International Journal of Computational Geometry & Applications

(© World Scientific Publishing Company

THE RECTANGLE ENCLOSURE AND POINT-DOMINANCE
PROBLEMS REVISITED

PROSENJIT GUPTA and RAVI JANARDAN
Department of Computer Science
Unwersity of Minnesota, Minneapolis, MN 55455, U.5.A.
e-mail: {pgupta,janardan}@cs.umn.edu

and

MICHIEL SMID
Maz-Planck-Institut fir Informatik
D-66123 Saarbricken, Germany
e-matl: michiel@mpi-sb.mpg.de

and

BHASKAR DASGUPTA
Department of Computer Science
Unwersity of Waterloo, Waterloo, Ontario N2L 3G1, Canada
e-matl: bdasgupt@daisy.uwaterloo.ca

Received 10 August 1994
Revised 10 August 1995
Communicated by M. T. Goodrich

ABSTRACT

We consider the problem of reporting the pairwise enclosures in a set of n axes-
parallel rectangles in IR?, which is equivalent to reporting dominance pairs in a set of n
points in IR*. Over a decade ago, Lee and Preparata® gave an O(n log? n + k)-time and
O(n)-space algorithm for these problems, where k is the number of reported pairs. Since
that time, the question of whether there is a faster algorithm has remained an intriguing
open problem.

In this paper, we give an algorithm which uses O(n) space and runs in O(nlognloglogn+
kloglogn) time. Thus, although our result is not a strict improvement over the Lee—
Preparata algorithm for the full range of k, it is, nevertheless, the first result since Ref.
(6) to make any progress on this long—standing open problem. Our algorithm is based
on the divide—and—conquer paradigm. The heart of the algorithm is the solution to a
red-blue dominance reporting problem (the “merge” step). We give a novel solution
for this problem which is based on the iterative application of a sequence of non—trivial
sweep routines. This solution technique should be of independent interest.

We also present another algorithm whose bounds match the bounds given in Ref. (6),
but which is simpler. Finally, we consider the special case where the rectangles have a
small number, «, of different aspect ratios, which is often the case in practice. For this
problem, we give an algorithm which runs in O(anlogn + k) time and uses O(n) space.

1. Introduction

Problems involving sets of rectangles have been studied widely in computational
geometry since they are central to many diverse applications, including VLSI layout
design, image processing, computer graphics, and databases. (See, for instance,
Chapter 8 in each of the books?1°.) For most of these problems, efficient (indeed,
optimal) algorithms are known. In this paper, we investigate the following rectangle
problem, whose complexity has not yet been resolved satisfactorily.

Problem 1 Given a set R of n azes-parallel rectangles in the plane, report all pairs
(R, R) of rectangles such that R encloses R'.

By mapping each rectangle R = [I,7] x [b,1] to the point (—I,—b,,t) in IR*,
we can formulate this problem as a dominance problem: If p = (p1, p2, ps, pa) and
q¢ = (q1,92, g3, 94) are points in IR*, then we say that p dominates q if p; > q; for
all 4, 1 <3 < 4. We call the pair (g, p) a dominance pair. Using this terminology,
Problem 1 is transformed—in linear time—into the following one:

Problem 2 Given a set V of n points in IR*, report all dominance pairs in V.

In fact, a result of Edelsbrunner and Overmars® implies that Problems 1 and 2
are equivalent, i.e., in linear time, Problem 2 can also be transformed into Problem 1.

Here is a brief history of the problem. Let k denote the number of pairs (R, R)
of rectangles such that R encloses R’, or, equivalently, the number of dominance
pairs in V. The rectangle problem was first considered by Vaishnavi and Wood!4,
who gave an O(nlog? n+ k)-time and O(nlog® n)-space algorithm. This result was
also obtained independently by Lee and Wong”. In 1982, Lee and Preparata® gave
an algorithm which ran in O(nlog®n + k) time and used only O(n) space. Ever
since, the question of whether there is a faster algorithm has remained intriguingly
open, see page 371 of Ref. (10). (See also Bentley and Wood' and Bistiolas et al.%)

1.1. Summary of contributions

Our main result is an algorithm for Problems 1 and 2 which uses O(n) space
and runs in O(nlognloglogn + kloglogn) time. While our result is not a strict
improvement over Ref. (6) for the full range of k (it is an improvement for k =
o(n log® n/ log log n)), it is, nevertheless, the first result since Ref. (6) to make any
progress on this long-standing open problem, and we hope that our approach will
spur further research on finally putting this problem to rest.

Our approach is to transform Problem 2 to a grid and then apply divide—and-
conquer. The heart of the algorithm is the solution to a red—blue dominance report-
ing problem (the “merge” step). We give a novel solution to this problem which is
based on the iterative application of a sequence of non—trivial sweep routines. We
regard this solution technique as the second contribution of the paper since it could
find applications in other grid—based problems.

We also present an alternative algorithm whose bounds match the bounds in
Ref. (6), but which is simpler. In particular, our algorithm employs just one level
of divide-and—conquer (as opposed to two levels in Ref. (6)) and uses simple data
structures.

Finally, we consider the special case, where the rectangles have only « differ-
ent aspect ratios, for some integer «, where the aspect ratio of a rectangle is its
height divided by its width. For this problem, we give an algorithm which runs in
O(anlogn + k) time and uses O(n) space. Thus this algorithm is faster than the
O(nlog® n + k) algorithm when « is small, i.e., when a = o(logn). To our knowl-
edge, no results were known previously for this special case. In VLSI design, the
input objects are often rectangular, with aspect ratios lying in a bounded range, see
page 182 of Ref. (11); we expect that our algorithm will be useful in this context.

1.2. Overview of the main result

Throughout the paper (except in Section 4) we consider Problem 2. Our first
observation is that we can afford to (in O(nlogn) time) normalize the problem to
a grid. This allows us to bring into play eflicient structures such as van Emde Boas

12,13 Specifically, we map the n points in V to a set S of n points in U?,

trees
where U = {0,1,...,n — 1}, such that dominance pairs in V are in one—to—one
correspondence with dominance pairs in S. We divide S along the fourth coordinate
into two equal halves and recurse on these sets. In the merge step, we (effectively)
have a set of red and blue points in U2 and need to report all red-blue dominances.
We solve this problem by an iterative sequence of sweeps, as follows:

We first “clean” the red set so as to remove those red points that are not dom-
inated by any blue points. We also “clean” the blue set to eliminate those blue
points that do not dominate any red point. Intuitively, this cleaning step gets rid
of points that do not contribute to any dominance pair and this allows us to bound
the running time of the next step—the reporting step.

In the reporting step, we report all red—blue dominances in the cleaned sets.
Assume, wlog, that there are more red points than blue points in the cleaned sets.
To do the reporting correctly and efficiently, we do not consider the blue points all at
once. Instead, we report red—blue dominances involving only those blue points that
are maximal (in three dimensions) in the blue set. We find these maximal points by a
single sweep. Then we sweep in the opposite direction and incrementally reconstruct
the blue contour using information computed in the first sweep. During this second
sweep, we report red—blue dominances involving blue maximal points. In both the
reporting step and the cleaning step, we need to dynamically maintain certain two—
dimensional contours of maximal points. For this we use the van Emde Boas trees
mentioned earlier.

Because of the cleaning step, we are guaranteed to find a number of dominance
pairs which is at least proportional to the number of red and blue points that remain
after the cleaning step. Hence, we can charge the time for this reporting step to the
number of reported dominance pairs. Since we have found all dominance pairs in
which the maximal elements of the blue points occur, we can remove them. Then,
we perform the cleaning step on the remaining red and blue points and, afterwards,
we perform a reporting step again. We repeat this until either there are no red
points left or there are no blue points left. At the end of the algorithm, we will have
reported all red-blue dominance pairs.

-

Figure 1: The maximal layer of a planar point set S forms a contour. The point p
is inside the contour, whereas the point ¢ is outside. Note that q does not belong
to S.

1.3. Preliminaries

In the rest of this paper, we will mainly consider Problem 2. We will need some
terminology. Let S be a set of n points in IR?, where d > 2. Point p dominates
point ¢ if p; > ¢; for all 7, 1 <z < d. A point of S is called mazimal in S if it is
not dominated by any other point of S. The mazimal layer of S is defined as the
subset of all points that are maximal in S.

If S is a set of points in the plane, i.e., if d = 2, then the maximal points, when
sorted by their z-coordinates, form a staircase, also called a contour. See Figure 1.
The ordering of the maximal points by z-coordinate is the same as the ordering
by y-coordinate. Consider the contour of S. Let p be any point in the plane. We
say that p is inside the contour if it is dominated by some point of the contour.
Otherwise, we say that p is outside the contour.

Our algorithm will use the following data structures. First, we use the priority
search tree (PST), see McCreight®. This data structure stores a planar point set
S, such that for any unbounded query rectangle of the form R = [I,, ;] X [by, 00),
we can in O(logn + k) time report all points of S that are in R. Here, n (resp. k)
denotes the size of S (resp. the number of reported points). Points can be inserted
and deleted in the PST in O(logn) time.

In case the coordinates of all points and query objects come from a finite universe
of size u, we can use a radiz priority search iree, which is a simpler structure not
requiring any rebalancing during updates. This data structure has size O(n+u) and
query (resp. update) operations take O(logn + k) (resp. O(log u)) time. Moreover,

it can be built in O(n + u) time. (See Ref. (8) for details.) We remark here that
even if the set S is empty it takes O(u) time to build the radix PST. In this case,
we will talk about the empty radiz PST. (Note that although S is empty, it still
uses O(u) space.)

Let S be a set of integers in the range U = {0,1,...,u — 1}. A van Emde Boas
tree (vEB-tree)'®!® storing S has size O(u) and can be built in O(u) time. Given
this tree, we can search for an element of U in O(loglogu) time. Also, elements
from U can be inserted and deleted in the vEB-tree in O(loglogu) time. Again, if
the set S is empty, we will talk about the empty vEB-tree.

Later in our algorithms, the universe will be known in advance. Therefore, at
the start, we will build an empty radix PST or vEB-tree once and for all. During
certain stages of the algorithm, we will delete all points from the data structure,
yielding an empty structure, which we then use in the next stage. In this way, we
only pay the O(u) preprocessing time once.

2. A divide-and-conquer algorithm

Let V be a set of n distinct points in IR*. We want to find all pairs p,q € V
such that p is dominated by q. It turns out to be useful to first normalize the points
of V. In this way, we have to solve the problem for points with integer coordinates
in {0,1,2,...,n— 1}. In the next subsection, we show how to normalize the set V.
Then we give a divide-and-conquer algorithm that solves our problem.

2.1. The normalization step

Let V be the set of points {p = (p1,p2,p3,pa)}. We sort the points of V'
lexicographically in increasing order. Then, we replace the first coordinate p; of
each point p by its rank p] in this ordering. Next, we sort the vectors in the set

{(p2apl17p3ap4) : (p17p27p3ap4) S V}

lexicographically, and replace the second coordinate ps of each point p of V' by its
rank p,. We repeat this for the third and fourth coordinates: Sort the vectors

{(p3apl17pl27p4) : (p17p27p3ap4) S V}a

yielding normalized coordinates p}, and finally sort

{(p‘bpllaplzapé) : (p17p27p3ap4) S V}a

yielding normalized coordinates pj. This whole procedure gives a set of points
{(p}, P5, P5, P4) : (p1, P2, Pa, pa) € V}, which we denote by S. This normalization
procedure extends a method given in Ref. (4). The following lemma can easily be
proved.

Lemma 1 The normalization step takes O(nlogn) time. It produces a set S C
{0,1,2,...,n — 1}* of n points such that (q,p) is @ dominance pair in V iff the
corresponding pair in S s also a dominance pair. Moreover, for each i, 1 <1 < 4,
no two points of S have the same i-th coordinate.

Note that because of the last claim of the lemma, the set S is in “general”
position. This makes the implementation of the algorithms much easier.

2.2. The algorithm

Let S be the set of n points from Lemma 1. Note that during the normalization
we can obtain the points of S sorted by their third coordinates. Our algorithm for
finding all dominance pairs in S follows the divide-and-conquer paradigm. Since
in each recursive call the number of points decreases, but the size of the universe
remains the same, we introduce the latter as a separate variable u. Note that in our
case u = n—the initial number of points. However, to keep our discussion general,
we will derive our bounds in terms of both u and »n and finally substitute n for «
to get our main result, namely Theorem 2.

Hence, S is a set of n points in U*, where U = {0,1,2,...,u—1}. No two points
of S have the same i-th coordinate for any ¢, 1 < ¢ < 4, and the points are sorted
by their third coordinates. The algorithm is as follows:

1. Compute the median m of the fourth coordinates of the points of S. By
walking along the points of S in their order according to the third coordinate,
compute the sets S; = {p € S : ps < m} and S2 = {p € S: ps > m}. Both
these sets are sorted by their third coordinates.

2. Using the same algorithm recursively, solve the problem for S; and S;.

3. Let R (resp. B) be the set of “red” (resp. “blue”) points in U® obtained by
removing the fourth coordinate from each point of S; (resp. Sz). Compute all
dominance pairs (r,b), where r € R and b € B.

It is clear that this algorithm correctly solves the dominance reporting problem
on S. The main problem is how to implement the third step. In the next section,
we show how this three-dimensional red-blue dominance problem can be solved by
a simple sweep algorithm.

2.3. The merge step

We use z, y and z to denote the coordinate axes in U%. In the merge step,
we sweep a plane parallel to the zy-plane downward along the z-direction. (Note
that the points are already sorted by their third coordinates.) During the sweep,
we maintain a radix PST, see Section 1.3, for the projections onto the sweep plane
of all points of B that have been visited already. If the sweep plane visits a point
(bz, by, b;) of B, then we insert (bg,by) into the PST. If a point (r;,7y,7,) of R is
encountered, we query the PST and find all points (bs, by) such that b, > r, and
by > ry. For each such point, we report the corresponding pair in R x B, or, in
fact, in S; x Ss.

It is easy to see that this sweep algorithm correctly solves the problem. The
query algorithm for a PST takes time proportional to logu plus the number of
reported points. Also, the PST can be updated in O(logu) time. Therefore, if &’

denotes the number of red-blue dominance pairs in R X B, then the algorithm takes
time O(nlogu + k').

Now we analyze the 4-dimensional divide-and-conquer algorithm: Let T'(n,u)
denote the running time on a set of n points in U? that are sorted by their third
coordinates. Here, we do not include the time for reporting the dominance pairs.
Then T(n,u) = 2T(n/2,u)+0(nlog u), which solves to T'(n, u) = O(nlognlogu) =
O(n log2 n). If k denotes the total number of dominance pairs in the set S, then
the entire algorithm takes time O(n log® n+ k). It is easy to see that the algorithm
uses O(n) space.

Now consider our original set V of n points in IR*. Since the normalization
step takes O(nlogn) time, we can solve the dominance problem on this set in
O(nlog®n + k) time and O(n) space.

We remark that this algorithm is simpler than the algorithm given in Refs. (6)
and (10). Because of the normalization step, we can use a radix PST T. Immediately
after the normalization step, we build this data structure in time O(u+n) = O(u).
Subsequently, during the rest of the algorithm, we insert and delete in the same
tree T and perform queries on it. After every merge step, we take care to delete
all remaining elements from T', so that it can be reused. (Note, however, that the
normalization step is not crucial in obtaining the O(n log? n+k) running time; even
without this step, the same running time can be obtained by using a balanced PST.)

In the next section, we give an alternative algorithm for the three-dimensional
red-blue dominance problem, taking O(nloglogu + krploglog u) time. This will
lead to an O(nlog nloglog n+kloglog n) time algorithm for finding the k£ dominance
pairs in V. To obtain this running time, the normalization step is necessary.

3. Red-blue dominance reporting in three dimensions

Recall the problem: We are given a set R of red points and a set B of blue
points in U3, and we have to find all dominance pairs (r,b) where » € R and b € B.
The points in both sets R and B are sorted by their third coordinates.

In the final algorithm, we first construct an empty vEB-tree on the universe U.
During the entire algorithm, elements will be inserted and deleted in this tree and
we will perform queries on it. In the rest of this section, we assume that we have
this tree available.

First we give two subroutines that will be used in the final algorithm. The final
algorithm itself is given in Section 3.3.

3.1. The cleaning step

One of the essential steps in our algorithm is one that removes points that do
not participate in any dominance. That is, we remove all red points that are not
dominated by any blue point, and all blue points that do not dominate any red
point. We denote this as the “cleaning” of the red (resp. blue) set w.r.t. the blue
(resp. red) set.

In Ref. (5), Karlsson and Overmars give an O(nloglog «) time and O(u) space

Figure 2: Updating the blue contour when the sweep plane visits the point b. Points
i, 7 and k are deleted and point b is inserted.

algorithm, which given n points in U3, computes the maximal elements. We modify
this algorithm to report all red points that are not dominated by any blue point,
within the same time and space bounds:

We sweep a plane parallel to the zy-plane downward along the z-direction, stop-
ping at each point. (The points are already available sorted by z-coordinate.) Dur-
ing the sweep, we maintain the contour of the two-dimensional maximal elements
of the projections (onto the sweep plane) of the blue points already seen. We
store these maximal elements in the initially empty vEB-tree, sorted by their z-
coordinates. When the sweep plane visits a blue point b, we update the contour
and the vEB-tree, as follows: We search in the vEB-tree with the z-coordinate of b
and determine if b’s projection is inside or outside the blue contour. If it is outside,
then we delete from the vEB-tree all blue points on the contour whose projections
are dominated by b’s projection and we insert b as a new contour point. Note
that the points to be deleted can easily be found since they are contiguous in the
vEB-tree. (See Figure 2.)

On visiting a red point r, we query the vEB-tree with the z-coordinate of » and
determine if »’s projection lies inside or outside the blue contour. If it is inside, we
insert r into an initially empty set R;.

At the end of the sweep, we delete all elements from the vEB-tree. The empty
tree will be used later on in the algorithm.

Lemma 2 At the end of the algorithm, we have
Ry ={r € R:3b € B such that r is dominated by b}.

Moreover, the algorithm takes O(nloglogu) time and uses O(u) space.

Proof. Let R’ denote the set on the right-hand side. Let r be a point of R that
is dominated by a blue point . Then the sweep plane visits b before it visits 7.
Consider the moment when point r is visited. If, at this moment, b is on the contour,
then 7 is inserted into R;. Otherwise, there is a point &’ on the contour such that
by > by and by, > by. Since by > 7, and by > 7y, it follows that r’s projection lies
inside the blue contour and, hence, r is inserted into R;. This proves that R’ C R;.
It can be proved in a similar way that R; C R’. The bounds on the running time
and space follow from the complexity of the vEB-tree. (See Section 1.3.) a

The given algorithm cleans the red set R w.r.t. the blue set B. To clean B
w.r.t. R, we use the mapping F that maps the point (a,b,c) in U? to the point
(v—1—a,u—1-b,u—1—c)in U®. This mapping reverses all dominance relationships.
Also, the mapping F is equal to its inverse. We run our sweep algorithm on the
sets F(R) and F(B), maintaining a red contour and querying with the blue points.
As a result, we get a set Bg C F(B), where each point in By is dominated by some
point in F(R). Then the set B; = F(By) satisfies

B; ={b € B:3r € R such that b dominates r}.

Lemma 3 Let R and B be sets of points in U2 that are sorted by their third coor-
dinates, and let w = |U| and n = |R|+ |B|. Assume that n < u. Also, assume we
are given an empty vEB-tree on the universe U. In O(nloglogu) time and using
O(u) space, we can compute sets Ry C R and By C B such that

Ry ={r € R:3b € B such that r is dominated by b}.

and
By = {b€ B:3r € R such that b dominates r}.

The procedure that cleans the red set R w.r.t. the blue set B and returns the set
R, is denoted by Clean(R, B). The set Bj is obtained as F(Clean(F(B), F(R))).

Remark 1 Observe that it does not matter whether we first clean R w.r.t. B and
then clean B w.r.t. R, or vice versa. In either case, we get the same clean sets R;
and Bj.

3.2. The sweep and report step

Let Ry and B; be the sets of Lemma 3. The amount of work in the sweep and
report step will be related to |Ry|+ |By|. If we want to charge this to the number of
pairs reported, we must report at least max(|R1|, |B1|) pairs in this step. Therefore,
the exact form of the sweep algorithm depends on the fact whether |R;| > |Bj| or
not.

For the purpose of the discussion, let us assume w.l.o.g. that |Ry| > |By|. Let

B denote the three-dimensional maxima of B;. The procedure Sweep(R1, By, 0),
which will be described in this section, finds all red-blue dominance pairs (r,b),
where r € Ry and b € Bj. The third parameter, i.e., 0, indicates that the pairs
found should also be reported as (r,b). Note that because of the cleaning step,
there are at least |Ry| such pairs. (If |Ry1| < |Bi|, then we invoke the procedure
Sweep(F(B1), F(R1),1). This procedure finds dominances (F(b), F(r)). The third
parameter—which is 1 in this case—indicates that these pairs should be reported as
pairs (r,b).)
Step 1: We sweep along the points of B; downwards in the z-direction and deter-
mine the set Bj: During the sweep, we maintain the contour of the 2-dimensional
maximal elements of the projections of the points of B; already seen. These maximal
elements are stored in the initially empty vEB-tree, sorted by their z-coordinates.
We also maintain a list M, in which we store all updates that we make in the
vEB-tree.

When the sweep plane visits a point b of By, we add b to an initially empty list
L iff b’s projection lies outside the current contour. In this case, we also update the
contour by updating the vEB-tree, and we add the sequence of updates made to
the list M.

At the end of the sweep, the list L contains the set Bj. (See Lemma 4 below.

Also, we will see that during the sweep the contour changes iff the sweep plane
visits a point of Bf.)
Step 2: We now sweep along the points of Ry U B] upwards in the z-direction.
Using the list M, we reconstruct the contour of the projections of the points of B
that are above the sweep plane. With each blue point b on the contour, we store a
list Cp C Ry of candidate red points.

Initially, the sweep plane is at the point having minimal z-coordinate and the
vEB-tree stores the final contour from Step 1. For each blue point b on this contour,
we initialize an empty list Cj.

When the sweep plane reaches a blue point b of Bf, we do the following:

2.1. Using M, we undo in the vEB-tree the changes we made to the 2-dimensional
blue contour when we visited b during the sweep of Step 1. Call each blue
point which now appears on the contour a new point; call all remaining blue
points on the contour old. Note that the new points form a single continuous
staircase.

2.2. For each r € Gy, we report (r,b) as a dominance pair.

2.3. For each new blue point ¢ on the contour, we have to create a list Cj: We
look at all points of Cy. For each such point r, we search with its z-coordinate
in the vEB-tree. If »’s projection is inside the new contour, then we find the
leftmost blue point p of the new contour that is to the right of ». Starting at
p we walk right along the contour. For each blue point ¢ encountered such
that g is new, we insert = into the list C;. We stop walking as soon as we find

10

a blue point g whose projection does not dominate r’s projection or we reach
the end of the contour. (See Figure 3.)

When the sweep plane reaches a red point r, we search with its z-coordinate in
the vEB-tree and determine if its projection is inside or outside the current contour.
If it is inside, we start walking along the contour from the point immediately to the
right of » and insert r into the list Cy for each blue point ¢ on the contour, until we
reach a blue point whose projection does not dominate r’s projection or we reach
the end of the contour.

Note that at the end of Step 2, the vEB-tree is empty.

Lemma 4 At the end of Step 1, the list L contains the set By of three-dimensional
mazima of By.

Proof. Assume that b is not maximal in B;. Then there is a point ¥’ in B; that
dominates b. During the sweep, b’ is visited before b. Since b, > b, and b; > by,
b’s projection lies inside the contour when the sweep plane reaches b. (Note that
at that moment, b’ does not necessarily belong to the contour.) Hence, b is not
inserted into L. This proves that L C Bj.

Conversely, let b € B;. Consider the moment when the sweep plane reaches b.
Assume that b’s projection lies inside the contour. Then there is a point &’ on the
contour such that b/, > b, and b; > by. Since the sweep plane has visited b already,
we must have b, > b,. Hence, b’ dominates b, which implies that b ¢ B;. This is a
contradiction. We have shown that when the sweep plane reaches b, the projection
of this point lies outside the contour. Therefore, b is inserted into L. This proves
that B, C L. 0
Remark 2 It follows from the proof that Bj is the set of all points of By that are
added to the contour during Step 1. Note that once a point has been added, it may
be removed again from the contour later on during the sweep in Step 1.

Lemma 5 In Step 2 of the algorithm, all dominance pairs (r,b), where r € Ry and
b € Bji, are reported. Moreover, only such pairs are reported.

Proof. Suppose that (r,b) is reported. Then, r € Ry and b € B{. Also, » € C}
when b is reached and so r, < b,. Also, by construction of Cy, b’s projection
dominates r’s projection. Thus b dominates 7.

Now let » € Ry and b € B such that b dominates ». We prove that the pair
(r,b) is reported. Let by, ba,...,b; = b be points in Bj such that (i) b;_1’s projection
on the sweep plane dominates b;’s projection, for i = 2,3, ..., s, (i) b1’s projection
dominates r’s projection, and (iii) there is no point &’ € B] such that b;’s projection
dominates the projection of b’ and the projection of b’ dominates r’s projection. We
prove by induction on s that » € Cp, at the instant the sweep plane reaches b;. This
will prove that the pair (»,b;) = (r,b) is reported.

Consider the base case, s = 1. When the sweep plane reaches r, we insert r
into the lists C, for all points ¢ that are on the contour at that moment and whose
projection onto the xzy-plane dominate r’s projection. Since b, = b is one of these
points, we are done, because r stays in Cp until the sweep plane reaches b,.

11

L 0
P
o e
B
© X
X P RS EALat STRTEEE
o T L,Q
0 |
o} e T
o

Figure 3: Illustrating Step 2.3. Point r is inserted into the lists Cp, Cy and Cy.

Inductively, assume that s > 1 and that the claim holds for b,_;. When the
sweep plane reaches b, subsequently, b;,_; is removed from the contour and b; is

included in the contour. Therefore, the points in Cp ., whose projections are dom-

s—1
inated by b;’s projection are inserted into the list Cp,. Since » € Cp,_, (by the
induction hypothesis) and r is dominated by b, (by assumption), it follows that
re Cbs- O
Lemma 6 Let krp be the number of dominance pairs (r,b) such that r € Ry and
b € Bj. Algorithm Sweep(R1, B1,0) takes O(krploglogu) time and uses O(u)
space.

Proof. Let n = |Ry| + |B1|- First note that the points of Ry and B; are sorted
already by their third coordinates. Step 1 of the algorithm takes O(nloglogu)
time. Consider Step 2. The total time for updating the contour in Step 2.1 is
upper-bounded by the time for Step 1. The total time for Step 2.2 is obviously
O(krp). It remains to estimate the time for updating the C-lists in Step 2.3. Let
r € Cp be a red point to be added to the C-lists of the new contour points that
appear as a result of undoing the changes at b in Step 2.1. Deciding whether »’s
projection lies inside or outside the two-dimensional contour takes O(loglogu) time.
If it lies outside, then we charge this cost to the pair (r,b) just reported in Step 2.2.
The total number of such charges due to all red points is O(krploglogu). If r
lies inside the contour and if it is inserted into m C-lists (m will be at least one),
then the time taken is O(m + loglog u) = O(mloglogu). We charge O(loglogu)

12

Algorithm 3Ddom(R, B)
(* R and B are sets of points in U?; the algorithm reports all pairs
(r,b) such that » € R, b € B and b dominates r *)
begin
R, := Clean(R, B);
By := F(Clean(F(B), F(R)));
t:=1;
while R, # 0 and B; # 0
do if |R;| > | By
then Sweep(R;, B;, 0);
(* this procedure computes the set B] of three-dimensional

maxima of B; and reports all dominances (r,b)
where » € R; and b € B} *)

H := B;\ B};
R;i1:= Clean(R;, H);
Bi_|_1 = H

(* B;41 is clean w.r.t. R;yq1; see Lemma 7 *)
else Sweep(F(B;), F(R:), 1);

(* this procedure computes the set R, of three-dimensional
maxima of F(R;) and reports all dominances (r,b)
where » € F(R,) and b € B; *)

H := F(R)\ R};

B; 11 := F(Clean(F(B;), H));

Riyy = F(H)

(* Rit1 is clean w.r.t. B;;1; see Lemma T *)

fi;
1:=1+1
od

end

Figure 4: The three-dimensional red-blue dominance reporting algorithm.

to each of the m instances of r thus inserted. Likewise, when we encounter a red
point 7 in the upward sweep, if r’s projection is inside the current contour, then
we use a similar charging scheme. It follows that each red point r accumulates at
most two charges for being inside the contour, for each dominance pair involving
it that is output. If the projection of the red point is outside the current contour,
then we charge the O(loglog) cost incurred in determining this to the point itself.
Since this point is never seen again during Sweep(R1, By, 0), the total charge thus
accumulated is O(nloglog u).

Therefore the algorithm takes O((n+kgrp)loglog) time. We know that krp >
|Ry|. Also, since |Ry| > |By|, we have n < 2|R;| < 2kgp. This proves the bound
on the running time. It is clear that the algorithm uses O(u) space. (Note that the
list M has size O(n).) O

13

3.3. The three-dimensional red-blue dominance algorithm

The algorithm for reporting all red-blue dominance pairs in R x B is given in
Figure 4. This algorithm uses the procedures Clean and Sweep that were given in
Sections 3.1 and 3.2, respectively. Also recall the mapping F that was defined in
Section 3.1. We assume that we have constructed already the empty vEB-tree on
the universe U.

Lemma 7 At the end of the (i — 1)-st iteration of the while-loop, i > 1, the set B;
(resp. R;) is clean w.r.t. R; (resp. B;).

Proof. The proof is by induction on . For ¢« = 1, the claim is true. Assume
B; is clean w.r.t. R; and R; is clean w.r.t. B;. Suppose that the “if” part of the
“if-then—else” statement is executed. It is clear that R;,q is clean w.r.t. B;1. To
prove that B;; is clean w.r.t. R;41, let b € B; 1. Then b € B; and, hence, there
is a point 7 in R; that is dominated by b. Since b € B;;1 = H, the procedure
Clean(R;, H) produces a set R;;; which contains the point r. Thus each point in
B;;1 dominates some point in R;;; and hence B;;; is clean w.r.t. R; 1. If the
“else” part is executed, then it is clear that B;y; is clean w.r.t. R;y1 = F(H).
Similarly, we can prove that R;.; is clean w.r.t. B;q. O

Lemma 8 Algorithm 3Ddom(R, B) terminates and reports all dominance pairs
(r,b), where r € R and b € B. Moreover, if a pair (r,b) is reported, then it is
a red-blue dominance pair.

Proof. The algorithm terminates because after each iteration of the while-loop
either |B;y1| = |B; \ Bl| < |B;]| (since |B}| > 0) or |R;11| = |F(F(R:) \ R))| < | Rs]
(since |R}| > 0). We now prove that (r,b) is reported iff b dominates r.

Suppose that (r,b) is reported. Since a report happens only during one of the
calls to Sweep, it follows from the correctness of this procedure (see Lemma 5) that
b dominates r.

Conversely, suppose that b dominates r. Note that a point is discarded in algo-
rithm 3Ddom(R, B) either during a call to Clean or right after that call to Sweep
during which it becomes a three-dimensional maximal element. Since b dominates
7, it follows that if neither » nor b has been discarded just before one of the calls to
Clean within the while-loop then neither will be discarded during that call. (Simi-
larly, if neither » nor b has been discarded just before the two calls to Clean outside
the while-loop, then neither will be discarded during those two calls.) Moreover,
at least one of » and b will be discarded sometime during the algorithm since the
algorithm terminates. Wlog, assume that b is discarded. Then it follows that b
becomes a three-dimensional maximal element before » becomes one (if ever). Let b
become a three-dimensional maximal element in Step 1 of Sweep(R;, B;, 0) for some
i. Thus, when Step 2 of Sweep(R;, B;,0) commences, » € R;. By the correctness of
the Sweep routine, (7, b) is reported as a dominance pair. a
Theorem 1 Let R and B be two sets of points in U3 that are sorted by their third
coordinates. Assume we are given an empty vEB-tree on the universe U. Letu = |U|
and n = |R|+ |B|, and let k' be the number of dominances (r,b), where r € R and
b€ B. Assume that n < u. In O((n + k')loglogu) time and using O(u) space, we

14

can find all these dominance pairs.

Proof. Let n; = |R;| + | B;| and let k; be the number of dominance pairs that are
reported during the ¢-th iteration. Because of the cleaning step and because we
distinguish between the cases where |R;| > |B;| and |R;| < |B;|, we have n; < 2k;.
Also, since during each iteration, we output different dominance pairs, we have
>, ki = k'. The initial cleaning of R and B takes O(nloglog u) time. By Lemmas 3
and 6, the i-th iteration takes time O((n; + k;)loglogu), which is bounded by
O(k;loglog u). It follows that the entire algorithm takes time

O(nloglogu + Z k;loglogu) = O((n + k') log log u).
The algorithm uses space O(n + u), which is bounded by O(u). a

3.4. Analysis of the four-dimensional dominance reporting algorithm

Consider again our divide-and-conquer algorithm of Section 2.2 for solving the
four-dimensional dominance reporting problem on the normalized set S C U%. We
implement Step 3—the merge step—using algorithm 3Ddom. Assume we have
constructed already the empty vEB-tree on the universe U.

Let T(n,u) denote the total running time on a set of n points in U*, that are
sorted by their third coordinates. Recall that it is assumed that n = u (however,
the sizes of the sets in the recursive calls will be smaller than u). We do not include
in T(n, u) the time that is charged to the output.

Step 1 of the algorithm takes O(n) time, and Step 2 takes 27'(n/2,u) time.
By Theorem 1, Step 3—except for the reporting—takes time O(nloglog u). Hence,
T(n,u) = O(nloglog u)+2T(n/2,u), which solves to T'(n,u) = O(nlog nloglog).
For each dominance pair, we spend an additional amount of O(loglog) time. Since
each such pair is reported exactly once, the total running time of the divide-and-
conquer algorithm is bounded by O(nlog nloglogu + kloglogu), where k denotes
the number of dominance pairs in S. Moreover, the algorithm uses O(u) space.

Our original problem was to solve the dominance reporting problem on a set V'
of n points in IR*. In O(nlogn) time, we normalize the points, giving a set S of
n points in U* = {0,1,...,n — 1}*. Then, in O(n) time, we construct an empty
vEB-tree on the universe U. Finally, in T(n,n) + O(kloglogn) time we find all &
dominance pairs in S. This gives all k& dominance pairs in V. The entire algorithm
takes O(nlog nloglog n + kloglog n) time and it uses O(n) space. This proves our
main result:

Theorem 2

1. Let V be a set of n points in IR* and let k be the number of dominance pairs
in V. In O(nlognloglogn + kloglog n) time and using O(n) space, we can
find all these dominance pairs.

2. Let R be a set of n azes-parallel rectangles in IR? and let k be the number of
pairs of rectangles (R', R) such that R encloses R'. In O(nlognloglogn +
kloglog n) time and using O(n) space, we can find all these pairs of rectangles.

15

4. A faster algorithm for a special case

Assume that there are only « different aspect ratios in the set R of rectangles.
By a diagonal of a rectangle we mean the line-segment joining its SW and NE
corners. Clearly, there are o different slopes among the diagonals in R. For some
such slope p, let R’ C R consist of the rectangles whose diagonals have slope p. Let
R = [l,7] x [b,t] and R" = [lI',7'] x [b/,'] be 1ectangles in R and R', respectively.
(Throughout, we view rectangle sides as closed line segments, i.e., endpoints are

included.)

Lemma 9 Let L be a line with slope p which moves over the plane from the north-
west to the southeast. Consider the moment at which L coincides with the diagonal
of R'. If L intersects R, then one of the following holds:

1. L meets the left and top sides of R. In this case, we have R' C R iff I! > 1
and t' <1t.

2. L meets the left and right sides of R. In this case, we have R' C R iff I! >1
and v’ <.

3. L meets the bottom and top sides of R. In this case, we have R’ C R iff b’ > b
and t' <1t.

4. L meets the bottom and right sides of R. In this case, we have R' C R iff
b >band v <r.

Proof. Assume that L intersects R. Since L moves from the northwest to the
southeast, it is clear that its intersections with R must be at one of the four pairs of
sides stated in Cases (1)—(4) of the lemma. (If the diagonal of R has slope p, then its
left and bottom sides and its top and right sides will be intersected simultaneously—
at the SW and NE corners of R. This case is covered by one of the four cases above
since rectangle sides are closed line segments.)

Assume that Case (1) holds, i.e., L intersects the left and top sides of R. We
show that R CR< ' >l and t' <1.

(=): Let R' C R. Then, by definition, I’ > 1, ¢ <t, v <r,and & > b.

(<): Letl’ >1land# <t. Let R” be the rectangle whose SW and NE corners
are the intersection of L with the left and top sides of R, respectively. Note that (i)
R" C R, (ii) the left (resp. top) side of R” is contained in the left (resp. top) side
of R, and (iii) the diagonals of R” and R’ are both contained in L. Facts (ii) and
(iil) together with the assumption I’ > [and ¢’ < ¢ imply that R’ C R”. Fact (i)
then implies that R’ C R.

The proofs for Cases (2)—(4) are similar and hence omitted. a

How does Lemma 9 help us? Note that it specifies the inclusion of R’ in R
as one of four two-dimensional range restrictions. Which one of these conditions
applies depends on the relative positions of R and R'—thus at the time instant in
question, a different condition may hold for each rectangle R € R that L intersects.
This suggests that we store information about the rectangles R satisfying each of
the four conditions in a separate priority search tree.

16

Note that during the sweep, L meets the corners of each R in a specific order,
namely, NW, NE, SW, SE (resp. NW, SW, NE, SE), depending on whether R’s
diagonal has slope less (resp. greater) than p. (The NE and SW corners will be met
simultaneously if the diagonal of R has slope p; as mentioned above, this case is
covered by Lemma 9.) Therefore, we can update the four PST’s in a coordinated
manner during the sweep. Details are given below.

4.1. The algorithm

For each diagonal-slope p we do the following:

We project all the rectangle corners in R onto a line L normal to L and sort
them in non-decreasing order (ties are broken arbitrarily). Note that the SW and
NE corners of each rectangle in R’ projects to the same point on L. We treat these
two points as a composite point.

Using L, we sweep over L from —oo to 400, maintaining four balanced priority
search trees, PST;, 1 < i < 4. (PST; will handle condition ¢ of Lemma 9.) Let v
be the current event point. The following actions are taken:

1. v corresponds to the NW corner of R = [l,r] x [b,t]. We insert (I,t) into
PST,.

2. v corresponds to the NE corner of R = [I,7] x [b,¢]. If the SW corner of R
has not been seen so far then we delete (I,t) from PST; and insert (I, r) into
PST,. Otherwise, we delete (b,t) from PST; and insert (b, r) into PST4.

3. v corresponds to the SW corner of R = [I,7] x [b,t]. If the NE corner of R
has not been seen so far then we delete (I,t) from PST; and insert (b,?) into
PST3. Otherwise, we delete (I,7) from PST; and insert (b, r) into PSTy.

4. v corresponds to the SE corner of R = [I,7] x [b,t]. We delete (b,7) from
PST,.

5. v corresponds to the SW and NE corner of R’ = [I,7'] x [b/,t] € S'. We
query PSTq with (I',t') and report all points (I,¢) in it such that I’ > 1 and
t’ < t. Similarly, we query PST, with (I',»’), PSTs with (b/,¢'), and PST,
with (&', 7). Then we delete (I’,¢') from PST and insert (b, 7') into PST,.

Theorem 3 Given a set R of n axzes-parallel rectangles in IR? with at most a
different aspect ratios, all k pairs of rectangles (R', R) such that R encloses R’ can
be reported in O(anlogn + k) time and O(n) space.

Proof. When L coincides with the diagonal of R’ (Case 5), then one of the cases
of Lemma 9 holds w.r.t. L and R. Therefore, one of the queries done in Case 5 will
discover the pair (R', R).

For each slope p, there is one sort, followed by O(n) queries and updates on
PSTs of size O(n). Hence the total time is O(nlogn + k,), if k, pairs are output.
The claimed time bound follows. The space used is O(n) per sweep and this can be
re-used. ad

17

5. Concluding remarks

We have given an algorithm for solving the rectangle enclosure reporting prob-
lem, or, equivalently, the four-dimensional dominance reporting problem, that runs
in O(nlog nloglog n+kloglog n) time, where k is the number of reported pairs. Pre-
viously, the problem had been solved in O(n log2 n+k) time by Lee and Preparata®.

We leave open the question of whether the problem can be solved in O(nlogn+
k) time. It seems very difficult to remove the loglogn term that occurs in the
“reporting” part of our running time.

We have presented a new technique for solving the three-dimensional red-blue
dominance reporting problem. Using the same approach we can solve the two-
dimensional version of this problem, where the red and blue points are sorted by
their z-coordinates, optimally, i.e., in O(n + k) time.

Acknowledgements

The research of the first two authors was supported in part by NSF grant CCR-
92-00270. Part of this work was done while PG was visiting the Max-Planck-
Institut fur Informatik. PG thanks the MPI and the International Computer Science
Institute for partial support. The third author was supported by the ESPRIT Basic
Research Actions Program, under contract No. 7141 (project ALCOM II).

The authors would like to thank the referees for several suggestions that helped
improve the presentation.

References

1. J.L. Bentley and D. Wood, “An optimal worst-case algorithm for reporting inter-
sections of rectangles”, IEEE Transactions on Computers 29 (1980) 571-577.

2. V. Bistiolas, D. Sofotassios and A. Tsakalidis, “Computing rectangle enclosures”,
Computational Geometry: Theory & Applications 2 (1993) 303-308.

3. H. Edelsbrunner and M.H. Overmars, “On the equivalence of some rectangle prob-
lems”, Information Processing Letters 14 (1982) 124-127.

4. H.N. Gabow, J.L. Bentley and R.E. Tarjan, “Scaling and related techniques for
geometry problems”, Proc. 16th Annu. ACM Sympos. Theory Comput. 1984, pp.
135-143.

5. R.G. Karlsson and M.H. Overmars, “Scanline algorithms on a grid”, BIT 28 (1988)
227-241.

6. D.T. Lee and F.P. Preparata, “An improved algorithm for the rectangle enclosure
problem”, Journal of Algorithms”, 3 (1982) 218-224.

7. D.T. Lee and C.K. Wong, “Finding intersection of rectangles by range search”,
Journal of Algorithms 2 (1981) 337-347.

8. E.M. McCreight, “Priority search trees”, SIAM Journal on Computing 14 (1985)
257-276.

9. B. Preas and M. Lorenzetti, Physical Design Automation of VLSI Systems (Ben-
jamin/Cummings, Menlo Park, CA, 1988).

10. F.P. Preparata and M.I. Shamos, Computational Geometry — An Introduction
(Springer—Verlag, Berlin, 1988).

18

11. N. Sherwani, Algorithms for VLSI Physical Design Automation (Kluwer Academic
Publishers, 1993).

12. P. van Emde Boas, R. Kaas and E. Zijlstra, “Design and implementation of an
efficient priority queue”, Mathematical Systems Theory 10 (1977) 99-127.

13. P. van Emde Boas, “Preserving order in a forest in less than logarithmic time and
linear space”, Information Processing Letters 6 (1977) 80-82.

14. V. Vaishnavi and D. Wood, “Data structures for the rectangle containment and
enclosure problems”, Computer Graphics and Image Processing 13 (1980) 372-384.

19

