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ABSTRACT 

We consider a model of credit network introduced in [1], and extend the analysis to account for 
properties empirically observed in real credit network, notably degree-preference transaction regime, 
risk-averse and external shocks. Trade-off between transaction path length and capacity of path is also 
studied. It is shown that credit network does not need to be very dense to obtain high liquidity level. 
Network size has no effect on the success probability for BA graphs. Credit network is robust, 
especially with respect to the condition of edges failure in ER graph. Transactions with 
degree-preference regime will perform better liquidity level than transactions with uniform regime at 
low network density. We find that risk of transactions will tend to become stable when average degree 
increases. Success probability is higher in the case of minimum-capacity transaction than it is for 
shortest-path transaction at low network density. 
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1. INTRODUCTION 

Credit network represents a way to model trust between entities. For example, banking system can 
be modelled as banks exchanging their own currencies depending on the trust to their counterparties. 
There are also many credit networks transact with non-government issued currencies which known as 
scrip, for example Bitcoin and Facebook credits. One of the key problems is that of understanding the 
steady properties of credit network over a long period of time. It is important to focus on to what extent 
the liquidity level depends on the network structure? How the resilience of credit network is to against 
external shocks? And how to ensure the liquidity of credit network without devaluing the currency? 

Recently a growing part of literatures in this field have been devoted to model credit network, 
Dandekar et al., DeFigueiredo and Barr, Wellman and Wiedenbeck, Ghosh et al. and Karlan et al. [1, 2, 
3, 4, 5] have established many alternative models of trust or credit. Here we consider the credit model 
introduced by Dandekar et al. in [1]. In their model entities in credit network can transact with each 
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other for certain amount payment in their respective currencies. It means that no common currency is 
needed as long as there always exists a chain of sufficient credit from payee to payer. These models are 
designed to conduct analytical solutions so that omit a lot of characteristics observed in reality. Despite 
there are many researches on network formation and Sybil attacks of credit network [6, 7], they do not 
concentrate on the combination of theoretical model and practical considerations comprehensively like 
our paper.  

In this paper we extend the analysis to account for properties empirically observed in real credit 
network, notably degree-preference transaction regime, transaction threshold and external shocks. We 
also study the trade-off between transaction path length and capacity of path. Our findings with 
simulation methods can not only suggest some directions for future research but also pave a path to 
theoretical study on credit network. The rest of the paper is organized as follows, in Section 2 we 
review the model introduced in [1], in Section 3 we present the results of simulations with different 
settings. Finally in Section 4 we provide the conclusion.  

2. THE MODEL 

In this section we describe the model introduced in [1] and review its main features. A generalized 
credit network G= (V, E) is a simple graph with n nodes and m edges. Nodes represent entities i.e. 
financial institutions, edges represent the credit between a pair of nodes which is directed and weighted. 
Edge (u, v) with weight C𝑢𝑢𝑣𝑣 implies that node u has extended a credit line of C𝑢𝑢𝑣𝑣 units to v in v’s 
currency. As an example in Figure 1, two nodes (A and C) are selected and we route p unit payment 
from A to C along the shortest path. The transactio9n is successful as long as there exists a directed 
path from A to C and the capacities of edges on the path are larger than p. As a result of the transaction, 
the capacity of edges on the shortest path will become C1 − 𝑝𝑝 and C2 − 𝑝𝑝 a (since A and B have 
depleted part of their credit line). And the capacities of reversed edges on the shortest path become to p 
which means that B and C can trust for A and B for up to p units of its own currency. . 

We are interested in understanding how the success probability over a long period of time performs 
depending on different properties of credit network.  

A B C
C1 C2

A B C
C1-p C2-p

p p

 
Figure 1: an example of credit network with three nodes  

In [1], numerical results are presented for the case of graphs with average degree varies, graphs 
with capacity varies and effect of variation in network size. In this paper we intend to study credit 
network with degree-preference transaction regime, transaction threshold and external shocks which 
are often observed in real world. We also consider the trade-off between transaction path length and 
capacity of path. 

3. SIMULATIONS AND RESULTS 

The model is studied numerically for different values of parameters in this section. The goal of 
simulations is to understand how different parameters affect the stead-state success probability. The 



results are presented from two stylized networks: Erdos-Renyi random graph 𝐺𝐺𝐸𝐸𝑅𝑅(𝑛𝑛, 𝑝𝑝)  and 
Barabasi-Albert scale-free graph  𝐺𝐺𝐵𝐵𝐴𝐴(𝑛𝑛,𝑚𝑚)[8, 9, 10]. The parameters of interest are the number of 
nodes (n), credit capacity (c), the probability to add an edge between two nodes in ER graph (p), the 
number of each new added node creates with old nodes (d). We do transactions 1000 time steps and 
compute the stead-state success probability which is the number of success transactions divided by the 
total transaction time steps. Simulations are run on 100 graphs with same parameters and average 
success probability are finally achieved. 

3.1 Liquidity of Credit Network 

3.1.1 Network Properties and Liquidity Level 

In complex network theory it is clear that network structure will affect the performance of the 
system. Empirical evidences show most real networks have scale-free topologies. So a nature question 
is that if scale-free topology have better liquidity level than others, and how liquidity of credit network 
will be with different topologies? To test this issue, we initial credit networks with different topologies 
and conduct transactions between two nodes chosen randomly. 

We consider a network consisting of N=100 entities, capacity=3. The parameter p in ER graph 
varies from 0.2 to 0.8, we pick d in BA graph corresponding to each p such that 2𝑑𝑑 ≈ (𝑛𝑛 − 1)𝑝𝑝 so 
that we can compare the liquidity of two networks.  

Results are reported in Figure 2. Both graphs have concave no-decreasing success probability with 
average degree varied and ER graph performs better liquidity level than BA graph. It is also noticed 
that the success probability of both graphs will reach more than 0.85 when the average degree as low as 
60 which means the network does not need to be very dense to obtain high liquidity level. 

 
Figure 2: comparison of liquidity level on ER graph and BA graph with average degree varies 

 
Figure 3: comparison of liquidity level on ER graph and BA graph with capacity varies 

To determine the effect of variation in credit capacity on liquidity level, we initial graphs with 
N=100, p=0.1, d=5 and set graphs with c varying from 1 to 10. As we can see from Figure 3, both 
graphs have concave no-decreasing success probability with credit capacity varies. And ER graph still 
performs better liquidity level than BA graph. 
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We also consider the effect of network size on liquidity level. From Figure 4, the case of BA graph 
shows network size has no effect on the success probability and liquidity of ER graph will increase 
with growth of number of nodes. It is intuitively understood that probability of successful transactions 
in ER graph will increase with more links, but with growth of network size, large number of nodes in 
BA graph still have low degree which may leads to steady ratio of successful transactions. 

 
Figure 4: the effect of network size on liquidity level 

3.1.2 Resilience and Liquidity Level 

In this section we focus on resilience of credit network. Resilience of network means network will 
keep a relatively high liquidity when there are external shocks. In our model, external shock can be 
represented as removing certain amount of nodes or edges in the credit network. On the one hand, 
nodes hit by the shock will lead to bankrcies and will be removed with their adjacent edges, on the 
other hand, if shock hit the trust relationship between two nodes, the only edge hit will be removed. 

 Firstly we consider to remove j proportion of all edges of graph which chosen randomly to 
determine how the success probability would change comparing with the normal condition. We then 
remove k proportion of all nodes and their adjacent edges. The parameter j and k equals to 0.1, 0.3, and 
0.6 respectively. 

 
Figure 5: liquidity of ER network with shock on certain amount of nodes and edges 

From Figure 5 and 6 it is shown that on ER graph removing more proportion nodes decreases the 
success probability of transactions. Comparatively, removing the same ratio of edges has no significant 
effect on liquidity level. For BA graph, it is shown that removing more proportion edges and nodes 
decrease the success probability of transactions. Compare with ER graph, liquidity level of BA graph 
decreases more sharply.  
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 The fact from the simulation indicates that credit network is more robust, especially with respect 
to the condition of edges failure in ER graph. In terms of characteristics of credit network, one node’s 
default has only local influence, and the loss will not spread to other nodes who don’t have trust 
relationship with the failed node. In ER graph every node are equal important, so it will not decrease 
the success probability significantly if we remove some edges between nodes. 

 
Figure 6: liquidity of BA network with shock on certain amount of nodes and edges 

3.2 Degree-Preference and Risk-Averse  

Empirical evidences show that entities such as financial institutions will prefer to transact with 
others which are more reliable, and will be inclined to risk-averse during transactions. In this section, 
we will compare two transaction regimes uniform and degree-preference to discuss how the transaction 
regimes affect the success probability of credit network over a long period of time. We also consider 
how the liquidity level varies if transaction threshold exists. 

We explore the case of BA graph while fixing other parameters with d varies from 5 to 90. The 
counterparty node is selected uniformly under uniform transaction regime, and we select counterparty 
node depends on its in-degree which represent the ability of being trusted under degree-preference 
transaction regime.  

Results are reported in Figure 7. It is shown that transactions with degree-preference regime will 
perform better liquidity level than transactions with uniform regime at low network density, but these 
two will become equal with network density increased. The conclusion indicates that it is a better 
choice to use degree-preference regime to do transactions when network is not very dense. 

 
Figure 7: comparison of liquidity level under different transaction regime 

Previously we have considered nodes would transact with degree-preference. Another important 
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feature is risk-averse which means nodes would avoid risk during transactions. Hence we introduce 
“average credit of transaction path” (ACP) into the model. ACP represents the total in-degree of nodes 
on the transaction path divided by the number of nodes on the path. 

𝐴𝐴𝐶𝐶𝐶𝐶 = � 𝑤𝑤𝑖𝑖𝑛𝑛
𝑗𝑗

𝑗𝑗∈𝑑𝑑(𝑣𝑣)

/#𝑑𝑑(𝑣𝑣) 

In the equation, d (v) is the set of nodes which are on the transaction path. 
On the other hand, we compute the average in-degree of nodes in the network (ACN). 

𝐴𝐴𝐶𝐶𝐶𝐶 = � 𝑤𝑤𝑖𝑖𝑛𝑛
𝑗𝑗

𝑗𝑗∈𝐺𝐺(𝑣𝑣)

/#𝐺𝐺(𝑣𝑣) 

So we can consider an extended threshold model. If ACP>=ACN, it means the transaction is 
successful and if ACP<ACN, the transaction will be counted as failed.  

 

Figure 8: comparison of liquidity level with threshold and without threshold 

The result indicates that there is no clear difference between two curves in ER and BA graph when 
average degree is low. But when average degree grows, graphs with threshold have less success 
probability than graphs without threshold. We also notice that the area between two curves can be seen 
as the risk of transactions. It is clear that risk of transactions will tend to become stable when average 
degree increases, which means increasing network density can effectively control the risk of 
transactions. 

3.3 Criteria of transaction path selection  

An important hypothesis in [1] is that they assume nodes transact along the shortest path between 
them, but in reality, financial institutions will not only consider the length of transaction path but also 
the capacity of the path. In this section, we study the issue how two nodes would select feasible 
transaction path and analyze the trade-off between different parameters.   

3.3.1 Shortest-Path and Trade-off 

A nature question is how the success probability would perform if the cutoff of transaction path is 
fixed? We conduct simulations on ER graph to compute success probability with cutoff increases under 
different scenarios. We set benchmark with N=200 and p=0.1, then increase N (N=300, p=0.1) and p 
(N=200, p=0.2) separately, finally we vary N and p with network density fixed (N=100, p=0.2).  

Table 1 Success probability with cutoff increases under different scenarios 
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Benchmark 
N=200 cutoff=1 cutoff=2 cutoff=3 cutoff=4 

p=0.1 0.056 0.386 0.972 0.998 

Increase N 
N=300 cutoff=1 cutoff=2 cutoff=3 cutoff=4 

p=0.1 0.058 0.536 0.996 1.0 

Increase p 
N=200 cutoff=1 cutoff=2 cutoff=3 cutoff=4 

p=0.2 0.104 0.88 1.0 - 

Fix network density 
N=100 cutoff=1 cutoff=2 cutoff=3 cutoff=4 

p=0.2 0.09 0.6 0.99 0.994 

We compute the liquidity level with cutoff increases under different scenarios. The results in Table 
1 show that p influences the success probability stronger than N under different cutoffs. It has some 
practical meanings that increasing p is more efficient than increasing number of nodes when length of 
transaction path is constrained. 

3.3.2 Minimum-Capacity 

In reality, because of the electronic payment system, the length of transaction is not important than 
before. Financial institutions prefer to find transaction path with minimum capacity to save cost.  

We are trying to find minimum-capacity of path to do transactions in ER graph and compare the 
liquidity level with shortest-path, set N=100, p=0.3 and capacity varies from 1 to 30.  

From Figure 9 we can see that success probability is higher in the case of minimum-capacity 
transaction than it is for shortest-path transaction. While we increase the capacity of edges, both two 
cases are convergent with success probability at 0.95. So that means if credit network is established 
with low credit capacity, we had better do transactions with minimum-capacity criterion. 

 
Figure 9: comparison of liquidity level with different transaction path selection 

4. CONCLUSION  

In this paper we have studied the model introduced in [1] with some properties of credit network 
empirically observed in real world, we consider the transaction under degree-preference regime, 
transaction threshold and external shocks. We also study the trade-off between transaction path length 
and capacity. 

In our numerical simulations we observe that credit network does not need to be very dense to 
obtain high liquidity level, in particular the case of BA graph shows network size has no effect on the 
success probability. For BA graph, removing more proportion edges and nodes decrease the success 
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probability of transactions. Transactions with degree-preference regime will perform better liquidity 
level than transactions with uniform regime at low network density, we found that risk of transactions 
will tend to become stable when average degree increases, which means increasing network density can 
effectively control the risk of transactions. Finally, we found that parameter p influences the success 
probability stronger than parameter N with different cutoffs in ER graph. And success probability is 
higher in the case of minimum-capacity transaction than it is for shortest-path transaction at low 
network density. 

The model and results above suggest some directions for future research. Some of the assumptions 
should be loose to fit the real credit network, for example allow for transaction fee or exchange rate in 
the network. And nodes characteristics should be include in the model to calibrate the result and it may 
provide potentially valuable insights. 
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