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Abstract: String barcoding is a recently introduced technique for genomic 
based identification of microorganisms. In this paper we describe the 
engineering of highly scalable algorithms for robust string barcoding. Our 
methods enable distinguisher selection based on whole genomic sequences of 
hundreds of microorganisms of up to bacterial size, on a well equipped 
workstation. Experimental results on both randomly generated and NCBI 
genomic data show that whole-genome based selection results in a number of 
distinguishers nearly matching the information theoretic lower bounds for the 
problem. 
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1 Introduction 

String barcoding is a recently introduced technique for genomic-based identification of 
microorganisms such as viruses or bacteria. The basic barcoding problem (Rash and 
Gusfield, 2002) is formulated as follows: given the genomic sequences g1, ..., gn of n 
microorganisms, find a minimum number of strings t1 ,..., tk distinguishing these genomic 
sequences, i.e., having the property that, for every gi ≠ gj, there exists a string tl which is a 
substring of gi or gj, but not of both. A closely related formulation was independently 
proposed in Borneman et al. (2001), where it is assumed that it is possible to detect not 
just the presence or absence of a distinguisher ti, but also the number of repetitions of ti as 
a substring, up to a threshold of R > 0. The formulation in Rash and Gusfield (2002), 
which we adopt in this paper, corresponds to R = 1. 

Identification is performed by spotting or synthesising on a microarray, the  
Watson-Crick complements of the distinguisher strings t 1  , . . . ,  t k ,  and then hybridising 
to the array the fluorescently labelled DNA extracted from the unknown microorganism. 
Under the assumption of perfect hybridisation stringency, the hybridisation pattern can 
be viewed as a string of k zeros and ones, referred to as the barcode of the 
microorganism. By construction, the barcodes corresponding to the n microorganisms  
are distinct, and thus the barcode uniquely identifies any one of them.  
To improve identification robustness, one may also require redundant distinguishability 
(i.e., at least m different distinguishers for every pair of microorganisms, where m > 1 is 
some fixed constant) and impose a lower bound on the edit distance between any pair of 
selected distinguishers (Rash and Gusfield, 2002). 
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The algorithms previously proposed for string barcoding are based on integer 
programming (Rash and Gusfield, 2002), and on Lagrangian relaxation and simulated 
annealing (Borneman et al., 2001). Unfortunately, the run time of these algorithms does 
not scale well with the number of microorganisms and the length of the genomic 
sequences, e.g., the largest instance sizes reported in Rash and Gusfield (2002) have a 
total genomic sequence length of around 100,000 bases. 

In this paper we describe the engineering of highly scalable algorithms for robust 
string barcoding. Our methods enable distinguisher selection based on whole genomic 
sequences of hundreds of microorganisms of up to bacterial size on a well equipped 
workstation, and can be easily parallelised to further extend the applicability range to 
thousands of bacterial size genomes. Whole-genome based selection is beneficial in at 
least two significant ways. 

• it simplifies assay design since the DNA of the unknown pathogen can be amplified 
using inexpensive general purpose, whole-genome amplification methods such as 
specialised forms of degenerate primer multiplex PCR (Cheung and Nelson, 1996) 
or multiple displacement amplification (Dean et al., 2002) 

• whole-genome based selection results in a reduced number of distinguishers, often 
very close to the information theoretic lower bound of [log2n]. 

Our algorithms are based on a simple greedy selection strategy – in every iteration we 
pick a substring that distinguishes the largest number of ‘not yet distinguished’ pairs of 
genomic sequences. This selection strategy is an embodiment of the greedy setcover 
algorithm (see, e.g., Vazirani, 2001) for a problem instance with O(n2) elements 
corresponding to the pairs of sequences. Hence, by a classical result of (Chvatal, 1979; 
Johnson, 1974; Lovasz, 1975), our algorithm guarantees an approximation factor of  
2 ln n for the barcoding problem. Very recently, Berman et al. (2004a) have shown  
that no approximation algorithm can guarantee a factor of (1 – ∈) ln n unless 
NP = DTIME(nloglogn), and also proposed an information content greedy heuristic 
achieving an approximation factor of 1 + ln n. Experimental results given in Section 5 
show that our setcover greedy algorithm produces solutions of virtually identical quality 
to those obtained by the information content heuristic. 

The setcover greedy algorithm is extremely versatile, and can be easily extended to 
handle redundancy and minimum edit distance constraints, as well as other biochemical 
constraints on individual distinguisher sequences. Furthermore, unlike the information 
content heuristic of Berman et al., (2004a), the greedy setcover algorithm can also take 
into account genomic sequence uncertainties expressed in the form of degenerate bases. 
Although degenerate bases are ubiquitous in genomic databases, previous works have not 
recognised the need to properly handle them. For example, experiments in Rash and 
Gusfield (2002) have implicitly treated degenerate bases in the input genomic sequences 
as distinct nucleotides; under this approach a substring of degenerate nucleotides such as 
NNNNN, might be erroneously selected as a distinguisher although it encodes for any 
possible substring of length 5. 

To achieve high scalability, our implementation relies on several techniques. First, 
we use an incremental algorithm for quickly generating a representative set of candidate 
distinguishers and collecting all their occurrences in the given genomic sequences.  
To reduce the number of candidates, we avoid generating any substring that appears in all 
genomic sequences, which typically eliminates very short candidates. For each genomic 
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sequence, we also generate only one of the substrings that appear exclusively in that 
sequence, this optimisation eliminates from consideration, most candidate distinguishers 
above a certain length. Unlike the suffix tree method proposed by Rash and  
Gusfield (2002), our approach may generate multiple candidates that appear in the same 
set of k genomic sequences (for 1 < k < n). However, the penalty of having to evaluate 
redundant candidates in the candidate selection phase is offset in practice by the faster 
candidate generation time. Finally, the efficient implementation of the greedy selection 
phase of the algorithm combines a partition based method for computing the coverage 
gain of candidate distinguishers (this method was first proposed in the context of the 
information content heuristic in Berman et al. (2004a)) with a ‘lazy’ strategy for updating 
coverage gains. 

The rest of the paper is organised as follows. In Section 2 we give formal problem 
formulations and review previous work. In Section 3 we describe the efficient 
implementation of the setcover greedy algorithm for the basic string barcoding problem. 
In Section 4 we discuss the modifications required in the implementation for handling 
degenerate bases in input genomic sequences, redundancy and edit distance constraints, 
as well as biochemical constraints such as constraints on melting temperature and  
GC-content. In Section 5 we give the results of a comprehensive experimental study 
comparing, on both randomly generated and genomic data, our setcover greedy algorithm 
with other scalable methods including the information content heuristic and a recent set 
multicover, randomised, rounding approximation algorithm. We conclude in Section 6 
with directions for further research. 

2 Preliminaries and problem formulation 

Let Σ = {a, c, g, t} be the DNA alphabet, and Σ* be the set of string over Σ. A degenerate 
base is a nonempty subset of Σ. We identify degenerate bases of cardinality one with the 
respective nondegenerate bases. Given a DNA string x = x1 ... xk ∈ Σ* and a string of 
degenerate bases y = y1 ... yn, n ≥ k, we say that 
• x has a perfect match at position i of y iff yi+j–i = {xj} for every 1 ≤ j ≤ k, 
• x has a perfect mismatch at position i of y iff there exists 1 ≤ j ≤ k such that  

1{ }j i jx y + − , 

• x has an uncertain match at position i of y iff {xj} ⊆ yi+j–1 for every 1 ≤ j ≤ k, but  
yi+j–1 ≠ {xj} for at least one j. 

String x = x1 ...  x k  ∈ Σ* distinguishes two sequences of degenerate bases y and z iff 

(a) x has a perfect match at one or more positions of y, and has perfect mismatches at all 
positions of z, or, symmetrically 

(b) x has a perfect match at one or more positions of z, and has perfect mismatches at all 
positions of y. 

The robust string barcoding problem with degenerate bases is formulated as follows: 
Given sequences of degenerate bases g1, ... gn and redundancy threshold m, find a 
minimum number of strings t 1 ,  ... , tk ∈ Σ* such that, for every i ≠ j, there exist m 
distinct strings tl distinguishing gi and gj. 
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It is easy to see that, for m = 1, at least log2n distinguishers are needed to 
distinguish any n genomic sequences. However, achieving this lower bound requires 
distinguishers that have perfect matches in nearly half of the sequences. In practice, 
additional constraints, such as lower bounds on the length of distinguishers, may result in 
no string having perfect matches in a large number of sequences, and therefore much 
more than a logarithmic number of distinguishers. The next theorem, the proof of which 
we omit due to space constraints, establishes under a simple probabilistic model that 
there is an abundance of distinguishers perfectly matching at least a constant fraction of 
the input sequences. 

Theorem 1: Consider a random instance of the string barcoding problem over a fixed 
alphabet Σ in which there are n strings, each string s = s0s1 ... sl–1 is of length exactly l, 
selected independently at random with Pr[si = a] = 1/|Σ| for any i and any a ∈ Σ. Also 
assume that l is sufficiently large compared to n. Then, for a random string x ∈ Σ* of 
length O(log l), the expected number of the input strings which contain x as a substring is 
pn for some constant 0 < p < 1. 

Proof: Assume n and l to be sufficiently large for asymptotic results and σ = |Σ| > 1 to be 
fixed. It suffices to show that for a random string x ∈ Σ* of length k = O(log l),  
Pr[x is a substring of s] = p for some constant 0 < p < 1 and s is any one of the input n 
strings. In Odlyzko (1995) examples 6.4, 6.7, 6.8, 9.3 and 10.11, Odlyzko uses the 
bounds and generating function described in Guibas and Odlyzko (1981) to give 
asymptotic bounds on Pr[x is a substring of s] when σ = 2. The result can be generalised 
to the case of any fixed σ > 2 as follows. For a fixed x = x1x2 ... xk, define the correlation 

polynomial Cx(z) of x as 
1

0
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Let fx(l) be the number of strings in Σ* of length l that do not contain x as a substring and 
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for all sufficiently large n, k and l, where e is the base of natural logarithm. Note that 
1 < Cx(σ) < 2 and for a specific x, Cx(σ) can be calculated exactly. Now, setting  
k = Θ(logσl) gives Pr[x is a substring of s] = p for some constant 0 < p < 1. □ 
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Previous work: The robust string barcoding problem was introduced (for the case when 
genomic sequences contain no degenerate bases) by Rash and Gusfield (2002); they 
provided some experimental results based on integer programming methods, and left 
open the exact complexity and approximability of this problem. The problem without 
redundancy constraints was independently considered by Borneman et al. (2001), who 
also considered nonbinary distinguishability (based on detecting the multiplicity of a 
distinguisher as a substring) and a slightly more general problem in which the objective 
is to pick a given number of distinguishers, maximising the number of distinguished 
pairs. The main motivation for the formulations in Borneman et al. (2001) comes from 
minimising the number of oligonucleotide probes needed for analysing populations of 
ribosomal RNA gene (rDNA) clones by hybridisation experiments on DNA microarrays. 
Borneman et al. provided computational results using Lagrangian relaxation and 
simulated annealing techniques, and noted that the problem is NP-hard assuming that the 
lengths of the sequences in the prespecified set were unrestricted. Very recently, Berman, 
DasGupta and Kao (2004) considered a general framework for test set problems that 
captured the string barcoding problem and its variations; their main contribution is to 
establish theoretically matching lower and upper bounds on the worst-case 
approximation ratio. Cazalis et al. (2004) have independently investigated similar greedy 
distinguisher selection strategies for string barcoding. Unlike our work, the algorithms in 
Cazalis et al. (2004) consider only a small random subset of the possible distinguishers 
and also prescribe their length in order to achieve practical running time. 

3 Efficient implementation of the greedy setcover algorithm 

In this Section we present the implementation of the setcover greedy algorithm in the 
context of the basic string barcoding problem, i.e., we disregard redundancy constraints 
and the presence of degenerate bases in the input sequences. Implementation 
modifications needed to handle the robust barcoding problem in its full generality are 
discussed in Section 4. 

Our implementation of the setcover greedy algorithm has two main phases: a 
candidate generation phase and a candidate selection phase. In the candidate generation 
phase, a representative set of candidate distinguishers is generated from the given 
genomic sequences. For each generated candidate, we also compute the list of sequences 
with which the candidate has perfect matches; this information is needed in the candidate 
selection phase. To reduce the number of candidates, we avoid generating any substring 
that appears in all genomic sequences, which typically eliminates very short candidates. 
For each genomic sequence, we also make sure to generate only one of the substrings 
that appear exclusively in that sequence; this optimisation eliminates from consideration, 
most candidate distinguishers above a certain length. Unlike the suffix tree method 
proposed by Rash and Gusfield (2002), our approach may generate multiple candidates 
that appear in the same set of k genomic sequences (for 1 < k < n). However, the penalty 
of having to evaluate redundant candidates in the candidate selection phase is offset in 
practice by the faster candidate generation time. 
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Efficient implementation of the above candidate elimination rules is achieved by 
generating candidates in increasing order of length and using exact match positions for 
candidates of length l – 1 when generating candidates of length l. For each position p in 
the input genomic sequences, we also maintain a flag to indicate whether or not the 
algorithm should evaluate candidate substrings starting at p. The possible values for the 
flag are TRUE (the substring of current length starting at p is a possible candidate), 
FALSE (we have already saved the substring of current length starting at p as a 
candidate), or DONE (all candidates containing as prefix the substring of current length 
starting at p are redundant, i.e., the position can be skipped for all remaining candidate 
lengths). Initially all flags are set to TRUE. The FALSE flags are reset to TRUE 
whenever we increment the candidate length; however, we never reset DONE flags. For 
every candidate length l, candidate evaluation proceeds sequentially over all positions of 
the genomic sequences. Whenever we reach a position p whose flag is set to TRUE, we 
use the list of matches for the substring of length l – 1 starting at p (or a linear time string 
matching algorithm if l is the minimum candidate length) to determine the list of matches 
for the substring of length l starting at p, and set the flag to FALSE for all positions 
where these matches occur. If the substring of length l starting at p has matches only 
within the source sequence, and we have already generated a ‘unique’ candidate for this 
sequence, we discard the substring and set the flag of p to DONE. 

A further speedup technique is to generate candidate distinguishers from a strict 
subset of the input sequences. Although this speedup can potentially affect solution 
quality, the results in Section 5 show that the solution quality loss for whole-genome 
barcoding is minimal, even when we generate candidates based on a single input 
sequence, which corresponds to preassigning a barcode of all 1’s to this sequence. 

After the set of candidates is generated we select the final set of distinguishers in the 
greedy phase of the algorithm (Figure 1). We start with an empty set of distinguishers D. 
While there are pairs of sequences that are not yet distinguished by D, we loop over all 
candidates and compute for each candidate c, the number ∆(c, D) of pairs of sequences 
that are distinguished by c but not by D, then add the candidate c with largest ∆ value  
to D. Two sequences s and s′ are distinguished by a candidate c iff exactly one of s and s′ 
appears in the list Pc of perfect matches of c, which is available from the candidate 
generation phase. A simple method for computing ∆ values is to maintain an n × n 
symmetric matrix indicating which of the pairs of sequences are already distinguished, 
and then to probe the |Pc|(n – |Pc|) entries in this matrix corresponding to pairs (s, s′) with 
s ∈ Pc and s' ∉ Pc when computing ∆(c, D). A more efficient method is based on 
maintaining the partition defined on the set of sequences by D. If the partition defined by 
D consists of sets S1, ... ,Sk, then we can compute ∆(c, D) in O(k + |Pc|) = O(n) time using 
the observation that 

1

( , ) \ .
k

i c i c
i

c D S P S P
=

∆ = ∩ ⋅∑  (1) 

In addition to the fast partition based computation, our implementation of the greedy 
selection phase uses a lazy strategy for updating the ∆ values, based on the observation 
that they are monotonically nonincreasing during the algorithm (see Figure 1). 
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Figure 1 The setcover greedy candidate selection algorithm 

 

4 Extended barcoding requirements 

In this Section we describe the modifications needed to the basic implementation given in 
previous section when handling practical extensions of the barcoding problem. 

Degenerate bases:  

In the presence of degenerate bases in the input genomic sequences, the hybridisation of 
a particular distinguisher may depend on which bases are actually present at positions 
with degeneracy >1. The greedy setcover algorithm takes into account this possibility for 
uncertain hybridisation by only counting a pair (g, g′) as distinguished by a candidate c if 
and only if c has a perfect match with one and only perfect mismatches with the other. 
For each generated candidate, in addition to the list of sequences that have only perfect 
matches we also save a list containing all sequences with at least one uncertain match. 
This allows fast computation of the (typically much longer) list of sequences having only 
perfect mismatches. To avoid generating candidate distinguishers containing degenerate 
bases, we set the DONE flag as soon as the corresponding substring extends past a 
degenerate base. Finally, since the partition of genomic sequences is no longer defined in 
the presence of uncertain hybridisation; formula (1) is no longer applicable and we have 
to use the n × n ‘distinguished so far’ matrix for computing ∆ values. 

Biochemical constraints on individual distinguishers 

Since selected distinguishers must hybridise under the same experimental conditions, in 
practice it is natural to impose a variety of constraints on individual distinguishers, such 
as minimum and maximum length, GC content, melting temperature, etc. Furthermore, 
we may want to avoid using as distinguishers, strings which appear in other organisms 
that may contaminate the sample. All individual constraints are easily incorporated as a 
simple filter in the candidate generation phase. 

Redundancy constraints and minimum edit distance constraints 

In practice, robust identification requires redundant distinguishability, i.e., more than one 
distinguisher distinguishing any given pair of genomic sequences. One may also impose 
a lower bound on the edit distance between any pair of selected distinguishers (Rash and  
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Gusfield, 2002). Taking into account redundancy requirements is done by maintaining 
the number of times each pair of genomic sequences has been distinguished. In order to 
incorporate the minimum edit distance constraint, after selecting a distinguisher we 
eliminate from consideration, all candidates that are within an edit distance smaller than 
the given threshold. 

5 Experimental results 

We performed experiments on both randomly generated instances and NCBI databases. 
Random testcases were generated from the uniform distribution induced by assigning 
equal probabilities to each of the four nucleotides; these testcases do not contain any 
nucleotides with degeneracy >1. We also used several testcases consisting of sequences 
extracted from the NCBI databases (NCBI, 2004) as described in Section 5.3. All 
experiments were run on a PowerEdge 2,600 Linux server with 4 Gb of RAM and dual 
2.8 GHz Intel Xeon CPUs – only one of which is used by our sequential algorithms. 

5.1 Algorithm scalability 

As described in Section 3, there are two main phases in the algorithm: candidate 
distinguisher generation, and greedy candidate selection. Figure 2 gives the average 
candidate selection CPU time for n random sequences of length 10,000 and redundancy 
one, averaged over 10 instances of each size. Combining the two speedup techniques for 
this phase (partition based coverage gain computation and lazy update of candidate 
gains) results in over two orders of magnitude reductions in runtime. 

Figure 2 Candidate selection CPU time (in seconds) for n random sequences of length 10,000 
and redundancy one, averaged over 10 instances of each size. 

 

As mentioned in Section 3, a further speedup technique is to generate candidate 
distinguishers only from a small number of ‘source’ input sequences. Table 1 gives the 
average number of candidates, number of matches, runtimes for candidate generation and 
greedy selection, and number of selected distinguishers for instances with 1,000 random 
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sequences of length 10,000 and redundancy one, when the number of source sequences is 
varied from 1,000 down to one (the source sequences were chosen at random). Although 
this speedup can potentially affect solution quality, we found that on large instances, the 
solution quality loss is minimal even when we generate candidates based on a  
single input sequence; this case corresponds to preassigning a barcode of all 1’s to the  
source sequence. The technique reduces significantly, both the memory requirement 
(which is proportional to the number of candidates and the number of times they match 
input sequences) and the runtime required for candidate generation and greedy selection. 
As shown in Table 2, this makes the method applicable to hundreds of sequences of 
bacterial genome size on a well equipped workstation. 

Table 1 Average solution statistics for instances with 1,000 random sequences of  
length 10,000, redundancy one, and number of source sequences varying from 
1,000 down to 1 

#Source seq. 1000 50 10 5 4 3 2 1 
#Candidates (×103) 7213.6 1,438.6 402.7 225.9 186.9 146.1 102.8 55.7 

#Matches (×l06) 55.7 35.2 23.2 18.4 16.9 15.0 12.5 8.7 

Gen. time 132.3 44.7 35.5 31.4 31.3 30.6 28.1 24.9 
Selection time 31.7 10.7 5.3 3.6 3.4 3.1 2.3 1.6 

#Distinguishers 14.1 14.1 14.1 14.1 14.0 14.1 14.2 14.5 

Table 2 Average solution statistics for instances with up to 100 random sequences of  
length 1,000,000 and redundancy one (number of source sequences set to 1) 

n #Candidates #Matches Gen. time Select time #Dist. 
10 2039766.8 8281127.2 45.1 0.6 4.0
20 2607128.9 16730749.0 87.0 1.3 5.0 
30 2940246.3 25475766.3 129.1 1.6 5.0 
40 3178773.8 34529068.3 172.2 2.6 6.0 
50 3363016.8 43802244.9 216.1 3.6 6.6 
60 3512271.5 53216933.1 262.7 4.7 7.0 
70 3637129.4 62714814.3 303.9 5.1 7.0 
80 3744452.1 72256768.1 347.4 6.3 7.4 
90 3838282.2 81807129.2 395.5 8.0 8.0 
100 3921359.6 91346850.3 444.4 8.5 8.0 

Even when a single input sequence is used to generate candidate distinguishers, this will 
still result in millions of candidates that must be evaluated by the greedy algorithm for 
whole-genome barcoding. While our implementation of the setcover greedy algorithm 
can efficiently handle millions of candidates (Table 2), this may be impractical for other 
barcoding algorithms. As a more extreme speedup technique, Cazalis et al. (2004) 
proposed using only a small number (2,000 in Cazalis et al. (2004)) of random candidates 
in conjunction with various barcoding algorithms including greedy, simulated annealing, 
and genetic algorithms. However, Cazalis et al. did not provide any data on the possible 
solution quality loss from such extreme reductions in the number of candidates, and did 
not evaluate the relative merits of alternative strategies for sampling these candidates.  
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In Figure 3 we plot the number of distinguishers selected by the greedy setcover 
algorithm when run on a random subset of all possible candidates, under three different 
candidate sampling strategies: 

• from all source sequences, without length restrictions 

• from a single random source sequence, without length restrictions 

• from all source sequences, with length restricted to 7 

Figure 3 Number of distinguishers selected by the greedy setcover algorithm from a random 
subset of all possible candidates. Candidates are randomly chosen (a) from all 
source sequences, without length restrictions; (b) from a single random source 
sequence, without length restrictions; and (c) from all source sequences, with 
length restricted to 7. Each data point represents the average over  
100 instances, each consisting of 1,000 random sequences of length 10,000. 
Redundancy was set to 1 in these experiments. 

 

Length 7 was chosen here, since it leads to the smallest number of selected distinguishers 
among all fixed distinguisher lengths for instances consisting of 1,000 random sequences 
of length 10,000 such as those used in this experiment. We note that, although  
Cazalis et al. (2004) suggest using distinguishers of length ≈ log2n for a set of n 
sequences, this rule must be followed with caution. In general, a ‘most informative’ 
distinguisher is one that appears in exactly half of the sequences, and the typical length of 
distinguishers with this property depends not only on the number of sequences, but also 
on their length. 

Figure 3 shows that even a few tens of thousands of random candidates sampled 
using scenarios (b) and (c) above lead to a solution quality very close to that obtained by 
the setcover greedy algorithm when run on all possible candidates. A much larger 
number of candidates is required to achieve similar solution quality under scenario (c), 
i.e., when sampling the random candidates from all sequences and without length 
constraints. This finding can be explained by the fact that ‘most informative’ candidates 
represent only a small fraction of the entire set of candidates, while they are more 
densely represented in the sets of candidates sampled under the first two scenarios. 
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Table 3 gives the number of distinguishers returned by the setcover greedy algorithm 
for redundancy varying between 1 and 20 on between 10 and 1,000 random sequences of 
length 10,000. For comparison, we include in the table the results obtained by the 
information content heuristic results of (Berman et al., 2004a), as well as the information 
theoretic lower bound of [log2n] for the case when the redundancy requirement is one. 
We note that the number of distinguishers returned by the setcover greedy algorithm is 
virtually identical to that returned by the information content heuristic, despite the latter 
one having a better approximation guarantee (Berman et al., 2004a). Furthermore, the 
results for redundancy one are within 50% of the information theoretic lower bound for 
the range of instance sizes considered in this experiment. The gap between the solutions 
returned by the algorithms and the lower bound does increase with the number of 
sequences; however it is not clear how much of this increase is caused by degrading 
algorithm solution quality, and how much by degrading lower bound quality. 

Table 3 Number of distinguishers returned by the setcover greedy algorithm (SGA) for 
varying redundancy and number of sequences. For each value of n we report the 
average over 10 testcases, each consisting of n random sequences of length 10,000. 
For comparison we include information content heuristic results (ICH) and the 
information theoretic lower bound of log2n for redundancy one (LB) 

Algorithm r n = 10 n = 20 n = 50 n =100 n = 200 n =500 n = 1000
LB 1 4 5 6 7 8 9 10 
ICH 1 4.0 5.0 7.0 8.0 10.0 12.2 14.1 
SGA 1 4.0 5.0 7.0 8.0 10.0 12.3 14.1 
SGA 2 6.7 8.3 10.6 12.5 14.1 16.7 18.9 
SGA 3 8.8 11.6 13.6 15.5 17.3 20.1 22.4 
SGA 4 10.8 14.0 16.5 18.7 20.7 23.5 26.1 
SGA 5 13.6 16.6 19.5 21.5 23.7 26.8 29.5 
SGA 10 22.5 26.8 32.0 34.6 37.5 41.7 44.9 
SGA 20 43.0 47.6 55.6 59.5 63.4 68.0 72.6 

We also compared our setcover greedy algorithm with a recently proposed multistep 
rounding algorithm for set multicover (Berman et al., 2004b). The rounding algorithm 
has the following steps: 

• solve the fractional relaxation of the natural integer program formulation of problem 
(Rash and Gusfield, 2002) (we used the commercial solver CPLEX 9.0 for 
implementing this step) 

• scale the fractional solution by an appropriate constant factor (see Berman et al., 
2004b for details) 

• deterministically select all distinguishers with a scaled fractional value exceeding 1 
• randomly select a subset of the remaining candidates, each candidate being chosen 

with a probability equal to the scaled fractional value 
• if the selected set of distinguishers is not yet feasible, add further distinguishers, 

using the setcover greedy algorithm. 
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The approximation guarantee established in Berman et al. (2004b) for the general set, 
multicover problem translates into an approximation factor of 2 ln n – ln r for robust 
string barcoding with redundancy r, which suggests that the multistep rounding algorithm 
is likely to improve upon the setcover greedy for high redundancy constraints. Table 4 
gives the results of experiments comparing the setcover greedy and multistep rounding 
algorithms on testcases consisting of up to 200 random sequences, each of length 1,000 
for redundancy requirement ranging from 1 to 300. The results confirm that the multistep 
rounding algorithm has better solution quality than setcover greedy when redundancy 
requirement is large relative to the number of sequences, yet the setcover greedy has best 
performance for most practical redundancy requirements. 

Table 4 Number of distinguishers returned by the setcover greedy algorithm (SGA) and the 
multi-step rounding algorithm in Berman et al. (2004b) (RND) for varying 
redundancy and number of sequences. For each value of n we report the average over 
10 testcases, each consisting of n random sequences of length 1,000. Boldface entries 
correspond to instances for which the multi-step rounding algorithm has better 
solution quality than setcover greedy. 

Algorithm r n = 10 n = 20 n = 50 n = 100 n = 200
SGA 1 4.0 5.0 7.0 9.0 11.0 
RND 1 5.0 6.8 10.5 13.0 16.0 
SGA 2 6.3 8.2 11.2 12.9 15.0 
RND 2 7.3 10.7 14.8 17.0 20.4 
SGA 5 13.2 16.1 19.5 22.4 24.6 
RND 5 13.2 18.2 23.5 27.3 31.2 
SGA 10 22.8 27.0 32.1 36.1 39.4 
RND 10 20.2 30.9 37.4 41.9 48.3 
SGA 20 43.4 48.8 57.0 61.0 65.8 
RND 20 38.9 50.7 62.6 69.4 76.2 
SGA 50 100.9 112.0 125.6 133.8 142.0 
RND 50 92.6 107.8 125.2 141.6 159.5 
SGA 100 195.0 217.2 239.0 255.5 264.0 
RND 100 184.9 205.2 236.0 270.0 289.0 
SGA 200 392.00 432.30 471.70 495.40 512.40 
RND 200 372.10 412.00 455.40 485.80 539.40 
SGA 300 594.60 661.30 713.70 744.10 762.00 
RND 300 571.30 633.10 693.80 726.10 757.70 

5.2 Experiments on genomic data 

In a first set of experiments we used 10 groups of testcases obtained from Rash and 
Gusfield (2002), each consisting of random sets of viruses, respectively HIV strains, 
extracted from GenBank. Most of these testcases contain a small number of degenerate 
bases; detailed testcase parameters are given in Table 5. Hence, we cannot use the 
partition method for computing the number of sequence pairs distinguished by a 
candidate in the greedy selection phase, and we have to use the slower matrix 
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datastructure. Table 6 gives the average runtime and the number of distinguishers 
selected by the setcover greedy algorithm on these testcases when using all available 
candidates. For comparison, we also include the average number of distinguishers 
obtained in Rash and Gusfield (2002) by solving an integer program formulation of the 
problem using the CPLEX commercial optimisation package. However, the results in 
Rash and Gusfield (2002) may be overly optimistic, since the underlying integer program 
treats degenerate bases as distinct nucleotides. (We do not know if degenerate bases were 
actually used in distinguishers selected by CPLEX since we do not have access to the 
solutions in Rash and Gusfield (2002).  With few exceptions, the greedy algorithm comes 
very close to the solution computed by the integer program. 

Table 5 Size and algorithm parameters for genomic instances 

Test group #Test cases Avg. n Avg. str. len. Avg. #degen. lmin lmax Min edit r 

hiv0 27 91.44 967.50 59.81 15 40 4 5 
hiv1 26 89.28 684.91 53.19 15 40 4 2 
hiv4 26 90.80 723.47 41.27 15 40 2 2 
hiv5 26 90.40 1085.01 35.50 15 40 2 5 
hiv6 26 90.92 849.47 45.77 15 40 4 5 
len0 26 105.40 1086.28 36.27 17 21 4 5 
s0 26 51.12 1123.17 54.27 15 40 4 5 
s1 26 70.64 942.19 18.69 15 40 4 5 
s2 26 105.96 897.63 29.96 15 40 4 5 
s3 26 129.92 948.56 32.87 15 40 4 5 

Source: Rash and Gusfield (2002). 

Table 6 Average solution statistics for genomic instances from Rash and Gusfield (2002) 

Test group #Candidates #Matches Gen. time Select time SGA #dist. ILP #dist. 

hiv0 175707.8 440615.7 7.3 100.0 137.8 89.44 
hiv1 158530.0 396909.4 4.4 43.0 70.8 45.12 
hiv4 125694.3 333881.9 4.8 35.4 71.8 43.88 
hiv5 146462.4 377735.3 8.3 104.8 177.0 132.76 
hiv6 147135.1 388387.0 5.6 98.4 167.8 126.61 
len0 42091.0 175841.9 3.4 26.7 180.6 160.29 
s0 282467.7 726758.6 5.3 167.6 108.0 99.92 
s1 123694.9 452387.2 5.5 65.1 126.8 117.20 
s2 194253.1 755897.3 7.3 161.1 178.1 115.70 
s3 278795.2 1075451.6 10.7 308.7 216.6 200.91 

In a second set of experiments we ran our algorithm on a set of 29 complete microbial 
genomic sequences extracted from NCBI databases (NCBI, 2004). Sequence lengths in 
the set vary between 490 Kbases and 4.75 Mbases, with an average length of 2.6 Mbases 
(over 76 Mbases total). Unlike random testcases, the sequences in the NCBI data set 
contain a small number of degenerate bases, 861 bases in total. Therefore, we cannot use 
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the partition method for computing the number of sequence pairs distinguished by a 
candidate in the greedy selection phase and we have to use the slower matrix 
datastructure. In these experiments we varied the redundancy requirement from 1 to 20. 
To see the effect of length and edit distance requirements on the number of 
distinguishers, for each redundancy requirement we computed both an unconstrained 
solution, and a solution in which distinguishers must have length between 15 and 40, and 
there should be a minimum edit distance of six between every two selected distinguishers 
(these values are similar to those used in Rash and Gusfield (2002)). In all experiments, 
we generated candidates based only on the shortest sequence of 490 Kbases. 

The results on this NCBI dataset are given in Table 7. Naturally, meeting higher 
redundancy constraints requires more distinguishers to be selected. Additional length and 
edit distance constraints further increase the number of distinguishers, but the latter is 
still within reasonable limits. The length constraints reduce the number of candidates 
(from 1,775,471 to 122,478), which, for low redundancy values has the effect of reducing 
greedy selection time. However, for high redundancy requirements the reduction  
in number of candidates is offset by the increase in solution size, and greedy  
selection becomes more time consuming with length and edit distance than without 
(selection time grows roughly linearly with solution size). 

Table 7 Results on a set of 29 NCBI complete microbial genomes. Candidate generation time 
is approximately 335 seconds for all combinations of parameters 

Redundancy lmin lmax MinEdit Select time #Distinguishers 

1 0 ∞ 0 14.2 6.0 

1 15 40 6 2.6 8.0 
5 0 ∞ 0 20.3 21.0 

5 15 40 6 8.7 31.0 
10 0 ∞ 0 22.9 41.0 

10 15 40 6 16.4 60.0 
20 0 ∞ 0 26.8 76.0 

20 15 40 6 33.4 123.0 

6 Conclusion 

In this paper we have given highly scalable algorithms for the robust string barcoding 
problem, and have shown that distinguisher selection based whole genomic sequences 
results in a number of distinguishers nearly matching the information theoretic lower 
bounds for the problem. 

In ongoing work we are exploring heuristics and approximation algorithms for 
several extensions of the string barcoding problem. First, we are considering the use of 
probe mixtures as distinguishers. With most microarray technologies it is feasible to 
spot/synthesise a mixture of oligonucleotides at any given microarray location. The DNA 
of a pathogen will hybridise to such a location if it contains at least one substring  
which is the Watson-Crick complement of one of the oligonucleotides in the mixture. 
Using oligonucleotide mixtures as distinguishers can reduce the number of spots on the 
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array – and therefore barcode length – closer to the information theoretical lower bound 
of log2n. The reduction promises to be particularly significant when reliable 
hybridisation requires relatively long distinguishers; in these cases even the optimum 
barcoding length is far from log2n (Rash and Gusfield, 2002). A special case of this 
approach is the use of degenerate distinguishers similar to the degenerate primers that 
have been recently employed in multiplex PCR amplification (Linhart and Shamir, 2002;  
Souvenir et al., 2003). Degenerate distinguishers are particularly attractive for string 
barcoding since their synthesis cost is nearly identical to the synthesis cost of a single 
nondegenerate distinguisher (synthesis requires the same number of steps, the only 
difference is that multiple nucleotides must be added in some of the synthesis steps). 

In many practical pathogen identification applications, collected biological samples 
may contain the DNA of multiple pathogens. This issue is considered to be particularly 
significant in medical diagnosis applications, see, e.g., Gharizadeh et al. (2003) for 
studies in detecting more than one HPV (human papiloma virus) genotype with varying 
rate of multiple HPV infections carried by the same HPV carrier. In future work we plan 
to develop extensions of the barcoding technique that can reliably detect multiple 
pathogens for a given bound on the number of pathogens present. 
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