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Abstract Partisan gerrymandering is a major cause for voter disenfranchisement in
United States. However, convincing US courts to adopt specific measures to quantify
gerrymandering has been of limited success to date. Recently, Stephanopoulos and
McGhee in several papers introduced a new measure of partisan gerrymandering via
the so-called ”efficiency gap” that computes the absolute difference of wasted votes
between two political parties in a two-party system; from a legal point of view the
measure was found legally convincing in a US appeals court in a case that claims that
the legislative map of the state of Wisconsin was gerrymandered. The goal of this
article is to formalize and provide theoretical and empirical algorithmic analyses of
the computational problem of minimizing this measure. To this effect, we show the
following:

. On the theoretical side, we formalize the corresponding minimization problem
and provide non-trivial mathematical and computational complexity properties
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of the problem of minimizing the efficiency gap measure. Specifically, we prove
the following results for the formalized minimization problem:
(i) We show that the efficiency gap measure attains only a finite discrete set of

rational values. (observations of similar nature but using different arguments
were also made independently by Cho and Wendy (University of Pennsylva-
nia Law Review, 2017).

(ii) We show that, assuming P6=NP, for general maps and arbitrary numeric elec-
toral data the minimization problem does not admit any polynomial time al-
gorithm with finite approximation ratio. Moreover, we show that the problem
still remains NP-complete even if the numeric electoral data is linear in the
number of districts, provided the map is provided in the form of a planar graph
(or, equivalently, a polygonal subdivision of the two-dimensional Euclidean
plane).

(iii) Notwithstanding the previous hardness results, we show that efficient exact
or efficient approximation algorithms can be designed if one assumes some
reasonable restrictions on the map and electoral data.

Items (ii) and (iii) mentioned above are the first non-trivial computational com-
plexity and algorithmic analyses of this measure of gerrymandering.

. On the empirical side, we provide a simple and fast algorithm that can “un-
gerrymander” the district maps for the states of Texas, Virginia, Wisconsin and
Pennsylvania (based on the efficiency gap measure) by bring their efficiency
gaps to acceptable levels from the current unacceptable levels. To the best of
our knowledge, ours is the first publicly available implementation and its corre-
sponding evaluation on real data for any algorithm for the efficiency gap measure.
Our work thus shows that, notwithstanding the general worst-case approximation
hardness of the efficiency gap measure as shown by us, finding district maps with
acceptable levels of efficiency gaps could be a computationally tractable problem
from a practical point of view. Based on these empirical results, we also pro-
vide some interesting insights into three practical issues related the efficiency gap
measure.

Keywords gerrymandering · efficiency gap measure · efficient algorithms ·
computational complexity

PACS 89.70.Eg · 89.20.Ff

Mathematics Subject Classification (2010) 68Q17 · 68Q25 · 68W20 · 68W25 ·
68W40 · 90C59

1 Introduction and background

Gerrymandering, namely deliberate creations of district maps with highly asymmet-
ric electoral outcomes to disenfranchise voters, has continued to be a curse to fairness
of electoral systems in USA for a long time in spite of general public disdain for it.
There is a long history of this type of voter disenfranchisement going back as early as
1812 when the specific term “gerrymandering” was coined after a redistricting of the
senate election map of the state of Massachusetts resulted in a South Essex district
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taking a shape that resembled a salamander (see Fig. 1). There is an elaborate his-
tory of litigations involving gerrymandering as well. In 1986 the US Supreme Court
(SCOTUS) ruled that gerrymandering is justiciable [14], but they could not agree on
an effective way of estimating it. In 2006, SCOTUS opined that a measure of parti-
san symmetry may be a helpful tool to understand and remedy gerrymandering [26],
but again a precise quantification of partisan symmetry that will be acceptable to the
courts was left undecided. Indeed, formulating precise and computationally efficient
measures for partisan bias (i.e., lack of partisan symmetry) that will be acceptable in
courts may be considered critical to removal of gerrymandering. Partisan symmetry
is a standard for defining partisan gerrymandering that involves the computation of
counterfactuals typically under the assumption of uniform swings. To illustrate lack
of partisan symmetry, consider a two-party voting district and suppose that Party A
wins by getting 60% of total votes and 70% of total seats. In such a case, a partisan
symmetry standard would hold if Party B would also win 70% of the seats had it won
60% of the votes in a hypothetical election1,2.

Fig. 1: [49] “Gerry” and “salamander” districts, 1812 state senate election, Mas-
sachusetts.

1Even though measuring partisan bias is a non-trivial issue, it has nonetheless been observed that two
frequent indicators for partisan bias are cracking [33] (dividing supporters of a specific party between two
or more districts when they could be a majority in a single district) and packing [33] (filling a district
with more supporters of a specific party as long as this does not make this specific party the winner in that
district). Other partisan bias indicators include hijacking [33] (re-districting to force two incumbents to run
against each other in one district) and kidnapping [33] (moving an incumbent’s home address into another
district).

2See Section 2.4 regarding the impact of the SCOTUS gerrymandering ruling on 06/27/2019 on future
gerrymandering studies.
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There have been many theoretical and empirical attempts at remedying the lack of
partisan symmetry by “quantifying” gerrymandering and devising redistricting meth-
ods to optimize such quantifications using well-known notions such as compactness
and symmetry [3, 7–9, 21, 23, 30, 31]. Since it is often simply not possible to go
over every possible redistricting map to optimize the gerrymandering measure due to
rapid combinatorial explosion, researchers such as [8, 27, 37] have also investigated
designing efficient algorithmic approach for this purpose. In particular, a popular
gerrymandering measure in the literature is symmetry, which attempts to quantify the
discrepancy between the share of votes and the share of seats of a party [3, 21, 23, 31].
In spite of such efforts, their success in convincing courts to adopt one or more of
these measures has been unfortunately somewhat limited to date.

In recent years, researchers Stephanopoulos and McGhee in two papers [28, 36]
have introduced a new gerrymandering measure called the “efficiency gap”. Infor-
mally speaking, the efficiency gap measure attempts to minimize the absolute differ-
ence of total wasted votes between the parties in a two-party electoral system. This
measure is very promising in several aspects. Firstly, it provides a mathematically
precise measure of gerrymandering with many desirable properties. Equally impor-
tantly, at least from a legal point of view, this measure was found legally convincing
in a US appeals court in a case that claims that the legislative map of the state of
Wisconsin is gerrymandered.

2 Informal overview of our contribution and its significances

This article is motivated by the following high-level aims:

– Formalization of the efficiency gap measure and corresponding problem state-
ments.

– Computational complexity analysis of these problems. For those who may won-
der why computational complexity analysis (including computational hardness
results) may of be practical interest at all, we point out a few reasons.
. When a particular type of gerrymandering solution is found acceptable in

courts, one would eventually need to develop and implement a software for
this solution, especially for large US states such as California and Texas where
manual calculations may take too long or may not provide the best result.
Any exact or approximation algorithms designed by researchers would be a
valuable asset in that respect. Conversely, appropriate computational hardness
results can be used to convince a court to not apply that measure for specific
US states due to practical infeasibility.

. Beyond scientific implications, we believe computational complexity analysis
may also be expected to have a beneficial impact on the US judicial system by
showing that the theoretical methods, whether complicated or not (depending
on one’s background), can in fact yield fast accurate computational methods
that can be applied to “un-gerrymander” the currently gerrymandered maps.

– Designing, implementing and evaluating heuristics that work well in practice.
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Redistricting based on minimizing the efficiency gap measure however requires one
to find a solution to a combinatorial optimization problem. To this effect, the contri-
bution of this article is as follows:

. As a necessary first step towards investigating the efficiency gap measure, in Sec-
tion 3 we first formalize the optimization problem that corresponds to minimizing
the efficiency gap measure.

. Subsequently, in Section 4 we study the mathematical properties of the formalized
version of the measure. Specifically, Lemma 1 and Corollary 1 show that the
efficiency gap measure attains only a finite discrete set of rational values; these
properties are of considerable importance in understanding the sensitivity of the
measure and in designing efficient algorithms for computing this measure3.

. Next, in Sections 5 and 6 we investigate computational complexity and algorithm
design issues of redistricting based on the efficiency gap measure. Although The-
orem 1 and Theorem 2 show that in theory one can construct artificial patholog-
ical examples for which designing efficient algorithms is provably hard, Theo-
rem 3 and Theorem 4 provide justification as to why the results in Theorem 1
and Theorem 2 are overly pessimistic for real data that do not necessarily cor-
respond to these pathological examples. For example, assuming that the districts
are geometrically compact (y-convex in our terminology), Theorem 4 shows how
to find a district map efficiently in polynomial time that minimizes the efficiency
gap. These are the first non-trivial theoretical computational complexity and al-
gorithmic analyses of the efficiency gap measure.

. Finally, to show that it is indeed possible in practice to solve the problem of
minimization of the efficiency gap, in Section 7 we design a fast randomized
algorithm based on the local search paradigm in combinatorial optimization for
this problem (cf. Fig. 7). Our resulting software was tested on four electoral data
for the 2012 election of the (federal) house of representatives for the US states
of Wisconsin [42, 43], Texas [44, 45], Virginia [40, 41] and Pennsylvania [38,
39]. The results computed by our fast algorithm are truly outstanding: the final
efficiency gap was lowered to 3.80%, 3.33%, 3.61% and 8.64% from 14.76%,
4.09%, 22.25% and 23.80% for Wisconsin, Texas, Virginia and Pennsylvania,
respectively, in a small amount of time. Our empirical results clearly show that
it is very much possible to design and implement a very fast algorithm that can
“un-gerrymander” (based on the efficiency gap measure) the gerrymandered US
house districts of four US states. To the best of our knowledge, ours is the first
publicly available implementation and its corresponding evaluation on real data
for any algorithm for the efficiency gap measure.
Based on these empirical results, we also provide some interesting insights into
three practical issues related the efficiency gap measure, namely issues pertaining
to seat gain vs. efficiency gap, compactness vs. efficiency gap and the naturalness
of original gerrymandered districts.

3Observations of similar nature but using different arguments were also made independently in [10].
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2.1 Implications of results and proofs of Theorem 1 and Theorem 2 in the context of
gerrymandering in US

The results in Theorem 1 and Theorem 2 are computational hardness result, so one
obvious question is about the implications of these results and associated proofs for
gerrymandering in US. To this effect, we offer the following motivations and insights
that might be of independent interest.

On accurate census data at the fine granularity level: Accurate census data at the
fine granularity level may make a difference to an independent commission seek-
ing fair districts (such as in California). As stated in Remark 1, while it is difficult
to even approximately optimize the absolute difference of the wasted votes at
a course granularity level of inputs, the situation at the fine granularity level of
inputs may be not so hopeless.

On cracking and packing, how far one can push? It is well-known that cracking
and packing may result in large partisan bias. For example, based on 2012 elec-
tion data for election of the (federal) house of representatives for the states of
Virginia, the Democratic party had a normalized vote count of about 52% but due
to cracking/packing held only 4 of the 11 house seats [40, 41]. This observation,
coupled with the knowledge that Virginia is one of the most gerrymandered states
in US both on the congressional and state levels [48], leads to the following nat-
ural question: “could the Virginia lawmakers have disadvantaged the Demo-
cratic party more by even more careful execution of cracking and packing
approaches”? As one lawmaker put it quite bluntly, they would have liked to
gerrymander more if only they could.

We believe a partial answer to this is provided by the proof structures for
Theorems 1 and 2. A careful inspection of the proofs of Theorems 1 and 2 reveal
that they do use cracking and packing4 to create hard instances of the efficiency
gap minimization problem that are computationally intractable to solve optimally
certainly at the course granularity input level and even at the fine granularity in-
put level5. Perhaps the computational complexity issues did save the Democratic
party from further electoral disadvantages.

2.2 Some remarks and explanations regarding the technical content of this paper

To avoid any possible misgivings or confusions regarding the technical content of the
paper as well as to help the reader towards understanding the remaining content of
this article, we believe the following comments and explanations may be relevant.
We encourage the reader to read this section and explore the references mentioned
therein before proceeding further.

I We employ a randomized local-search heuristic for combinatorial optimization for
our algorithm in Fig. 7. Our algorithmic paradigm is quite different from Markov

4For example, packing is used in the proof of Theorem 2 when a node v3
i with 4δ extra supporters for

Party A is packed in the same district with the three nodes vi,p, vi,q and vi,r each having δ extra supporters
for Party B (see Fig. 5).

5The proofs of Theorems 1 and 2 however do not make much use of hijacking or kidnapping.
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Chain Monte Carlo simulation, simulated annealing approach, Bayesian methods
and related similar other methods (e.g., no temperature parameter, no Gibbs sam-
pling, no calculation of transition probabilities based on Markov chain properties,
etc.). Thus, for example, our algorithmic paradigm and analysis for the efficiency
gap measure is different and incomparable to that used by researchers for other
measures, such as by Herschlag, Ravier and Mattingly [24], by Fifield et al. [17]
or by Cho and Liu [9]6.

For a detailed exposition of randomized algorithms the reader is referred to
excellent textbooks such as [2, 29] and for a detailed exposition of the local-search
algorithmic paradigm in combinatorial optimization the reader is referred to the
excellent textbook [1].

I While we do provide several non-trivial theoretical algorithmic results, we do not
provide any theoretical analysis of the randomized algorithm in Fig. 7. The jus-
tification for this is that, due to Theorem 1 and Lemma 5, no such non-trivial
theoretical algorithmic complexity results exist in general assuming P 6= NP for
deterministic polynomial-time algorithms or assuming RP6= NP for randomized
polynomial-time algorithms. One can attribute this to the usual “difference be-
tween theory and practice” doctrine.

For readers unfamiliar with the complexity-theoretic assumptions P6= NP
and RP6= NP, these are core complexity-theoretic assumptions that have been
routinely used for decades in the field of algorithmic complexity analysis. For
example, starting with the famous Cook’s theorem [12] in 1971 and Karp’s sub-
sequent paper in 1972 [25], the P 6= NP assumption is a central assumption in
structural complexity theory and algorithmic complexity analysis. For a detailed
technical coverage of the basic structural complexity field, we refer the reader to
the excellent textbook [5].

I For empirical results in this article we use the data at the county level as opposed
to using data at finer (more granular) level such as the “Voting Tabulation District”
(VTD) level7 or the census block level. The reason for this is as follows. Note that
our algorithmic approach already returns an efficiency gap of below 4% for three
states (namely, WI, TX and VA), and for PA it cuts down the current efficiency
gap by a factor of about 3 (cf. Table 2). This, together with the observation in [36,
pp. 886-888] that the efficiency gap should not be minimized to a very low value
to avoid unintended consequences, shows that even just by using county-level
data our algorithm can already output almost desirable (if not truly desirable)
values of the efficient gap measure and thus, by Occam’s razor principle8 widely
used in computer science, we should not be using more data at finer levels. In
fact, using more data at a finer level may lead to what is popularly known as
“overfitting” in the context of machine learning and elsewhere [6] that may hide
its true performance on yet unexplored maps.

6In fact, we did try a more traditional simulated annealing approach that is more in tune with some of
the previous researchers, but it did not give good results.

7VTDs are the smallest units in a state for which the election data are available.
8Occam’s razor principle [32] states that “Entia non sunt multiplicanda praeter necessitatem” (i.e.,

more things should not be used than are necessary). It is also known as rule of parsimony in biological
context [18]. Overfitting is an example of violation of this principle.
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Algorithmic approaches that use data at a level courser than that the most
granular level have been used in prior published works, especially when compact-
ness and similar metrics are used to measure and eliminate gerrymandering. For
example, Cirincione et al. [11] and Doyle [15] use electoral data at a “census block
group” level (which is less granular than the data at the “census block” level). In
this context, our suggestion to future algorithmic researchers in this direction is
to use a minimal amount of data that is truly necessary to generate an acceptable
solution.

I In this article we are not comparing our approaches empirically to those in existing
literature such as in [9, 17, 24]. The reason for this is that, to the best of our knowl-
edge, there is currently no other published work that gives a software to optimize
the efficiency gap measure. In fact, it would be grossly unfair to other existing
approaches if we compare our results with their results. For example, suppose we
consider an optimal result using an approach from [9] and find that it gives an
efficiency gap of 15% whereas the approach in this article gives an efficiency gap
of 5%. However, it would be grossly unfair to say that, based on this comparison,
our algorithm is better than the one in [9] since the authors in [9] never intended to
minimize the efficiency gap. Furthermore, even the two maps cannot be compared
directly by geometric methods since no court has so far established a firm and
unequivocal ground truth on gerrymandering by having a ruling of the following
form:

[court]: “a district map is gerrymandered if and only if such-and-such conditions
are satisfied”

(the line is crossed out above just to doubly clarify that such a ruling does not
exist).

For certain scientific research problems, algorithmic comparisons are pos-
sible because of the existence of ground truths (also called ”gold standards” or
“benchmarks”). For example, different algorithmic approaches for reverse engi-
neering causal relationships between components of a biological cellular system
can be compared by evaluating how close the methods under investigation are in
recovering known gold standard networks using widely agreed upon metrics such
as recall rates or precision values [13]. Unfortunately, for gerrymandering this is
not the case and, in our opinion, comparison of algorithms for gerrymandering
that optimize substantially different objectives should be viewed with a grain of
salt.

I The research goal of this paper is to study minimization of the efficiency gap mea-
sure exactly as introduced by Stephanopoulos and McGhee in [28, 36] without
combining it with any other approaches. However, should future researchers like
to introduce additional computable constraints or objectives, such as compactness
or respect of community boundaries, on top of our efficiency gap minimization
algorithm, it is a conceptually easy task to modify our algorithm in Fig. 7 for this
purpose. For example, to introduce compactness on top of minimization of the
efficiency gap measure, the following two lines in Fig. 7

if Effgapκ(P,Q′1, . . . ,Q
′
κ)< Effgapκ(P,Q1, . . . ,Qκ) then

should be changed to something like (changes are indicated in bold):
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if Effgapκ(P,Q′1, . . . ,Q
′
κ)< Effgapκ(P,Q1, . . . ,Qκ)

and each of Q′1, . . . ,Q
′
κ

Q′1, . . . ,Q
′
κQ′1, . . . ,Q
′
κ are compact then

and appropriate minor changes can be made to other parts of the algorithm for
consistency with this modification. However, the computational complexity issues
of these new hybrid algorithms may be quite different from the original efficiency
gap minimization problem and these issues are not studied in this paper.

2.3 Beyond scientific curiosity: impact on US judicial system

Beyond its scientific implications on the science of gerrymandering, we expect our
algorithmic analysis and results to have a beneficial impact on the US judicial system
also. Some justices, whether at the Supreme Court level or in lower courts, seem to
have a reluctance to taking mathematics, statistics and computing seriously [16, 35],
We sincerely hope that our theoretical and computational results will add the grow-
ing body of scientific research on gerrymandering to show that the math, whether
complicated or not (depending on one’s background), can in fact yield fast accurate
computational methods that can indeed be applied to un-gerrymander (based on spe-
cific quantifiable measures) those maps that are currently gerrymandered.

2.4 Remarks on the impact of the SCOTUS gerrymandering ruling

As this article was being written, SCOTUS issued a ruling on 06/27/2019 on two
gerrymandering cases [34]. However, the ruling does not eliminate the need for fu-
ture gerrymandering studies. While SCOTUS agreed that gerrymandering was anti-
democratic, it decided that it is best settled at the legislative and political level, and
it encouraged solving the problem at the state court level and delegating legislative
redistricting to independent commissions via referendums. Both of the last two reme-
dies do require further scientific studies on gerrymandering. It is also possible that a
future SCOTUS may overturn this recent ruling.

3 Formalization of minimization of the efficiency gap measure

Based on [28, 36], we abstract our problem in the following manner. We are given a
rectilinear polygon P without holes. Placing P on a unit grid of size m×n, we will
identify an individual unit square (a “cell”) on the ith row and jth column in P by
pi, j for 0≤ i < m and 0≤ j < n (see Fig. 2). For each cell pi, j ∈P , we are given the
following three integers:

I an integer Popi, j ≥ 0 (the “total population” inside pi, j), and
I two integers PartyAi, j,PartyBi, j ≥ 0 (the total number of voters for Party A and

Party B, respectively) such that PartyAi, j +PartyBi, j = Popi, j.

Let |P|=
∣∣{pi, j : pi, j ∈P

}∣∣ denote the “size” (number of cells) of P . For a recti-
linear polygon Q included in the interior of P (i.e., a connected subset of the interior
of P), we defined the following quantities:



10 Tanima Chatterjee et al.

000 111 222 333 444 555

000

111

222

333

p2,1p2,1p2,1

|P| = 15|P| = 15|P| = 15

Fig. 2: Input polygon P of size 15 placed on a grid of size 6× 4; the cell p2,1 is
shown.

Party affiliations in Q: PartyA(Q)= ∑
pi, j∈Q

PartyAi, j and PartyB(Q)= ∑
pi, j∈Q

PartyBi, j.

Population of Q: Pop(Q) = PartyA(Q)+PartyB(Q).
Efficiency gap of Q:

Effgap(Q)=





(
PartyA(Q)− 1

2 Pop(Q)
)
−PartyB(Q) = 2PartyA(Q)− 3

2 Pop(Q),

if PartyA(Q)≥ 1
2 Pop(Q)

PartyA(Q)−
(

PartyB(Q)− 1
2 Pop(Q)

)
= 2PartyA(Q)− 1

2 Pop(Q),

otherwise

Note that if PartyA(Q) = PartyB(Q) = 1
2 Pop(Q) then Effgap(Q) =−PartyB(Q),

i.e., in case of a tie, we assume Party A is the winner.

Our problem can now be defined as follows.

Problem name: κ-district Minimum Wasted Vote Problem (MIN-WVPκ ).

Input: a rectilinear polygon P with Popi, j,PartyAi, j,PartyBi, j for every cell
pi, j ∈P , and a positive integer 1 < κ ≤ |P|.

Definition: a κ-equipartition of P is a partition of the interior of P into exactly
κ rectilinear polygons (districts), say Q1, . . . ,Qκ , such that Pop(Q1) = · · ·=
Pop(Qκ).

Assumption: P has at least one κ-equipartition.

Valid solution: Any κ-equipartition Q1, . . . ,Qκ of P .

Objective: minimize the total absolute efficiency gap9

Effgapκ(P,Q1, . . . ,Qκ) =
∣∣ ∑

κ
j=1 Effgap(Q j)

∣∣.

Notation: OPTκ(P)
def
= min

{
Effgapκ(P,Q1, . . . ,Qκ) | Q1, . . . ,Qκ is

a κ-equipartition of P
}

.
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Illustration of the formalization: a numerical example To help the reader under-
stand the formalization, we provide a toy numerical example in Fig. 3.

000 111 222 333 444

000

111

222

333 525252
484848

525252
484848

525252
484848

525252
484848

111111
393939

111111
393939

111111
393939

111111
393939

111111
393939

111111
393939

111111
393939

111111
393939

808080
120120120

181818
222222

181818
222222

181818
222222

181818
222222

181818
222222

PartyA2,3PartyA2,3PartyA2,3

PartyB2,3PartyB2,3PartyB2,3

Pop2,3Pop2,3Pop2,3 = 11 + 39= 11 + 39= 11 + 39
= 50= 50= 50

Two possible district maps

κκκ= 3= 3= 3
|P||P||P|= 15= 15= 15∑

i,j
Popi,j

∑
i,j

Popi,j
∑
i,j

Popi,j = 1200= 1200= 1200

Q1Q1Q1

Q3Q3Q3Q2Q2Q2

PartyA(Q...)PartyA(Q...)PartyA(Q...) PartyB(Q...)PartyB(Q...)PartyB(Q...) Effgap(Q...)Effgap(Q...)Effgap(Q...)

Q1Q1Q1 208208208 192192192 −184−184−184

Q2Q2Q2 170170170 230230230 140140140

Q3Q3Q3 888888 312312312 −24−24−24

Effgap(P,Q1,Q2,Q3) = | − 184 + 140− 24| = 68Effgap(P,Q1,Q2,Q3) = | − 184 + 140− 24| = 68Effgap(P,Q1,Q2,Q3) = | − 184 + 140− 24| = 68

Q1Q1Q1

Q2Q2Q2 Q3Q3Q3

PartyA(Q...)PartyA(Q...)PartyA(Q...) PartyB(Q...)PartyB(Q...)PartyB(Q...) Effgap(Q...)Effgap(Q...)Effgap(Q...)

Q1Q1Q1 208208208 192192192 −184−184−184

Q2Q2Q2 134134134 266266266 585858

Q3Q3Q3 124124124 276276276 484848

Effgap(P,Q1,Q2,Q3) = | − 184 + 58 + 48| = 78Effgap(P,Q1,Q2,Q3) = | − 184 + 58 + 48| = 78Effgap(P,Q1,Q2,Q3) = | − 184 + 58 + 48| = 78

Fig. 3: A numerical example to illustrate the notations related to the definition of
Problem MIN-WVPκ in Section 3.

4 Mathematical properties of efficiency gap: set of attainable values

The following lemma sheds some light on the set of rational numbers that the total
efficiency gap of a κ-equipartition can take. As an illustrative example, if we just
partition the polygon P into κ = 2 regions, then Effgap2(P,Q1,Q2) can only be

9Note that our notation uses the absolute value for Effgapκ (P,Q1, . . . ,Qκ ) but not for individual
Effgap(Q j)’s.
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one of the following 3 possible values:
∣∣∣∣2PartyA(P)− 1

2
Pop(P)

∣∣∣∣ or |2PartyA(P)−Pop(P) |

or
∣∣∣∣2PartyA(P)− 3

2
Pop(P)

∣∣∣∣

Observations of similar nature but using different arguments were also made inde-
pendently in [10].

Lemma 1

(a) For any κ-equipartition Q1, . . . ,Qκ of P , Effgapκ(P,Q1, . . . ,Qκ) always as-

sumes one of the κ + 1 values of the form
∣∣∣2PartyA(P)−

(
z+ κ

2

)
Pop(P)

κ

∣∣∣ for
z = 0,1, . . . ,κ .

(b) If Effgapκ(P,Q1, . . . ,Qκ)=
∣∣∣2PartyA(P)−

(
z+ κ

2

)
Pop(P)

κ

∣∣∣ for some z∈{0,1,
. . . , κ} and some κ-equipartition Q1, . . . ,Qκ of P , then Pop(P)

2κ
z≤PartyA(P)≤

Pop(P)
2κ

z+ 1
2 Pop(P).

Corollary 1 Using the reverse triangle inequality of norms, the absolute difference
between two successive values of Effgapκ(P,Q1, . . . ,Qκ) is given by

∣∣∣∣∣

∣∣∣∣2PartyA(P)−
(

z
κ
− 1

2

)
Pop(P)

∣∣∣∣−
∣∣∣∣2PartyA(P)−

(
z+1

κ
− 1

2

)
Pop(P)

∣∣∣∣

∣∣∣∣∣
≤∣∣∣∣
(

2PartyA(P)−
(

z
κ
− 1

2

)
Pop(P)

)
−
(

2PartyA(P)−
(

z+1
κ
− 1

2

)
Pop(P)

)∣∣∣∣

=
Pop(P)

κ

Corollary 2 (see also [36, p. 853]) For any κ-equipartition Q1, . . . ,Qκ of P , con-
sider the following quantities as defined in [36]:

(Normalized) seat margin of Party A:
∣∣{Q j : PartyA(Q j)≥ 1

2 Pop(Q j)
}∣∣

κ
− 1

2
.

(Normalized) vote margin of Party A:
PartyA(P)

Pop(P)
− 1

2
.

Then, we can write
2PartyA(P)−

(
z+ κ

2

)
Pop(P)

κ

Pop(P)
as 2

(
PartyA(P)

Pop(P)
− 1

2

)
−
(

z
κ
− 1

2

)
,

and identifying z with the quantity
∣∣{Q j : PartyA(Q j)≥ 1

2 Pop(Q j)
}∣∣ we get

Effgapκ(P,Q1, . . . ,Qκ)

Pop(P)
=
∣∣∣2×( vote margin of Party A )−( seat margin of Party A )

∣∣∣
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Proof of Lemma 1

(a) Consider any κ-equipartition Q1, . . . ,Qκ of P with Pop(Q1) = . . .Pop(Qκ) =
1
κ

Pop(P). Note that for any Q j we have Effgap(Q j) = 2PartyA(Q j)− r jPop(Q)
where

r j =

{
3/2, if PartyA(Q j)≥ Pop(Q j)/(2κ)
1/2, otherwise

Letting z be the number of r j’s that are equal to 3/2, it follows that

Effgapκ(P,Q1, . . . ,Qκ) =

∣∣∣∣∣
κ

∑
j=1

Effgap(Q j)

∣∣∣∣∣

=

∣∣∣∣2PartyA(P)−
(3

2
z+

1
2
(κ− z)

)Pop(P)

κ

∣∣∣∣

=

∣∣∣∣2PartyA(P)−
(

z+
κ

2

)Pop(P)

κ

∣∣∣∣

(b) Note that, since 0≤ PartyA(Q j)≤ Pop(P)
κ

for any j, we have

PartyA(P) =
κ

∑
j=1

PartyA(Q j)≥ ∑
j :r j=3/2

Pop(P)

2κ
=

Pop(P)

2κ
z

PartyA(P) =
κ

∑
j=1

PartyA(Q j)< ∑
j :r j=3/2

Pop(P)

κ
+ ∑

j :r j=1/2

Pop(P)

2κ

=
Pop(P)

κ
z+

Pop(P)

2κ
(κ− z) =

Pop(P)

2κ
z+

1
2

Pop(P) q

5 Computational hardness result for MIN-WVPκ

Recall that, for any ρ ≥ 1, an approximation algorithm with an approximation ratio
of ρ (or, simply an ρ-approximation) is a polynomial-time solution of value at most
ρ times the value of an optimal solution [19].

Theorem 1 Assuming P 6= NP, for any rational constant ε ∈ (0,1), the MIN-WVPκ

problem for a rectilinear polygon P does not admit a ρ-approximation algorithm
for any ρ and all 2≤ κ ≤ ε|P|.

Proof. We reduce from the NP-complete PARTITION problem [19] which is defined
as follows: given a set of n positive integers A = {a0, . . . ,an−1}, decide if there exists
a subset A ′ ⊂A such that ∑ai∈A ′ ai = ∑a j /∈A ′ a j. Note that we can assume without
loss of generality that n is sufficiently large and each of a0, . . . ,an−1 is a multiple of
any fixed positive integer. For notational convenience, let ∆ = ∑

n−1
j=0 a j.

Let µ ≥ 0 be such that κ = 2+ µn (we will later show that µ is at most the
constant 6ε

1−ε
). Our rectilinear polygon P , as illustrated in Fig. 4 (A), consists of a

rectangle C =
{

pi, j |0≤ i≤ n, 0≤ j ≤ 2
}

of size 3×(n+1) with additional µn cells
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Fig. 4: An illustration of the construction in the proof of Theorem 1 when the instance
of the PARTITION problem is A = {10,30,40,50,60,80,90}. (A) The instance of
MIN-WVPκ created from the given instance of PARTITION. (B) Efficiency gap when
an invalid solution of PARTITION is used. (C) Efficiency gap when a valid solution
of PARTITION exists and is used.
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attached to it in any arbitrary manner to make the whole figure a connected polygon
without holes. For convenience, let D =

{
pi, j | pi, j /∈ C

}
be the set of the additional

µn cells. The relevant numbers for each cell are as follows:

Popi, j =





∆/2, if i = j = 0 or if i = 0, j = 2
a j, if i = 1 and j < n
∆ , if pi, j ∈D
0, otherwise

PartyAi, j =





∆/2, if i = j = 0
a j/2, if i = 1 and j < n

3∆/4, if pi, j ∈D
0, otherwise

First, we show how to select a rational constant µ such that any integer κ in the range
[2,ε|P| ] can be realized. Assume that κ = ε ′|P| ∈ [2,ε|P| ] for some ε ′. Since
|P|= 3(n+1)+µn the following calculations hold:

κ = 2+µn = ε
′|P|= ε

′(3(n+1)+µn) ≡ µ =
3ε ′(n+1)−2

(1− ε ′)n
<

4ε ′

1− ε ′
<

4ε

1− ε

Claim 1.1 Effgap(pi, j) = 0 for each pi, j ∈D , and moreover each pi, j ∈D must be a
separate partition by itself in any κ-equipartition of P .

Proof. By straightforward calculation, Effgap(pi, j) = 2× 3∆

4 − 3∆

2 = 0. Since κ =
2+ µn and Pop(P) = ∑pi, j∈P Popi, j = ∆ +∆ + µn∆ = (2+ µn)∆ , each partition

in any κ-equipartition of P must have a population of Pop(P)
κ

= ∆ and thus each
pi, j ∈D of population ∆ must be a separate partition by itself. q

Using Claim 1.1 we can simply ignore all pi, j ∈ D in the calculation of of ef-
ficiency gap of a valid solution of P and it follows that the total efficiency gap of
a κ-equipartition of P is identical to that of a 2-equipartition of C . A proof of the
theorem then follows provided we prove the following two claims.

(soundness) If the PARTITION problem does not have a solution
then OPT2(C ) = ∆ .

(completeness) If the PARTITION problem has a solution then OPT2(C ) = 0.

Proof of soundness (refer to Fig. 4 (B))

Suppose that there exists a valid solution (i.e., a 2-equipartition) C1,C2 of MIN-
WVP2 for C with p0,0 ∈ C1, p0,2 ∈ C2, and let A ′ =

{
a j | p1, j ∈ C1

}
. Then,

∆ =
Pop(C )

2
= Pop0,0 + ∑

p1, j∈C1

Pop1, j =
∆

2
+ ∑

a j∈A ′
a j ≡ ∑

a j∈A ′
a j =

∆

2

and thus A ′ is a valid solution of PARTITION, a contradiction!
Thus, assume that both p0,0 and p0,2 belong to the same partition, say C1. Then,

since Pop0,0 +Pop0,4 = ∆ = Pop(C )
2 , every p1, j must belong to C2. Moreover, every

pi, j ∈ C with ηi, j = 0 must belong to C1 since otherwise C1 will not be a connected
region. This provides Pop(C1) = Pop(C2) = ∆ , showing that C1,C2 is indeed a valid
solution (i.e., a 2-equipartition) of MIN-WVP2 for C . The total efficiency gap of this
solution can be calculated as
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Effgap2(C ,C1,C2) = |Effgap(C1)+Effgap(C2) |

=

∣∣∣∣2PartyA(C1)−
3
2

Pop(C1)+2PartyA(C1)−
3
2

Pop(C1)

∣∣∣∣

=

∣∣∣∣2
∆

2
− 3

2
∆ +2

∆

2
− 3

2
∆

∣∣∣∣= ∆

Proof of completeness (refer to Fig. 4 (C))

Suppose that there is a valid solution of A ′ ⊂ A of PARTITION and consider
the two polygons

C1 =
{

p2, j |0≤ j ≤ n
}
∪
{

p1, j |a j ∈A ′} , C2 = C \C1

By straightforward calculation, it is easy to verify the following:

– Pop(C1) = ∑a j∈A ′ a j +∑
n
j=0 Pop2, j = ∆ , Pop(C2) = ∑a j /∈A ′ a j +∑

n
j=0 Pop2, j =

∆ , and thus C1,C2 is a valid solution (i.e., a 2-equipartition) of MIN-WVP2 for C .
– Effgap2(C ,C1,C2) = 0OPT2(C ) = 0 since

Effgap2(C ,C1,C2) = |Effgap(C1)+Effgap(C2) |

=

∣∣∣∣2PartyA(C1)−
3
2

Pop(C1)+2PartyA(C1)−
1
2

Pop(C1)

∣∣∣∣

=

∣∣∣∣2
(

∆

2
+

∆

4

)
− 3

2
∆ +2

∆

4
− 1

2
∆

∣∣∣∣= 0

q

5.1 Computational hardness of MIN-WVPκ for polynomial-size total population

Since the PARTITION problem is not a strongly NP-complete problem (i.e., admits
a pseudo-polynomial time solution), the approximation-hardness result in Theorem 1
does not hold if the total population Pop(P) is polynomial in |P| (i.e., if Pop(P) =
O(|P|c) for some positive constant c). Indeed, if Pop(P) is polynomial in |P| then
it is easy to design a polynomial-time exact solution via dynamic programming for
those instances of MIN-WVPκ problem that appear in the proof of Theorem 1. Thus,
an obvious research question is whether one can design an alternate hardness proof
that holds even if Pop(P) is polynomial in |P|. While we are unable to show it for
the case when the input is a rectilinear polygon as used to define MIN-WVPκ , we
can nonetheless show this if the input is a planar graph instead and if we relax the
definition of a κ-equipartition slightly. The relevant notations and terminologies for
the planar graph input model and the relaxation of the definition of a κ-equipartition
are described as follows10:

10Alternatively, one can think of the input being given as an arbitrary (not necessarily rectilinear)
simple polygon P , and the cells are arbitrary sub-polygons (without holes) inside P that form a partition
of P .
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. Instead of the rectilinear polygon P , the input is now a planar graph G = (V,E)
whose nodes are the cells, and whose edges define adjacency of pairs of cells.

. The previously used notations and terminologies are modified in the following
obvious manner:
. Popi, j is now replaced by Popv (the “total population” in v) for a node (cell)

v∈V . Similarly, PartyAi, j and PartyBi, j are replaced by the notations PartyAv
and PartyBv, respectively.

. For a subset of cells (nodes) Q ⊆V , PartyA(Q) is redefined as PartyA(Q) =

∑
v∈Q

PartyAv, and PartyB(Q) is redefined as PartyB(Q) =∑
v∈Q

PartyBv.

. |P| is now |V |.
. A ε-relaxed κ-equipartition of G11, for a given ε > 0, is a partition of V into κ

subsets of nodes (κ districts), say Q1, . . . ,Qκ , such that:
. every Q j induces a connected subgraph of G, and

.
max1≤ j≤κ

{
Pop(Q j)

}

min1≤ j≤κ

{
Pop(Q j)

} ≤ 1+ ε .

Theorem 2 Computing an exact solution of the MIN-WVPκ problem for planar graph
input using ε-approximate κ-equipartitions is NP-complete for any constant 0 < ε <
1/2 even if Pop(V ) = O(|V |).

Remark 1 The NP-hardness reduction in Theorem 2 does not provide any non-trivial
inapproximability ratio.

Proof of Theorem 2 The problem is trivially in NP, so will concentrate on the NP-
hardness reduction. Our reduction is from the maximum independent set problem for
planar cubic graphs (MISPC) which is defined as follows:

“given a cubic (i.e., 3-regular) planar graph G = (V,E) and an integer ν ,
does there exist an independent set for G with ν nodes ?”

MISPC is known to be NP-complete [20] but there exists a polynomial-time approx-
imation scheme for it [4]. Note the value of Effgapκ(G,Q1, . . . ,Qκ) remains the
same if we divide (or multiply) the values of all PartyA(Q j)’s and PartyB(Q j)’s by
t for any integer t > 0. Thus, to simplify notation, we assume that we have re-scaled
the numbers such that min1≤ j≤κ

{
Pop(Q j)

}
= 1, and therefore our approximately

strict partitioning criteria is satisfied by ensuring that 1 ≤ Pop(Q j) ≤ 1+ ε for all
j = 1, . . . ,κ with Pop(Q j) = 1 for at least one j. Thus, each PartyA(Q j), PartyB(Q j)
and Pop(Q j) may be positive rational constant numbers such that, if needed, we can
ensure that all these numbers are integers at the end of the reduction by multiplying
them by a suitable positive integer of polynomial size.

Let G = (V,E) and ν be the given instance of MISPC with V = {v1, . . . ,vn} and
|E| = 3n/2. Note that, since G is cubic, we can always greedily find an independent
set of at least n/4 nodes and moreover there does not exist any independent set of more
than n/2 nodes; thus we can assume n/4 < ν ≤ n/2. Let δ = n−3/100 > 0 be a rational

11Past Court rulings seem to suggest that the courts may allow a maximum value of ε in the range of
0.05 to 0.1 (cf. US Supreme Court ruling in Karcher v. Daggett 1983).
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Fig. 5: The subgraph gadgets used in the proof of Theorem 2.

number of polynomial size that is sufficiently small compared to ε . We describe an
instance of our map G1 = (V1,E1) (a planar graph with all required numbers) con-
structed from G as follows.

Node gadgets: Every node vi ∈ V with its three adjacent nodes as vp,vq,vr is re-
placed a subgraph of 8 new nodes v0

i ,v
1
i ,v

2
i ,v

3
i ,v

4
i ,vi,p,vi,q,vi,r ∈ V1 and 7 new

edges along with their Pop and PartyA values as shown in Fig. 3 (a). The require-
ment “1 ≤ Pop(Q j) ≤ 1+ ε for all j” and the fact that 0 < ε < 1/2 ensure that
these nodes can be covered only in the two possible ways as shown in Fig. 3 (b):
. For the top case in Fig. 3 (b), all the 8 nodes are covered by 3 districts. Intu-

itively, this corresponds to the case when vi is not selected in an independent
set for G. We informally refer to this as the the “vi is not selected” case.

. For the bottom case in Fig. 3 (b), 5 of the 8 nodes are covered by 3 districts,
leaving the remaining 3 nodes (nodes vi,p,vi,q,vi,r) to be covered with some
other nodes in G1. Intuitively, this corresponds to the case when vi is selected
in an independent set for G. We informally refer to this as the the “vi is se-
lected” case.

Note that this step in all introduces 8n new nodes and 7n new edges in G1.
Edge gadgets: For every edge ei, j = {vi,v j} ∈ E (with i < j), we introduce one new

node (the “edge-node”) ui, j and two new edges {vi, j,ui, j} and {v j,i,ui, j} as shown
in Fig. 3 (c). Note that this step in all introduces 3n/2 new nodes and 3n new edges
in G1.

Thus, we have |V1| = 19n/2 and |E1| = 10n, and surely G1 is planar since G was a
planar graph. Finally, we set κ = 9n/2. Note that the instance G1 satisfies Pop(V ) =
O(|V |) since the total population of every node is between ε/3 and 1+(2ε/3) for a
constant ε .
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To continue with the proof, we need to make a sequence of observations about
the constructed graph G1 as follows:

(i) An edge-node ui, j can be in a partition just by itself, or with only one of either of
the nodes vi, j and v j,i.

(ii) If vi is not selected then ui, j cannot be in the same partition as vi, j. On the other
hand, if ui, j is in the same partition as vi, j then vi must be selected.

(iii) By (i) and (ii), an edge-node ui, j is in a partition just by itself if and only if
neither of its end-points, namely nodes vi and v j, are selected in the corresponding
independent set for G.

(iv) Consider any maximal independent set /0⊂V ′ ⊂V for G (e.g., the one obtained
by the obvious greedy solution) having 0 < µ < n/2 nodes. Using (i), (ii) and (iii),
the following calculations hold:
. For every node vi selected in V ′ with its adjacent nodes being vp,vq,vr, we

cover the nodes v0
i , v1

i , v2
i , v3

i , v4
i , vi,p, vi,q, vi,r, and the three edge-nodes cor-

responding to the three edges {vi,vp}, {vi,vq}, {vi,vr} ∈ E using 6 districts
in G1.

. For every node vi not selected in V ′, we cover the nodes v0
i , v1

i , v2
i , v3

i , v4
i , vi,p,

vi,q, and vi,r using 3 districts in G1.
. Let E ′ ⊆ E be the set of edges such that neither end-points of these edges are

selected in V ′. Note that |E ′| = (3n/2)−3µ , and for every edge vi, j ∈ E ′ we
use one new district for the edge-node ui, j.

Lemma 2 There is a trivial (not necessarily optimal) valid solution for G1.

Proof. By (iv), the total number of districts used in a maximal independent set is
6µ +3(n−µ)+((3n/2)−3µ) = 9n/2 = κ , as required. q

For convenience of calculations, let us define the following quantity for a partition
(district) for a district Q j:

Wasted-Votes(Q j,Party A) =

{
PartyA(Q j)−

(
Pop(Q j)

2

)
, if PartyA(Q j)≥ Pop(Q j)

2

PartyA(Q j), otherwise

Wasted-Votes(Q j,Party B) =

{
PartyB(Q j)−

(
Pop(Q j)

2

)
, if PartyB(Q j)≥ Pop(Q j)

2

PartyB(Q j), otherwise

Then, the following calculations follow easily (for any sufficiently small positive
rational number x):

Wasted-Votes(Q j,Party A) =

{
x, if PartyA(Q j) =

Pop(Q j)
2 + x

Pop(Q j)
2 − x, if PartyA(Q j) =

Pop(Q j)
2 − x

Wasted-Votes(Q j,Party B) =

{ Pop(Q j)
2 − x, if PartyA(Q j) =

Pop(Q j
2 + x

x, if PartyA(Q j) =
Pop(Q j)

2 − x

Wasted-Votes(Q j,Party A)−Wasted-Votes(Q j,Party B)
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=

{
2x− Pop(Q j)

2 , if PartyA(Q j) =
Pop(Q j)

2 + x
Pop(Q j)

2 −2x, if PartyA(Q j) =
Pop(Q j)

2 − x

Consider any maximal independent set /0⊂V ′ ⊂V for G having n/4 < µ ≤ n/2 nodes.
Using (iv), the following calculations hold:
. Every node vi selected in V ′ contributes the following amount to the total value

of
κ

∑
j=1

(Wasted-Votes(Q j,Party A)−Wasted-Votes(Q j,Party B)):

ξ =

(
8δ − 1

2

)
+

(
16δ − 1

2

)
+

(
16δ − 1+ ε

2

)
+3×

(
1
2
−2δ

)
= 34δ − ε

2

. Every node vi not selected in V ′ contributes the following amount to the total

value of
κ

∑
j=1

(Wasted-Votes(Q j,Party A)−Wasted-Votes(Q j,Party B)):

ζ =

(
16δ − 1+ ε

2

)
+

(
16δ − 1+ ε

2

)
+

(
2δ − 1

2

)
= 34δ − ε− 3

2

. Every edge in E such that neither end-points of the edge are selected in V ′ con-

tributes the following amount to the total value of
κ

∑
j=1

(Wasted-Votes(Q j,Party A)−

Wasted-Votes(Q j,Party B)):

η = δ − 1+ 2ε

3
2

= δ − ε

3
− 1

2
. Consequently, corresponding to an independent set of µ nodes, adding all the con-

tributions we get the following value ϒ (µ) for
κ

∑
j=1

(Wasted-Votes(Q j,Party A)−

Wasted-Votes(Q j,Party B))

ϒ (µ) = µξ +(n−µ)ζ +

(
3n
2
−3µ

)
η

=
(

34µδ − µε

2

)
+(n−µ)

(
34δ − ε− 3

2

)
+

(
3n
2
−3µ

)(
δ − ε

3
− 1

2

)

= 3µ +

(
3ε

2
−3δ

)
µ +

(
71δ

2
− 3ε

2
− 9

4

)
n

Now we note the following properties of the quantity ϒ (µ):
. Since δ = n−3/100 and n/4 < µ ≤ n/2, we have ϒ (µ)< 0 and therefore |ϒ (µ)|=
−ϒ (µ).

. Consequently, |ϒ (µ)|− |ϒ (µ−1)|=ϒ (µ−1)−ϒ (µ) =−3− 3ε

2 +3δ .
The last equality then leads to the following two statements that complete the proof
for NP-hardness:
I If G has an independent set of ν nodes then Effgapκ(G,Q1, . . . ,Qκ) = |ϒ (ν)|.
I If every independent set of G has at most ν−1 nodes then Effgapκ(G,Q1, . . . ,Qκ)≥
|ϒ (ν−1)|> |ϒ (ν)|+2. q
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6 Efficient algorithms for special cases

Although Theorem 1 seems to render the problem MIN-WVPκ intractable in theory,
our empirical results show that the problem is computationally tractable in practice.
This is because in real-life applications, many constraints in the theoretical formula-
tion of MIN-WVPκ are often relaxed. For example:

(i) Restricting district shapes: Individual partitions of the κ-equipartition of P may
be restricted in shape. For example, 37 states require their legislative districts to
be reasonably compact and 18 states require congressional districts to be com-
pact [46].

(ii) Variations in district populations: A partition Q1, . . . ,Qκ of P is only ap-
proximately κ-equipartition, i.e., Pop(Q1), . . . ,Pop(Qκ) are approximately, but
not exactly, equal to Pop(P)/κ. For example, the usual federal standards require
equal population as nearly as is practicable for congressional districts but allow
more relaxed substantially equal population (e.g., no more than 10% deviation be-
tween the largest and smallest district) for state and local legislative districts [46].

(iii) Bounding the efficiency gap measure away from zero: A κ-equipartition Q1,
. . . , Qκ of P is a valid solution only if Effgapκ(P,Q1, . . . ,Qκ)≥ εPop(P) for
some 0 < ε < 1. Indeed, the authors that originally proposed the efficiency gap
measure provided in [36, pp. 886-887] several reasons for not requiring the quan-
tity Effgapκ(P,Q1, . . . ,Qκ)/Pop(P) to be either zero or too close to zero.

In this section, we explore algorithmic implications of these types of relaxations of
constraints for MIN-WVPκ .

6.1 The case of two stable and approximately equal partitions

This case considers constraints (ii) and (iii). The following definition of “near parti-
tions” formalizes the concept of variations in district populations.

Definition 1 (Near partitions) Let κ ∈ N, and let P be an instance of MIN-WVPκ .
Let φ

def
= Qi, . . . ,Qκ be such that Q1, . . . ,Qκ is a partition of P , such that for each

i ∈ {1, . . . ,κ}, we have
(

1
κ
−δ

)
Pop(P)≤ Pop(Qi)≤

(
1
κ
+δ

)
Pop(P)

for some δ ≥ 0. Then we say that φ is a δ -near partition.

The next definition of “stability” formalizes the concept of bounding away from
zero the efficiency gap of each partition.

Definition 2 (Stability) Let κ ∈ N, let P be an instance of MIN-WVPκ , and let
φ

def
= Q1, . . . ,Qκ be a partition for P . We say that φ is γ-stable, for some γ > 0, if

for all i ∈ {1, . . . ,κ}, we have

Effgap(Qi)> γ Pop(Qi)
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Fig. 6: The 10-basic rectangles of a 32×32 grid (left), the 10-basic tree (middle), and
a 10-canonical solution (right).

Theorem 3 Let γ > 0 and let P be an instance of MIN-WVP2. Suppose that there are
no cells of zero population and the maximum number of people in any cell of P is C.
Suppose that there exists a γ-stable δ -near partition φ

def
= Q1,Q2 of P. Then, for any

fixed ε > 0, there exists an algorithm which given P computes some δ -near partition
φ ′ def

= Q′1,Q
′
2 of P , for some δ = O(εC), such that Effgap(φ ′) ≤ (1+ ε)Effgap(φ),

in 2O(1/ε2)2O(C/δ )2
(nmC)O(1) time.

Proof.

Definition 3 (Canonical solution) Let P be an instance of MIN-WVP2 and t ∈ N.
Let B be the partition of P obtained as follows: We partition P into bm/tc · bn/tc
rectangles, where each rectangle consists of the intersection of t rows with t columns,
except possibly for the rectangles that are incident to the right-most and the bottom-
most boundaries of P . We refer to the rectangles in B as t-basic (see Fig. 6). Let
T be the set of cells consisting of the union of the left-most column of P , the top
row of P , and for each t-basic rectangle X , the bottom row of X , and the right-most
column of X , except for the cell that is next to the top cell of that column (see Fig. 6).
We refer to T as the t-basic tree For each t-basic rectangle X , we define its interior to
be the set of cells in X that are at distance at least 2 from T . A solution φ

def
= Z1,Z2

of P is called t-canonical if it satisfies the following properties.

(1) T ⊆ Z1.
(2) Let X be a t-basic rectangle, and let X ′ be its interior. For each i ∈ {1,2}, let Ai

be the set of connected components of X ′∩Zi. Then, for each Y ∈ A1, there exists
a unique cell in T1 that is adjacent to both Y and T . Moreover, all other cells in
X \ (X ′∪T ) are in Z2 (see Fig. 6).

Lemma 3 Let P be an instance of MIN-WVP2. Suppose that there are no empty cells
and the maximum number of people in any cell of P is C. Let γ > 0, and suppose

that there exists a γ-stable solution φ
def
= Q1,Q2 for P. Then, for any ε > 0, at least

one of the following conditions hold:

(1) Either Q1 or Q2 is contained in some 1/ε-basic rectangle.
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(2) There exists a d1/εe-canonical δ -near solution φ ′ = Q′1,Q
′
2 of P , for some

δ = O(εC), such that for all i ∈ {1,2}, we have |PartyA(Qi)−PartyA(Q′i)| ≤
O(Cεn+m), and |PartyB(Qi)−PartyB(Q′i)| ≤ O(Cεnm).

Proof. It suffices to show that if condition (1) does not hold, then condition (2) does.
We define a partition φ ′ def

= Q′1,Q
′
2 of P as follows. We initialize Q′1 to be empty.

Let T be the 1/ε-basic tree. We add T1 to Q′1. For each 1/ε-basic rectangle X , let
X ′ be its interior. For each i ∈ {1,2}, let Ai be the set of connected components of
X ′ ∩Q1. Since φ is a valid solution, we have that Q1 is connected. Since condition
(1) does not hold, it follows that Q1 intersects at least two 1/ε-basic rectangles.
Therefore, each component W ∈ A1 must contain some cell cW on the boundary of
X ′. By construction, cW must be incident to some cell c′W that is incident to T . We
add c′W to Q′1. Repeating this process for all basic rectangles, and for all components
W as above. Finally, we define Q′2 = P \Q′1. This completes the definition of the

partition φ ′ def
= Q′1,Q

′
2 of P . It remains to show that this is the desired solution.

First, we need to show that φ ′ is a valid solution. To that end, it suffices to show
that both Q′1 and Q′2 are connected. The fact that Q′1 is connected follows directly
from its construction. To show that Q′2 is connected we proceed by induction on the
construction of Q′1. Initially, Q′1 consists of just the cells in T , and thus its comple-
ment is clearly connected. When we consider a component W , we add W ∪{c′W} to
Q′1. Since we add only a single cell that is incident to both W and Q′1, it follows
inductively that Q′1 remains simply connected (that is, it does not contain any holes),
and therefore its complement remains connected. This concludes the proof that both
Q′1 and Q′2 are connected, and therefore φ ′ is a valid solution.

The solutions φ and φ ′ can disagree only on cells that are not in the interior of
any basic rectangle. All these cells are contained in the union of O(εm) rows and
(εn) columns. Thus, the total number of voters in these cells is at most O(Cεnm).
It follows that for each i ∈ {1,2}, we have |PartyA(Qi)−PartyA(Q′i)| ≤ O(Cεnm),
and |PartyB(Qi)−PartyB(Q′i)| ≤ O(Cεnm).

Since there are no empty cells, we have Pop(P) ≥ nm. It follows that for all
i ∈ {1,2}, we have

|Pop(Qi)−Pop(Q′i)| ≤ O(Cεnm)≤C · ε ·Pop(P).

Thus φ ′ is δ -near, for some δ = O(εC), which concludes the proof. q

Lemma 4 Let γ > 0. Let P be an instance of MIN-WVP2. Suppose that there are no
empty cells and the maximum number of people in any cell of P is C. Suppose that
there exists a δ -stable partition φ

def
= Q1,Q2 of P. Then, for any fixed ε > 0, there

exists an algorithm which given P computes some δ -near partition φ ′ def
= Q′1,Q

′
2

of P , for some δ = O(εC), such that for all i ∈ {1,2}, we have |PartyA(Qi)−
PartyA(Q′i)| ≤O(Cεnm), and |PartyB(Qi)−PartyB(Q′i)| ≤O(Cεnm), in 2O(1/ε2)(nmC)O(1)

time.

Proof. We can check whether there exist a partition φ
def
= Q1,Q2 satisfying the con-

ditions, and such that either Q1 or Q1 is contained in the interior of a single 1/ε-basic
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rectangle. This can be done by trying all 1/ε-basic rectangles, and all possible subsets
of the interior of each 1/ε-basic rectangle, in time (n/ε)(m/ε)2O(1/ε2) = nm2O(1/ε2).

It remains to consider the case where neither of Q1 and Q2 is contained in the
interior of any 1/ε-basic rectangle. It follows that condition (2) of Lemma 3 holds.

That is, there exists some d1/εe-canonical δ -near solution φ ′ def
= Q′1,Q

′
2 of P , for

some δ = O(εC), such that for all i ∈ {1,2}, we have |PartyA(Qi)−PartyA(Q′i)| ≤
O(Cεn+m), and |PartyB(Qi)−PartyB(Q′i)| ≤ O(Cεnm). We can compute such a
partition φ ′ via dynamic programming, as follows. Let I be the union of the inte-
riors of all 1/ε-basic rectangles. By the definition of a canonical partition, it suf-
fices to compute Q′1 ∩ I and Q′2 ∩ I. Since Q′2 ∩ I = I \ (Q′1 ∩ I), it suffices to com-
pute Q′1 ∩ I. Let LPartyA = PartyA(Q′1 ∩ I), and LPartyB = PartyB(Q′1 ∩ I). Clearly,
LPartyA,LPartyB ∈ {0, . . . ,Cnm}. Thus there are at most O((nmC)2) different values
for the pair (LPartyA,LPartyB). We construct a dynamic programming table, containing
one entry for each possible value for the pair (LPartyA,LPartyB). Initially, all entries
of the table are unmarked, except for the entry that corresponds to the pair (0,0).
We iteratively consider all 1/ε-basic rectangles. When considering some 1/ε-basic
rectangle X , with interior X ′, we enumerate all possibilities for Y = X ′ ∩Q′1. There
are 2O(1/ε2) possibilities for Y . For each such possibility, we update the dynamic
programming table by marking the position (i+ PartyA(Y ), j + PartyB(Y )), if the
position (i, j) is already marked from the previous iteration. The total running time is
2O(1/ε2)(nmC)O(1). q

The proof of Theorem 3 now follows from Lemma 4 by setting ε =min{ε,O(δ/C)}.
q

6.2 The case of convex shaped partitions

This case encompasses constraint (i) since convexity has been used in gerrymander-
ing studies such as [47] as a measure of compactness to examine how redistricting
reshapes the geography of congressional districts. We recall that some X ⊆ R2 is
called y-convex if for every vertical line `, we have that X ∩ ` is either empty, or a
line segment. We also say that a κ-partition Q1, . . . ,Qκ of P is y-convex if for all
i ∈ {1, . . . ,κ}, Qi is y-convex.

Theorem 4 Let P be a rectilinear polygon realized in the m× n grid, and let N =
Pop(P) be the total population on P . There exists an algorithm for computing a
y-convex κ-equipartition of P of minimum efficiency gap, with running time NO(κ).
In particular, the running time is polynomial when the total population is polynomial
and the total number of partitions is a constant.

Proof. Let P∗ def
= Q∗1, . . . ,Q

∗
κ be a y-convex κ-equipartition of P of minimum effi-

ciency gap. For any i∈ {1, . . . ,n}, let Ci be the i-th column of P . We observe that for
all i ∈ {1, . . . ,n}, and for all j ∈ {1, . . . ,κ}, we have that Q∗j ∩Ci is either empty, or
consists of a single rectangle of width 1. Let Ci be the set of all partitions of Ci into ex-
actly κ (possibly empty) segments, each labeled with a unique integer in {1, . . . ,κ}.
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We further define
a∗i, j = PartyA(Q∗j ∩ (C1∪ . . .∪Ci)),

and
b∗i, j = PartyB(Q∗j ∩ (C1∪ . . .∪Ci)).

The algorithm proceeds via dynamic programming. For each i ∈ {1, . . . ,n}, let
Ii = N2κ ×Si. Let Xi = (ai,1,bi,1, . . . ,ai,κ ,bi,κ ,Zi) ∈ Ii. If i = 1, then we say that Xi
is feasible if for all j ∈ {1, . . . ,κ}, the unique set Y ∈Z1 labeled j satisfies

a1, j = PartyA(Y ) and b1, j = PartyB(Y ).

Otherwise, if i > 1, we say that Xi is feasible if the following holds: There exists
some feasible Xi−1 = (ai−1,1,bi−1,1, . . . ,ai−1,κ ,bi−1,κ ,Zi−1) ∈ Ii−1, such that for all
j ∈ {1, . . . ,κ}, we have that the unique set Y ∈Zi labeled j satisfies

ai, j = ai−1, j +PartyA(Y ) and bi, j = bi−1, j +PartyB(Y ).

For each i ∈ {1, . . . ,n} we inductively compute the set Fi of all feasible Xi ∈ Ii. This
can clearly be done in time NO(κ). It is immediate that for all i ∈ {1, . . . ,n}, there
exists some Xi ∈ Ii that achieves efficiency gap equal to the restriction of P∗ on
the union of the first i columns. Thus, by induction on i, the algorithm computes a
feasible solution with optimal efficiency gap. q

7 Empirical results for real data of four gerrymandered states

In this section, we design a fast randomized algorithm based on the local search
paradigm for the problem of minimization of the efficiency gap measure, and empir-
ically evaluate the algorithm on real data of four gerrymandered states to show that it
may be possible in practice to effectively minimize the efficiency gap. Our algorithm
starts with a given Q1, . . . ,Qκ partition of the input state P . Note that Q1, . . . ,Qκ

was only an approximate equipartition in the sense that the values Pop(Q1), . . . ,
Pop(Qκ) are as close to each other as practically possible but need not be exactly
equal (cf. US Supreme Court ruling in Karcher v. Daggett 1983). For designing alter-
nate valid district plans, we therefore allow any partition Q′1, . . . ,Q

′
κ of P such that,

for every j, min1≤i≤κ {Pop(Qi)} ≤ Pop(Q′j)≤max1≤i≤κ {Pop(Qi)}.

7.1 Input preprocessing

We preprocess the input map to generate an undirected unweighted planar graph
G= (V,E). Each node in the graph corresponds to a planar subdivision of a county
that is assigned to a district (or to an entire county if it is assigned to a district as a
whole). Two nodes are connected by an edge if and only if they share a border on the
map. Each node v ∈V has three corresponding numbers: PartyA(v) (total number of
voters for Party A), PartyB(v) = (total number of voters for Party B), and Pop(v) =
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PartyA(v)+PartyB(v) (total population in v)12. A district Q is then a connected sub-
graph of G with PartyA(Q) = ∑v∈Q PartyA(v) and PartyB(Q) = ∑v∈Q PartyB(v).

7.2 Availability and format of raw data

Link to all data files for the three states used in the paper are available in http://

www.cs.uic.edu/~dasgupta/gerrymander/index.html. Each data is an EX-
CEL spreadsheet. Explanations of various columns of the spreadsheet are as follows:

District (Column 1): This column identifies the district number of the county in
column 3.

County id (Column 2): Column 1 and column 2 together form an unique identifier
for the counties in column 3. A county is identified by its County id (column 2)
and the District (column 1) it belongs to. This was specifically needed to identify
and differentiate the counties that belonged to more than one district. The soft-
ware considers the counties belonging to different districts as separate entities.

County (Column 3): This column contains the name of the county.
Republicans and Democrats (Column 4): This contains the total number of votes

in favor of the Republican party (GOP) and the Democratic party in the county
identified by Column 1 and Column 2.

Neighbors (Column 5): This column contains information about the “neighboring
counties” of the given county. Neighboring counties represent the counties that
share a boundary with the county identified by Column 1 and Column 2. Individ-
ual neighbors are separated by commas.

7.3 The local-search heuristic

Informally, our algorithm starts with the existing (possibly gerrymandered) districts
and then repeatedly attempts to reassign counties (or parts of counties) into neigh-
boring districts. This was done on a semi-random basis, and on average about 100
iterations were carried out in each run. Each time a county (or a part of a county)
was shifted, the efficiency gap was calculated to check if it was less than the prior
efficiency gap. Details of our algorithm are shown in Fig. 7.

We cannot provide any theoretical analysis of the randomized algorithm in Fig. 7
because no such analysis is possible (due to Theorem 1) as stated formally in the
following lemma.

Lemma 5 Assuming P6= NP (respectively, RP6= NP), there exists no deterministic
local-search algorithms (respectively, randomized local-search algorithms) that reaches
a solution with a finite approximation ratio in polynomial time starting at any non-
optimal valid solution.

12As commonly done by researchers in gerrymandering of two-party systems, we ignore negligible
“third-party” votes, i.e., votes for candidates other than the democratic and republican parties.
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start with the current districts, say Q1, . . . ,Qκ

repeat µ times (∗ µ was set to 100 in actual run ∗)
select a random r ∈ {0,1, . . . ,k} for some 0 < k < |V | (∗ k = 20 in actual run ∗)
select r nodes v1, . . . ,vr from G at random

(∗ Note that a node is a county or part of a county ∗)
counties done← /0
for each vi do

if all neighbors of vi do not belong to the same district as vi then
if vi /∈ counties done then

add vi to counties done

for every neighbor v j of vi do
if assigning vi to the district of v j produces no district with

disconnected parts then
assign vi to the district of one of its neighbors
recalculate new districts, say Q′1, . . . ,Q

′
κ

if min
1≤i≤κ

{Pop(Qi)} ≤ Pop(Q′j)≤ max
1≤i≤κ

{Pop(Qi)} for every j

then
if Effgapκ(P,Q′1, . . . ,Q

′
κ)< Effgapκ(P,Q1, . . . ,Qκ)

then
Q1←Q′1 ; Q2←Q′2 ; . . . . . . ; Qκ ←Q′κ

end if
end if

end if
end for

end if
end if

end for
end repeat

Fig. 7: A local search algorithm for computing efficiency gap; comments are enclosed
within (∗ and ∗). The algorithm was implemented using the PYTHON language.

Proof. This follows from the proof of Theorem 1 once observes that the specific
instance of the MIN-WVPκ problem created in the reduction of the theorem has ex-
actly one (trivial) non-optimal solution and every other valid solution is an optimal
solution. q
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Vote share Number of Seats Normalized efficiency gap
Democrats GOP Democrats GOP (current)
PartyA(P)

Pop(P)

PartyA(P)

Pop(P)

PartyA(P)

Pop(P)

PartyB(P)

Pop(P)

PartyB(P)

Pop(P)

PartyB(P)

Pop(P)
Effgapκ(P, . . . . . .)/Pop(P)Effgapκ(P, . . . . . .)/Pop(P)Effgapκ(P, . . . . . .)/Pop(P)

Wisconsin 50.75% 49.25% 3 5 14.76%

Texas 43.65% 56.35% 12 24 4.09%

Virginia 51.96% 48.04% 4 7 22.25%

Pennsylvania 50.65% 49.35% 5 13 23.80%

Table 1: Summary statistics for 2012 election data for election of the (federal) house
of representatives for the states of Texas, Wisconsin, Virginia and Pennsylvania.

7.4 Empirical evaluations of algorithm in Fig. 7 and corresponding implications

Our resulting software based on the algorithm in Fig. 7 was tested on four real
electoral data for the 2012 election of the (federal) house of representatives for the
US states of Wisconsin [42, 43], Texas [44, 45], Virginia [40, 41] and Pennsylva-
nia [38, 39]. Some summary statistics for these data are shown in Table 1. The results
of running the local-search algorithm in Fig. 7 on the four real data-sets are tabulated
in Table 2, and the corresponding maps are shown in Fig. 8–11. The results computed
by our algorithm are truly outstanding: the final efficiency gap was lowered to 3.80%,
3.33%, 3.61% and 8.64% from 14.76%, 4.09%, 22.25% and 23.80% for Wisconsin,
Texas, Virginia and Pennsylvania, respectively, in a small amount of time. Our empir-
ical results clearly show that it is very much possible to design and implement a very
fast algorithm that can “un-gerrymander” (based on the efficiency gap measure) the
gerrymandered US house districts of four US states.

Number of Seats Normalized efficiency gap

Original New Effgapκ(P, . . . . . .)/Pop(P)Effgapκ(P, . . . . . .)/Pop(P)Effgapκ(P, . . . . . .)/Pop(P)
Democrats GOP Democrats GOP Original New

Wisconsin 3 5 3 5 14.76% 3.80%

Texas 12 24 12 24 4.09% 3.33%

Virginia 3 8 5 6 22.25% 3.61%

Pennsylvania 5 13 6 12 23.80% 8.64%

Table 2: Redistricting results obtained by running the algorithm in Fig. 7 for the states
of Texas, Wisconsin, Virginia and Pennsylvania in comparison to the 2012 district
plans.

A closer look at the new district maps shown in Fig. 8–11 also reveal the following
interesting insights:

Seat gain vs. efficiency gap. Lowering the efficiency gap from 15% to 3.75% for
the state of Wisconsin did not affect the total seat allocation (3 democrats vs. 5
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republicans) between the two parties. Indeed, this further reinforces the assertion
in [36] that the efficiency gap and partisan symmetry are different concepts, and
thus fewer absolute difference of wasted votes does not necessarily lead to seat
gains for the loosing party.

Compactness vs. efficiency gap. The new district maps for the state of Virginia re-
veals an interesting aspect. Our new district map have fewer districts that are
oddly shaped compared to the map used for the 2012 election13, even though
minimizing wasted votes does not take into consideration shapes of districts.

How natural are gerrymandered districts? Since our algorithm applies a sequence
of carefully chosen semi-random perturbations to the original gerrymandered dis-
tricts to drastically lower the absolute difference of wasted votes, one can hypoth-
esize that the original gerrymandered districts are far from being a product of
arbitrarily random decisions. However, to reach a definitive conclusion regard-
ing this point, one would need to construct a suitable null model, which we do
not have yet.

8 Conclusion and future research

In this article we have performed algorithmic analysis of the recently introduced effi-
ciency gap measure for gerrymandering both from a theoretical (computational com-
plexity) as well as a practical (software development and testing on real data) point
of view. The main objective of the paper was to provide a scientific analysis of the
efficiency gap measure and to provide a crucial supporting hand to remove partisan
gerrymandering should the US courts decide to recognize efficiency gap as at least a
partially valid measure of gerrymandering. Of course, final words on resolving ger-
rymandering is up to the US judicial systems. The following research questions may
be of interest to future investigators of the science of gerrymandering:

. Formulate and investigate the computational complexity properties of a measure
of gerrymandering that combines the efficiency gap with other aspects such as
compactness in the objective function.

. What is the precise computational complexity (i.e., NP-completeness, existence
of non-trivial polynomial-time approximation algorithms, etc.) of the MIN-WVPκ

problem when the total population ∑i, j Popi, j is polynomial in |P| ? We conjec-
ture that MIN-WVPκ is NP-complete even for this special case, but have been
unable to prove so.

We hope that our research work and software will provide a crucial supporting hand
to remove partisan gerrymandering. However, the goal of writing article should not
be viewed to have the final word on gerrymandering, but to introduce a series of con-
cepts, models and problems and to show that science of gerrymandering involves an
intriguing set of partitioning problems involving geometric and combinatorial opti-
mization.

13Virginia is one of the most gerrymandered states in the country, both on the congressional and state
levels, based on lack of compactness and contiguity of its districts. Virginia congressional districts are
ranked the 5th worst in the country because counties and cities are broken into multiple pieces to create
heavily partisan districts [48].
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(A)

(B)

Fig. 8: The district maps of Wisconsin: (A) original [43] and (B) after applying our
local search algorithm in Fig. 7. The efficiency gap was reduced from 14.76% in (A)
to 3.80% in (B).
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(A)

(B)

Fig. 9: The district maps of Texas: (A) original [45] and (B) after applying our local
search algorithm in Fig. 7. The efficiency gap was reduced from 4.09% in (A) to
3.33% in (B).
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(A)

(B)

Fig. 10: The district maps of Virginia: (A) original [41] and (B) after applying our
local search algorithm in Fig. 7. The efficiency gap was reduced from 22.25% in (A)
to 3.61% in (B).



36 Tanima Chatterjee et al.

(A)

(B)

Fig. 11: The district maps of Pennsylvania: (A) original [39] and (B) after applying
our local search algorithm in Fig. 7. The efficiency gap was reduced from 23.80% in
(A) to 8.64% in (B).


