a pair of ini-
tial conditions x0 ≤ y0 whose solutions x(t), y(t) cease
to satisfy x(t) ≤ y(t) at some point. This implies that
at a certain critical moment in time t, there is some
coordinate i so that xi(t−) < yi(t−) but xi(t+) > yi(t+).
(This argument is not entirely accurate, but it gives
the flavor of the proof.) Thus xi(t) = yi(t) for some i
and the derivative with respect to time of xi is larger
than that of yi at time t, meaning that that Fi(x) >

Fi(y), where x = xi(t) and y = yi(t). However, this
cannot happen if Fi is increasing on all the variables
xj except possibly xi, so that x ≤ y, xi = yi implies
Fi(x) ≤ Fi(y). An equivalent way to phrase this con-
dition is by ask that ∂Fi/∂xj ≥ 0 at all states for every
i, j, i �= j, which is the Kamke condition for the special
case of the cooperative order. The name of the order
arises because in a monotone system with respect to that
order each species promotes or “cooperates” with each
other.

A rephrasing of this characterization of monotonicity
with respect to orthant orders can be given by looking at
the signed digraph G associated to (1). We define the
vertex set V (G) and the edge set E(G) of G as fol-
lows. Let V (G) = {1, . . . , n}, and given vertices i, j,
let (i, j) ∈ E(G) and fE(i, j) = 1 if both ∂Fj/∂xi ≥ 0
and the strict inequality holds at least at one state.
Similarly let (i, j) ∈ E(G) and fE(i, j) = −1 if both
∂Fj/∂xi ≤ 0 and the strict inequality holds at least at one
state. Finally, let (i, j) �∈ E(G) if ∂Fj/∂xi ≡ 0. Recall
that we are assuming that one of the three cases must
hold.

Now we can define an orthant cone using any func-
tion fV : V (G) → {−1, 1}, by letting x ≤fV y if and
only if fV (i)xi ≤ fV (i)yi for all i. Given fV , we define
the consistency function g : E(G) → {true, false} by
g(i, j) = fV (i)fV (j)fE(i, j). Then, the following analog
of Lemma 1 holds.

Lemma 2. Consider a system (1) and an orthant cone
≤fV . Then (1) is monotone with respect to ≤fV if and
BIO 2594 1–18

only if g(i, j) ≡ 1 on E(G). 399

Proof. Let si = fV (i), i = 1, . . . , n. Note that 400

sisj∂fi/∂xj = 0 if (i, j) �∈ E(G). For (i, j) ∈ E(G), it 401

holds that sisj∂fi/∂xj ≥ 0 if and only if sisjfE(i, j) = 1, 402
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that is, if and only if g(i, j) = 1. The result follows from
Lemma 1. �

For the next lemma, let the parity of a chain in G be the
product of the signs (+1, −1) of its individual edges. We
will consider in the next result closed undirected chains,
that is, sequences xi1 , . . . , xir such that xi1 = xir , and
such that for every λ = 1, . . . , r − 1 either (xiλ, xiλ+1 ) ∈
E(G) or (xiλ+1 , xiλ ) ∈ E(G).

The following lemma (see DeAngelis et al., 1986 as
well as Smith, 1988, page 101) is analogous to the fact
from vector calculus that path integrals of a vector field
are independent of the particular path of integration if
and only if there exists a potential function. Since the
result is key to the formulation of the problem being
considered, we provide a simple and self-contained proof
in Appendix A.

Lemma 3. Consider a dynamical system (1) with asso-
ciated directed graph G. Then (1) is monotone with
respect to some orthant order if and only if all closed
undirected chains of G have parity 1.

2.1. Systems with inputs and outputs

As we discussed in the introduction, a useful
approach to the analysis of biological networks consists
of decomposing a given system into an interconnection
of monotone subsystems. The formulation of the notion
of interconnection requires subsystems to be endowed
with “input and output channels” through which infor-
mation is to be exchanged. In order to address this we
consider controlled dynamical systems (Sontag, 1990)
which are systems with an additional parameter u ∈ Rm

and which have the form

ẋ = g(x, u). (3)

The values of u over time are specified by means of
a function t → u(t) ∈ Rm, t ≥ 0, called an input or
control. Thus each input defines a time-dependent
dynamical system in the usual sense. To system (3)
there is associated a feedback function h : Rn → R

m,
which is usually used to create the closed loop system
ẋ = g(x, h(x)). Finally, ifRn,Rm are ordered by orthant
orders ≤fV , ≤q respectively, we say that the system is
monotone if it satisfies (2) for every u, and also

q f (j)
∂gj ≥ 0, for every k, j (4)
Uk V
∂uk

(see also Angeli and Sontag, 2003.) As an example, let
us consider the following biological model of testos-
terone dynamics (Enciso and Sontag, 2004; Murray and
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Mathematical Biology, 2002):

ẋ1 = A

K + x3
− b1x1, ẋ2 = c1x1 − b2x2,

ẋ3 = c2x2 − b3x3. (5)

Drawing the digraph of this system, it is easy to see that
it is not monotone with respect to any orthant order,
as follows by application of Lemma 3. On the other
hand, replacing x3 in the first equation by u, we obtain
a system that is monotone with respect to the orders
≤(1,1,1), ≤(−1) for state and input respectively. Defining
h(x) = x3, the closed loop system of this controlled
system is none other than (5). The paper (Enciso and
Sontag, 2004) shows how, using this decomposition
together with the “small gain theorem” from monotone
input/output theory (Angeli and Sontag, 2003) leads
one to a proof that the system does not have oscillatory
behavior, even under arbitrary delays in the feedback
loop, contrary to the assertion made in Murray and
Mathematical Biology (2002).

We can carry out this procedure on an arbitrary sys-
tem (1) with a directed graph G, as follows: given a
set E of edges in G, enumerate the edges in EC as
(i1, j1), . . . , (im, jm). For every k = 1, . . . , m, replace
all appearances of xik in the function Fjk

by the vari-
able uk, to form the function g(x, u). Define h(x) =
(xi1 , . . . , xim ). It is easy to see that this controlled system
(3) has closed loop (1).

Note that the controlled system (3) generated by the
set E as above has, as associated digraph, the sub-digraph
of G generated by E. This is because for every k, one has
∂gjk

(x, u)/∂xik ≡ 0, i.e., the edge from ik to jk has been
“erased”.

Denote by Ĝ the underlying undirected graph of a
directed graph G obtained by ignoring the directions of
the edges. Given a set E ⊆ V (G) of vertices in a (directed
or undirected) graph G, denote by G(E) the undirected
subgraph of G generated by E. The edges of both Ĝ and
G(E) are labeled with ±1 using the labels in the edges
of G, whenever appropriate. Let E be called consistent if
Ĝ(E) has no closed chains with parity −1. Note that this
is equivalent to the existence of fV such that g ≡ 1 on E,
by Lemma 4 applied to the open loop system (3). If E is
consistent, then the associated system (3) itself can also
be shown to be monotone: to verify condition (4), sim-
ply define each qk so that (4) is satisfied for k, jk. Since
∂g /∂u = ∂F /∂x �≡ 0, this choice is in fact unam-
BIO 2594 1–18
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biguous. Conversely, if (3) is monotone with respect to 493

the orthant orders ≤fV , ≤q, then in particular it is mono- 494

tone for every fixed constant u, so that E is consistent by 495

Lemma 3. We thus have the following result. 496
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emma 4. Let E be a set of edges of the digraph G.
hen E is consistent if and only if the corresponding
ontrolled system (3) is monotone with respect to some
rthant orders.

. Statement of problem

A natural problem is therefore the following. Given
dynamical system (1) that admits a digraph G, use

he procedure above to decompose it as the closed loop
f a monotone controlled system (3), while minimiz-
ng the number ‖EC‖ of inputs. Equivalently, find fV

uch that P(E+) = ‖E+‖ is maximized and P(E−) =
E−‖ = ‖EC+‖ minimized. This produces the following
roblem formulation.

roblem 1 (Undirected labeling problem (ULP)). An
nstance of this problem is (G, h), where G = (V, E) is
n undirected graph and h : E �→ {0, 1}. A valid solu-
ion is a vertex labeling function f : V → {0, 1}. Define
n edge {u, v} ∈ E to be consistent iff h(u, v) ≡ (f (u) +
(v)) (mod 2). The objective is then to find a valid solu-

ion maximizing |F | where F is the set of consistent
dges.

hat ULP is a correct formulation for our problem is
onfirmed by the following easy equivalence.

roposition 1. Consider an instance (G, h) of ULP with
n optimal solution having x consistent edges given by
vertex labeling function f. Let D be a set of edges of

mallest cardinality that have to be removed such that
or the remaining graph, that is the graph G′ = (V, E \

) with the same vertex set V but an edge set E \ D,
here exists a vertex labeling function f ′ : V → {0, 1}
hat makes every edge consistent. Then, x = |E| − |D|.
roof. Since f produces a solution of ULP with x con-
istent edges, exactly |E| − x edges are inconsistent,
hus |D| ≤ |E| − x, that is, x ≤ |E| − |D|. Conversely,
ince there is a solution with |E| − |D| consistent edges,
≥ |E| − |D|. �

special case of ULP, namely when h(e) = 1 for all
∈ E, is the MAX-CUT problem (defined in Section
.1). Moreover, ULP can be posed as a special type of
constraint satisfaction problem” as follows. We have
E| linear equations over GF (2), one equation per edge
nd each equation involving exactly two variables, over
V | Boolean variables. The goal is to assign values to the
Uariables to satisfy the maximum number of equations.
or algorithms and lower-bound results for general cases
f these types of problems, such as when the equations
re over GF (p) for an arbitrary prime p > 2, when there

Please cite this article as: Bhaskar DasGupta et al., Algorithmic and c
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are an arbitrary number of variables per equation or when
the goal is to minimize the number of unsatisfied equa-
tions, see references such as Amaldi and Kann (1996),
Berman and Karpinski (2001), Creignou et al. (2001) and
Hastad and Venkatesh (2002) and the references therein.

Another interpretation (Sontag, in preparation) of
ULP is in statistical mechanics terms. Let us label edges
by “±1” instead of {0, 1}, denoting by wuv = (−1)h(u,v)

the edge parities, now called “interaction energies.” Sim-
ilarly, let us consider ±1-valued vertex labeling func-
tions, now called (magnetic) “spin configurations,” σ :
V → {−1, +1}, σ(v) = (−1)f (v). An edge {u, v} is con-
sistent provided that wuvσuσj = 1. A graph with ±1
weights is called an Ising spin-glass model in statistical
physics. A “non-frustrated” spin-glass model is one for
which there is a spin configuration for which every edge
is consistent (Barahona, 1982; Cipra, 2000; De Simone
et al., 1995; Istrail, 2000). This is the same as a consis-
tent graph in our sense. Moreover, a spin configuration
that maximizes the number of consistent edges is one for
which the “free energy” (with no exterior magnetic field):

−
∑
ij

wuvσuσv

is minimized, a “ground state”. (When h(e) = 1 or
equivalently we = −1 for all edges, one has what
is called the “anti-ferromagnetic case”.) Thus, our
problem amounts to finding ground states.

Given orthant orders ≤fV and ≤q for Rn and Rm

respectively, we say that a feedback function h is positive
if x ≤fV y implies h(x) ≤q h(y), and that it is negative
if x ≤fV y implies h(x) ≥q h(y). It can be shown that
the closed loop of a monotone system with a positive
feedback function is actually itself monotone, so that no
system can be produced in this way that was not mono-
tone already. But if h is a negative feedback function, then
several results become available which use the methods
of monotone systems for systems that are not monotone,
see Angeli and Sontag (2003), Enciso and Sontag (2004)
and Enciso and Sontag (2006). For the following result,
let (C, ⊆) be the class of consistent subsets of E(G),
ordered under inclusion.

Proposition 2. Let E be a consistent set. Then E is
maximal in (C, ⊆) if and only if h is a negative feedback
function for every fV such that g ≡ 1 on E.

Proof. Suppose that E is maximal, and let fV be
such that g ≡ 1 on E. Given any edge (i , j ) ∈ EC, it
BIO 2594 1–18

k k

holds that g(ik, jk) = −1. Otherwise one could extend 589

E by adding (ik, jk), thus violating maximality. That 590

is, fV (ik)fV (jk)fE(ik, jk) = −1. By monotonicity, it 591

holds that qkfV (jk)∂gjk
/∂uk ≥ 0, and since ∂gjk

/∂uk = 592
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∂Fjk
/∂xik , it follows necessarily that

qkfV (jk)fE(ik, jk) = 1.

Therefore it must hold that qk = −fV (ik) for each k,
which implies that h is a negative feedback function.

Conversely, if fV is such that g ≡ 1 on E and h is a
negative feedback function, then qk = −fV (ik). By the
same argument as above, qkfV (jk)fE(ik, jk) = 1 for all
k by monotonicity. Therefore g ≡ −1 on EC. Repeating
this for all admissible fV , maximality follows. �
There is a second, slightly more sophisticated way of
writing a system (1) as the feedback loop of a system (3)
using an arbitrary set of edges E. Given any such E,
define S(Ec) = {i|there is some jsuch that (i, j) ∈ Ec}.
Now enumerate S(Ec) as {i1, . . . , im}, and for each k
label the set {j|(ik, j) ∈ Ec} as jk1, jk2, . . .. Then for
each k, l, one can replace each appearance of xik in
Fjkl

by uk, to form the function g(x, u). Then one lets
h(x) = (xi1 , . . . , xim ) as above. The closed loop of this
system (3) is also (1) as before but with the advantage that
there are |S(Ec)| inputs, and of course |S(Ec)| ≤ |Ec|.

If E is a consistent and maximal set, then one can
make (3) into a monotone system as follows. By let-
ting fV be such that g ≡ 1 on E, we define the order
≤fV on Rn. For every ik, jkl such that (ik, jkl) ∈ EC,
it must hold that fV (ik)fV (jkl)fE(ik, jkl) = −1. Other-
wise E ∪ {(ik, jkl)} would be consistent, thus violating
maximality. By choosing qk = −fV (ik), Eq. (4) is there-
fore satisfied. See the proof of Proposition 2. Conversely,
if the system generated by E using this second algorithm
is monotone with respect to orthant orders, and if h is a
negative function, then it is easy to verify that E must be
both consistent and maximal.

Thus the problem of finding E consistent and such
that P(E−) = ‖S(E−)‖ = ‖S(EC)‖ is smallest, when
restricted to those sets that are maximal and consistent
(this does not change the minimum ‖S(EC)‖), is equiv-
alent to the following problem: decompose (1) into the
negative feedback loop of an orthant monotone control
system, using the second algorithm above, and using as
few inputs as possible. This produces the following prob-
lem formulation.

Problem 2 (Directed labeling problem (DLP)). An
instance of this problem is (G, h) where G = (V, E) is
a directed graph and h : E → {0, 1}. A valid solution
is a vertex labeling function f : V → {0, 1}. Define an
edge (u, v) ∈ E to be consistent iff h(u, v) ≡ (f (u) +
Uf (v)) (mod 2). The objective is then to find a valid
solution minimizing |g(E − F )| where g(C) = {u ∈ V |
∃y ∈ V, (u, y) ∈ C} for any C ⊆ E and F is the set of
consistent edges.
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3.1. Summary of key concepts and results in
approximation algorithms

For anyγ ≥ 1 (resp.γ ≤ 1), aγ-approximate solution
(or simply an γ-approximation) of a minimization (resp.,
maximization) problem is a solution with an objective
value no larger than γ times (resp., no smaller that
γ times) the value of the optimum, and an algorithm
achieving such a solution is said to have an approxima-
tion ratio of γ .

In Papadimitriou and Yannakakis (1991) Papadim-
itriou and Yannakakis defined the class of MAX-SNP
optimization problems and a special approximation-
preserving reduction, the so-called L-reduction, that can
be used to show MAX-SNP-hardness of an optimization
problem. The version of the L-reduction that we provide
below is a slightly modified but equivalent version that
appeared in Berman and Schnitger (1992).

Definition 1. Berman and Schnitger (1992),
Papadimitriou and Yannakakis (1991) Given two opti-
mization problems Π and Π ′, we say that Π L-reduces to
Π ′ if there are three polynomial-time procedures T1,T2,
T3 and two constants a and b > 0 such that the following
two conditions are satisfied: (1) For any instance I of Π,
algorithm T1 produces an instance I ′ = f (I) of Π ′ gen-
erated from T1 such that the optima of I and I ′, OPT(I)
and OPT(I ′), denoted by respectively, satisfy OPT(I ′) ≤
a · OPT(I). (2) For any solution of I ′ with cost c′, algo-
rithm T2 produces another solution with a cost c′′ no
worse than c′, and algorithm T3 produces a solution of
I of Π with cost c (possibly from the solution produced
by T2) satisfying |c − OPT(I)| ≤ b · ∣∣c′′ − OPT(I ′)

∣∣.
An optimization problem is MAX-SNP-hard if any prob-
lem in MAX-SNP L-reduces to that problem. The impor-
tance of proving MAX-SNP-hardness results comes
from a result proved by Arora et al. Arora et al. (1998)
which shows that, assuming P �=NP, for every MAX-
SNP-hard minimization (resp., maximization) problem
there exists a constant ε > 0 such that no polynomial
time algorithm can achieve an approximation ratio bet-
ter than 1 + ε (resp., better than 1 − ε).

A special case of the ULP problem, namely when
h(e) = 1 for all e ∈ E, is the well-known MAX-CUT
problem. An instance of this problem is an undirected
graph G = (V, E). A valid solution is a set S ⊆ V . The
objective is to find a valid solution that maximizes the
number of edges {u, v} ∈ E such that |{u, v} ∩ S| = 1.
BIO 2594 1–18

The MAX-CUT problem is known to be MAX-SNP- 689

hard. For further details on these topics, the reader is 690
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Some terminology The following notation will be used
or the remainder of the paper. Given a set S of vertices in
directed graph G, define Eout(S) = {(u, v) ∈ E(G)|u ∈
} as the set of out-bound edges of vertices in S. OPTP (I)
enotes the size of an optimal solution for a problem P
ith instance I. Recall that the length of a circuit c is
ormally defined as the number of edges in the circuit.
iven a weight function w : E �→ R, the length of c with

espect to w is defined as
∑

e∈c w(e).

. Theoretical results

Our theoretical results are summarized as follows.

heorem 1.

a) For some constant ε > 0, it is not possible to approx-
imate in polynomial time the ULP and the DLP
problems to within an approximation ratio of 1 − ε

and 1 + ε, respectively, unless P = NP .
b) For ULP, we provide a polynomial time α-

approximation algorithm where α ≈ 0.87856 is the
approximation factor for the MAX-CUT problem
obtained in Goemans and Williamson (1995) via
semidefinite programming.

c) For DLP, if dmax
in denotes the maximum in-degree of

any vertex in the graph, then we give a polynomial-
time approximation algorithm with an approxima-
tion ratio of at most dmax

in · O(log |V |).
ur computational results are illustrated in Section 6 by

n implementation of the algorithms applied to a 13-
ode Drosophila segmentation network, as well as to a
00+ node recently published network of the Epidermal
rowth Factor Receptor pathway.

emark 1. It should be noted that the complexity of
LP becomes tractable if the network is biased signifi-

antly towards excitatory connections. Obviously, if all
he edges of the given graph G = (V, E) are labeled 0,
hen it is possible to label the vertices such that all the
dges are consistent. Moreover, given any graph G, it
s easy to check in O((|V | + |E|)3) time if an optimal
olution contains all the edges as consistent by solving
set of linear equations via Gaussian elimination. Now,

uppose that at most L of the edges of G are labeled
. Then, obviously at most L inconsistent edges exist
n any optimal solution. Thus a straightforward way to
olve the problem is to consider all possible subsets of
dges in which at most L edges are dropped and check-
Ung, for each such subset, if there is an optimal solution
hat contains all the edges as consistent. The total time
aken is O(|V |2L. · (|V | + |E|)3), which is a polynomial
n |V | + |E| if L is a constant.
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5. Proof of Theorem 1

This section provides the proof of Theorem 1, broken
up into a series of technical parts.

5.1. Proof of Theorem 1(a)

Based on the discussion in Section 3.1, it suffices
to show that both these problems are MAX-SNP-hard.
ULP is MAX-SNP-hard since its special case, the MAX-
CUT problem, is MAX-SNP-hard. To prove MAX-SNP-
hardness of DLP, we need the definitions of the following
two problems.

Problem 3 (Node deletion problem with bipartite prop-
erty (NDBP)). An instance of this problem is an undi-
rected graph G = (V, E). A valid solution is a vertex
set S ⊆ V , such that G(V − S) is a bipartite graph. The
objective is to find a valid solution minimizing |S|.
Problem 4 (Variance of node deletion problem
(VNDP)). An instance of this problem is (G, h) where
G = (V, E) is a directed graph and h : E → {0, 1}. A
valid solutions is a vertex set S ⊆ V with the following
property: if GS = (VS, ES) is the graph with VS = V

and ES = E − Eout(S), then ĜS is free of odd length
circuit with respect to weight function h. The objective
is to find a valid solution minimizing |S|.
First, we note that DLP is equivalent to VNDP. If one
identifies the solution set S in UNDP with the solution
set g(E − F ) in DLP, then the set of consistent edges F
in DLP corresponds to the ES in UNDP since every edge
(u, v) ∈ F satisfying h(u, v) ≡ (f (u) + f (v)) (mod 2) is
equivalent to stating that ĜS is free of odd length circuit
with respect to weight function h.

Thus, to prove the MAX-SNP-hardness of DLP it
suffices to prove that of VNDP. NDBP is known to be
MAX-SNP-hard (Lund and Yannakakis, 1993). We pro-
vide a L-reduction from NDBP to VNDP. For an instance
of VNDP with graph G = (V, E), construct an instance
of DLP with instance (G′, h) as follows (note that G′ is
a digraph):

V ′ = V (G′) = V ∪ {Au,v, Bu,v|{u, v} ∈ E},
E′ = E(G′)

= {(u, Au,v), (Au,v, Bu,v), (v, Bu,v)|{u, v} ∈ E},
and h(e) = 1 for all e ∈ E′ Now, the following
BIO 2594 1–18
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(1) If S is a solution to NDBP, it is also a solution 783

to the generated instance of UNDP. The reason 784
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is as follows. Notice that every odd length (resp.,
even length) circuit C in G corresponds to an odd
length (resp., even length) circuit C′ in Ĝ′ with
respect to the weight function h. Since G(V − S)
is a bipartite graph, it is free of odd length circuits.
So for each odd length cycle C of G, there exists
u ∈ S such that the deletion of all out-bound edges
of u in G′ breaks its corresponding odd length cycle
C′.

(2) If S′ is a solution to UNDP, then we can construct
a solution S of NDBP in the following manner: for
each x ∈ S′:

if x = Au,v, add u to T ; if x = Bu,v, add v to T ;

if x = u or x = v, add xto T.

It is now easy to see that since the graph ĜS′ is free of
odd length circuit with respect to h, G(V − S) has no
odd length circuit either.

Hence, we have OPTUNDP(G′, h) ≤ OPTNDBP(G).
Moreover, given a solution S′ of UNDP, we are able
to generate a solution S of NDBP such that

||S| − OPTNDBP(G)| ≤ ||S′| − OPTUNDP(G′, h)|.
Thus, our reduction satisfies Definition 1 of a L-
reduction with a = b = 1.

5.2. Proof of Theorem 1(b)

Our algorithm for ULP uses the semidefinite pro-
gramming (SDP) technique used by Goemans and
Williamson in Goemans and Williamson (1995); hence
we use notations and terminologies similar to that used
in the paper (readers not very familiar with this tech-
nique are also referred to the excellent explanation of
this technique in the book by Vazirani Vazirani (2001)).
For each vertex v ∈ V , we have a real vector xv ∈ R|V |
with ||xv||2 = 1. Then, we can generate from ULP the
following vector program (where · denotes the vector
inner product):

Solve the following vector program via SDP
methods:
U
Nmaximize

1

2

∑
h(u,v)=1

(1−xu · xv)+1

2

∑
h(u,v)=0

(1+xu · xv)

subject to : for each v ∈ V : xv · xv = 1for each v ∈ V

: xv ∈ R|V |.

850
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This proof of the claimed approximation performance
of the above vector program is obtained by adapting the
proof in Section 26.5 of Vazirani (2001) for the MAX-
2SAT problem to deal with fact that, in our problem,
aij = bij = 1/2 as opposed to a different set of values in
Vazirani (2001). Since there are some subtleties in adapt-
ing that proof for readers unfamiliar with this approach,
we provide a sketch of the proof in Appendix A. The pro-
cedure can be derandomized via methods of conditional
probabilities (e.g., see Mahajan and Ramesh (1995)).

5.3. Proof of Theorem 1(c)

For an instance of (G, h) of DLP, construct instance
(G′ = (V ′, E′), h′) as follows:

V ′ = V ∪ {Cu,v|(u, v) ∈ E & h(u, v) = 0},
E′ = {e|e ∈ E & h(e) = 1} ∪ {(u, Cu,v),

× (Cu,v, v)|(u, v) ∈ E & h(u, v) = 0},
and

h′(e) = 1for alle ∈ E′.

Note that every odd (resp., even) length circuit in G with
respect to weight function h corresponds to an odd (resp.,
even) length circuit in G′ with respect to weight function
h′, and vice versa. Let F is a set of consistent edges in
(G, h) with a vertex labeling function f. Now, observe
the following:

(1) F ′ is a set of consistent edges in (G′, h′) with a
vertex labeling function f ′ with f ′(x) = f (x) for
x ∈ V ′ ∩ V and f ′(Cu,v) = f (u) = f (v) for an edge
(u, v) ∈ F with h(u, v) = 0; thus, an edge (u, v) in
F correspond to an edge (u, v) in F ′ if h(u, v) = 1
and correspond to a pair of edges (u, Cu,v), (Cu,v, v)
in F ′ if h(u, v) = 0.

(2) If (u, v) ∈ E − F is an inconsistent edge in (G, h),
′

BIO 2594 1–18

then the edge (Cu,v, v) in G can always be made 851

consistent by choosing f ′(Cu,v) = f (v). 852

Thus, if F ′′ is the set of consistent edges obtained from F 853

following rules (1) and (2) above, then |g(E′ − F ′′)| = 854
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|g(E − F )| and thus OPTDLP(G′, h′) = OPTDLP(G, h).855

Consider the NDBP problem on Ĝ′. Any solution to DLP856

on (G′, h′) with vertex labeling function f ′ and set of857

consistent edges F ′ cannot contain an odd cycle of con-858

sistent edges and thus provides a solution to NDBP on859

Ĝ′ of size |g(E′ − F ′)|. Thus,860

OPTNDBP(Ĝ′) ≤ OPTDLP(G′, h′) = OPTDLP(G, h).861

OPTNDBP(Ĝ′) can be approximated in polynomial time862

to within an approximation ratio of O(log |V ′|) (Lund863

and Yannakakis, 1993), i.e., we can find a solution864

SNDBP(Ĝ′) in polynomial time such that865

|SNDBP(Ĝ′)| ≤ O(log |V ′|) · OPTNDBP(Ĝ′)866

≤ O(log |V |) · OPTDLP(G, h).867

Now,868

SDLP(G, h) = SNDBP(G′)869

× ∪ {u | ∃v ∈ SNDBP(G′), (u, v) ∈ E},870

is obviously a solution to DLP on (G, h). Recall that871

dmax
in denotes the maximum in-degree of any vertex in872

G. Thus,873

|SDLP(G, h)| ≤ dmax
in · |SNDBP(G′)|874

≤ dmax
in · O(log |V |) · OPTDLP(G, h).875

876

6. Examples of applications of the ULP877

algorithm878

We have implemented the SDP-based algorithm for879

calculating approximate solutions of the undirected880

labeling problem using Matlab, and we illustrate this881

Fig. 5. The network associated to the Drosophila segment polarity, as propose
three edges that have been crossed have been chosen in order to let the remain
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algorithm with two applications to biological systems.
The first application concerns the relatively small-scale
13-variable digraph of a model of the Drosophila seg-
ment polarity network. A second application involves a
digraph with 300+ variables associated to the human
Epidermal Growth Factor Receptor (EGFR) signaling
network. This model was published recently and built
using information from 242 published papers. Finally,
we provide an example involving a yeast gene regula-
tory network.

6.1. Drosophila segment polarity

An important part of the development of the early
Drosophila (fruit fly) embryo is the differentiation of
cells into several stripes (or segments), each of which
eventually gives rise to an identifiable part of the body
such as the head, the wings, the abdomen, etc. Each seg-
ment then differentiates into a posterior and an anterior
part, in which case the segment is said to be polarized.
(This differentiation process continues up to the point
when all identifiable tissues of the fruit fly have devel-
oped.) Differentiation at this level starts with differing
concentrations of certain key proteins in the cells; these
proteins form striped patterns by reacting with each other
and by diffusion through the cell membranes.

A model for the network that is responsible for seg-
ment polarity (von Dassow et al., 2000) is illustrated
in Fig. 5. As explained above, this model is best stud-
ied when multiple cells are present interacting with each
BIO 2594 1–18

d in von Dassow et al. (2000), Courtesy of N. Ingolia and PLoS. The
ing edges form an orthant monotone system.

other. But it is interesting at the one-cell level in its own 910

right—and difficult enough to study that analytic tools 911

seem mostly unavailable. The arrows with a blunt end 912

are interpreted as having a negative sign in our notation.
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ics of the system. This is especially the case given that 961

the open loop digraph has almost no closed oriented 962

paths (except for WG ↔ wg), which is evidence that 963

the dynamics of the control system under constant inputs 964

may be especially simple, e.g. such that all solutions con- 965

verge towards a unique equilibrium. 966

6.1.1. Multiple copies 967

It was mentioned above that the purpose of this 968

network is to create striped patterns of protein con- 969

centrations along multiple cells. In this sense, it is 970

most meaningful to consider a coupled collection 971

of networks as it is given originally in Figs. 6 and 5. 972

Consider a row of k cells, each of which has independent 973

concentration variables for each of the compounds, and 974

let the cell-to-cell interactions be as in Fig. 5 with cyclic 975

boundary conditions (that is, the kth cell is coupled 976

with the first in the natural way). We show that the 977

results can be extended in a very similar manner as 978

before. 979

Given a partition fV of the one-cell network consid- 980

ered above, let f̂V be the partition of the k-cell network 981

defined by f̂V (eni) := fV (en) for every i, etc. Thus f̂V 982

consists of k copies of the partition fV in a natural way. 983

Lemma 6. Let fV be a partition of the nodes of the 1- 984

cell network with n consistent edges. Then with respect 985

Fig. 6. A diagram of the Drosophila embryo during early development.
Each hexagon represents a cell containing a copy of the network in Fig.
N
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Furthermore, the concentrations of the membrane-bound
and inter-cell traveling compounds PTC, PH, HH and
WG (membrane) on all cells have been identified in
the one-cell model (so that, say, HH→ PH is now in
the digraph). Finally, PTC acts on the reaction CI→
CN itself by promoting it without being itself affected,
which in our notation means PTC→+ CN and PTC→−
CI.

The implementation. The Matlab implementation of
the algorithm on this digraph with 13 nodes and 20 edges
produced several partitions with as many as 17 consistent
edges. One of these possible partitions simply consists
of placing the three nodes ci, CI and CN in one set and
all other nodes in the other set, whereby the only incon-
sistent edges are CL→+ wg, CL→+ ptc, and PTC→+
CN. But note that it is desirable for the resulting open
loop system to have as simple remaining loops as possi-
ble after eliminating all inconsistent edges. In this case,
the remaining directed loops

EN
−→ ci

+→ CI
+→ CN

−→ en
+→ EN

EN
−→ ci

+→ CI
+→ CN

−→ wg
+→

WG
+→ WG (membrane)

+→ en
+→ EN

can still cause difficulties.
A second partition which generated 17 consistent

edges is that in which EN, hh, CN, and the membrane
compounds PTC, PH, HH are on one set, and the remain-
ing compounds on the other. The edges cut are ptc→+
PTC, CI→+ CN and en→+ EN, each of which elim-
inates one or several positive loops. By writing the
remaining consistent digraph in the form of a cascade, it
is easy to see that the only loop whatsoever remaining is
wg ↔ WG; this makes the analysis proposed in Enciso
and Sontag (2006) easier.

In this relatively low dimensional case we can prove
that in fact OPT = 17, as the results below will show.

Lemma 5. Any partition of the nodes in the digraph in
Fig. 5 generates at most 17 consistent edges.

Proof. From Lemma 3, a simple way to prove this state-
ment is by showing that there are three disjoint cycles
with odd weighted length in the network associated to
Fig. 5 (disjoint in the sense that no edge is part of more
than one of the cycles). Such three disjoint cycles exist
in this case, and they are CI-CN-wg, CI-ptc-PTC, CN-
en-EN-hh-HH-PH-PTC. �
U

BIO 2594 1–18

It is surprising that a realistic biological system with as
many as 13 variables and 20 edges can be transformed
into a monotone system after the deletion of only 3 nodes.
It is conceivable that this restricts the possible dynam-

6, and neighboring cells interact to form a collective behavior. In this
example, an initial striped pattern of the genes en and wg induces the
production of the gene hh, but only in those cells that are producing en.
This will further strengthen the pattern of stripes and help differentiate
the various tissues. Courtesy of N. Ingolia and PLoS (Ingolia, 2004).
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to the partition f̂V , there are exactly kn consistent edges986

for the k-cell coupled model.987

Proof. Consider the network consisting of k isolated988

copies of the network, that is, k groups of nodes each of989

which is connected exactly as in the one-cell case. Under990

the partition f̂V , this network has exactly kn consistent991

edges. To arrive to the coupled network, it is sufficient to992

replace all edges of the form (HHi, PHi) by (HHi+1, PHi)993

and (WGi, eni) by (WGi+1, eni), i = 1, . . . , k (where we994

identify k + 1 with 1). Since by definition f̂V (HHi+1) =995

f̂V (HHi) and f̂V (WGi+1) = f̂V (WGi), the consistency996

of these edges does not change, and the number of con-997

sistent edges therefore remains constant. �998

In particular, OPT≥ 17k for the coupled system. The999

following result will establish an upper bound for OPT.1000

Lemma 7. Any partition of the nodes in the digraph in1001

the k-cell coupled network generates at most 17k con-1002

sistent edges.1003

Proof. Consider the signed graph in Fig. 7, which is a1004

sub-digraph of the network associated to Fig. 5. Since1005

the inter-cell edges (WGmem,en) and (HH,PH) are not1006

in this graph, it follows that there are k identical copies1007

of it in the k-cell model. If it is shown that at least three1008

edges need to be cut in each of these k sub-digraphs, the1009

result follows immediately.1010

Consider the negative cycle ci-CI-wg-CN-en-EN,1011

which must contain at least one inconsistent edge for1012

Fig. 7. A sub-digraph of the network in Fig. 5, using the notation
defined in the previous sections. Note that this sub-digraph does not
include any of the two edges (WGmem,en) and (HH,PH), which con-
nect the networks of different cells in Fig. 5; this will be important in
the proof of Lemma 7.
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any given partition. The remaining edges of the subgraph
form a tetrahedron with four negative parity triangles,
which cannot all be cut by eliminating any single edge.
If follows that no two edges can eliminate all negative
parity cycles in this signed graph, and that therefore
20k − 3k = 17k is an upper bound for the number of
consistent edges in the k-cell network.

Corollary 1. For the k-cell linearly coupled network
described in Fig. 5, it holds OPT = 17k.

Proof. Follows from the previous two results. �

6.2. EGFR signaling

The protein called epidermal growth factor is fre-
quently stored in epithelial tissues such as skin, and it is
released when rapid cell division is needed (for instance,
it is mechanically triggered after an injury). Its function
is to bind to a receptor on the membrane of the cells, aptly
called the epidermal growth factor receptor. The EGFR,
on the inner side of the membrane, has the appearance of
a scaffold with dozens of docks to bind with numerous
agents, and it starts a reaction of vast proportions at the
cell level that ultimately induces cell division.

In their May 2005 paper (Oda et al., 2005), Oda
et al. integrate the information that has become avail-
able about this process from multiple sources, and they
define a network with 330 known molecules under
211 chemical reactions. The network itself is available
from supplementary material in SBML format (Systems
Biology Markup Language, http://www.sbml.org), and
will most likely be subject to continuous updates. The
implementation. Each reaction in the network classifies
the molecules as reactants, products, and/or modifiers
(enzymes). This information was imported into Matlab
using the Systems Biology Toolbox. The digraph G that
is used for this analysis has many more edges than the
digraph considered in the digraph displayed in Oda et al.
(2005). The reason for this is as follows: if molecules A
and B are both reactants in the same reaction, then the
presence of A will have an indirect inhibiting effect on the
concentration of B, since it will accelerate the reaction
which consumes B (assuming B is not also a product).
Therefore a negative edge must also appear from A to B,
and vice versa. Similarly, modifiers have an inhibiting
effect on reactants.

We thus define G by letting sign(i, j) = 1 if there
exists a reaction in which j is a product and i is either
BIO 2594 1–18

a reactant or a modifier. We let sign(i, j) = −1 if there 1058

exists a reaction in which j is a reactant, and i is also 1059

either a reactant or a modifier. Similarly sign(i, j) = 0 1060

if the nodes i, j are not simultaneously involved in any 1061
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given reaction, and sign(i, j) is undefined (NaN) if the
first two conditions above are both satisfied.

In a few of the reactions of this network there is a
modifier or a reactant involved which has an inhibitory
effect in the reaction. The effect of this compound on
the remaining participants of the reaction is the opposite
from that described above. Determining which com-
pounds were inhibitors in the reaction was difficult given
the nature of this dataset. Therefore the digraph was cor-
rected by hand in this implementation by looking at the
annotations given for each reaction.

An undefined edge can be thought of as an edge that is
both positive and negative, and it can be dealt with, given
an arbitrary partition, by deleting exactly one of the two
signed edges so that the remaining edge is consistent.
Thus, in practice, one can consider undefined edges as
edges with sign 0, and simply add the number of unde-
fined edges to the number of inconsistent edges in the
end of each procedure, in order to form the total number
of inputs. This is the approach followed here; there are
exactly seven such entries in the digraph G.

The results. After running the algorithm several hun-
dred times for this problem, and choosing that partition
which produced the highest number of consistent edges,
the induced consistent set contained 636 out of 855 edges
(ignoring the edges on the diagonal and the 7 undefined
edges). See supplementary material for the relevant Mat-
lab functions that carry out this algorithm. A procedure
analogous to that carried out for system (5) allows to
decompose the system as the feedback loop of a con-
trolled monotone system using 855 − 636 = 219 inputs.
Since the induced consistent set is maximal by definition,
Proposition 2 guarantees that the function h is a negative
feedback.

Contrary to the previous application, many of the
reactions involve several reactants and products in a sin-
gle reaction. This induces a denser amount of negative
and positive edges: even though there are 211 reactions,
there are 855 (directed) edges in the 330 × 330 graph G.
It is very likely that this substantially decreases OPT for
this system.

The approximation ratio of the SDP algorithm is guar-
anteed to be at least 0.87 for some r, which gives the
estimate OPT≤≈ 636/0.87 ≈ 731 (valid to the extent
that r has sampled the right areas of the 330-dimensional
sphere, but reasonably accurate in practice).

One procedure that can be carried out to lower the
number of inputs is a hybrid algorithm involving out-
Uhubs, that is, nodes with an abnormally high out-degree.
Recall from the description of the DLP algorithm that all
the out-edges of a node xi can be potentially cut at the
expense of only one input u, by replacing all the appear-

Please cite this article as: Bhaskar DasGupta et al., Algorithmic and
into monotone subsystems, BioSystems (2006), doi:10.1016/j.bios
E
D

 P
R

O
O

F

s xxx (2006) xxx–xxx

ances of xi in fj(x), j �= i, by u. We considered the k
nodes with the highest out-degrees, and eliminated all
the out-edges associated to these hubs from the reaction
digraph to form the graph G1. Then we run the ULP
algorithm on G1 to find a partition fV of the nodes and
a set of m edges that can be cut to eliminate all remain-
ing negative closed chains. Finally, we put back on the
digraph those edges that were taken in the first step, and
which are consistent with respect to the partition fV . The
result is a decomposition of the system as the negative
feedback loop of a controlled monotone system, using
at most k + m edges.

An implementation of this algorithm with k = 60
yielded a total maximum number of inputs k + m = 136.
This is a significant improvement over the 226 inputs
in the original algorithm. Clearly, it would be worth-
while to investigate further the problem of designing
efficient algorithms for the DLP problem to generate
improved hybrid algorithmic approaches. The approx-
imation ratios in Theorem 1(c) are not very satisfactory
since dmax

in and log |V | could be large factors; hence
future research work may be carried out in designing
better approximation algorithms.

We conclude with another, more tentative way to dras-
tically reduce the number of inputs necessary to write
this system as the negative closed loop of a controlled
monotone system. The idea is to make suitable changes
of variables in the original system using the mass conser-
vation laws. Such changes of variables are discussed in
many places, for example in Volpert et al. (2000), Angeli
and Sontag (2003). In terms of the associated digraph,
the result of the change of variables is often the elimina-
tion of one of the closed chains. The simplest target for
a suitable change of variables is a set of three nodes that
form part of the same chemical reaction, for instance two
reactants and one product, or one reactant, one product
and one modifier. It is easy to see that such nodes are
connected in the associated digraph by an odd length
triangle of three edges.

In order to estimate the number of inputs that can
potentially be eliminated by suitable changes of vari-
ables, we counted pairwise disjoint, odd length triangles
in the digraph of the EGFR network. Using a greedy algo-
rithm to find and tag disjoint negative feedback triangles,
we found a maximal number of them in the subgraph
associated to each of the 211 chemical reactions. Special
care was taken so that any two triangles from different
reactions were themselves disjoint. After carrying out
BIO 2594 1–18

this procedure we found 196 such triangles in the EGFR 1162

network. This is a surprisingly high number, considering 1163

that each of these triangles must have been opened in the 1164

ULP algorithm implementation above and that therefore 1165
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this provides a solution for the vector program with an 1239

objective value of precisely |FOPT|. Thus, it suffices if 1240

we prove our claim on the approximation ratio relative 1241

to SDPOPT. 1242

Next, note that the vector program can indeed be 1243

solved by a SDP approach. Let Y ∈ R|V |×|V | be an 1244
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ach triangle must contain 1 of the 226 edges cut. To
he extent to which most of these triangles can be elim-
nated by suitable changes of variables, this can yield a

uch lower number of edges to cut, and it could pro-
ide a way to thus stress the underlying structure of the
ystem.

.3. A yeast regulatory network

As a final example, we run our algorithm on the yeast
accharomyces cerevisiae gene regulatory network from
ilo et al. (2002), downloaded from Anon (2006). This

etwork has 690 nodes and 1082 edges, of which 221 are
egative and 861 are positive (we labeled the one “neu-
ral” edge as positive; the conclusions will not change
f we labeled it negative instead, or we deleted this one
dge).

Our algorithm (with 200 randomizations) provides
n answer of 43 inconsistent edges, for the best partition
ound. In other words, it shows that deleting a mere 4%
f edges makes the network consistent.

Also interesting is the following fact. The original
raph has 11 components: a large one of size 664, one
f size 5, three of size 3, and six of size 2. All of these
omponents remain connected after edge deletion. The
dges deleted all belong to the largest component, and
hey are incident on a total of 65 nodes in this component.

To better appreciate if this small number of deletions
ight arise by chance, we also run our algorithm on

andom graphs having 690 nodes and 1082 edges (cho-
en uniformly), of which 221 edges (chosen uniformly)
re negative. We found that, for such random graphs,
bout 12.6% (136.6 ± 5) of edges have to be removed
n order to achieve consistency. Thus, the number of
eletions needed in the biological network is roughly
5 standard deviations away from the mean for random
raphs.

It would appear that both the topology (i.e., the under-
ying graph) and the actual sign assignments contribute
o this near-consistency of the yeast network. To jus-
ify this remark, we performed the following numerical
xperiment. We randomly changed the signs of 50 posi-
ive and 50 negative edges, thus obtaining a network that
as the same number of positive and negative edges,
nd the same underlying graph, as the original yeast
etwork, but with 100 edges, picked randomly, hav-
ng different signs. Now, one needs 8.2% (88.3 ± 7.1)
eletions, an amount in-between that obtained for the
Uriginal yeast network and the one obtained for ran-
om graphs. Changing more signs, 100 positives and
00 negatives, leads to a less consistent network, with
15.4 ± 4.0 required deletions, or about 10.7% of the
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original edges, although still not as many as for a random
network.

Appendix A. More details on SDP algorithm

In this appendix, we provide details regarding the
proof of the SDP algorithm for Theorem 1(b) described
in Section 5.2. The proof method is similar to that used
in better-known problems. For simplicity, we do not
describe the derandomization methods and provide a
proof for the expected approximation ratio only. Define
the following notations for convenience:

The vertex set V of the graph for ULP is simply
{1, 2, . . . , |V |};
fOPT is an optimal vertex labeling for ULP with FOPT
being the set of consistent edges;
SDPOPT is the maximum value of the objective value
of the vector program

maximize
1

2

∑
h(u,v)=1

(1 − xu · xv) + 1

2

∑
h(u, v)

= 0(1 + xu · xv)

subject to : for eachv ∈ V : xv · xv = 1

for eachv ∈ V : xv ∈ R|V |

It is easy to see that SDPOPT ≥ |FOPT| as follows. For
every v ∈ V if fOPT(v) = 0 then set

xv = (1, 0, 0, . . . , 0︸ ︷︷ ︸
|V |−1|

),

whereas if fOPT(v) = 1 then set

xv = (−1, 0, 0, . . . , 0︸ ︷︷ ︸
|V |−1|

);
BIO 2594 1–18

unknown real matrix with yi,j denoting the (i, j)th ele- 1245

ment of Y. It is not difficult to see (via Cholesky decom- 1246

position for real symmetric matrices) that the above vec- 1247

tor program is equivalent to the followingsemidefinite
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programming problem:

maximize
1

2

∑
h(u,v)=1

(1 − yu,v) + 1

2

∑
h(u,v)=0

(1 + yu,v)

subject to : for each v ∈ V : yv,v = 1

Y is a positive semidefinite matrix

Such a problem can be solved in polynomial time
within an additive error of any constant ε > 0 via ellip-
soid, interior-point or convex-programming methods
(Alizadeh, 1995; Grötschel et al., 1988; Nesterov and
Nemirovskii, 1989, 1994; Vaidya, 1989).

Let θu,v denote the angle between the two vectors
xu, xv ∈ R|V | in an optimal solution of the vector pro-
gram. Then, using standard trigonometric results,

SDPOPT = 1

2

∑
h(u,v)=1

(1 − cos θu,v)

+ 1

2

∑
h(u,v)=0

(1 + cos θu,v). (A.1)

Let W be the expected value of the number of consistent
edges of ULP after we have performed the randomized
rounding step, namely the step:

select a uniformly random vector r in the |V |-
dimensional unit sphere;

setf (v) =
{

0 ifr · xv ≥ 0

1 otherwise

Then, via linearity of expectation, it follows that

E[W] =
∑

h(u,v)=1

Pr[f (u) �= f (v)]

+
∑

h(u,v)=0

Pr[f (u) = f (v)]. (A.2)

Because the vector r was chosen randomly, it is true that

Pr[f (u) �= f (v)] = θu,v

π

and Pr[f (u) = f (v)] = 1 − θu,v

π
. (A.3)
U
N

CThus,

E[W] =
∑

h(u,v)=1

θu,v

π
+

∑
h(u,v)=0

(
1 − θu,v

π

)

≥ ∆ ·
⎡⎣1

2

∑
h(u,v)=1

(1 − cos θu,v) + 1

2

∑
h(u,v)=0

(1 + cos θ
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where

∆ = min

{
2

π
min

0≤θ≤π

θ

1 − cos θ
, min

0≤θ≤π

2 − 2θ
π

1 + cos θ

}
can be shown to satisfy ∆ > 0.87856 using elementary
calculus.

A.1. Proof of lemma 3

Proof. Suppose that the system is monotone with
respect to ≤fV , that is,

fV (i)fV (j)fE(i, j) = 1 for all i, j, i �= j.

(by Lemma 2). Let V (G) = A ∪ B, where i ∈ A if
fV (i) = 1, and i ∈ B otherwise. Note that by hypoth-
esis fE(i, j) = 1 if xi, xj ∈ A or if xi, xj ∈ B. Also,
fE(i, j) = −1 if xi ∈ A, xj ∈ B or vice versa. Noting
that every closed chain in G must cross an even number
of times between A and B, it follows that every closed
chain has parity 1.

Conversely, let all closed chains in G have parity 1.
We define a function fV as follows: consider the par-
tition of V (G) induced by letting i∼j if there exists
an undirected open chain joining i and j. Pick a rep-
resentative ik of every equivalence class, and define
fV (ik) = 1, k = 1, . . . , K. Next, given an arbitrary ver-
tex i and the representative ik of its connected com-
ponent, define fV (i) as the parity (+1 of −1) of any
undirected open chain joining ik with i. To see that
this function is well defined, note that any two chains
joining i and j can be put together into a closed
chain from ik to itself, which has parity 1 by hypoth-
esis. Thus the parity of both open chains must be the
same.

Let now i, j be arbitrary different vertices. If
∂Fj/∂xi ≡ 0, then (2) is satisfied for i, j; otherwise
there is an edge joining i with j. By construction of
the “potential” function fV , it holds that if fV (i) =
fV (j) then fE(i, j) = 1, i.e., ∂Fj/∂xi ≥ 0, and so (2)
holds as well. If fV (i) �= fV (j), then fE(i, j) = −1, i.e.
∂Fj/∂xi ≤ 0. In that case (2) also holds, and the proof is
complete. �
BIO 2594 1–18

u,v)

⎤⎦ = ∆ · SDPOPT (A.4)
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