

 Int. J. Bioinformatics Research and Applications, Vol. 1, No. 2, 2005 145

 Copyright © 2005 Inderscience Enterprises Ltd.

Highly scalable algorithms for robust string
barcoding

Bhaskar DasGupta
Department of Computer Science,
University of Illinois at Chicago,
Chicago, 60607-7053 IL
E-mail: dasgupta@cs.uic.edu

Kishori M. Konwar, Ion I. Mandoiu* and
Alex A. Shvartsman
Computer Science and Engineering Department,
University of Connecticut, 371 Fairfield Rd., 2155 Unit,
Storrs, 06269 2155 CT
E-mail: kishori@cse.uconn.edu E-mail: ion@cse.uconn.edu
E-mail: aas@cse.uconn.edu
*Corresponding author

Abstract: String barcoding is a recently introduced technique for genomic
based identification of microorganisms. In this paper we describe the
engineering of highly scalable algorithms for robust string barcoding. Our
methods enable distinguisher selection based on whole genomic sequences of
hundreds of microorganisms of up to bacterial size, on a well equipped
workstation. Experimental results on both randomly generated and NCBI
genomic data show that whole-genome based selection results in a number of
distinguishers nearly matching the information theoretic lower bounds for the
problem.

Keywords: string barcoding; setcover problem; greedy algorithm.

Reference to this paper should be made as follows: DasGupta, B.,
Konwar, K.M., Mandoiu, I.I. and Shvartsman, A.A. (2005) ‘Highly scalable
algorithms for robust string barcoding’, Int. J. Bioinformatics Research and
Applications, Vol. 1, No. 2, pp.145–161.

Biographical notes: Bhaskar DasGupta received his PhD from the University
of Minnesota. Subsequently he held Post Doctoral positions at the DIMACS
Institute of Rutgers University, and at the University of Waterloo and
McMaster University in Canada before joining the Camden campus of Rutgers
University as a Faculty member. Currently, he is an Assistant Professor in the
University of Illinois at Chicago. His main research interests include Designing
Combinatorial Approximation Algorithms for Computationally Challenging
Problems in Bioinformatics and several other areas. His research has been
supported by several NSF research grants. He was the recipient of the
NSF CAREER award in 2004.

Kishori M. Konwar received his MSc Degree in Physics from the Indian
Institute of Technology, Kanpur, India, in 1998 and his MTech Degree in
Computer Science from the Indian Statistical Institute, Calcutta, India, in 2000.

 146 B. DasGupta, K.M. Konwar, I.I. Mandoiu and A.A. Shvartsman

Presently, he is pursuing his PhD Degree at the University of Connecticut,
Storrs.

Ion I. Mandoiu received his MS Degree from Bucharest University in 1992 and
his PhD Degree from the Georgia Institute of Technology in 2000, both in
Computer Science. He is now an Assistant Professor with the Computer
Science and Engineering Department at the University of Connecticut. His
research focuses on the Design and Analysis of Exact and Approximation
Algorithms for NP-hard Optimisation Problems, particularly in the areas of
Bioinformatics and Computational Biology, VLSI Computer Aided Design,
and Ad-hoc Wireless Networks.

Alexander Allister Shvartsman is on the Faculty of Computer Science and
Engineering Department at the University of Connecticut and he is a Research
Associate at the Laboratory for Computer Science at the Massachusetts
Institute of Technology. Previously he was a Member of Technical Staff at Bell
Labs from 1981 to 1982, and later he had led the development of distributed
systems in the areas of Manufacturing Automation, Resource Management and
Interactive Multimedia at Digital Equipment Corporation from 1983 to 1994
and Logica, Inc. from 1994 to 1995. His primary research interests are in the
Principles and Practices of Dependable Distributed Computing. He graduated
from secondary school in 1972 in Chisinau, Moldova. He received a BS from
Stevens Institute of Technology in 1979, an MS from Cornell University in
1981, and a PhD from Brown University in 1992, all in Computer Science.

1 Introduction

String barcoding is a recently introduced technique for genomic-based identification of
microorganisms such as viruses or bacteria. The basic barcoding problem (Rash and
Gusfield, 2002) is formulated as follows: given the genomic sequences g1, ..., gn of n
microorganisms, find a minimum number of strings t1 ,..., tk distinguishing these genomic
sequences, i.e., having the property that, for every gi ≠ gj, there exists a string tl which is a
substring of gi or gj, but not of both. A closely related formulation was independently
proposed in Borneman et al. (2001), where it is assumed that it is possible to detect not
just the presence or absence of a distinguisher ti, but also the number of repetitions of ti as
a substring, up to a threshold of R > 0. The formulation in Rash and Gusfield (2002),
which we adopt in this paper, corresponds to R = 1.

Identification is performed by spotting or synthesising on a microarray, the
Watson-Crick complements of the distinguisher strings t 1 , . . . , t k , and then hybridising
to the array the fluorescently labelled DNA extracted from the unknown microorganism.
Under the assumption of perfect hybridisation stringency, the hybridisation pattern can
be viewed as a string of k zeros and ones, referred to as the barcode of the
microorganism. By construction, the barcodes corresponding to the n microorganisms
are distinct, and thus the barcode uniquely identifies any one of them.
To improve identification robustness, one may also require redundant distinguishability
(i.e., at least m different distinguishers for every pair of microorganisms, where m > 1 is
some fixed constant) and impose a lower bound on the edit distance between any pair of
selected distinguishers (Rash and Gusfield, 2002).

 Highly scalable algorithms for robust string barcoding 147

The algorithms previously proposed for string barcoding are based on integer
programming (Rash and Gusfield, 2002), and on Lagrangian relaxation and simulated
annealing (Borneman et al., 2001). Unfortunately, the run time of these algorithms does
not scale well with the number of microorganisms and the length of the genomic
sequences, e.g., the largest instance sizes reported in Rash and Gusfield (2002) have a
total genomic sequence length of around 100,000 bases.

In this paper we describe the engineering of highly scalable algorithms for robust
string barcoding. Our methods enable distinguisher selection based on whole genomic
sequences of hundreds of microorganisms of up to bacterial size on a well equipped
workstation, and can be easily parallelised to further extend the applicability range to
thousands of bacterial size genomes. Whole-genome based selection is beneficial in at
least two significant ways.

• it simplifies assay design since the DNA of the unknown pathogen can be amplified
using inexpensive general purpose, whole-genome amplification methods such as
specialised forms of degenerate primer multiplex PCR (Cheung and Nelson, 1996)
or multiple displacement amplification (Dean et al., 2002)

• whole-genome based selection results in a reduced number of distinguishers, often
very close to the information theoretic lower bound of [log2n].

Our algorithms are based on a simple greedy selection strategy – in every iteration we
pick a substring that distinguishes the largest number of ‘not yet distinguished’ pairs of
genomic sequences. This selection strategy is an embodiment of the greedy setcover
algorithm (see, e.g., Vazirani, 2001) for a problem instance with O(n2) elements
corresponding to the pairs of sequences. Hence, by a classical result of (Chvatal, 1979;
Johnson, 1974; Lovasz, 1975), our algorithm guarantees an approximation factor of
2 ln n for the barcoding problem. Very recently, Berman et al. (2004a) have shown
that no approximation algorithm can guarantee a factor of (1 – ∈) ln n unless
NP = DTIME(nloglogn), and also proposed an information content greedy heuristic
achieving an approximation factor of 1 + ln n. Experimental results given in Section 5
show that our setcover greedy algorithm produces solutions of virtually identical quality
to those obtained by the information content heuristic.

The setcover greedy algorithm is extremely versatile, and can be easily extended to
handle redundancy and minimum edit distance constraints, as well as other biochemical
constraints on individual distinguisher sequences. Furthermore, unlike the information
content heuristic of Berman et al., (2004a), the greedy setcover algorithm can also take
into account genomic sequence uncertainties expressed in the form of degenerate bases.
Although degenerate bases are ubiquitous in genomic databases, previous works have not
recognised the need to properly handle them. For example, experiments in Rash and
Gusfield (2002) have implicitly treated degenerate bases in the input genomic sequences
as distinct nucleotides; under this approach a substring of degenerate nucleotides such as
NNNNN, might be erroneously selected as a distinguisher although it encodes for any
possible substring of length 5.

To achieve high scalability, our implementation relies on several techniques. First,
we use an incremental algorithm for quickly generating a representative set of candidate
distinguishers and collecting all their occurrences in the given genomic sequences.
To reduce the number of candidates, we avoid generating any substring that appears in all
genomic sequences, which typically eliminates very short candidates. For each genomic

 148 B. DasGupta, K.M. Konwar, I.I. Mandoiu and A.A. Shvartsman

sequence, we also generate only one of the substrings that appear exclusively in that
sequence, this optimisation eliminates from consideration, most candidate distinguishers
above a certain length. Unlike the suffix tree method proposed by Rash and
Gusfield (2002), our approach may generate multiple candidates that appear in the same
set of k genomic sequences (for 1 < k < n). However, the penalty of having to evaluate
redundant candidates in the candidate selection phase is offset in practice by the faster
candidate generation time. Finally, the efficient implementation of the greedy selection
phase of the algorithm combines a partition based method for computing the coverage
gain of candidate distinguishers (this method was first proposed in the context of the
information content heuristic in Berman et al. (2004a)) with a ‘lazy’ strategy for updating
coverage gains.

The rest of the paper is organised as follows. In Section 2 we give formal problem
formulations and review previous work. In Section 3 we describe the efficient
implementation of the setcover greedy algorithm for the basic string barcoding problem.
In Section 4 we discuss the modifications required in the implementation for handling
degenerate bases in input genomic sequences, redundancy and edit distance constraints,
as well as biochemical constraints such as constraints on melting temperature and
GC-content. In Section 5 we give the results of a comprehensive experimental study
comparing, on both randomly generated and genomic data, our setcover greedy algorithm
with other scalable methods including the information content heuristic and a recent set
multicover, randomised, rounding approximation algorithm. We conclude in Section 6
with directions for further research.

2 Preliminaries and problem formulation

Let Σ = {a, c, g, t} be the DNA alphabet, and Σ* be the set of string over Σ. A degenerate
base is a nonempty subset of Σ. We identify degenerate bases of cardinality one with the
respective nondegenerate bases. Given a DNA string x = x1 ... xk ∈ Σ* and a string of
degenerate bases y = y1 ... yn, n ≥ k, we say that
• x has a perfect match at position i of y iff yi+j–i = {xj} for every 1 ≤ j ≤ k,
• x has a perfect mismatch at position i of y iff there exists 1 ≤ j ≤ k such that

1{ }j i jx y + − ,

• x has an uncertain match at position i of y iff {xj} ⊆ yi+j–1 for every 1 ≤ j ≤ k, but
yi+j–1 ≠ {xj} for at least one j.

String x = x1 ... x k ∈ Σ* distinguishes two sequences of degenerate bases y and z iff

(a) x has a perfect match at one or more positions of y, and has perfect mismatches at all
positions of z, or, symmetrically

(b) x has a perfect match at one or more positions of z, and has perfect mismatches at all
positions of y.

The robust string barcoding problem with degenerate bases is formulated as follows:
Given sequences of degenerate bases g1, ... gn and redundancy threshold m, find a
minimum number of strings t 1 , ... , tk ∈ Σ* such that, for every i ≠ j, there exist m
distinct strings tl distinguishing gi and gj.

 Highly scalable algorithms for robust string barcoding 149

It is easy to see that, for m = 1, at least log2n distinguishers are needed to
distinguish any n genomic sequences. However, achieving this lower bound requires
distinguishers that have perfect matches in nearly half of the sequences. In practice,
additional constraints, such as lower bounds on the length of distinguishers, may result in
no string having perfect matches in a large number of sequences, and therefore much
more than a logarithmic number of distinguishers. The next theorem, the proof of which
we omit due to space constraints, establishes under a simple probabilistic model that
there is an abundance of distinguishers perfectly matching at least a constant fraction of
the input sequences.

Theorem 1: Consider a random instance of the string barcoding problem over a fixed
alphabet Σ in which there are n strings, each string s = s0s1 ... sl–1 is of length exactly l,
selected independently at random with Pr[si = a] = 1/|Σ| for any i and any a ∈ Σ. Also
assume that l is sufficiently large compared to n. Then, for a random string x ∈ Σ* of
length O(log l), the expected number of the input strings which contain x as a substring is
pn for some constant 0 < p < 1.

Proof: Assume n and l to be sufficiently large for asymptotic results and σ = |Σ| > 1 to be
fixed. It suffices to show that for a random string x ∈ Σ* of length k = O(log l),
Pr[x is a substring of s] = p for some constant 0 < p < 1 and s is any one of the input n
strings. In Odlyzko (1995) examples 6.4, 6.7, 6.8, 9.3 and 10.11, Odlyzko uses the
bounds and generating function described in Guibas and Odlyzko (1981) to give
asymptotic bounds on Pr[x is a substring of s] when σ = 2. The result can be generalised
to the case of any fixed σ > 2 as follows. For a fixed x = x1x2 ... xk, define the correlation

polynomial Cx(z) of x as
1

0
() ()

k
j

x xj
C z c j z

−

=
= ∑ where cx(0) = 1 and, for 1 ≤ j < k

1 2 1 21
()

0 otherwise
k j j j k

x

if x x x x x x
c j − + += += 



Let fx(l) be the number of strings in Σ* of length l that do not contain x as a substring and

Fx(z) =
0

() l
xl

f l z
∞

=∑ be the generating function for this number. Then,

()() .
(1) ()

x
x k

x

C zF z
z z C zσ

=
+ −

From this, it follows that

()
(1/) / (1)[] 1 ()

k
k

x

l O lk
C l OPr x s c O

σσ
σ σ

−− +
−= − +e e≺

for all sufficiently large n, k and l, where e is the base of natural logarithm. Note that
1 < Cx(σ) < 2 and for a specific x, Cx(σ) can be calculated exactly. Now, setting
k = Θ(logσl) gives Pr[x is a substring of s] = p for some constant 0 < p < 1. □

 150 B. DasGupta, K.M. Konwar, I.I. Mandoiu and A.A. Shvartsman

Previous work: The robust string barcoding problem was introduced (for the case when
genomic sequences contain no degenerate bases) by Rash and Gusfield (2002); they
provided some experimental results based on integer programming methods, and left
open the exact complexity and approximability of this problem. The problem without
redundancy constraints was independently considered by Borneman et al. (2001), who
also considered nonbinary distinguishability (based on detecting the multiplicity of a
distinguisher as a substring) and a slightly more general problem in which the objective
is to pick a given number of distinguishers, maximising the number of distinguished
pairs. The main motivation for the formulations in Borneman et al. (2001) comes from
minimising the number of oligonucleotide probes needed for analysing populations of
ribosomal RNA gene (rDNA) clones by hybridisation experiments on DNA microarrays.
Borneman et al. provided computational results using Lagrangian relaxation and
simulated annealing techniques, and noted that the problem is NP-hard assuming that the
lengths of the sequences in the prespecified set were unrestricted. Very recently, Berman,
DasGupta and Kao (2004) considered a general framework for test set problems that
captured the string barcoding problem and its variations; their main contribution is to
establish theoretically matching lower and upper bounds on the worst-case
approximation ratio. Cazalis et al. (2004) have independently investigated similar greedy
distinguisher selection strategies for string barcoding. Unlike our work, the algorithms in
Cazalis et al. (2004) consider only a small random subset of the possible distinguishers
and also prescribe their length in order to achieve practical running time.

3 Efficient implementation of the greedy setcover algorithm

In this Section we present the implementation of the setcover greedy algorithm in the
context of the basic string barcoding problem, i.e., we disregard redundancy constraints
and the presence of degenerate bases in the input sequences. Implementation
modifications needed to handle the robust barcoding problem in its full generality are
discussed in Section 4.

Our implementation of the setcover greedy algorithm has two main phases: a
candidate generation phase and a candidate selection phase. In the candidate generation
phase, a representative set of candidate distinguishers is generated from the given
genomic sequences. For each generated candidate, we also compute the list of sequences
with which the candidate has perfect matches; this information is needed in the candidate
selection phase. To reduce the number of candidates, we avoid generating any substring
that appears in all genomic sequences, which typically eliminates very short candidates.
For each genomic sequence, we also make sure to generate only one of the substrings
that appear exclusively in that sequence; this optimisation eliminates from consideration,
most candidate distinguishers above a certain length. Unlike the suffix tree method
proposed by Rash and Gusfield (2002), our approach may generate multiple candidates
that appear in the same set of k genomic sequences (for 1 < k < n). However, the penalty
of having to evaluate redundant candidates in the candidate selection phase is offset in
practice by the faster candidate generation time.

 Highly scalable algorithms for robust string barcoding 151

Efficient implementation of the above candidate elimination rules is achieved by
generating candidates in increasing order of length and using exact match positions for
candidates of length l – 1 when generating candidates of length l. For each position p in
the input genomic sequences, we also maintain a flag to indicate whether or not the
algorithm should evaluate candidate substrings starting at p. The possible values for the
flag are TRUE (the substring of current length starting at p is a possible candidate),
FALSE (we have already saved the substring of current length starting at p as a
candidate), or DONE (all candidates containing as prefix the substring of current length
starting at p are redundant, i.e., the position can be skipped for all remaining candidate
lengths). Initially all flags are set to TRUE. The FALSE flags are reset to TRUE
whenever we increment the candidate length; however, we never reset DONE flags. For
every candidate length l, candidate evaluation proceeds sequentially over all positions of
the genomic sequences. Whenever we reach a position p whose flag is set to TRUE, we
use the list of matches for the substring of length l – 1 starting at p (or a linear time string
matching algorithm if l is the minimum candidate length) to determine the list of matches
for the substring of length l starting at p, and set the flag to FALSE for all positions
where these matches occur. If the substring of length l starting at p has matches only
within the source sequence, and we have already generated a ‘unique’ candidate for this
sequence, we discard the substring and set the flag of p to DONE.

A further speedup technique is to generate candidate distinguishers from a strict
subset of the input sequences. Although this speedup can potentially affect solution
quality, the results in Section 5 show that the solution quality loss for whole-genome
barcoding is minimal, even when we generate candidates based on a single input
sequence, which corresponds to preassigning a barcode of all 1’s to this sequence.

After the set of candidates is generated we select the final set of distinguishers in the
greedy phase of the algorithm (Figure 1). We start with an empty set of distinguishers D.
While there are pairs of sequences that are not yet distinguished by D, we loop over all
candidates and compute for each candidate c, the number ∆(c, D) of pairs of sequences
that are distinguished by c but not by D, then add the candidate c with largest ∆ value
to D. Two sequences s and s′ are distinguished by a candidate c iff exactly one of s and s′
appears in the list Pc of perfect matches of c, which is available from the candidate
generation phase. A simple method for computing ∆ values is to maintain an n × n
symmetric matrix indicating which of the pairs of sequences are already distinguished,
and then to probe the |Pc|(n – |Pc|) entries in this matrix corresponding to pairs (s, s′) with
s ∈ Pc and s' ∉ Pc when computing ∆(c, D). A more efficient method is based on
maintaining the partition defined on the set of sequences by D. If the partition defined by
D consists of sets S1, ... ,Sk, then we can compute ∆(c, D) in O(k + |Pc|) = O(n) time using
the observation that

1

(,) \ .
k

i c i c
i

c D S P S P
=

∆ = ∩ ⋅∑ (1)

In addition to the fast partition based computation, our implementation of the greedy
selection phase uses a lazy strategy for updating the ∆ values, based on the observation
that they are monotonically nonincreasing during the algorithm (see Figure 1).

 152 B. DasGupta, K.M. Konwar, I.I. Mandoiu and A.A. Shvartsman

Figure 1 The setcover greedy candidate selection algorithm

4 Extended barcoding requirements

In this Section we describe the modifications needed to the basic implementation given in
previous section when handling practical extensions of the barcoding problem.

Degenerate bases:

In the presence of degenerate bases in the input genomic sequences, the hybridisation of
a particular distinguisher may depend on which bases are actually present at positions
with degeneracy >1. The greedy setcover algorithm takes into account this possibility for
uncertain hybridisation by only counting a pair (g, g′) as distinguished by a candidate c if
and only if c has a perfect match with one and only perfect mismatches with the other.
For each generated candidate, in addition to the list of sequences that have only perfect
matches we also save a list containing all sequences with at least one uncertain match.
This allows fast computation of the (typically much longer) list of sequences having only
perfect mismatches. To avoid generating candidate distinguishers containing degenerate
bases, we set the DONE flag as soon as the corresponding substring extends past a
degenerate base. Finally, since the partition of genomic sequences is no longer defined in
the presence of uncertain hybridisation; formula (1) is no longer applicable and we have
to use the n × n ‘distinguished so far’ matrix for computing ∆ values.

Biochemical constraints on individual distinguishers

Since selected distinguishers must hybridise under the same experimental conditions, in
practice it is natural to impose a variety of constraints on individual distinguishers, such
as minimum and maximum length, GC content, melting temperature, etc. Furthermore,
we may want to avoid using as distinguishers, strings which appear in other organisms
that may contaminate the sample. All individual constraints are easily incorporated as a
simple filter in the candidate generation phase.

Redundancy constraints and minimum edit distance constraints

In practice, robust identification requires redundant distinguishability, i.e., more than one
distinguisher distinguishing any given pair of genomic sequences. One may also impose
a lower bound on the edit distance between any pair of selected distinguishers (Rash and

 Highly scalable algorithms for robust string barcoding 153

Gusfield, 2002). Taking into account redundancy requirements is done by maintaining
the number of times each pair of genomic sequences has been distinguished. In order to
incorporate the minimum edit distance constraint, after selecting a distinguisher we
eliminate from consideration, all candidates that are within an edit distance smaller than
the given threshold.

5 Experimental results

We performed experiments on both randomly generated instances and NCBI databases.
Random testcases were generated from the uniform distribution induced by assigning
equal probabilities to each of the four nucleotides; these testcases do not contain any
nucleotides with degeneracy >1. We also used several testcases consisting of sequences
extracted from the NCBI databases (NCBI, 2004) as described in Section 5.3. All
experiments were run on a PowerEdge 2,600 Linux server with 4 Gb of RAM and dual
2.8 GHz Intel Xeon CPUs – only one of which is used by our sequential algorithms.

5.1 Algorithm scalability

As described in Section 3, there are two main phases in the algorithm: candidate
distinguisher generation, and greedy candidate selection. Figure 2 gives the average
candidate selection CPU time for n random sequences of length 10,000 and redundancy
one, averaged over 10 instances of each size. Combining the two speedup techniques for
this phase (partition based coverage gain computation and lazy update of candidate
gains) results in over two orders of magnitude reductions in runtime.

Figure 2 Candidate selection CPU time (in seconds) for n random sequences of length 10,000
and redundancy one, averaged over 10 instances of each size.

As mentioned in Section 3, a further speedup technique is to generate candidate
distinguishers only from a small number of ‘source’ input sequences. Table 1 gives the
average number of candidates, number of matches, runtimes for candidate generation and
greedy selection, and number of selected distinguishers for instances with 1,000 random

 154 B. DasGupta, K.M. Konwar, I.I. Mandoiu and A.A. Shvartsman

sequences of length 10,000 and redundancy one, when the number of source sequences is
varied from 1,000 down to one (the source sequences were chosen at random). Although
this speedup can potentially affect solution quality, we found that on large instances, the
solution quality loss is minimal even when we generate candidates based on a
single input sequence; this case corresponds to preassigning a barcode of all 1’s to the
source sequence. The technique reduces significantly, both the memory requirement
(which is proportional to the number of candidates and the number of times they match
input sequences) and the runtime required for candidate generation and greedy selection.
As shown in Table 2, this makes the method applicable to hundreds of sequences of
bacterial genome size on a well equipped workstation.

Table 1 Average solution statistics for instances with 1,000 random sequences of
length 10,000, redundancy one, and number of source sequences varying from
1,000 down to 1

#Source seq. 1000 50 10 5 4 3 2 1
#Candidates (×103) 7213.6 1,438.6 402.7 225.9 186.9 146.1 102.8 55.7

#Matches (×l06) 55.7 35.2 23.2 18.4 16.9 15.0 12.5 8.7

Gen. time 132.3 44.7 35.5 31.4 31.3 30.6 28.1 24.9
Selection time 31.7 10.7 5.3 3.6 3.4 3.1 2.3 1.6

#Distinguishers 14.1 14.1 14.1 14.1 14.0 14.1 14.2 14.5

Table 2 Average solution statistics for instances with up to 100 random sequences of
length 1,000,000 and redundancy one (number of source sequences set to 1)

n #Candidates #Matches Gen. time Select time #Dist.
10 2039766.8 8281127.2 45.1 0.6 4.0
20 2607128.9 16730749.0 87.0 1.3 5.0
30 2940246.3 25475766.3 129.1 1.6 5.0
40 3178773.8 34529068.3 172.2 2.6 6.0
50 3363016.8 43802244.9 216.1 3.6 6.6
60 3512271.5 53216933.1 262.7 4.7 7.0
70 3637129.4 62714814.3 303.9 5.1 7.0
80 3744452.1 72256768.1 347.4 6.3 7.4
90 3838282.2 81807129.2 395.5 8.0 8.0
100 3921359.6 91346850.3 444.4 8.5 8.0

Even when a single input sequence is used to generate candidate distinguishers, this will
still result in millions of candidates that must be evaluated by the greedy algorithm for
whole-genome barcoding. While our implementation of the setcover greedy algorithm
can efficiently handle millions of candidates (Table 2), this may be impractical for other
barcoding algorithms. As a more extreme speedup technique, Cazalis et al. (2004)
proposed using only a small number (2,000 in Cazalis et al. (2004)) of random candidates
in conjunction with various barcoding algorithms including greedy, simulated annealing,
and genetic algorithms. However, Cazalis et al. did not provide any data on the possible
solution quality loss from such extreme reductions in the number of candidates, and did
not evaluate the relative merits of alternative strategies for sampling these candidates.

 Highly scalable algorithms for robust string barcoding 155

In Figure 3 we plot the number of distinguishers selected by the greedy setcover
algorithm when run on a random subset of all possible candidates, under three different
candidate sampling strategies:

• from all source sequences, without length restrictions

• from a single random source sequence, without length restrictions

• from all source sequences, with length restricted to 7

Figure 3 Number of distinguishers selected by the greedy setcover algorithm from a random
subset of all possible candidates. Candidates are randomly chosen (a) from all
source sequences, without length restrictions; (b) from a single random source
sequence, without length restrictions; and (c) from all source sequences, with
length restricted to 7. Each data point represents the average over
100 instances, each consisting of 1,000 random sequences of length 10,000.
Redundancy was set to 1 in these experiments.

Length 7 was chosen here, since it leads to the smallest number of selected distinguishers
among all fixed distinguisher lengths for instances consisting of 1,000 random sequences
of length 10,000 such as those used in this experiment. We note that, although
Cazalis et al. (2004) suggest using distinguishers of length ≈ log2n for a set of n
sequences, this rule must be followed with caution. In general, a ‘most informative’
distinguisher is one that appears in exactly half of the sequences, and the typical length of
distinguishers with this property depends not only on the number of sequences, but also
on their length.

Figure 3 shows that even a few tens of thousands of random candidates sampled
using scenarios (b) and (c) above lead to a solution quality very close to that obtained by
the setcover greedy algorithm when run on all possible candidates. A much larger
number of candidates is required to achieve similar solution quality under scenario (c),
i.e., when sampling the random candidates from all sequences and without length
constraints. This finding can be explained by the fact that ‘most informative’ candidates
represent only a small fraction of the entire set of candidates, while they are more
densely represented in the sets of candidates sampled under the first two scenarios.

 156 B. DasGupta, K.M. Konwar, I.I. Mandoiu and A.A. Shvartsman

Table 3 gives the number of distinguishers returned by the setcover greedy algorithm
for redundancy varying between 1 and 20 on between 10 and 1,000 random sequences of
length 10,000. For comparison, we include in the table the results obtained by the
information content heuristic results of (Berman et al., 2004a), as well as the information
theoretic lower bound of [log2n] for the case when the redundancy requirement is one.
We note that the number of distinguishers returned by the setcover greedy algorithm is
virtually identical to that returned by the information content heuristic, despite the latter
one having a better approximation guarantee (Berman et al., 2004a). Furthermore, the
results for redundancy one are within 50% of the information theoretic lower bound for
the range of instance sizes considered in this experiment. The gap between the solutions
returned by the algorithms and the lower bound does increase with the number of
sequences; however it is not clear how much of this increase is caused by degrading
algorithm solution quality, and how much by degrading lower bound quality.

Table 3 Number of distinguishers returned by the setcover greedy algorithm (SGA) for
varying redundancy and number of sequences. For each value of n we report the
average over 10 testcases, each consisting of n random sequences of length 10,000.
For comparison we include information content heuristic results (ICH) and the
information theoretic lower bound of log2n for redundancy one (LB)

Algorithm r n = 10 n = 20 n = 50 n =100 n = 200 n =500 n = 1000
LB 1 4 5 6 7 8 9 10
ICH 1 4.0 5.0 7.0 8.0 10.0 12.2 14.1
SGA 1 4.0 5.0 7.0 8.0 10.0 12.3 14.1
SGA 2 6.7 8.3 10.6 12.5 14.1 16.7 18.9
SGA 3 8.8 11.6 13.6 15.5 17.3 20.1 22.4
SGA 4 10.8 14.0 16.5 18.7 20.7 23.5 26.1
SGA 5 13.6 16.6 19.5 21.5 23.7 26.8 29.5
SGA 10 22.5 26.8 32.0 34.6 37.5 41.7 44.9
SGA 20 43.0 47.6 55.6 59.5 63.4 68.0 72.6

We also compared our setcover greedy algorithm with a recently proposed multistep
rounding algorithm for set multicover (Berman et al., 2004b). The rounding algorithm
has the following steps:

• solve the fractional relaxation of the natural integer program formulation of problem
(Rash and Gusfield, 2002) (we used the commercial solver CPLEX 9.0 for
implementing this step)

• scale the fractional solution by an appropriate constant factor (see Berman et al.,
2004b for details)

• deterministically select all distinguishers with a scaled fractional value exceeding 1
• randomly select a subset of the remaining candidates, each candidate being chosen

with a probability equal to the scaled fractional value
• if the selected set of distinguishers is not yet feasible, add further distinguishers,

using the setcover greedy algorithm.

 Highly scalable algorithms for robust string barcoding 157

The approximation guarantee established in Berman et al. (2004b) for the general set,
multicover problem translates into an approximation factor of 2 ln n – ln r for robust
string barcoding with redundancy r, which suggests that the multistep rounding algorithm
is likely to improve upon the setcover greedy for high redundancy constraints. Table 4
gives the results of experiments comparing the setcover greedy and multistep rounding
algorithms on testcases consisting of up to 200 random sequences, each of length 1,000
for redundancy requirement ranging from 1 to 300. The results confirm that the multistep
rounding algorithm has better solution quality than setcover greedy when redundancy
requirement is large relative to the number of sequences, yet the setcover greedy has best
performance for most practical redundancy requirements.

Table 4 Number of distinguishers returned by the setcover greedy algorithm (SGA) and the
multi-step rounding algorithm in Berman et al. (2004b) (RND) for varying
redundancy and number of sequences. For each value of n we report the average over
10 testcases, each consisting of n random sequences of length 1,000. Boldface entries
correspond to instances for which the multi-step rounding algorithm has better
solution quality than setcover greedy.

Algorithm r n = 10 n = 20 n = 50 n = 100 n = 200
SGA 1 4.0 5.0 7.0 9.0 11.0
RND 1 5.0 6.8 10.5 13.0 16.0
SGA 2 6.3 8.2 11.2 12.9 15.0
RND 2 7.3 10.7 14.8 17.0 20.4
SGA 5 13.2 16.1 19.5 22.4 24.6
RND 5 13.2 18.2 23.5 27.3 31.2
SGA 10 22.8 27.0 32.1 36.1 39.4
RND 10 20.2 30.9 37.4 41.9 48.3
SGA 20 43.4 48.8 57.0 61.0 65.8
RND 20 38.9 50.7 62.6 69.4 76.2
SGA 50 100.9 112.0 125.6 133.8 142.0
RND 50 92.6 107.8 125.2 141.6 159.5
SGA 100 195.0 217.2 239.0 255.5 264.0
RND 100 184.9 205.2 236.0 270.0 289.0
SGA 200 392.00 432.30 471.70 495.40 512.40
RND 200 372.10 412.00 455.40 485.80 539.40
SGA 300 594.60 661.30 713.70 744.10 762.00
RND 300 571.30 633.10 693.80 726.10 757.70

5.2 Experiments on genomic data

In a first set of experiments we used 10 groups of testcases obtained from Rash and
Gusfield (2002), each consisting of random sets of viruses, respectively HIV strains,
extracted from GenBank. Most of these testcases contain a small number of degenerate
bases; detailed testcase parameters are given in Table 5. Hence, we cannot use the
partition method for computing the number of sequence pairs distinguished by a
candidate in the greedy selection phase, and we have to use the slower matrix

 158 B. DasGupta, K.M. Konwar, I.I. Mandoiu and A.A. Shvartsman

datastructure. Table 6 gives the average runtime and the number of distinguishers
selected by the setcover greedy algorithm on these testcases when using all available
candidates. For comparison, we also include the average number of distinguishers
obtained in Rash and Gusfield (2002) by solving an integer program formulation of the
problem using the CPLEX commercial optimisation package. However, the results in
Rash and Gusfield (2002) may be overly optimistic, since the underlying integer program
treats degenerate bases as distinct nucleotides. (We do not know if degenerate bases were
actually used in distinguishers selected by CPLEX since we do not have access to the
solutions in Rash and Gusfield (2002). With few exceptions, the greedy algorithm comes
very close to the solution computed by the integer program.

Table 5 Size and algorithm parameters for genomic instances

Test group #Test cases Avg. n Avg. str. len. Avg. #degen. lmin lmax Min edit r

hiv0 27 91.44 967.50 59.81 15 40 4 5
hiv1 26 89.28 684.91 53.19 15 40 4 2
hiv4 26 90.80 723.47 41.27 15 40 2 2
hiv5 26 90.40 1085.01 35.50 15 40 2 5
hiv6 26 90.92 849.47 45.77 15 40 4 5
len0 26 105.40 1086.28 36.27 17 21 4 5
s0 26 51.12 1123.17 54.27 15 40 4 5
s1 26 70.64 942.19 18.69 15 40 4 5
s2 26 105.96 897.63 29.96 15 40 4 5
s3 26 129.92 948.56 32.87 15 40 4 5

Source: Rash and Gusfield (2002).

Table 6 Average solution statistics for genomic instances from Rash and Gusfield (2002)

Test group #Candidates #Matches Gen. time Select time SGA #dist. ILP #dist.

hiv0 175707.8 440615.7 7.3 100.0 137.8 89.44
hiv1 158530.0 396909.4 4.4 43.0 70.8 45.12
hiv4 125694.3 333881.9 4.8 35.4 71.8 43.88
hiv5 146462.4 377735.3 8.3 104.8 177.0 132.76
hiv6 147135.1 388387.0 5.6 98.4 167.8 126.61
len0 42091.0 175841.9 3.4 26.7 180.6 160.29
s0 282467.7 726758.6 5.3 167.6 108.0 99.92
s1 123694.9 452387.2 5.5 65.1 126.8 117.20
s2 194253.1 755897.3 7.3 161.1 178.1 115.70
s3 278795.2 1075451.6 10.7 308.7 216.6 200.91

In a second set of experiments we ran our algorithm on a set of 29 complete microbial
genomic sequences extracted from NCBI databases (NCBI, 2004). Sequence lengths in
the set vary between 490 Kbases and 4.75 Mbases, with an average length of 2.6 Mbases
(over 76 Mbases total). Unlike random testcases, the sequences in the NCBI data set
contain a small number of degenerate bases, 861 bases in total. Therefore, we cannot use

 Highly scalable algorithms for robust string barcoding 159

the partition method for computing the number of sequence pairs distinguished by a
candidate in the greedy selection phase and we have to use the slower matrix
datastructure. In these experiments we varied the redundancy requirement from 1 to 20.
To see the effect of length and edit distance requirements on the number of
distinguishers, for each redundancy requirement we computed both an unconstrained
solution, and a solution in which distinguishers must have length between 15 and 40, and
there should be a minimum edit distance of six between every two selected distinguishers
(these values are similar to those used in Rash and Gusfield (2002)). In all experiments,
we generated candidates based only on the shortest sequence of 490 Kbases.

The results on this NCBI dataset are given in Table 7. Naturally, meeting higher
redundancy constraints requires more distinguishers to be selected. Additional length and
edit distance constraints further increase the number of distinguishers, but the latter is
still within reasonable limits. The length constraints reduce the number of candidates
(from 1,775,471 to 122,478), which, for low redundancy values has the effect of reducing
greedy selection time. However, for high redundancy requirements the reduction
in number of candidates is offset by the increase in solution size, and greedy
selection becomes more time consuming with length and edit distance than without
(selection time grows roughly linearly with solution size).

Table 7 Results on a set of 29 NCBI complete microbial genomes. Candidate generation time
is approximately 335 seconds for all combinations of parameters

Redundancy lmin lmax MinEdit Select time #Distinguishers

1 0 ∞ 0 14.2 6.0

1 15 40 6 2.6 8.0
5 0 ∞ 0 20.3 21.0

5 15 40 6 8.7 31.0
10 0 ∞ 0 22.9 41.0

10 15 40 6 16.4 60.0
20 0 ∞ 0 26.8 76.0

20 15 40 6 33.4 123.0

6 Conclusion

In this paper we have given highly scalable algorithms for the robust string barcoding
problem, and have shown that distinguisher selection based whole genomic sequences
results in a number of distinguishers nearly matching the information theoretic lower
bounds for the problem.

In ongoing work we are exploring heuristics and approximation algorithms for
several extensions of the string barcoding problem. First, we are considering the use of
probe mixtures as distinguishers. With most microarray technologies it is feasible to
spot/synthesise a mixture of oligonucleotides at any given microarray location. The DNA
of a pathogen will hybridise to such a location if it contains at least one substring
which is the Watson-Crick complement of one of the oligonucleotides in the mixture.
Using oligonucleotide mixtures as distinguishers can reduce the number of spots on the

 160 B. DasGupta, K.M. Konwar, I.I. Mandoiu and A.A. Shvartsman

array – and therefore barcode length – closer to the information theoretical lower bound
of log2n. The reduction promises to be particularly significant when reliable
hybridisation requires relatively long distinguishers; in these cases even the optimum
barcoding length is far from log2n (Rash and Gusfield, 2002). A special case of this
approach is the use of degenerate distinguishers similar to the degenerate primers that
have been recently employed in multiplex PCR amplification (Linhart and Shamir, 2002;
Souvenir et al., 2003). Degenerate distinguishers are particularly attractive for string
barcoding since their synthesis cost is nearly identical to the synthesis cost of a single
nondegenerate distinguisher (synthesis requires the same number of steps, the only
difference is that multiple nucleotides must be added in some of the synthesis steps).

In many practical pathogen identification applications, collected biological samples
may contain the DNA of multiple pathogens. This issue is considered to be particularly
significant in medical diagnosis applications, see, e.g., Gharizadeh et al. (2003) for
studies in detecting more than one HPV (human papiloma virus) genotype with varying
rate of multiple HPV infections carried by the same HPV carrier. In future work we plan
to develop extensions of the barcoding technique that can reliably detect multiple
pathogens for a given bound on the number of pathogens present.

Acknowledgment

The authors would like to thank Claudia Prajescu for her help with the implementation of
the multistep rounding algorithm in Berman et al. (2004b).

References
Berman, B., DasGupta, B. and Kao, M.Y. (2004a) ‘Tight approximability results for test set

problems in bioinformatics’, Proc. 9th Scandinavian Workshop on Algorithm Theory (SWAT),
Volume 3111 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp.39–50.

Berman, P., DasGupta, B. and Sontag, E. (2004b) ‘Randomized approximation algorithms for set
multicover problems with applications to reverse engineering of protein and gene networks’,
Proc. 7th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), volume 2748 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin. (Also to appear in a special issue on computational biology of
Discrete Applied Mathematics.), pp.39–50.

Borneman, J., Chrobak, M., Vedova, G.D., Figueora, A. and Jiang, T. (2001) ‘Probe selection
algorithms with applications in the analysis of microbial communities’, Bioinformatics,
Vol. 1, pp.1–9.

Cazalis, D., Milledge, T. and Narasimhan, G. (2004) ‘Probe selection problem: structure and
algorithms’, Proc. 8th Multi-Conference on Systemics, Cybernetics and Informatics
(SCI 2004), pp.124–129.

Cheung, V.G. and Nelson, S.F. (1996) ‘Whole genome amplification using a degenerate
oligonucleotide primer allows hundreds of genotypes to be performed on less than one
nanogram of genomic DNA’, Proc. Natl. Acad. Sci. USA., Vol. 93, pp.14676–14679.

Chvatal, V. (1979) ‘A greedy heuristic for the set covering problem’, Math. of Op. Res., Vol. 4,
pp.233–235.

Dean, F.B. et al. (2002) ‘Comprehensive human genome amplification using multiple displacement
amplification’, Proc. Natl. Acad. Sci. USA., Vol. 99, pp.5261–5266.

 Highly scalable algorithms for robust string barcoding 161

Gharizadeh, B. et al., (2003) ‘Viral and microbial genotyping by a combination of multiplex
competitive hybridization and specific extension followed by hybridization to generic tag
arrays’, Nucleic Acids Research, Vol. 31, No. 22, p.146.

Guibas, L.J. and Odlyzko, A.M. (1981) ‘String overlaps, pattern matching, and non-transitive
games’, Journal of Combinatorial Theory Series A, Vol. 30, pp.183–208.

Johnson, D.S. (1974) ‘Approximation algorithms for combinatorial problems’, J. Comput. Sys. Sci.,
Vol. 9, pp.256–278.

Linhart, C. and Shamir, R. (2002) ‘The degenerate primer design problem’, Bioinformatics,
Vol. 18, pp.S172–S181.

Lovasz, L. (1975) ‘On the ratio of optimal integral and fractional covers’, Discrete Mathematics,
Vol. 13, pp.383–390.

NCBI (2004) Completed Microbial Genomes, http://www.ncbi.nlm.nih.gov/genomes/microbes/
complete.html.

Odlyzko, A.M. (1995) ‘Asymptotic enumeration methods’, Graham, R.L. Grotschel, M. and
Lovasz L. (Eds.): Handbook of Combinatorics, MIT Press, Cambridge, MA., Vol. II,
pp.1063–1230

Rash, S. and Gusfield, D. (2002) ‘String barcoding: Uncovering optimal virus signatures’,
Proc. 6th Annual International Conference on Computational Biology, pp.254–261.

Souvenir, R., Buhler, J., Stormo, G. and Zhang, Z. (2003) ‘Selecting degenerate multiplex PCR
primers’, Proc. 3rd Intl. Workshop on Algorithms in Bioinformatics (WABI), pp.512–526.

Vazirani, V.V. (2001) Approximation Algorithms, Springer-Verlag, Berlin.

