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Abstract

The minimization problem for Horn formulas is to find a Horn formula equivalent to a
given Horn formula, using a minimum number of clauses. A glog" ™ (")-inapproximability
result is proven, which is the first inapproximability result for this problem. We also
consider several other versions of Horn minimization. The more general version which
allows for the introduction of new variables is known to be too difficult as its equiv-
alence problem is co-NP-complete. Therefore, we propose a variant called Steiner-
minimization, which allows for the introduction of new variables in a restricted manner.
Steiner-minimization of Horn formulas is shown to be MAX-SNP-hard. In the positive
direction, a o(n), namely, O(nloglogn/(log n)1/4)—appr0ximation algorithm is given
for the Steiner-minimization of definite Horn formulas. The algorithm is based on a
new result in algorithmic extremal graph theory, on partitioning bipartite graphs into
complete bipartite graphs, which may be of independent interest. Inapproximability
results and approximation algorithms are also given for restricted versions of Horn
minimization, where only clauses present in the original formula may be used.

1 Introduction

The CNF minimization problem is to find a shortest CNF expression equivalent
to a given expression. This problem has been studied in different versions for
many decades in switching theory, computer science and engineering, and it is
still a topic of active research, both in complexity theory and circuit design.
Umans [40, 41] showed X2-completeness and a O(n'~¢)-inapproximability result
for this problem. Horn minimization is the special case of CNF minimization
for Horn formulas. Horn formulas are conjunctions of Horn clauses, i.e., of dis-
junctions containing at most one unnegated variable. Horn clauses can also be
written as implications. For instance, @ V bV ¢ is a Horn clause which can also
be written as a,b — c.
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Horn formulas are an expressive and tractable fragment of propositional logic,
and therefore provide a basic framework for knowledge representation and rea-
soning [35]. Horn formulas are, for example, a natural framework for represent-
ing systems of rules for expert systems. An interesting potential new application
area for Horn formulas is the automated, interactive development of large-scale
knowledge bases of commonsense knowledge (see [36] for the description of such
a project). This application has algorithmic aspects involving knowledge rep-
resentation, reasoning, learning and knowledge update. A model incorporating
these aspects, called Knowledge Base Learning (KnowBLe) is formulated in [29]
(see also [28,30]) for related work). Efficient algorithms for approximate Horn
minimization would be useful in these applications.

Satisfiability of Horn formulas can be decided in linear time and the equiv-
alence of Horn formulas can be decided in polynomial time [25]. Thus Horn
minimization is expected to be easier than CNF minimization. Horn minimiza-
tion was shown to be NP-complete by Hammer and Kogan [21] if the number
of literals is to be minimized, and by Ausiello et al. [4] and Boros and Cepek [8]
if the number of clauses is to be minimized. On the positive side, Hammer and
Kogan [22] gave a polynomial algorithm for minimizing quasi-acyclic Horn for-
mulas, which include both acyclic and 2-Horn formulas. It was also shown in [21]
that there is an efficient (n — 1)-approximation algorithm for general Horn min-
imization, where n is the number of different variables in the formula (not the
number of variable occurrences). As noted in [18], such an algorithm is also
provided by the Horn formula learning algorithm of [3].

1.1 Contributions of this paper

First, in Theorem 3 we prove a 210%176(”)—inapproximability result for Horn min-
imization assuming NPZDTIME(nP°¥!°8(") via a reduction from the MINREP
problem [26]. This seems to be the first inapproximability result for this prob-
lem. We next consider several other versions of the Horn minimization problem.
Depending on the application, different versions may be relevant and thus of
interest for exploration of their approximability properties.

It may be possible to add new variables in order to compress the formula.

For example, the formula n
/\ /\ T = Yj) (1)

=1 5=1
having n? clauses can be compressed to the 2n clause formula

wz/\ T >z /\/\(z—>yj), (2)

i=1 j=1

where z is a new variable. Note that ¢ and v are clearly not equivalent, e.g., ¢
does not depend on z, while ¢ does. On the other hand, ¢ and ¥ are equivalent
in the sense that they both imply the same set of clauses over the original
variables z1,...,Zn, Y1, .., Yn. Thus, in terms of the knowledge base application,
the new variable z can be thought of as being internal to the knowledge base
and invisible to the user. Flogel et al. [17] showed that deciding the equivalence



of such extended Horn formulas is co-NP-complete. This is bad news as it shows
that the extended version is too expressive and therefore intractable®.

On the other hand, notice that in the example above the new variable is added
in a rather restricted manner. Formula (1) can be thought of as a complete di-
rected bipartite graph with parts {x1,...,2,} and {y1,...,y,}. Formula (2),
then, represents the operation of adding a new node z in the middle, with edges
from the x;’s to z and from z to the y;’s. The two graphs have the same reacha-
bility relations as far as the original nodes are concerned. Using the similarity to
Steiner problems where new points may be added [23], we refer to this operation
as a Steiner extension (a formal definition appears in Section 5). As we observe,
in contrast to general extensions, the equivalence of Steiner extensions can be de-
cided efficiently (Corollary 1). Thus this type of extension could be considered as
a tractable alternative in the applications mentioned. The Steiner minimization
problem for Horn formulas is then to find an equivalent Steiner-extended Horn
formula, for a given Horn formula, with a minimum number of clauses. We show
in Theorem 5 that this problem is MAX-SNP-hard. On the other hand, in Theo-
rem 6 we prove that there is an efficient O(nloglogn/(logn)'/*)-approximation
algorithm for this problem, where n is the number of variables in the original
formula. This is the first approximation algorithm for Horn minimization with
a o(n) approximation guarantee.

The algorithm for Steiner minimization makes use of an algorithmic re-
sult on the partition of bipartite graphs into complete bipartite graphs (i.e., bi-
cliques), which may be of interest on its own. It was shown by Chung, Erdds
and Spencer [13] and Bublitz [10] that the edges of every n-vertex graph can
be partitioned into complete bipartite graphs such that the sum of the number
of vertices in these bipartite graphs® is O(n?/logn), and this is asymptotically
the best possible. Tuza [39] gave an analogous result for bipartite graphs. These
results are based on a counting argument due to Kévari, Sés and Turdn [27],
which shows that sufficiently dense graphs contain large complete bipartite sub-
graphs, and thus are non-constructive. Kirchner [24] considered the problem of
finding an algorithmic version, and gave an efficient algorithm to find complete
balanced bipartite graphs of size £2(v/logn) in dense graphs. In a previous paper
[33] we improved this to the optimal 2(logn), and as a corollary, showed that
partitions proved to exist in [10,13] can also be found efficiently”.

® Introducing new variables has been considered earlier, going back to Tseitin [38].
While there are many exponential lower bounds for resolution proofs (see, e.g., [14]),
complexity-theoretic results suggest that proving such results for extended resolution
is much harder [15].

Note that the complexity of a partition is not measured by the number of graphs in
it, but by a different measure, which comes from circuit complexity [37].

Extremal combinatorics provides results on the existence of substructures. The re-
sults of [24] and [33] can be viewed as algorithmic extremal combinatorics as they
also give efficient algorithms to actually find such substructures. Previous results
in this direction are given in [2]. The results of [2] apply to dense graphs and find
substructures of constant size, while here we have to handle sparser graphs as well
and to find substructures of nonconstant size.

(=]



In this paper we give an algorithmic version for the bipartite case. We show
in Theorem 1 that the edges of every bipartite graph with sides a and b, where
a > b, can be partitioned into complete bipartite graphs such that the sum of
the number of vertices of these graphs is O((ab/loga) + alogb+ a), and we give
an efficient algorithm to find such a partition.

We also consider restricted versions of the Horn minimization problem, where
one is restricted to use clauses from the original formula. Such a restriction may
be justified in applications where the particular rules, provided by an expert, are
supposed to be meaningful and thus cannot be replaced. The goal is to eliminate
redundant rules. Modifying the construction of Theorem 3, in Theorem 7 we
prove 210%176(”)—inapproximability for the restricted case, which holds even if the
input formula has clauses of size at most 3.

One may want to optimize a Horn formula in the restricted sense either by
manimizing the number of rules left, or by maximizing the number of rules re-
moved. The two versions may differ in their approximability (cf. the maximum
independent set and the minimum vertex cover problems for graphs). As (1)
suggests, Horn formulas with clauses of the form x — y correspond to directed
graphs. For such formulas, optimization corresponds to transitive reduction prob-
lems for directed graphs. Thus approximation algorithms for these directed graph
problems (in both versions) may be applied for Horn formulas. Examples of this
connection are given in Theorem 8.

The rest of the paper is organized as follows. Bipartite graph decomposi-
tions are discussed in Section 3. Section 4 contains the inapproximability result
for Horn minimization. Horn minimization with new variables is discussed in
Section 5, and restricted Horn minimization in Section 6.

2 Preliminaries

A clause is a disjunction of literals. A Horn clause is a clause with at most one
unnegated variable. A definite Horn clause has exactly one unnegated variable,
called its head; the other variables form its body. A negative clause consists of
only negated variables. The size of a clause is the number of its literals. A clause
of size 1 (resp., 2) is a unit (resp., binary) clause. A (definite) Horn formula is
a conjunction of (definite) Horn clauses. The size of a formula is the number of
its clauses. A k-Horn formula is a Horn formula with clauses of size at most k.

A clause C' is an implicate of a formula ¢ (also written as ¢ = C) if every
truth assignment satisfying ¢ also satisfies C. An implicate is a prime implicate
if none of its proper subclauses is an implicate. The resolution operation takes
two clauses of the form C7 V x and C5 V T and produces the clause C7 V Cs. For
basic properties of resolution, see, e.g. [25].

Deciding whether a definite Horn clause C is an implicate of a definite Horn
formula ¢ can be decided by a simple and well-known marking procedure often
called forward chaining. The procedure begins by marking the variables in the
body of C'. If every variable in the body of a clause in ¢ is marked then its head
is marked as well. This is repeated as long as new variables get marked. Then it
holds that C is an implicate of ¢ iff its head gets marked.



3 Partitioning/covering bipartite graphs using bicliques

Let G = G(A, B, E) be a bipartite graph with parts A, B of sizes a, b, respec-
tively, and edge set E of size m. We assume w.l.o.g. that a > b. A bipartite
graph is balanced if |A| = |B|. The complete bipartite graph (or biclique) with
parts of size p and ¢ is denoted by K, ,. We consider bicliques G; = (4;, B, E;)
fori=1,...,tsuch that A, C A, B; C B, and (E1, ..., F;) is a partition, resp. a
cover, of E. The cost of such a decomposition is 3.'_, (|4;| +|B;|). The problem
is to find a decomposition of small cost. The trivial decomposition into single
edges has a cost of 2m < 2ab.

We consider two versions of the problem. In the first version we are interested
in finding a partition such that its size is upper bounded by some function of a
and b, independent of m.

Theorem 1. For every bipartite graph G one can find a partition of cost

o (méba +alogb+ a) in polynomial time.

The decomposition is found by iteratively finding large bipartite subgraphs.
There are two procedures, depending on a carefully chosen notion of density. Let

3<b<a,6a<m<aband f(a,b,m) = Log(lz‘z%J; note that the case b < 2

is trivial.

Lemma 1. Suppose that m > af(a,b,m). Then there is a polynomial time al-
gorithm that finds a Ky 4 in G with ¢ = f(a,b,m).

Lemma 2. Suppose that m < af(a,b,m). Then there is a polynomial time al-
gorithm that finds a Ky 4 in G with ¢ = |m/a].

Remark 1. If G is a star then b = 1 and the optimal decomposition has cost
a + 1, hence the upper bound ab/loga claimed in [39] does not hold, and an
additional term (or some other modification) is needed. It is open whether the
quantity alogb + a can be improved.

In the second version we are interested in finding a partition (resp., cover)
of minimal cost. For technical reasons, we use a slightly different cost function
here (using this cost function would not change anything in the previous result).
The size of K, 4 is p- ¢ and the modified cost cost’'(Kp ) of Kpqisp-gifp=1
or ¢ =1, and is p+ q otherwise. The reason for using the modified cost measure
for Horn minimization is that when a set of Horn clauses Aj_; AS_; (z; — ;)
corresponding to a biclique K, , is replaced by a set of Horn clauses AL_, (z; —
z) /\/\;1-:1(2 — y;) by introducing a new variable z if p,q > 1, and is left un-
changed otherwise, the size of the new formula is cost/(p,q). We define the
LINEAR-COST-BICLIQUE-COVER (resp., LINEAR-COST-BICLIQUE-PARTITION)
problem as follows: given a bipartite graph G = (A4, B, E), cover (resp., parti-
tion) its edges with bicliques of minimum total modified cost. The minimization
of the number of bicliques in a cover was shown to be NP-complete by Orlin [34].
The following result follows by an approximation-preserving reduction from the
maximum independent set problem for 3-regular graphs.



Theorem 2. Assuming P#NP, LINEAR-COST-BICLIQUE-COVER and LINEAR-
CoST-BICLIQUE-PARTITION cannot be approximated in polynomial time within
an approzimation ratio of 1+ (1/1138) even if the input graph has no biclique
of size more than 6.

4 Inapproximability

Theorem 3. For any fized 0 < € < 1, unless NPCDTIME (nP°09(")) " the Horn
minimization problem for definite Horn formulas is 2log’ ™ " -inapprozimable.

The reduction is from the MINREP problem [26]. An instance M is given by a
bipartite graph G = (A, B, E) with |E| = m, a partition of A into equal-size sub-
sets A1, Aa,..., Ay and a partition of B into equal-size subsets By, B, ..., Bg.
One can define a natural bipartite super-graph H in the following manner. H
has a super-vertex for every A; and B;. There is a super-edge between A; and
B; if and only if there exists u € A; and v € Bj such that (u,v) is an edge
of G. Let the number of super-edges be p. A pair of nodes v and v witnesses
a super-edge (A4;, B;) provided v € A;, v € B; and the edge (u,v) exists in
G. A set of nodes S of G witnesses a super-edge if and only if there exists at
least one pair of nodes in S that witnesses the super-edge. The goal of MINREP
is to find A’ € A and B’ C B such that A’ U B’ witnesses every super-edge
of H and |A'| + |B’| is as small as possible. The size of an optimal solution is
denoted by OPT(M). Let s = |A| + | B|. It is shown in Kortsarz et al. [26] that
MINREP is 218" "-inapproximable under the complexity-theoretic assumption
NPZDTIME(nPoWles(®),

Consider an instance M of MINREP . Let ¢ be a sufficiently large positive inte-
ger to be fixed later. We construct a definite Horn formula ¢. For simplicity and
with an abuse of notation, some variables in ¢ are denoted as the correspond-
ing objects (vertices and super-edges) in the MINREP instance. The formula ¢
contains amplification variables x1,...,x:, node variables u for every vertex u
in AU B and super-edge variables e for every super-edge e in H. The clauses of
¢ belong to the following groups:

amplification clauses: there is a clause 2; — u for every i € {1,...,¢} and for
every u € AU B,

witness clauses: there is a clause u, v — e for every super-edge e of H and for
every pair of nodes u € A and v € B witnessing e,

feedback clauses: there is a clause ey, ..., e, = u for every v € AU B, where
e1,€e2,...,ep are the super-edges of H.

As ¢ is definite, all its prime implicates are definite. Also, as ¢ consists of non-
unit definite clauses, all its prime implicates are non-unit (the all-zero vector
satisfies ¢ and falsifies all unnegated variables). For a further analysis of the
prime implicates of ¢, we make use of forward chaining.

Lemma 3. Let x be an amplification variable. Then the prime implicates con-
taining x are clauses of the form x — v, where v is a node or super-edge variable.



Lemma 4. Let U be a set of node variables such that U is not a solution to
MINREP , and U’ be the set of super-edge variables witnessed by U. Then every
implicate with body contained in U UU’ has head in U’.

Lemma 5. Let x be an amplification variable and let ¢ be a prime and irre-
dundant Horn formula equivalent to . Then v has at least OPT(M)/2 clauses
containing x.

Based on these lemmas one can prove that the reduction is gap-preserving.

Lemma 6 (Gap preserving reduction lemma).

(a) If OPT(M) = a+ B3, then OPT(p) <t-(a+ ) +m+s.
(b) If OPT(M) > (a + f3) - 2°¢" "¢ then, OPT(p) > t(a + f3) - 2\°8

1—e

s /2.

Our result now follows from the inapproximability result for MINREP mentioned
above.

5 Formulas with new variables

In this section we consider versions of the Horn minimization problem where one
can introduce new variables in order to compress the formula.

5.1 General extensions

First we consider the general version where there is no restriction on the way
new variables are introduced.

Definition 1 (Generalized equivalence). [17] Let X be a set of variables.
Formulas ¢ and ¢ are X -equivalent if for every clause C' involving only variables
from X it holds that ¢ = C iff v = C.

Consider the set of variables X = {x1,...,Zn,y1,- -, Yn, u} and the 2™-clause
Horn formula ¢ = A(v1,...,v, — u) where v; € {z;,y;} fori =1,...,n, and
the conjunction includes all possible such selections. As no resolutions can be
performed, it follows that all the prime implicates of ¢ are the clauses themselves.
Let now {z1,...,2,} be new variables. Then the (2n + 1)-clause Horn formula
Y= (21,...,20n 2> W) AN_ (i = 2;) A(yi — 2) is X-equivalent to ¢. Thus the
introduction of new variables can lead to an exponential compression in size.

For knowledge representation formalisms it is useful to have an efficient pro-
cedure to decide equivalence. Thus the following result of [17] suggests that
general extensions of Horn formulas are too general for applications.

Theorem 4. [17] Generalized equivalence of definite Horn formulas is co-NP-
complete.



5.2 Steiner extension

The proof of Theorem 4 shows that generalized equivalence is already hard if new
variables are introduced in a rather restricted manner. This gives a motivation
to consider even more stringent restrictions on the introduction of new variables.

Definition 2 (Steiner extension). Let ¢ be a Horn formula and X be a subset
of its variables. Then ¢ is a Steiner extension over X if every variable not in
X occurs in @ either as a head, or as a single body variable in a binary definite
clause having its head in X .

The corresponding notion of equivalence is the following.

Definition 3 (Steiner equivalence). Let X be a set of variables. Horn for-
mulas ¢ and 1) are Steiner X -equivalent if

— ¢ and ¢ are X -equivalent,
— both ¢ and v are Steiner extensions over X.

The Horn formulas in (1) and (2) in Section 1.1 are both Steiner extensions
over X = {x1,...,%n,Y1,---,Yn}, and they are Steiner X-equivalent. On the
other hand, the example in Section 5.1 is not a Steiner extension as additional
variables occur in the body of a non-binary clause. In contrast to Theorem 4,
Steiner equivalence can be decided efficiently.

Proposition 1. There is a polynomial algorithm which, given a Steiner exten-
sion @ over X, computes a Steiner X -equivalent Horn formula ¥(X) containing
only the variables in X such that size(y) = O(size(p)?).

The Steiner X-equivalence of ¢ and @2 can be decided by using Proposition 1
to produce formulas 1 (X) and ¢2(X) and checking their equivalence.

Corollary 1. Steiner equivalence of Horn formulas is in P.
The minimization problem for Steiner equivalence is the following.

Definition 4 (Steiner minimization of Horn formulas). Given a Horn
formula ¢ over variables X, find a minimal size Horn formula that is Steiner
X -equivalent to .

Using the correspondence between bipartite graphs and Horn formulas of
binary clauses discussed earlier, Theorem 2 can be used to show the following.

Theorem 5. Steiner minimization of definite Horn formulas is MAX-SNP-
hard.

We now show that Steiner minimization of definite Horn formulas has an
efficient approximation algorithm with performance guarantee o(n).



Remark 2. Tt may be assumed w.l.o.g. that Horn formulas to be minimized have
no unit clause prime implicates. This holds as every prime representation can
be partitioned into those unit clauses and a set of clauses not containing any
variable that occurs in a unit clause prime implicate. The second half then can
be minimized separately.

Theorem 6. There is a polynomial time algorithm with approximation ratio
O(nloglogn/(logn)'/*)

for Steiner minimization of definite Horn formulas, where n is the number of
variables in the original formula.

The algorithm uses several procedures. It uses previous algorithms for listing
prime implicates of Horn formulas and for body minimization. It also uses a
procedure for the exact minimization of Horn formulas having a short equivalent
formula and the bipartite graph partition algorithm of Section 3.

The prime implicate listing problem for Horn formulas is to produce a list of
all prime implicates of a Horn formula. As the number of prime implicates can
be exponential in the size of the original formula, a possible criterion of efficiency
is total polynomial time, i.e., time polynomial in the combined size of the input
and the output. Boros, Crama and Hammer [9] give an algorithm which lists all
prime implicates of a Horn formula, in time polynomial in the size of the formula
and the number of prime implicates.

Consider the following special case of (standard) Horn minimization.

Problem 1 (v/logn-Horn minimization). Given a Horn formula ¢ over n vari-
ables, find an equivalent minimal size Horn formula of size at most /logn if
such a formula exists, or output ‘none’.

Lemma 7. The /logn-Horn minimization problem is polynomial-time solvable.

A further ingredient of the algorithm is an efficient procedure for body min-
imization. The body minimization problem for Horn formulas asks for an equiv-
alent Horn formula with the minimal number of distinct bodies. While Horn
minimization is hard, there are efficient algorithms for body minimization. Such
algorithms were found in several different contexts, such as implicational sys-
tems [19] (see also [11]), functional dependencies for databases [32], directed
hypergraphs [4] and computational learning theory([3].

Given a Horn formula y over a set of variables X, we now describe a con-
struction of a Steiner extension ¢ = STEINER(x) of x. Let Bodies(x) denote
the set of bodies in x, and Heads(x) denote the set of heads in y. Form a bipar-
tite graph G(x) with parts Bodies(x) and Heads(x), adding an edge between
a body and a head if the corresponding Horn clause occurs in x. Let G, ..., G,
be a decomposition of G(x) into bicliques obtained by the graph partition pro-
cedure of Theorem 18. Let the bipartite graphs in the decomposition have parts

8 The bipartite graphs need not be balanced. Also, for this application it would be
sufficient to consider coverings instead of partitions. The result of Section 3 is for-
mulated for balanced partitions in order to give a stronger positive result.



A; C Bodies(x) and B; C Heads(x) for i = 1,...,t. Introduce new variables
Y1,---,Yt, and let v = STEINER(x) consist of the clauses b — y; and y; — h
for every b€ A; and h € B;, i =1,...,t.

In the following description of the algorithm let v/log n-HORN-MIN denote
the procedure of Lemma 7 and let MIN-BODY be an efficient body minimization
procedure.

Input: a definite Horn formula ¢

Algorithm:

if ¢ = \/logn-HORN-MIN(y) # ‘none’ then return
else return STEINER(MIN-BODY (¢))

The performance bound of the algorithm follows by considering different cases
depending on the value of OPT () and the relationship between the number of
bodies and heads returned by the body minimization procedure.

6 Restricted Horn minimization

A special case of the Horn minimization problem is when only clauses from
the original formula may be used in the new formula. Finding an irredundant
subset of clauses representing the input function can always be done in polyno-
mial time using the standard Horn formula procedures. However, there may be
many irredundant formulas, having different sizes. The inapproximability result
in Theorem 7 below shows that in fact it is hard to approximate the shortest
one, even if we assume that the formula to be minimized is 3-Horn.

Theorem 7. For any fired 0 < ¢ < 1, unless NPCDTIME(n?°W09(™)  the re-

stricted Horn minimization problem is glog’ ™ "-inapproximable, even for definite
3-Horn formulas.

As noted in the introduction, in the case of restricted Horn minimization
one can also try to mazimize the number of deleted clauses. We refer to this
problem below as Horn maximization. In contrast to Theorem 7, for definite
2-Horn formulas constant approximation is possible.

Theorem 8.

(a) Both the Horn minimization and Horn mazimization problems are MAX-
SNP-hard for definite 2-Horn formulas without unit clauses.

(b) Restricted Horn minimization for definite 2-Horn formulas admits a 1.5-
approximation.

(¢) Restricted Horn maximization for definite 2-Horn formulas admits a 2-
approzimation.

In view of Remark 2, these results follow from [5,42] and the correspondence
between Horn formulas with binary clauses and directed graphs.

Remark 3. For (a), the best inapproximability constants can be be obtained
by using a randomized construction of a special class of Boolean satisfiability
instances by Berman et al.[6] giving an inapproximability constant of 1+ (1/896)
for the minimization version and 1+ (1/539) for the maximization version.
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