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Topological implications of negative curvature for biological and social networks
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Network measures that reflect the most salient properties of complex large-scale networks are in high demand
in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also
called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks
are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other
topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest
or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk
in biological networks, and to the existence of central, influential neighborhoods in both biological and social
networks.
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I. INTRODUCTION

For a large variety of complex systems, ranging from the In-
ternet to metabolic networks, representation as a parametrized
network and graph theoretical analysis of this network have
led to many useful insights [1,2]. In addition to established
network measures such as the average degree, clustering
coefficient or diameter, complex network researchers have
proposed and evaluated a number of novel network measures
[3–6]. In this article we consider a combinatorial measure of
negative curvature (also called hyperbolicity) of parametrized
finite networks and the implications of negative curvature on
the higher-order connectivity and topological properties of
these networks.

There are many ways in which the (positive or negative)
curvature of a continuous surface or other similar spaces
can be defined depending on whether the measure is to
reflect the local or global properties of the underlying space.
The specific notion of negative curvature that we use is an
adoption of the hyperbolicity measure for an infinite metric
space with bounded local geometry as originally proposed by
Gromov [7] using a so-called “four-point condition.” We adopt
this measure for parametrized finite discrete metric spaces
induced by a network via all-pairs shortest paths and apply it to
biological and social networks. Recently, there has been a surge
of empirical works measuring and analyzing the hyperbolicity
of networks defined in this manner, and many real-world
networks were observed to be hyperbolic in this sense. For
example, preferential attachment networks were shown to be
scaled hyperbolic in [8,9], networks of high power transceivers
in a wireless sensor network were empirically observed to have
a tendency to be hyperbolic in [10], communication networks
at the IP layer and at other levels were empirically observed
to be hyperbolic in [11,12], extreme congestion at a very
limited number of nodes in a very large traffic network was
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shown in [13] to be caused due to hyperbolicity of the network
together with minimum length routing, and the authors in [14]
showed how to efficiently map the topology of the Internet to
a hyperbolic space.

Gromov’s hyperbolicity measure adopted on a shortest-path
metric of networks can also be visualized as a measure of
the “closeness” of the original network topology to a tree
topology [15]. Another popular measure used in both the
bioinformatics and theoretical computer science literature
is the treewidth measure first introduced by Robertson and
Seymour [16]. Many NP-hard problems on general networks
admit efficient polynomial-time solutions if restricted to
classes of networks with bounded treewidth [17], just as several
routing-related problems or the diameter estimation problem
become easier if the network has small hyperbolicity [18–21].
However, as observed in [15], the two measures are quite
different in nature: “The treewidth is more related to the least
number of nodes whose removal changes the connectivity of
the graph in a significant manner whereas the hyperbolicity
measure is related to comparing the geodesics of the given
network with that of a tree.” Other related research works
on hyperbolic networks include estimating the distortion
necessary to map hyperbolic metrics to tree metrics [22]
and studying the algorithmic aspects of several combinatorial
problems on points in a hyperbolic space [23].

II. HYPERBOLICITY-RELATED DEFINITIONS
AND MEASURES

Let G = (V,E) be a connected undirected graph of n � 4
nodes. We will use the following notations:

(1) u
P�v denotes a path P ≡ (u = u0,u1, . . . ,uk−1,

uk = v) from node u to node v and �(P) denotes the length
(number of edges) of such a path.

(2) ui
P�uj denotes the subpath (ui,ui+1, . . . ,uj ) of P

from ui to uj .

(3) u
s�v denotes a shortest path from node u to node v

of length du,v = �(u
s�v).
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TABLE I. Hyperbolicity and diameter values for biological networks.

Network id Ref. Average degree δ+
ave(G) δ+

worst(G) D δ+
worst(G)
D
2

1. E. coli transcriptional [26] 1.45 0.132 2 10 0.400
2. Mammalian signaling [27] 2.04 0.013 3 11 0.545
3. E. coli transcriptional [28] 1.30 0.043 2 13 0.308
4. T LGL signaling [29] 2.32 0.297 2 7 0.571
5. S. cerevisiae transcriptional [30] 1.56 0.004 3 15 0.400
6. C. elegans metabolic [31] 4.50 0.010 1.5 7 0.429
7. Drosophila segment polarity [32] 1.69 0.676 4 9 0.889
8. ABA signaling [33] 1.60 0.302 2 7 0.571
9. Immune response network [34] 2.33 0.286 1.5 4 0.750
10. T-cell receptor signalling [35] 1.46 0.323 3 13 0.462
11. Oriented yeast PPI [36] 3.11 0.001 2 6 0.667

We introduce the hyperbolicity measures via the four-
node condition as originally proposed by Gromov. Consider
a quadruple of distinct nodes1 u1,u2,u3,u4, and let π =
(π1,π2,π3,π4) be a permutation of {1,2,3,4} denoting a
rearrangement of the indices of nodes such that

Su1,u2,u3,u4 = duπ1 ,uπ2
+ duπ3 ,uπ4

� Mu1,u2,u3,u4 = duπ1 ,uπ3
+ duπ2 ,uπ4

� Lu1,u2,u3,u4 = duπ1 ,uπ4
+ duπ2 ,uπ3

,

and let δ+
u1,u2,u3,u4

= Lu1 ,u2 ,u3 ,u4 −Mu1 ,u2 ,u3 ,u4
2 . Considering all com-

binations of four nodes in a graph one can define a worst-case
hyperbolicity [7] as

δ+
worst(G) = max

u1,u2,u3,u4

{
δ+
u1,u2,u3,u4

}
,

and an average hyperbolicity as

δ+
ave(G) = 1(

n

4

) ∑
u1,u2,u3,u4

δ+
u1,u2,u3,u4

.

Note that δ+
ave(G) is the expected value of δ+

u1,u2,u3,u4
when

the four nodes u1,u2,u3,u4 are picked independently and
uniformly at random from the set of all nodes. Both δ+

worst(G)
and δ+

ave(G) can be trivially computed in O(n4) time for any
graph G.

A graph G is called δ hyperbolic if δ+
worst(G) � δ. If δ is

a small constant independent of the parameters of the graph,
a δ-hyperbolic graph is simply called a hyperbolic graph. It
is easy to see that if G is a tree then δ+

worst(G) = δ+
ave(G) = 0.

Thus all trees are hyperbolic graphs.
The hyperbolicity measure δ+

worst considered in this paper
for a metric space was originally used by Gromov in the context
of group theory [7] by observing that many results concerning
the fundamental group of a Riemann surface hold true in a
more general context. δ+

worst is trivially infinite in the standard
(unbounded) Euclidean space. Intuitively, a metric space has
a finite value of δ+

worst if it behaves metrically in the large scale

1If two or more nodes among u1,u2,u3,u4 are identical, then
δ+
u1,u2,u3,u4

= 0 due to the metric’s triangle inequality; thus it suffices
to assume that the four nodes are distinct.

as a negatively curved Riemannian manifold, and thus the
value of δ+

worst can be related to the standard scalar curvature
of a hyperbolic manifold. For example, a simply connected
complete Riemannian manifold whose sectional curvature
is below α < 0 has a value of δ+

worst, that is, O((
√−α)

−1
)

(see [24]).
In this paper we first show that a variety of biologi-

cal and social networks are hyperbolic. We formulate and
prove bounds on the existence of path chords and on the
distance among shortest or approximately shortest paths in
hyperbolic networks. We determine the implications of these
bounds on regulatory networks, i.e., directed networks whose
edges correspond to regulation or influence. This category
includes all the biological networks that we study in this
paper. We also discuss the implications of our results on
the region of influence of nodes in social networks. Some
of the proofs of our theoretical results are adaptation of
corresponding arguments in the continuous hyperbolic space.
All the proofs are presented in the appendix for the sake of
completeness.

III. RESULTS AND DISCUSSION

Section IIIA examines in detail the hyperbolicity of an
assorted list of diverse biological and social networks. The
remaining subsections of this section, namely Secs. IIIB–IIIE,
state our findings on the implications of hyperbolicity of a
network on various topological properties of the network. For
Secs. IIID and IIIE, we first state our findings as applicable
for biological or social networks, followed by a summary of
formal mathematical results that led to such findings. Because
the precise bounds on topological features of a network as a
function of hyperbolicity measures are quite mathematically
involved, we discuss these bounds in a somewhat simplified
form in Secs. IIIB–IIIE, leaving the precise bounds as theorems
and proofs in the Appendix.

A. Hyperbolicity of real networks

We analyzed 20 well-known biological and social networks
(see Supplemental Material [25]). The 11 biological networks
shown in Table I include three transcriptional regulatory,
five signaling, one metabolic, one immune response, and
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TABLE II. Hyperbolicity and diameter values for social networks.

Network id Ref. Average degree δ+
ave(G) δ+

worst(G) D δ+
worst(G)
D
2

1. Dolphins social network [37] 5.16 0.262 2 8 0.750
2. American College Football [38] 10.64 0.312 2 5 0.800
3. Zachary Karate Club [39] 4.58 0.170 1 5 0.400
4. Books about US Politics [40] 8.41 0.247 2 7 0.571
5. Sawmill communication [41] 3.44 0.162 1 8 0.250
6. Jazz musician [42] 27.69 0.140 1.5 6 0.500
7. Visiting ties in San Juan [43] 3.84 0.422 3 9 0.667
8. World Soccer data, 1998 [44] 3.37 0.270 2.5 12 0.286
9. Les Miserable [45] 6.51 0.278 2 14 0.417

one oriented protein-protein interaction networks. Similarly,
the nine social networks shown in Table II range from
interactions in dolphin communities to the social network
of jazz musicians. The hyperbolicity of the biological and
directed social networks was computed by ignoring the
direction of edges. The hyperbolicity values were calcu-
lated by writing codes in C using standard algorithmic
procedures.

As shown in Tables I and II, the hyperbolicity values of
almost all networks are small. If D = maxu,v{du,v} is the
diameter of the graph, then it is easy to see that δ+

worst(G) � D
2 ,

and thus small diameter indeed implies a small value of
worst-case hyperbolicity. As can be seen in Tables I and II,
δ+

worst(G) varies with respect to its worst-case bound of D2 from
25% of D2 to no more than 89% of D2 , and there does not seem
to be a systematic dependence of δ+

worst(G) on the number of
nodes (which ranges from 18 to 786), edges (from 42 to 2742),
or on the value of the diameterD.

For all the networks δ+
ave(G) is one or two orders of

magnitude smaller than δ+
worst(G). Intuitively, this suggests

that the value of δ+
worst(G) may be a rare deviation from

typical values of δ+
u1,u2,u3,u4

that one would obtain for most
combinations of nodes {u1,u2,u3,u4}.

We additionally performed the following rigorous tests for
hyperbolicity of our networks.

1. Checking hyperbolicity via the scaled hyperbolicity approach

An approach for testing hyperbolicity for finite graphs
was introduced and used via “scaled” Gromov hyperbolicity
in [9,11] for hyperbolicity defined via thin triangles and in [46]
for hyperbolicity defined via the four-point condition as used in
this paper. The basic idea is to “scale” the values of δ+

u1,u2,u3,u4

by a suitable scaling factor, say μu1,u2,u3,u4 , such that there
exists a constant 0 < ε < 1 with the following property:

(1) The maximum achievable value of
δ+
u1 ,u2 ,u3 ,u4

μu1 ,u2 ,u3 ,u4
is ε in the

standard hyperbolic space or in the Euclidean space, and

(2)
δ+
u1 ,u2 ,u3 ,u4

μu1 ,u2 ,u3 ,u4
goes beyond ε in positively curved spaces.

We use the notation Du1,u2,u3,u4 = maxi,j∈{1,2,3,4}{dui,uj
} to

indicate the diameter of the subset of four nodes u1,u2,u3, and
u4. By using theoretical or empirical calculations, the authors
in [46] provide the bounds shown in Table III.

We adapt the criterion proposed by Jonckheere, Lohsoon-
thorn, and Ariaei [46] to designate a given finite graph as
hyperbolic by requiring a significant percentage of all possible
subsets of four nodes to satisfy the ε bound. More formally,
suppose that G has t connected components containing
n1,n2, . . . ,nt nodes, respectively (

∑t
j=1 nj = n). Let 0 < η <

1 be a sufficiently high value indicating the confidence level
in declaring the graph G to be hyperbolic. Then, we call our
given graph G to be (scaled) hyperbolic if and only if

�Y(G) =
number of subset of four nodes {ui,uj ,uk,u�} such that δY

ui ,uj ,uk,u�
> ε

number of all possible combinations of four nodes that contribute to hyperbolicity

=
number of subset of four nodes {ui,uj ,uk,u�} such that δY

ui ,uj ,uk,u�
> ε∑

1�j�t :nj >3

(
nj

4

) < 1 − η.

The values of �Y(G) for our networks are shown in Tables IV
and V. It can be seen that, for all scaled hyperbolicity measures
and for all networks, the value of 1 − η is very close to
zero.

We next tested the statistical significance of the �Y(G)
values by computing the statistical significance values (com-
monly called p values) of these �Y(G) values for each
network G with respect to a null hypothesis model of the
networks. We use a standard method used in the network

science literature (e.g., see [5,26]) for such purpose. For each
network G, we generated 100 randomized versions of the
network using a Markov-chain algorithm [47] by swapping
the endpoints of randomly selected pairs of edges until 20% of
the edges was changed. We computed the values of �Y(Grand1 ),
�Y(Grand2 ), . . . ,�Y(Grand100 ). We then used an (unpaired)
one-sample student’s t test to determine the probability
that �Y(G) belongs to the same distribution as �Y(Grand1 ),
�Y(Grand2 ), . . . ,�Y(Grand100 ).
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TABLE III. [46] Various scaled Gromov hyperbolicities.

Name Notation μu1,u2,u3,u4 ε Method for determining ε

Diameter-scaled hyperbolicity δD Du1,u2,u3,u4 0.2929 Empirical
L-scaled hyperbolicity δL Lu1,u2,u3,u4

√
2−1

2
√

2
≈ 0.1464 Mathematical

(L + M + S)-scaled hyperbolicity δL+M+S Lu1,u2,u3,u4 + Mu1,u2,u3,u4 + Su1,u2,u3,u4 0.0607 Mathematical

The p values, tabulated in Tables VI and VII, clearly show
that all social networks and all except two biological networks
can be classified as hyperbolic in a statistically significant
manner, implying that the topologies of these networks are
close to a “tree topology.” Indeed, for biological networks,
the assumption of chainlike or treelike topology is frequently
made in the traditional molecular biology literature [48]. Inde-
pendent current observations also provide evidence of treelike
topologies for various biological networks, e.g., the average
in-out degree of transcriptional regulatory networks [26,49]
and of a mammalian signal transduction network [27] is close
to 1, so cycles are very rare.

B. Hyperbolicity and crosstalk in regulatory networks

Let C = (u0,u1, . . . ,uk−1,u0) be a cycle of k � 4 nodes.

A path chord of C is defined to be a path ui
P�uj between

two distinct nodes ui,uj ∈ C such that the length of P is less
than (i − j ) (mod k) (see Fig. 1). A path chord of length 1 is
simply called a chord.

We find that large cycles without a path chord imply large
lower bounds on hyperbolicity (see Theorem 1 in Sec. A of
the Appendix). In particular, G does not have a cycle of more
than 4 δ+

worst(G) nodes that does not have a path chord. Thus,
for example, if δ+

worst(G) < 1 then G has no chordless cycle,
i.e., G is a chordal graph. The intuition behind the proof of
Theorem 1 is that if G contains a long cycle without a path
chord then we can select four almost equidistant nodes on the
cycle and these nodes give a large hyperbolicity value. This
general result has the following implications for regulatory
networks:

TABLE IV. �Y(G) values for biological networks for Y ∈
{D, L, L + M + S}.

Network id �D(G) �L(G) �L+M+S(G)

1. E. coli transcriptional 0.0014 0.0018 0.0015
2. Mammalian signaling 0.0021 0.0018 0.0022
3. E. coli transcriptional 0.0006 0.0006 0.0007
4. T LGL signaling 0.0228 0.0221 0.0318
5. S. cerevisiae transcriptional 0.0031 0.0032 0.0033
6. C. elegans metabolic 0.0020 0.0018 0.0019
7. Drosophila segment polarity 0.0374 0.0558 0.0750
8. ABA signaling 0.0343 0.0285 0.0425
9. Immune response network 0.0461 0.0552 0.0781
10. T-cell receptor signaling 0.0034 0.0045 0.0056
11. Oriented yeast PPI 0.0013 0.0009 0.0012

Maximum 0.0461 0.0558 0.0781

(1) If a node regulates itself through a long feedback loop
(e.g., of length at least 6 if δ+

worst(G) = 3
2 ) then this loop must

have a path chord. Thus it follows that there exists a shorter
feedback cycle through the same node.

(2) A chord or short path chord can be interpreted as
crosstalk between two paths between a pair of nodes. With
this interpretation, the following conclusion follows. If one
node in a regulatory network regulates another node through
two sufficiently long paths, then there must be a crosstalk path
between these two paths. For example, assuming δ+

worst(G) =
3
2 , there must be a crosstalk path if the sum of lengths of the two
paths is at least 6. In general, the number of crosstalk paths
between two paths increases at least linearly with the total
length of the two paths. The general conclusion that can be
drawn is that independent linear pathways that connect a signal
to the same output node (e.g., transcription factor) are rare, and
if multiple pathways exist then they are interconnected through
crosstalks.

C. Shortest-path triangles and crosstalk paths
in regulatory networks

(a) Result related to triplets of shortest paths. Originally, the
hyperbolicity measure was introduced for infinite continuous
metric spaces with negative curvature via the concept of
the “thin” and “slim” triangles (e.g., see [50]). For finite
discrete metric spaces as induced by an undirected graph, one
can analogously define a shortest-path triangle (or, simply a
triangle) �{u0,u1,u2} as a set of three distinct nodes u0,u1,u2

with a set of three shortest paths P� (u0,u1), P� (u0,u2),
P� (u1,u2) between u0 and u1, u0 and u2, and u1 and u2,
respectively. As illustrated in Fig. 2, in hyperbolic networks

TABLE V. �Y(G) values for social networks for Y ∈
{D, L, L + M + S}.

Network id �D(G) �L(G) �L+M+S(G)

1. Dolphins social network 0.0115 0.0120 0.0168
2. American College Football 0.0435 0.0395 0.0577
3. Zachary Karate Club 0.0195 0.0249 0.0284
4. Books about US politics 0.0106 0.0074 0.0116
5. Sawmill communication 0.0069 0.0068 0.0085
6. Jazz musician 0.0097 0.0117 0.0124
7. Visiting ties in San Juan 0.0221 0.0242 0.0275
8. World Soccer data, 1998 0.0145 0.0155 0.0212
9. Les Miserable 0.0032 0.0034 0.0049

Maximum 0.0435 0.0395 0.0577
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TABLE VI. p values for the �Y(G) values for biological networks for Y ∈ {D, L, L + M + S}. In general, a p value less than 0.05 (shown
in boldface) is considered to be statistically significant, and a p value above 0.05 is considered to be not statistically significant.

Network id

1.
E. coli

2.
Mammalian

signaling

3.
E. Coli

transcriptional

4.
T LGL

signaling

5.
S. cerevisiae

transcriptional

6.
C. elegans
Metabolic

7.
Drosophila

segment
polarity

8.
ABA

signaling

9.
Immune
response
network

10.
T-cell

receptor
signalling

11.
Oriented

yeast
PPI

p �D 0.0018 <0.0001 <0.0001 <0.0001 0.3321 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
values �L <0.0001 <0.0001 <0.0001 0.011 0.3434 <0.0001 <0.0001 0.9145 <0.0001 <0.0001 <0.0001

�L+M+S 0.5226 <0.0001 <0.0001 <0.0001 0.3424 <0.0001 <0.0001 0.3342 <0.0001 <0.0001 <0.0001

we are guaranteed to find short paths2 between the nodes that
make up P� (u0,u1), P� (u0,u2), P� (u1,u2). This is formally
stated in Theorem 3 in Sec. B of the Appendix. Moreover, as
Corollary 4 (in Sec. B of the Appendix) states, we can have
a small Hausdorff distance between these shortest paths. This
result is a proper generalization of our previous result on path
chords. Indeed, in the special case when u1 and u2 are the same
node the triangle becomes a shortest-path cycle involving the
shortest paths between u0 and u1 and the short-chord result is
obtained.

A proof of Theorem 3 is obtained by appropriate modifica-
tion of a known similar bound for infinite continuous metric
spaces.

The implications of this result for regulatory networks can
be summarized as follows:

If we consider a feedback loop (cycle) or feed-forward loop
formed by the shortest paths among three nodes, we can
expect short crosstalk paths between these shortest paths.
Consequently, the feedback or feed-forward loop will be nested
with “additional” feedback or feed-forward loops in which one
of the paths will be slightly longer.

The above finding is empirically supported by the observa-
tion that network motifs (e.g., feed-forward or feedback loops
composed of three nodes and three edges) are often nested [51].

(b) Results related to the distance between two exact or
approximate shortest paths between the same pair of nodes. It
is reasonable to assume that, when up- or down-regulation of

2By a short path here, we mean a path whose length is at most a
constant times δ+

�{u0 ,u1 ,u2} [note that δ+
�{u0 ,u1 ,u2} � δ+

worst(G)].

a target node is mediated by two or more short paths3 starting
from the same regulator node, additional very long paths
between the same regulator and target node do not contribute
significantly to the target node’s regulation. We refer to the
short paths as relevant, and to the long paths as irrelevant.
Then, our finding can be summarized by saying that

almost all relevant paths between two nodes have crosstalk
paths between each other.

See Fig. 3 for a pictorial illustration.
Formal justifications and intuitions (see Theorem 5 and

Corollary 6 in Sec. C and Theorem 7 and Corollary 8 in Sec. D
of the Appendix).

We use the following two quantifications of “approxi-
mately” short paths:

(1) A path u0
P�uk = (u0,u1, . . . ,uk) is μ-approximate

short provided �(ui
P�uj ) � μdui,uj

for all 0 � i < j � k.

(2) A path u0
P�uk is ε-additive-approximate short pro-

vided � (P) � du0,uk
+ ε.

A mathematical justification for the claim then is provided
by two separate theorems and their corollaries:

(1) Let P1 and P2 be a shortest path and an arbitrary path,
respectively, between two nodes u0 and u1. Then, Theorem 5
and Corollary 6 implies that, for every node v on P1, there

3Here by short paths we mean either a shortest path or an
approximately shortest path whose length is not too much above
the length of a shortest path, i.e., a μ approximate short path or
a ε-additive-approximate short path, as defined in the subsequent
“Formal justifications and intuitions” subsection, for small μ or small
ε, respectively.

TABLE VII. p values for the �Y(G) values for social networks for Y ∈ {D, L, L + M + S}. In general, a p value less than 0.05 (shown
in boldface) is considered to be statistically significant, and a p value above 0.05 is considered to be not statistically significant.

Network id

1. 2. 3. 4. 5. 6. 7. 8. 9.
Dolphins American Zachary Books Sawmill Jazz Visiting ties World Soccer Les

social College Karate about communication musician in San Juan data, 1998 Miserable
network Football Club US politics

p �D <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
values �L <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0779 <0.0001 <0.0001

�L+M+S <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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p a t h - c h o r d

v
u4

u5

u3

u0

u2

u1

FIG. 1. Path chord of a cycle C = (u0.u1,u2,u3,u4,u5,u0).

exists a node v′ on P2 such that dv,v′ depends linearly on
δ+

worst(G), only logarithmically on the length of P2 and does
not depend on the size or any other parameter of the network.
To obtain this type of bound, one needs to apply Theorem 3 on
u0, u1 and the middle node of the pathP2 and then use the same
approach recursively on a part of the pathP2 containing at most
� (P2)

2 � edges. The depth of the level of recursion provides the
logarithmic factor in the bound.

(2) IfP1 andP2 are two short paths between u0 and u1 then
Theorem 7 and Corollary 8 imply that the Hausdorff distance
between P1 and P2 depends on δ+

worst(G) only and does not
depend on the size or any other parameter of the network.
Intuitively, Theorem 7 and Corollary 8 can be thought of
as generalizing and improving the bound in Theorem 5 for
approximately short paths.

D. Identifying essential edges in the regulation
between two nodes

For a given ξ > 0 and a node u, let Bξ (u) = {v|du,v = ξ}
denote the “boundary of the ξ neighborhood” of u, i.e., the
set of all nodes at a distance of precisely ξ from u. Our two
findings in the present context are as stated in (I) and (II) below.

(I) Identifying relevant paths between a source and a target
node. Suppose that we pick a node v and consider the strict ξ

neighborhood of v,

N+
ξ (v) =

⋃
r�ξ

Br ′ (v) \ {u| degree of u is one}

(i.e., the set of all nodes, excluding nodes of degree 1, that are at
a distance at most ξ from u) for a sufficiently large ξ . Consider

u0 u2

u1

dv,v′

d
v
,v ′ d

v,
v
′

∀v in one path ∃v′ in the other path such that

dv,v ≤ max 6 δ+
Δ{u0,u1,u2} , 2 ≤ max 6 δ+

worst(G), 2

FIG. 2. An informal and simplified pictorial illustration of the
claims in Sec. III C(a).

u0 u1v

shortest path P1

P2

v′

dv,v′

FIG. 3. An informal and simplified pictorial illustration of the
claims in Sec. III C(b).

two nodes u1 and u2 on the boundary of this neighborhood,
i.e., at a distance ξ from v. Then, the following holds:

(A) The relevant (short) regulatory paths between u1 and u2 do
not leave the neighborhood, i.e., all the edges in the relevant
regulatory paths are in the neighborhood.

Thus, only the edges inside the neighborhood are relevant
to the regulation among this pair of nodes.

This result can be adapted to find the most relevant paths
between the input node usource and output node utarget of a signal
transduction network. In many situations, for example, when
the signal transduction network is inferred from undirected
protein-protein interaction data, a large number of paths can
potentially be included in the signal transduction network as
the protein-protein interaction network has a large connected
component with a small average path length [51]. There is
usually no prior knowledge on which of the existing paths are
relevant to the signal transduction network. A hyperbolicity-
based method is to first find a central node ucentral which is at
equal distance between usource and utarget, and is on the shortest,
or close to shortest, path between usource and utarget. Then one
constructs the neighborhood around ucentral such that usource and
utarget are on the boundary of this neighborhood. Applying this
result, the paths relevant to the signal transduction network
are inside the neighborhood, and the paths that go out of
the neighborhood are irrelevant. See Fig. 4 for a pictorial
illustration of this implication.

r

α

α

Q

very
long
path

u0

u1

u2

u3

u4

FIG. 4. An informal and simplified pictorial illustration of claim
(A) in Sec. III D. As the nodes u3 and u4 move further away from the
center node u0, the shortest path between them bends more towards
u0 and any path between them that does not involve a node in the ball
∪r ′�rBr ′ (u0) is long enough.
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usource utarget

ucentral

short path shortpath

short path short path
ve

ry
long path

FIG. 5. An informal and simplified pictorial illustration of claim
(B) in Sec. III D. Knocking out the nodes in a small neighborhood
of ucentral cuts off all relevant (short) regulation between usource and
utarget.

(II) Finding essential nodes. Again, consider an input node
usource and output node utarget of a signal transduction network,
and let ucentral be a central node which is on the shortest path
between them and at approximately equal distance between
usource and utarget. Our results show that4

(B) If one constructs a small ξ neighborhood around ucentral

with ξ = O (δ+
worst(G)), then all relevant (short or approxi-

mately short) paths between usource and utarget must include
a node in this ξ neighborhood. Therefore, “knocking out” the
nodes in this ξ neighborhood cuts off all relevant regulatory
paths between usource and utarget.

See Fig. 5 for a pictorial illustration of this implication.
Note that the size ξ of the neighborhood depends only on

4O and 
 are the standard notations used in analyzing asymptotic
upper and lower bounds in the computer science literature: given two
functions f (n) and g(n) of a variable n, f (n) = O(g(n)) [respectively,
f (n) = 
(g(n)] provided there exists two constants n0,c > 0 such
that f (n) � c g(n) [respectively, f (n) � c g(n)] for n � n0.

δ+
worst(G) which, as our empirical results indicate, is usually a

small constant for real networks.
Formal justifications and intuitions for (�) and (��) (see

Theorem 10 and Corollary 11 in Sec. E of the Appendix).
Suppose that we are given the following:
(1) three integers κ � 4, α > 0, r > ( κ

2 − 1)(6 δ+
worst(G) +

2),
(2) five nodes u0,u1,u2,u3,u4 such that

− u1,u2 ∈ Br (u0) with du1,u2 � κ
2 (6 δ+

worst(G) + 2),
− du1,u4 = du2,u3 = α.

Then, (A) and (B) are implied by the following type of
asymptotic bounds provided by Theorem 10 and Corollary 11:

For a suitable positive value λ = O
(
δ+

worst(G)
)
, if du1,u4 =

du2,u3 = α > λ then one of the following is true for any
path Q between u3 and u4 that does not involve a node in
∪r ′�rBr ′ (u0):

(1) Q does not exist (i.e.,, �(Q) � n), or
(2) Q is much longer than a shortest path between the two

nodes, i.e.,, if Q is a μ-approximate short path or a ε-additive-
approximate short path then μ or ε is large.

A pessimistic estimate shows that a value of λ that is about
6 δ+

worst(G) + 2 suffices. As we subsequently observe, for real
networks the bound is much better, about λ ≈ δ+

worst(G).

Empirical evaluation of (A).
We empirically investigated the claim in (A) on relevant

paths passing through a neighborhood of a central node for the
following two biological networks:

Network 1. E. coli transcriptional, and
Network 4. T-LGL signaling.
For each network we selected a few biologically relevant

source-target pairs. For each such pair usource and utarget,
we found the shortest path(s) between them. For each such
shortest path, a central node ucentral was identified. We then

TABLE VIII. Effect of the prescribed neighborhood in claim (A) on all edges in relevant paths.
SP, shortest path between usource and utarget.

SP+1, paths between usource and utarget with one extra edge than SP(1-additive-approximate short path).
SP+2, paths between usource and utarget with two extra edges than SP (2-additive-approximate short path).

N+
ξ (u central), strict ξ = du source , u target neighborhood of ucentral.

n, size (number of nodes) of the network.
N+

ξ (u central)

n
, fraction of strict ξ = du source , u target neighborhood of ucentral with respect to the size of the network.

Network name usource utarget du source , u target ucentral
N+

ξ (u central)

n

% of SP
with every
edge in the
neighbor-
hood of

claim (A)

% of SP+1

with every
edge in the
neighbor-
hood of

claim (A)

% of SP+2

with every
edge in the
neighbor-
hood of

claim (A)

Network 1: E. coli transcriptional fliAZY arcA 4 CaiF 0.20 100% 100% 18%
crp 0.27 100% 100% 70%

fecA aspA 6 crp 0.43 100% 100% 100%
sodA 0.28 100% 100% 62%

Network 4: T-LGL signaling IL15 Apoptosis 4 GZMB 0.37 100% 66% 40%
PDGF Apoptosis 6 IL2, NKFB 0.72,0.59 100% 100% 100%

Ceramide 0.60 80% 64% 36%
MCL1 0.59 80% 88% 93%

stimuli Apoptosis 4 GZMB 0.37 100% 100% 100%
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TABLE IX. The effect of the size of the neighborhood in mediating short paths.
SP, shortest path between usourceand utarget.

SP+1, paths between usource and utarget with one extra edge thanSP (1-additive-approximate short path).
SP+2, paths between usource and utarget with two extra edges thanSP (2-additive-approximate short path).

Network name % of SP with a node % of SP+1 with a node % of SP+2 with a node
usource utarget du source , u target ucentral in ξ neighborhood in ξ neighborhood in ξ neighborhood

Network 1: fliAZY arcA 4 CaiF ξ = 1 100% ξ = 1 71% ξ = 1 59%
E. coli crp ξ = 1 100% ξ = 1 100% ξ = 1 100%
transcriptional fecA aspA 6 crp ξ = 1 100% ξ = 1 100% ξ = 1 100%
δ+

worst(G) = 2 sodA ξ = 1 100% ξ = 1 100% ξ = 1 100%
Network 4: IL15 apoptosis 4 GZMB ξ = 1 100% ξ = 1 100% ξ = 1 100%
T-LGL IL2 ξ = 1 80% ξ = 1 82% ξ = 1 93%
signaling ξ = 2 100% ξ = 2 100% ξ = 2 100%
δ+

worst(G) = 2 NFKB ξ = 1 80% ξ = 1 86% ξ = 1 76%
ξ = 2 100% ξ = 2 100% ξ = 2 100%

PDGF apoptosis 6 Ceramide ξ = 1 40% ξ = 1 23% ξ = 1 40%
ξ = 2 100% ξ = 2 100% ξ = 2 100%

MCL1 ξ = 1 60% ξ = 1 47% ξ = 1 73%
ξ = 2 100% ξ = 2 100% ξ = 2 100%

Stimuli apoptosis 4 GZMB ξ = 1 100% ξ = 1 100% ξ = 1 100%

considered the ξ neighborhood of ucentral such that both usource

and utarget are on the boundary of the neighborhood, and for
each such neighborhood we determined what percentage of
shortest or approximately short path (with one or two extra
edges compared to shortest paths) between usource and utarget

had all edges in this neighborhood. The results, tabulated in
Table VIII, support (A).

Empirical evaluation of (B).
We empirically investigated the size ξ of the neighborhood

in claim (B) for the same two biological networks and the
same combinations of source, target, and central nodes as in
claim (A). We considered the ξ neighborhood of ucentral for
ξ = 1,2, . . . , and for each such neighborhood we determined
what percentage of shortest or approximately short path (with
one or two extra edges compared to shortest paths) between
usource and utarget involved a node in this neighborhood (not
counting usource and utarget). The results, tabulated in Table IX,

show that removing the nodes in a ξ � δ+
worst(G) neighborhood

around the central nodes disrupts all the relevant paths of the
selected networks. As δ+

worst(G) is a small constant for all of
our biological networks, this implies that the central node and
its neighbors within a small distance are the essential nodes in
the signal propagation between usource and utarget.

E. Effect of hyperbolicity on structural holes in social networks

For a node u ∈ V , let Nbr(u) = {v|{u,v} ∈ E} be the set of
neighbors of (i.e., nodes adjacent to) u. To quantify the useful
information in a social network, Ron Burt in [52] defined a
measure of the structural holes of a network. For an undirected
unweighted connected graph G = (V,E) and a node u ∈ V

with degree larger than 1, this measure Mu of the structural
hole at u is defined as [52,53]:

Mu
def=

∑
v∈V

⎛⎜⎜⎜⎝ au,v + av,u

maxx 
=u{au,x + ax,u }

⎡⎢⎢⎢⎣1 −
∑
y∈V

y 
=u,v

(
au,y + ay,u∑

x 
=u(au,x + ax,u)

) (
av,y + ay,v

maxz 
=y{av,z + az,v}
)⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠ ,

where ap,q = {1, if {p,q} ∈ E

0, otherwise are the entries in the standard
adjacency matrix of G. By observing that ap,q = aq,p and
maxx 
=u{au,x + ax,u} = maxz 
=y{av,z + az,v} = 2, the above
equation for Mu can be simplified to

Mu = |Nbr(u)| −
∑

v,y ∈ Nbr(u) av,y

|Nbr(u)| . (1)

Thus high-degree nodes whose neighbors are not connected to
each other have high Mu values. For an intuitive interpretation

and generalization of (1), the following definition of weak
and strong dominance will prove useful (cf. dominating set
problem for graphs [54] and point domination problems in
geometry [55]). A pair of distinct nodes v,y is weakly (ρ,λ)
dominated [respectively, strongly (ρ,λ) dominated] by a node
u provided (see Fig. 6):

(a) ρ < du,v,du,y � ρ + λ, and
(b) for at least one shortest path P (respectively, for every

shortest path P) between v and y, P contains a node z such
that du,z � ρ.
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Let {v,y} ≺ ρ,λ

weak u (respectively,{v,y} ≺ρ,λ
strong u)

=
{

1, if v,y is weakly (respectively, strongly) (ρ,λ) dominated by u

0, otherwise.

Since B1(u) = ⋃
0 < j � 1 Bj (u) = Nbr(u), it follows that

Mu = |∪0 < j � 1 Bj (u)| −
∑

v,y ∈⋃
0 < j � 1 Bj (u)

(
1 − {v,y} ≺ 0,1

weak u
)

|∪0 < j � 1 Bj (u)|

= E

⎡⎣number of pairs of nodes
v,y such that v,y is weakly
(0,1) dominated by u

∣∣∣∣∣∣ v is selected uniformly
randomly from

⋃
0 <j � 1 Bj (u)

⎤⎦
� E

⎡⎣number of pairs of nodes
v,y such that v,y is strongly
(0,1) dominated by u

∣∣∣∣∣∣ v is selected uniformly
randomly from

⋃
0 < j � 1 Bj (u)

⎤⎦
and a generalization of Mu is given by (replacing 0,1 by ρ,λ):

Mu,ρ,λ = |∪ρ < j � λ Bj (u)| −
∑

v,y ∈⋃
ρ < j � λ Bj (u)

(
1 − {v,y} ≺ ρ,λ

weak u
)

|⋃ρ < j � λ Bj (u)|

= E

⎡⎣number of pairs of nodes
v,y such that v,y is weakly
(ρ,λ)-dominated by u

∣∣∣∣∣∣ v is selected uniformly
randomly from ∪ρ < j � λBj (u)

⎤⎦
� E

⎡⎣number of pairs of nodes
v,y such that v,y is strongly
(ρ,λ)-dominated by u

∣∣∣∣∣∣ v is selected uniformly
randomly from ∪ρ < j � λBj (u)

⎤⎦ .

When the graph is hyperbolic [i.e., δ+
worst(G) is a constant], for

moderately large λ, weak and strong dominance are essentially
identical and therefore weak domination has a much stronger
implication. Recall that n denotes the number of nodes in the
graph G.

Our finding can be succinctly summarized as (see Fig. 7 for
a visual illustration)

(C) If λ � (6 δ+
worst(G) + 2) log2 n then, assuming v is selected

uniformly randomly from ∪ρ < j � λBj (u) for any node u, the
expected number of pairs of nodes v,y that are weakly (ρ,λ)
dominated by u is precisely the same as the expected number
of pairs of nodes that are strongly (ρ,λ) dominated by u.

ρ=1

λ=2

u Bρ

y

v

(a)

ρ=1

λ=2

u Bρ

y

v

(b)

FIG. 6. Illustration of weak and strong domination. (a) v,y is
weakly (ρ,λ) dominated by u since only one shortest path between
v and y intersects Bρ(u). (b) v,y is strongly (ρ,λ) dominated by u

since all the shortest paths between v and y intersect Bρ(u).

A mathematical justification for the claim (C) is provided
by Lemma 12 in Sec. F of the Appendix.

An implication of (C).

If λ � (6 δ+
worst(G) + 2) log2 n and Mu,ρ,λ ≈ |Bρ+λ(u)|, then

almost all pairs of nodes are strongly (ρ,λ) dominated by u,
i.e., for almost all pairs of nodes v,y ∈ Bρ+λ(u), every shortest
path between v and y contains a node in Bρ(u).

A visual illustration of this implication is in Fig. 8 showing
that as λ increases the shortest paths tend to bend more and
more towards the central node u for a hyperbolic network.

Empirical verification of (C).

λ

u
Bρ(u) ρ

v1

y1

v2
y2

FIG. 7. Visual illustration. Either all the shortest paths are
completely inside or all the shortest paths are completely outside
of Bρ+λ(u).
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λ2

λ
1

u

Bρ(u)

ρ

FIG. 8. For hyperbolic graphs, the further we move from the
central (black) node, the more a shortest path bends inward towards
the central node.

We empirically investigated the claim in (C) for the
following three social networks from Table II:

Network 1. Dolphin social network,
Network 4. Books about US politics,
Network 7. Visiting ties in San Juan.

For each network we selected a (central) node u such that
there are sufficiently many nodes in the boundary of the ξ

neighborhood Bξ (u) of u for an appropriate ξ = ρ + λ. We
then set λ to a very small value of 1, and calculated the
following quantities.

(1) We computed the number n1 of all pairs of nodes from
Bξ (u) that are weakly (ρ,λ) dominated by u.

(2) We computed the number n2 of all pairs of nodes from
Bξ (u) that are strongly (ρ,λ) dominated by u.

Table X tabulates the ratio ν = n2
n1

, and shows that a large
percentage of the pair of nodes that were weakly dominated
were also strongly dominated by u.

IV. CONCLUSION

In this paper we demonstrated a number of interesting
properties of the shortest and approximately shortest paths
in hyperbolic networks. We established the relevance of these
results in the context of biological and social networks by
empirically finding that a variety of such networks have close-
to-treelike topologies. Our results have important implications

TABLE X. Weak domination leads to strong domination for
social networks. u is the index of the central node and ν = n2

n1
=

|{(v,y)∈Bρ+λ(u)|{v,y}≺ ρ,λ
strongu=1}|

|{(v,y)∈Bρ+λ(u)|{v,y}≺ρ,λ
weaku=1}| .

Network name u ρ λ |Bρ+λ(u)| ν

Network 1 Dolphin social network 14 4 1 5 80%
37 4 1 3 100%

Network 4 Books about US politics 8 4 1 4 83%
3 3 1 5 90%

Network 7 Visiting ties in San Juan 34 4 1 4 50%
9 3 1 5 90%

to a general class of directed networks which we refer to
as regulatory networks. For example, our results imply that
crosstalk edges or paths are frequent in these networks. Based
on our theoretical results we proposed methodologies to
determine relevant paths between a source and a target node
in a signal transduction network, and to identify the most
important nodes that mediate these paths. Our investigation
shows that the hyperbolicity measure captures nontrivial
topological properties that are not fully reflected in other
network measures, and therefore the hyperbolicity measure
should be more widely used.
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APPENDIX A: THEOREM 1

Theorem 1. Suppose that G has a cycle of k � 4 nodes
which has no path chord. Then, δ+

worst(G) � � k
4�.

Proof. In our proofs we will use the consequences of the
four-node condition when the four nodes are chosen in a
specific manner as stated below in Lemma 2.

Lemma 2. Let u0,u1,u2,u3 be four nodes such that u3 is on
a shortest path between u1 and u2. Suppose also that all the
internode distances are strictly positive except for du1,u3 and

du1,u3 = � du1 ,u2 +du0 ,u1 −du0 ,u2
2 �. Then,⌈

du0,u1 + du0,u2 + du1,u2

2

⌉
� du0,u3 + du1,u2

�
⌈

du0,u1 + du0,u2 + du1,u2

2

⌉
+ 2 δ+

u0,u1,u2,u3
.

Proof. Note that due to triangle inequality 0 �
� du1 ,u2 +du0 ,u1 −du0 ,u2

2 � � du1,u2 and thus node u3 always exists.
First, consider the case when 0 < du1,u3 < du1,u2 . Consider

the three quantities involved in the four-node condition for
the nodes u0,u1,u2,u3, namely the quantities du0,u3 + du1,u2 ,
du0,u2 + du1,u3 , and du0,u1 + du2,u3 . Note that

2(du0,u3 + du1,u2 ) = (du0,u3 + du1,u3 ) + (du0,u3 + du2,u3 ) + du1,u2

� du0,u1 + du0,u2 + du1,u2

⇒ du0,u3 + du1,u2

�
⌈

du0,u1 + du0,u2 + du1,u2

2

⌉
,

du0,u2 + du1,u3 = du0,u2 +
⌊

du1,u2 + du0,u1 − du0,u2

2

⌋
=

⌊
du0,u1 + du0,u2 + du1,u2

2

⌋
,

du0,u1 + du2,u3 = du0,u1 +
⌈

du1,u2 + du0,u2 − du0,u1

2

⌉
=

⌈
du0,u1 + du0,u2 + du1,u2

2

⌉
.
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Thus, du0,u3 + du1,u2 � max{du0,u2 + du1,u3 , du0,u1 + du2,u3}
and using the definition of δ+

u0,u1,u2,u3
we have⌈

du0,u1 + du0,u2 + du1,u2

2

⌉
� du0,u3 + du1,u2

�
⌈

du0,u1 + du0,u2 + du1,u2

2

⌉
+ 2 δ+

u0,u1,u2,u3
.

Next, consider the case when du1,u3 = 0. This implies

du0,u1 + du1,u3 = du0,u1 + du1,u2 = du0,u2

= du0,u1 + du0,u2 + du1,u2

2

�
⌈

du0,u1 + du0,u2 + du1,u2

2

⌉
.

Finally, consider the case when du1,u3 = du1,u2 . This implies

du1,u2 − du1,u2 + du0,u1 − du0,u2

2
< 1

≡ du0,u2 + du1,u2

= du0,u1 + 2 − 2 ε for some 0 < ε � 1.

Thus, it easily follows that

du0,u3 + du1,u2 = du0,u2 + du1,u2

= du0,u2 + du1,u2 + du0,u1 + 2 − 2 ε

2

= du0,u2 + du1,u2 + du0,u1

2
+ 1 − ε

⇒ du0,u3 + du1,u2

�
⌈

du0,u1 + du0,u2 + du1,u2

2

⌉
.

�
We can now prove Theorem 1 as follows. Let

C = (u0,u1, . . . ,uk−1,u0) be the cycle of k = 4r + r ′
nodes for some integers r and 0 � r ′ < 4. Consider
the four nodes u0,ur+� r′

2 �,u2r+ ( r ′+� r′
2 �) / 2 � and u3r+r ′ .

Since C has no path chord, we have du0,u
r+� r′

2 �
= r +

� r ′
2 �, du0,u2r+ ( r′+� r′

2 � ) / 2 �
= 2r +  r ′+� r′

2 �
2 �dur+�r′/2�,u3r+r′ = 2r +

r ′ − � r ′
2 � � 2r + � r ′

2 �, du0,u3r+r′ = r , and u2r+ ( r ′+� r′
2 � ) / 2 � is

on a shortest path between ur and u3r+r ′ . Thus, applying the
bound of Lemma 2, we get

δ+
worst(G) � δ+

u0, u
r+� r′

2 �, u2r+ ( r′+� r′
2 � ) / 2 �, u3r+r′ ,

�
du0,u

2r+ r′+� r′
2 �

2 �
+ du

r+� r′
2 �,u3r+r

−
⌈ du0 ,u

r+� r′
2 �

+du
r+� r′

2 � ,u3r+r′ +du3r+r ,u0

2

⌉
2

= 4r + ⌊ r ′+� r′
2 �

2

⌋− r ′ + ⌈
r ′
2

⌉− ⌈
4r+r ′

2

⌉
2

= r +
⌊ r ′+� r′

2 �
2

⌋
− r ′

2

� r − 1

4
⇒ δ+

worst(G) � r =
⌈

k

4

⌉
.

�

APPENDIX B: THEOREM 3 AND COROLLARY 4

The Gromov product nodes u0,1,u0,2,u1,2 of a shortest-path
triangle �{u0,u1,u2} are three nodes satisfying the following:5

(1) u0,1, u0,2, and u1,2 are located on the paths P� (u0,u1),
P� (u0,u2), and P� (u1,u2), respectively, and

(2) the distances of these three nodes from u0,u1, and u2

satisfy the following constraints:

du0,u0,1 + du1,u0,1 = du0,u1 , du0,u0,2 + du2,u0,2 = du0,u2 ,

du1,u1,2 + du2,u1,2 = du1,u2 , du1,u0,1 = du1,u1,2 ,

du0,u0,1 = du0,u0,2 =
⌊

du0,u1 + du0,u2 − du1,u2

2

⌋
.

It is not difficult to see that a set of such three nodes always
exists. For convenience, the nodes u1,0, u2,0, and u2,1 are
assumed to be the same as the nodes u0,1, u0,2, and u1,2,
respectively.

5To simplify exposition, we assume that du0,u1 + du1,u2 + du0,u2 is
an even number. Otherwise, the definition will require minor changes.

Theorem 3 (see Fig. 9 for a visual illustration). For a
shortest-path triangle �{u0,u1,u2} and for 0 � i � 2, let v and

v′ be two nodes on the paths ui

P�(ui ,ui+2 (mod 3))� ui, i+2 (mod 3)

and ui

P�(ui ,ui+1 (mod 3))� ui, i+1 (mod 3), respectively, such that
dui ,v = dui ,v′ . Then,

dv,v′ � 6 δ+
�{u0 ,u1 ,u2} + 2,

where δ+
�{u0 ,u1 ,u2} � δ+

worst(G) is the largest worst-case hyperbol-
icity among all combinations of four nodes in the three shortest
paths defining the triangle.

Corollary 4 (Hausdorff distance between shortest paths).
Suppose that P1 and P2 are two shortest paths between two
nodes u0 and u1. Then, the Hausdorff distance dH (P1,P2)
between these two paths can be bounded as

dH (P1,P2)
def= max{ max

v1 ∈P1

min
v2 ∈P2

{ dv1,v2}, max
v2 ∈P2

min
v1 ∈P1

{ dv1,v2}}

� 6 δ+
�{u0 ,u1 ,u2} + 2,

where u2 is any node on the path P2.
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u0 u2

u1

u0,1=u1,0

v

u0,2=u2,0

u1,2=u2,1

v

du1,u0,1

du0,u0,1

dv,v ′

du1,v′ = du1,v

du0,u0,1 =
du0,u1 + du0,u2 − du1,u2

2
du1,u0,1 =

du1,u2 + du1,u0 − du2,u0

2

du1,u0,1 = du1,u1,2 du0,u0,1 = du0,u0,2 du2,u0,2 = du2,u1,2

δ+
Δ{u0,u1,u2}

≤ δ+
worst(G) dv,v ≤ max 6 δ+

Δ{u0,u1,u2}
, 2

FIG. 9. A pictorial illustration of the claim in Theorem 3.

Proof of Theorem 3. To simplify exposition, we assume that
du0,u1 + du1,u2 + du0,u2 is even and prove a slightly improved
bound of dv,v′ � 6 δ+

�{u0 ,u1 ,u2} + 1. It is easy to modify the proof

to show that dv,v′ � 6 δ+
�{u0 ,u1 ,u2} + 2 if du0,u1 + du1,u2 + du0,u2

is odd.
We will prove the result for i = 1 only; similar arguments

will hold for i = 0 and i = 2. If du1,u0,1 = 0 then v = v′ = u1

and the claim holds trivially, Thus, we assume that du1,u0,1 > 0.
Case 1. v = u0,1 and v′ = u1,2. In this case we need to

prove that du0,1,u1,2 � 6 δ+
�{u0 ,u1 ,u2} + 1 (see Fig. 10). Assume

that du0,1,u1,2 > 0 since otherwise the claim is trivially true.
Using Lemma 2 for the four nodes u0,u1,u2,u1,2, we get

du0,u1,2+du1,u2�
⌈

du0,u1 + du1,u2 + du0,u2

2

⌉
+ 2 δ+

u0,u1,u2,u1,2
.

(B1)

Now, we note that

du1,u2 + du0,u0,2 = du1,u2 +
⌊

du0,u1 + du0,u2 − du1,u2

2

⌋
=
⌊

du0,u1 + du0,u2 + du1,u2

2

⌋
, (B2)

u0 u2

u1

v = u0,1

u0,2

u1,2 = v′

FIG. 10. Case 1 of Theorem 3. v = u0,1, v′ = u1,2.

which in turn implies∣∣du0,u1,2 − du0,u0,2

∣∣ = ∣∣(du0,u1,2 + du1,u2

)− (
du1,u2 + du0,u0,2

)∣∣
�
∣∣∣∣⌈du0,u1 + du1,u2 + du0,u2

2

⌉
+ 2 δ+

u0,u1,u2,u1,2︸ ︷︷ ︸
[by inequality (B1)]

−
⌊

du0,u1 + du0,u2 + du1,u2

2

⌋
︸ ︷︷ ︸

[by equality (B2]

∣∣∣∣
� 2 δ+

u0,u1,u2,u1,2
+ 1. (B3)

In a similar manner, we can prove the following analog of
inequality (B3):∣∣du2,u0,1 − du2,u0,2

∣∣ � 2 δ+
u0,u1,u2,u0,1

. (B4)

Using inequalities (B3) and (B4), it follows that∣∣(du0,u1,2 + du2,u0,1

)− du0,u2

∣∣
= ∣∣(du0,u1,2 + du2,u0,1

)− (
du0,u0,2 + du2,u0,2

)∣∣
= ∣∣(du0,u1,2 − du0,u0,2

)+ (
du2,u0,1 − du2,u0,2

)∣∣
�
∣∣du0,u1,2 − du0,u0,2

∣∣+ ∣∣du2,u0,1 − du2,u0,2

∣∣
� 2 δ+

u0,u1,u2,u1,2
+ 2 δ+

u0,u1,u2,u0,1
+ 1. (B5)

Now, consider the three quantities involved in the four-node
condition for the nodes u0,u2,u0,1,u1,2, namely the quantities,
du0,u2 + du0,1,u1,2 , du0,u1,2 + du0,1,u2 , and du0,u0,1 + du2,u1,2 . Note
that

du0,u0,1 + du2,u1,2 = du0,u0,2 + du2,u0,2

= du0,u2 < du0,u2 + du0,1,u1,2 . (B6)

If du0,u1,2 + du0,1,u2 � du0,u0,1 + du2,u1,2 then by the definition of
δ+
u0,u2,u0,1,u1,2

we have

du0,1,u1,2 = (
du0,u2 + du0,1,u1,2

)− du0,u2

= (
du0,u2 + du0,1,u1,2

)− (
du0,u0,1 + du2,u1,2

)
� 2 δ+

u0,u2,u0,1,u1,2
.

Otherwise, du0,u1,2 + du0,1,u2 > du0,u0,1 + du2,u1,2 and then again
by the definition of 2 δ+

u0,u2,u0,1,u1,2
we have∣∣du0,u1,2 + du0,1,u2 − du0,u2 − du0,1,u1,2

∣∣ � 2 δ+
u0,u2,u0,1,u1,2

,

and now using inequality (B5) gives

du0,1,u1,2

= (
du0,u1,2 + du2,u0,1 − du0,u2

)
− (

du0,u1,2 + du0,1,u2 − du0,u2 − du0,1,u1,2

)
�
∣∣du0,u1,2 + du2,u0,1 − du0,u2

∣∣
+ ∣∣du0,u1,2 + du0,1,u2 − du0,u2 − du0,1,u1,2

∣∣
� 2 δ+

u0,u1,u2,u1,2
+ 2 δ+

u0,u1,u2,u0,1
+ 2 δ+

u0,u2,u0,1,u1,2
+ 1

� 6 δ+
�{u0 ,u1 ,u2} + 1.
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u0 u2 =v14

u1 = v1

u0,1

v

u1,2 =v10

v′=v6

v13
v12

v11

v7 v8
v9

v5

v4
v3

v2

FIG. 11. Case 2 of Theorem 3: v 
= u0,1, v′ 
= u1,2.

Case 2. v 
= u0,1 and v′ 
= u1,2. The claim trivially holds
if dv,v′ � 1, thus we assume that dv,v′ > 1. Let (v1 = u1,v2 =
u3,v3, . . . ,vh = v′, . . . ,vs = u1,2, . . . ,vr = u2) be the ordered
sequence of nodes in the given shortest path from u1 to u2

(see Fig. 11). Consider the sequence of shortest-path triangles
�{u0,u1,v2},�{u0,u1,v3}, . . . ,�{u0,u1,v} , where each such triangle
�{u0,u1,vj } is obtained by taking the shortest path P�(u0,u1),
the subpathP�(u1,vj ) of the shortest pathP�(u1,u2), from u1

to vj , and a shortest path u0
s�vj from u0 to vj . Let v1,j be the

Gromov product node on the side (shortest path) P�(u1,vj )
for the shortest-path triangle �{u0,u1,vj }.

We claim that if v1,j = vp and v1,j+1 = vq then q is either

p or p + 1. Indeed, if du1,vp
=  du0 ,u1 +du1 ,uj

−du0 ,vj

2 � and du1,vq
=

 du0 ,u1 +du1 ,uj+1 −du0 ,vj+1

2 � then

du1,vq
− du1,vp

=
⌊

du0,u1 + du1,vj+1 − du0,vj+1

2

⌋
−
⌊

du0,u1 + du1,vj
− du0,vj

2

⌋
�
⌊

du0,u1 + (
1 + du1,vj

) − (
du0,vj+1 − 1

)
2

⌋
−
⌊

du0,u1 + du1,vj
− du0,vj

2

⌋
=
⌊

du0,u1 + du1,vj
− du0,vj

2
+ 1

⌋
−
⌊

du0,u1 + du1,vj
− du0,vj

2

⌋
� 1,

and a similar proof of du1,vq
− du1,vp

� 1 can be

obtained if du1,vp
= � du0 ,u1 +du1 ,uj

−du0 ,vj

2 � and du1,vq
=

� du0 ,u1 +du1 ,uj+1 −du0 ,vj+1

2 �. Thus, the ordered sequence of
nodes v1,1,v1,2, . . . ,v1,r cover the ordered sequence of nodes
v2,v3, . . . ,vs in a consecutive manner without skipping over
any node. Since v1,1 is either v1 or v2, and v1,r = vs = u1,2,
there must be an index t such that v1,t = v′ = vh. Since
du1,v = du1,v′ , v, and v′ are the two Gromov product nodes for
the shortest-path triangle �{u0,u1,vt } and thus applying Case
1.1 on �{u0,u1,vt } we have dv,v′ � 6 δ+

�{u0 ,u1 ,u2} + 1. �

u0 u1v

shortest path P1

P2

v′

dv,v′

dv,v′ ≤ min 6 δ+
worst(G) + 1 log2 (P2) 1 ,

du0,u1
2

FIG. 12. Illustration of the bound in Theorem 5.

APPENDIX C: THEOREM 5 AND COROLLARY 6

Theorem 5 (see Fig. 12 for a visual illustration). Let P1 ≡
u0

s�u1 and P2 be a shortest path and an arbitrary path,
respectively, between two nodes u0 and u1. Then, for every
node v on P1, there exists a node v′ on P2 such that

dv,v′ � min

{
(6 δ+

worst(G) + 2)( log2 �(P2)� − 1),

⌊
du0,u1

2

⌋}
= O(δ+

worst(G) log �(P2)).

Since �(P2) � n, the above bound also implies that

dv,v′ � (6 δ+
worst(G) + 2)( log2 n � − 1)

= O(δ+
worst(G) log n).

Corollary 6. Suppose that there exists a node v on the
shortest path between u0 and u1 such that minv′∈P2{dv,v′ } � γ .

Then, �(P2) � 2
γ

6 δ
+
worst(G)+2

+1

− 1 = 
(2
γ / δ+

worst(G)
).

Proof of Theorem 5. First, note that by selecting v′ to be one
of u0 or u1 appropriately we have dv,v′ �  du0 ,u1

2 �. Now, assume
that �(P2) > 2. Let u2 be the node on the path P2 such that

�(u0
P2�u2) = � �(P2)

2 �. and consider the shortest-path triangle
�{u0,u1,u2}. By Theorem 3 there exists a node v′ either on a
shortest path between u0 and u2 or on a shortest path between
u1 and u2 such that dv,v′ � 6 δ+

worst(G) + 2. We move from v to
v′ and recursively solve the problem of finding a shortest path
from v′ to a node on a part of the path P2 containing at most
� (P2)

2 � edges. Let D(y) denote the minimum distance from v

to a node in a path of length y between u0 and u1. Thus, the
worst-case recurrence for D(y) is given by

D(y) � D

(⌈
y

2

⌉)
+ 6 δ+

worst(G) + 2, if y > 2, D(2) = 1.

A solution to the above recurrence satisfies D(�(P2) ) �
(6 δ+

worst(G) + 2) (� log2 �(P2) � − 1). �

APPENDIX D: THEOREM 7 AND COROLLARY 8

For ease of display of long mathematical equations, we will
denote δ+

worst(G) simply as δ+.
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Theorem 7. Let P1 and P2 be a shortest path and another
path, respectively, between two nodes. Define ηP1,P2 as

ηP1,P2

= (6 δ+ + 2) log2 ((6 μ + 2)(6 δ+ + 2)

× log2[(6 δ+ + 2)(3 μ + 1) μ] + μ)

= O(δ+ log(μδ+)), if P2 is μ-approximate short.

ηP1,P2

= (6 δ+ + 2) log2

(
8(6 δ+ + 2) log2[(6 δ+ + 2)(4 + 2ε)]

+ 1 + ε

2

)
= O(δ+ log(ε + δ+ log ε)),

if P2 is ε-additive-approximate short

Then, the following statements are true.
(a) For every node v on P1, there exists a node v′ on P2

such that dv,v′ � ηP1,P2 �.
(b) For every node v′ on P2, there exists a node v on P1

such that dv,v′ � ζP1,P2 where

ζP1,P2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min
{⌊

(μ + 1) ηP1,P2 + μ

2

⌋
,
⌊μ du0 ,u1

2

⌋}
= O(μδ+ log(μδ+)), if P2 is μ-approximate short

min
{⌊

2 ηP1,P2 + 1+ε
2

⌋
,
⌊ du0 ,u1 +ε

2

⌋}
= O(ε + δ+ log(ε + δ+ log ε)),

if P2 is ε-additive-approximate short.

Corollary 8 (Hausdorff distance between approximate short
paths). Suppose that P1 and P2 are two paths between two
nodes. Then, the Hausdorff distance dH (P1,P2) between
these two paths can be bounded as follows:

dH (P1,P2)
def= max

{
max
v1 ∈P1

min
v2 ∈P2

{
dv1,v2

}
, max

v2 ∈P2

min
v1 ∈P1

{
dv1,v2

}}
� η

P1,u0
s� u1

+ ζ
P2,u0

s� u1
.

Corollary 9. Suppose that there exists a node v on the
shortest path between u0 and u1 such that min v′ ∈P2{dv,v′ } � γ .
Then, the following is true.

If P2 is a μ-approximate short path then

μ >
2

γ

6 δ++1

12 γ − (24 + o(1)) (6 δ+ + 1)
− 1

3
⇒ μ=


⎛⎝2
γ

δ+

γ

⎞⎠ .

If P2 is a ε-additive-approximate short path then

ε >
2

γ

6 δ++1(
48 δ+ + 17

2

) − log2(48 δ+ + 8)

⇒ ε = 


⎛⎝2
γ

δ+

δ+ − log δ+

⎞⎠ .

In particular, assuming real world networks have small
constant values of δ+, the asymptotic dependence of μ and

ε on γ can be summarized as

both μ and ε are 
(2 c γ ) for some constant 0 < c < 1 .

Proof of Theorem 7. Let P1 and P2 be a shortest path
and another path, respectively, between two nodes u0 and
u1. Note that any “subpath” of a μ-approximate short path

is also a μ-approximately short path, i.e., ui
P�uj is also

a μ-approximate short path, and similarly any subpath of
a ε-additive-approximate short path is also a ε-additive-
approximate short path. μ-approximate shortest paths also
restrict the “span” of a path chord of the path, i.e., if
(u0,u1, . . . ,uk) is a μ-approximate short path and {ui,uj } ∈ E

then |j − i| � μ.
(a) Let v and v′ be two nodes on P1 and P2, respec-

tively, such that α = dv,v′ = maxv′′∈P1 minv′′′∈P2{dv′′,v′′′ }. Let

v� ∈ u0
P1�v and vr ∈ u1

P1�v be two nodes defined by

dv�,v = 2 α + 1, if du0,v > 2 α + 1,

du0,v, otherwise

dvr ,v = 2 α + 1, if du1,v > 2 α + 1.

du1,v, otherwise

By definition of α, there exist two nodes ṽ� and ṽr on the path

P2 such that dv�,ṽ�
,dvr ,ṽr

� α. Consider theP3 = ṽ�
P2� ṽr that

is the part of path P2 from ṽ� to ṽr . Note that

dṽ�,ṽr
� dṽ�,v�

+ dv�,vr
+ dvr ,ṽr

� 6 α + 2.

Thus, we arrive at the following inequalities:

� (P3) � (6 α + 2) μ, if P2 is μ-approximate short
6 α + 2 + ε, if P2 is ε-additive-approximate short.

Now consider the pathP4 = v�
s� ṽ�

P2� ṽr
s�vr obtained by

taking a shortest path from v� to ṽ� followed by the path P3

followed by a shortest path from vr to ṽr . Note that

� (P4) �

⎧⎨⎩
(6 α + 2) μ + 2 α, if P2 is μ-approximate short

6 α + 2 + ε + 2 α = 8 α + 2 + ε,

if P2 is ε-additive-approximate short.

We claim that min ṽ ∈P4{dv,̃v} = α. Indeed, if ṽ ∈ P3 then,
by definition of α, min ṽ {dv,̃v} = α. Otherwise, if ṽ ∈
v�

s� ṽ�, then by triangle inequality dv�,v � dv,̃v + d ṽ,v�
⇒

dv,̃v � 2 α + 1 − d ṽ,v�
> α. Similarly, if ṽ ∈ ṽr

s�vr , then
by triangle inequality dvr ,v � dv,̃v + d ṽ,vr

⇒ dv,̃v � 2 α +
1 − d ṽ,vr

> α. Since v�
P1�vr is a shortest path between v�

and vr and v is a node on this path, by Theorem 5, α �
(6 δ+ + 2) ( log2 �(P4)� − 1). Thus, we have the following
inequalities:

If P2 is a μ-approximate short path then

�(P4) � (6 α + 2) μ + 2 α = (6 μ + 2) α + 2 μ

� (6 μ + 2) (6 δ+ + 2)(log2 �(P4) − 1) + 2 μ

� (6 μ + 2) (6 δ+ + 2)[log2 ((6 μ + 2) α + 2 μ) − 1]

+ 2 μ

⇒ α � (6 δ+ + 2)[log2((3 μ + 1) α + μ)]. (D1)
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If P2 is a ε-additive-approximate short path then

�(P4) � 8 α + 2 + ε

� 8 (6 δ+ + 2)(log2 �(P4) − 1) + 2 + ε

� 8 (6 δ+ + 2)(log2(8 α + 2 + ε) − 1) + 2 + ε

⇒ 8 α + 2 + ε

� 8 (6 δ+ + 2)(log2(8 α + 2 + ε) − 1) + 2 + ε

≡ α � (6 δ+ + 2)

(
log2

(
4 α + 1 + ε

2

))
. (D2)

Both (D1) and (D2) are of the form α � a log2(b α + c) ≡
2

α
a � b α + c where

a = 6 δ+ + 2 � 1 for both (D1) and (D2),

b =
{

3 μ + 1 � 4 for (D1)

4 for (D2)

c =
{
μ � 1 for (D1)

1 + ε
2 � 1 for (D2).

Thus, α is at most z0 where z0 is the largest positive integer
value of z that satisfies the equation,

2
z
a � b z + c.

In the sequel, we will use the fact that log2(x y + 1) �
log2(x + y) for x,y � 1. This holds since

x � 1 & y � 1 ⇒ y (x − 1) � x − 1 ≡ x y + 1 � x + y.

We claim that z0 � η = a log2(2 a b log2(a b c) + c). This is
verified by showing that 2

η

a � b η + c as follows:

2
η

a = 2log2(2 a b log2(a b c) +c) = 2 a b log2(a b c) + c

b η + c = a b [log2 (2 a b log2(a b c) + c)] + c,

2
η

a > b η + c

≡ 2 a b log2(a b c) + c

� a b [log2 (2 a b log2(a b c) + c)] + c

≡ 2 log2(a b c)

� log2(2 a b log2(a b c) + c)

⇐ 2 log2(a b c)

� log2(2 a b c log2(a b c) + 1)

since 2 a b log2(a b c)

� 1 and c � 1

≡ (a b c)2

� 2 a b c log2(a b c) + 1

⇐ a b c � log2(a b c) + 1,

and the very last inequality holds since a b c � 4. Thus, we
arrive at the following bounds:

If P2 is a μ-approximate short path then

η = (6 δ+ + 2) log2 ((6 μ + 2)(6 δ+ + 2)

× log2[(6 δ+ + 2)(3 μ + 1) μ] + μ).

If P2 is a ε-additive-approximate short path then

η = (6 δ+ + 2) log2

(
8 (6 δ+ + 2)

× log2[(6 δ+ + 2)(4 + 2ε)] + 1 + ε

2

)
.

(b) Let the ordered sequence of nodes in the path P3 =
v1
P2�v′

1 be a (length) maximal sequence of nodes such that

∀ v′ ∈ P3 : min
v ∈P1

{dv,v′ } > ZP1,P2 .

Consider the following set of nodes belonging to the two paths

u0
P2�v1 and v′

1
P2�u1:

S� =
⋃

{v′ ∈ u0
P2�v1|∃ v ∈ P1 : dv,v′ = min

v′′ ∈P2

{dv,v′′ }},

Sr =
⋃

{v′ ∈ v′
1
P2�u1|∃ v ∈ P1 : dv,v′ = min

v′′ ∈P2

{dv,v′′ }}.

Since u0 ∈ S� and u1 ∈ Sr , it follows thatS� 
= ∅ andSr 
= ∅.
Note that⋃

{v ∈ u0
P1�u1|∃ v′ ∈ S� ∪ Sr : dv,v′ = min

v′′ ∈P2

{dv,v′′ }}

=
⋃

v ∈ u0
P1� u1

{v}.

Thus, there exist two adjacent nodes v4 and v′
4 on P1 such

that both dv4,v3 and dv′
4,v

′
3

are at most ZP1,P2 . Using triangle
inequality it follows that

dv3,v
′
3
� dv3,v4 + dv4,v

′
4
+ dv′

4,v
′
3
= 2 ZP1,P2 + 1,

giving the following bounds:

�(v3
P2�v′

3) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μdv3,v

′
3
� 2 μZP1,P2 + μ,

if P2 is μ-approximate short

dv3,v
′
3
+ ε � 2 ZP1,P2 + 1 + ε,

if P2 is ε-additive-approximate short.

For any node v′ on P3, we can always use the following path
to reach a node on P1:

(1) If dv′,v3 � dv′,v′
3

then we take the path v′ P2�v3
s�v4 of

length at most  �(v3
P2�v′

3)
2 � + ZP1,P2 to reach the node v = v4

on P1;

(2) otherwise we take the path v′ P2�v′
3

s�v′
4 of length at

most  � (v3
P2�v′

3)
2 � + ZP1,P2 to reach the node v = v′

4 on P1.
This gives the following worst-case bounds for dv,v′ :

dv,v′ �

⎧⎪⎪⎨⎪⎪⎩
⌊

(μ + 1) ZP1,P2 + μ

2

⌋
,

if P2 is μ-approximate short⌊
2 ZP1,P2 + 1+ε

2

⌋
,

if P2 is ε-additive-approximate short. �

APPENDIX E: THEOREM 10 AND COROLLARY 11

Theorem 10 (see Fig. 13 for a visual illustration).
Suppose that we are given the following:
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r
+

α
u0

r

u1

u2

u3

u4

u3,4

α

α

γ

Q

very
long
path

FIG. 13. Illustration of the claims in Theorem 10 and
Corollary 11.

three integers κ � 4, α > 0, r > ( κ
2 − 1)(6 δ+

worst(G) + 2),
five nodes u0,u1,u2,u3,u4 such that
u1,u2 ∈ Br (u0) with du1,u2 � κ

2 (6 δ+
worst(G) + 2), du1,u4 =

du2,u3 = α.
Then, the following statements are true for any shortest path

P between u3 and u4:
(a) there exists a node v on P such that

du0,v � r −
(

3κ − 2

12

)
(6 δ+

worst(G) + 2)

= r − O(κ δ+
worst(G)).

(b)

�(P) �
(

3κ − 2

6

)
(6 δ+

worst(G) + 2)

+ 2 α = 
 (κ δ+
worst(G) + α).

Corollary 11 (see Fig. 13 for a visual illustration). Consider
any path Q between u3 and u4 that does not involve a node in
∪r ′�rBr ′(u0). Then, the following statements hold:

(i) �(Q) � 2

α

6 δ+
worst(G)+2

+ κ
4 + 5

6 − 1 = 2

 ( α

δ+
worst(G)

+ κ)
.

In particular, if δ+
worst(G) is a constant then �(Q) = 2
(α + κ)

and thus �(Q) increases at least exponentially with both α

and κ .
(ii) if Q is a μ-approximate short path then

μ � 2
α

6 δ+
worst(G)+2

+ κ
4 − 1

6

12 α + (3 κ − 26 − o(1))(6 δ+
worst(G) + 2)

− 1

3

= 


⎛⎜⎝ 2
�

(
α

δ
+
worst(G)

+ κ

)
α + κ δ+

worst(G)

⎞⎟⎠ .

In particular, if δ+
worst(G) is a constant then μ = 
( 2� (α+κ)

α+κ
) and

thus μ increases at least exponentially with both α and κ .

(iii) if Q is a ε-additive-approximate short path then

ε >
2

α

6 δ+
worst(G)+2

+ κ
4 − 1

6

48 δ+
worst(G) + 17

2

− log2(48 δ+
worst(G) + 16).

In particular, if δ+
worst(G) is a constant then ε = 
(2� (α+κ))

and thus ε increases at least exponentially with both α and κ .

1. Proof of Theorem 10.

Consider the shortest-path triangle �{u0,u3,u4} and let
u0,3,u0,4, and u3,4 be the Gromov product nodes of �{u0,u3,u4}
on the sides (shortest paths) u0 to u3, u0 to u4, and u3 to
u4, respectively. Thus, du0,u0,3 = du0,u0,4 , and β = du3,u3,4 =
 du0 ,u3 +du3 ,u4 −du0 ,u4

2 � =  du3 ,u4
2 � since du0,u3 = du0,u4 = r + α.

We first claim that du0,u0,3 < r = du0,u2 . Suppose for the
sake of contradiction that du0,u0,3 = du0,u0,4 � r . Then, by
Theorem 3 we get du1,u2 � 6 δ+

worst(G) + 2 which contradicts
the assumption that du1,u2 � κ

2 (6 δ+
worst(G) + 2) since κ � 4.

Thus, assume that du0,u0,3 = du0,u0,4 = r − x for some
integer x > 0. By Theorem 3, du0,3,u0,4 � 6 δ+

worst(G) + 2.
Let du0,3,u0,4 = 6 δ+

worst(G) + 2 − y for some integer 0 < y �
6 δ+

worst(G) + 2 and du1,u2 = κ
2 (6 δ+

worst(G) + 2) + z for some
integer z � 0. Consider the four-node condition for the
four nodes u1,u2,u0,3,u0,4. The three relevant quantities for
comparison are

q‖ = du1,u2 + du0,3,u0,4

=
(

κ

2
+ 1

)
(6 δ+

worst(G) + 1) + z − y,

q= = du0,3,u2 + du0,4,u1

= (
du0,u2 − du0,u0,3

)+ (
du0,u1 − du0,u0,4

) = 2x,

q\\ = du0,3,u1 + du0,4,u2

�
(
du0,3,u0,4 + du0,4,u1

)+ (
du0,3,u0,4 + du0,3,u2

)
= 12 δ+

worst(G) + 4 − 2y + 2x.

We now show that x > ( 3κ−2
12 )(6 δ+

worst(G) + 2). We have the
following cases.

Assume that q\\ � min{q‖, q=}. This implies

|q‖ − q=| � 2 δ+
worst(G)

≡
∣∣∣∣(κ

2
+ 1

)
(6 δ+

worst(G) + 2) + z − y − 2x

∣∣∣∣
� 2 δ+

worst(G)

⇒ x �
(

κ
2 + 1

)
(6 δ+

worst(G) + 2) + z − y − 2 δ+
worst(G)

2

�
(

3κ − 2

12

)
(6 δ+

worst(G) + 2) + 1

6
.

Otherwise, assume that q= � min{q‖, q\\}. This implies

|q‖ − q\\| � 2 δ+
worst(G) ⇒ q\\ � q‖ − 2 δ+

worst(G)

⇒ du0,3,u1 + du0,4,u2 �
(

κ

2
+ 1

)
(6 δ+

worst(G) + 2) + z − y − 2 δ+
worst(G)
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⇒ (
du0,3,u0,4 + du0,4,u1

)+ (
du0,3,u0,4 + du0,3,u2

)
� du0,3,u1 + du0,4,u2

�
(

κ

2
+ 1

)
(6 δ+

worst(G) + 2) + z − y − 2 δ+
worst(G)

⇒ 2x + 2(6 δ+
worst(G) + 2 − y) �

(
κ

2
+ 1

)
(6 δ+

worst(G) + 2) + z − y − 2 δ+
worst(G)

⇒ x �
(

3κ − 2

12

)
(6 δ+

worst(G) + 2) + 1

6
.

Otherwise, assume that q‖ � min{q=, q\\}. This implies

|q= − q\\| � 2 δ+
worst(G) ≡ ∣∣ 2x − (

du0,3,u1 + du0,4,u2

) ∣∣ � 2 δ+
worst(G)

⇒ 2x � du0,3,u1 + du0,4,u2 − 2 δ+
worst(G) �

(
du1,u2 − du0,4,u1

)+ (
du1,u2 − du0,3,u1

)− 2 δ+
worst(G)

≡ 2x � κ(6 δ+
worst(G) + 2) + 2z − 2x − 2 δ+

worst(G)

⇒ x �
(

3κ − 2

12

)
(6 δ+

worst(G) + 2) + δ+
worst(G)

2
+ 1

6
.

Using Theorem 3, it now follows that

du0,u3,4 � du0,u0,3 + du0,3,u0,4 � (r − x) + (6 δ+
worst(G) + 2) < r −

(
3κ − 2

12

)
(6 δ+

worst(G) + 2).

This proves part (a) with u3,4 being the node in question. To prove part (b), note that

|P| = 2 β � 2(r + α) − 2du0,u3,4 � 2α +
(

3κ − 2

6

)
(6 δ+

worst(G) + 2).

2. Proof of Corollary 11

Consider such a path Q and consider the node u3,4 on the shortest path between u3 and u4. Since every node of Q is at a
distance strictly larger than r + α from u0, by Theorem 10 the following holds for every node v ∈ Q:

du3,4,v � (r + α) − du0,u3,4 = (r + α) −
(

r −
(

3κ − 2

12

)
(6 δ+

worst(G) + 2)

)
= α +

(
3κ − 2

12

)
(6 δ+

worst(G) + 2).

Thus, by Corollary 6 [with γ = α + ( 3κ−2
12 )(6 δ+

worst(G) + 2) ], we get

�(Q) � 2
γ

6 δ
+
worst(G)+2

+1

− 1 = 2

α

6 δ+
worst(G)+2

+ κ
4 + 5

6 − 1.

If Q is a μ-approximate short path, then by Corollary 9,

μ >
2

γ

6 δ+
worst(G)+2

12 γ − (24 + o(1)) (6 δ+
worst(G) + 2)

− 1

3
= 2

α

6 δ+
worst(G)+2

+ κ
4 − 1

6

12 α + (3 κ − 26 − o(1))(6 δ+
worst(G) + 2)

− 1

3
.

If Q is a ε-additive-approximate short path, then by Corollary 9,

ε >
2

γ

6 δ
+
worst(G)+2

48 δ+
worst(G) + 17

2

− log2(48 δ+
worst(G) + 16) = 2

α

6 δ+
worst(G)+2

+ κ
4 − 1

6

48 δ+
worst(G) + 17

2

− log2(48 δ+
worst(G) + 16).

APPENDIX F: LEMMA 12

Lemma 12 (equivalence of strong and weak domination; see Fig. 7 for a visual illustration). If λ � (6 δ+
worst(G) + 2) log2 n

then

Mu,ρ,λ
def== E

⎡⎣number of pairs of nodes
v,y such that v,y is weakly
(ρ,λ) dominated by u

∣∣∣∣∣∣
v is selected uniformly
randomly from
∪ρ < j � λBj (u)

⎤⎦
= E

⎡⎣number of pairs of nodes
v,y such that v,y is strongly
(ρ,λ) dominated by u

∣∣∣∣∣∣
v is selected uniformly
randomly from
∪ρ < j � λBj (u)

⎤⎦ .
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Proof. Suppose that v,y is weakly (ρ,λ) dominated by u, i.e., there exists a shortest path v
P�y between v,y ∈ Bρ+λ(u) such

that for some node v′ ∈ v
P�y we have v′ ∈ Bρ(u). Let v

Q�y be any other path between v and y that does not contain a node
from Bρ(u). Then, by Corollary 11 (i) (with κ = 4) we have

�(Q) � 2

λ

6 δ+
worst(G)+2

+ 11
6 − 1 � 2log2 n+ 11

6 − 1 > n − 1,

which contradicts the obvious bound �(Q) < n. Thus, no such path Q exists and v,y is strongly (ρ,λ) dominated by u. �
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