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Abstract

Internet advertising is a sophisticated game in which the many advertisers “play” to optimize
their return on investment. There are many “targets” for the advertisements, and each “target”
has a collection of games with a potentially different set of players involved. In this paper, we
study the problem of how advertisers allocate their budget across these “targets”. In particular,
we focus on formulating their best response strategy as an optimization problem. Advertisers
have a set of keywords (“targets”) and some stochastic information about the future, namely
a probability distribution over scenarios of cost vs click combinations. This summarizes the
potential states of the world assuming that the strategies of other players are fixed. Then, the
best response can be abstracted as stochastic budget optimization problems to figure out how to
spread a given budget across these keywords to maximize the expected number of clicks.

We present the first known non-trivial poly-logarithmic approximation for these problems as
well as the first known hardness results of getting better than logarithmic approximation ratios
in the various parameters involved. We also identify several special cases of these problems of
practical interest, such as with fixed number of scenarios or with polynomial-sized parameters
related to cost, which are solvable either in polynomial time or with improved approximation
ratios. Stochastic budget optimization with scenarios has sophisticated technical structure. Our
approximation and hardness results come from relating these problems to a special type of (0/1,
bipartite) quadratic programs inherent in them. Our research answers some open problems
raised by the authors in (Stochastic Models for Budget Optimization in Search-Based Advertising,
Algorithmica, 58 (4), 1022-1044, 2010).

1 Introduction

This paper deals with the problem of how advertisers allocate their budget in Internet advertising.
In sponsored search, users who pose queries to internet search engines are not only provided search
results, but also a small set of text ads. These ads are chosen from a set of campaigns set up by
advertisers based on the keywords in the search query. A lot of focus has been on how these ads
are chosen and priced, which is via an auction that is by now well known [2, 10, 20]1. Our focus is
instead on the problem faced by advertisers. Even small advertisers have many keywords, a budget
in mind and must figure out how to spread this budget on bids for each of these keywords. This
is a highly nontrivial task, and the basis for a separate industry to support advertisers. A similar
problem arises with “display ads” where advertisers have websites where their ads will be shown

1Likewise, there was a lot of work on bidding strategies [4, 11, 19, 23]. This paper extends that body of work by
considering a richer model of uncertainty; see subsequent paragraphs.

1



and need to split their budget for the ad campaign across the sites to be most effective. Likewise, in
behavioral targeting, advertisers have to decide how to spread their budget across behavior groups.
In all these cases, therefore, advertisers have various “targets” and wish to split their budget across
them to optimize their ad campaigns.

Consider the sponsored search example and fix an advertiser A. They have many keywords that
they would like to target for their ads. How should they bid for each, given some overall budget
they can spend? There is a sophisticated underlying game in which the many advertisers “play”
to optimize their return on investment simultaneously. For each keyword and for each instance
of auction triggered by this keyword, there is potentially a different set of competing advertisers
involved. Building effective strategies is challenging amidst so many parameters. A fundamental
and widely accepted proposal is for the advertiser A to pursue a best response strategy, i.e., fix
the strategies of other advertisers and pick the best strategy as one’s response. Besides being a
simple and easy strategy to understand and hence suitable for experimentation by advertisers, best
response has desirable properties. For example, in the absence of budgets and for single repeated
auctions, special type of best response by every player leads to the VCG outcome [5, 6, 10, 20].

In order to help the advertisers implement this best response strategy, search engines provide
them with expected bid versus clicks function for each keyword2. Assuming that the rest of the
world is fixed, these functions provide an estimate of the expected number of clicks an advertiser
would obtain by bidding a certain value on that keyword. These functions can also be “learned” by
an advertiser to some extent by systematically trying out various bids. Finding advertiser’s best
response bidding strategy then becomes an optimization problem where the goal is to maximize
the expected number of clicks assuming access to these functions. The resulting problems are in
the spirit of the Knapsack problem [4, 11, 19, 23] with many of them solvable nearly exactly or
with constant factor approximations.

A more general approach is to acknowledge that, in reality, the bids vs clicks functions are not
fixed, but rather random variables with unknown correlations and uncertainties: number of queries
(and hence, clicks and budget spent on a keyword) change each day, relative occurrences of keywords
change (e.g., searches for beach and snow are complementary3), and so on. Therefore, one has to
consider a specific stochastic model for these random variables and then maximize the expected
number of clicks under that model. This approach was initiated in [19] leading to a stochastic
budget optimization problem that is studied in this paper.

1.1 Organization of the paper

For convenience of the readers, we organize the rest of the paper in the following manner.

• We start with Section 2 which describes all of our stochastic budget optimization models and
corresponding computational problems precisely, starting from the simplest one, together
with some comments and justifications about the model. In the last subsection of this section
(Section 2.5), we fix some notational uniformity for readers convenience.

• In Section 3, we summarize the results obtained in this paper. For the benefit of the reader,
we group the results into two categories, namely a set of main results that deal with the com-

2See, for example, Traffic Estimator at http://adwords.google.com/support/aw/bin/answer.py?hl=en&answer=
8692, bidding tutorial at http://adwords.google.com/support/aw/bin/answer.py?hl=en&answer=163828 and bid
simulator at http://adwords.google.com/support/aw/bin/answer.py?hl=en&answer=138148

3See www.google.com/trends?q=beach\%2C+snow&ctab=0&geo=all&date=all&sort=0 for yearly and www.google.

com/trends?q=clubs\%2C+stocks&ctab=0&geo=all&date=mtd&sort=0 for weekly trends.
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putational complexity issues of the original models without restrictions and a set of additional
results that deal with variations and special cases of the models defined in Section 2.

The remaining sections of the paper, excluding conclusion and references, deal with precise state-
ments of our results and technical details of their proofs. For complex proofs, we first provide a
more informal overview of the steps in the proof before proceeding with technical details. These
sections are organized in the following manner.

• In Section 4 we discuss the quadratic integer programming reformulations of the various Sbo
problems.

• In Section 5 we state and prove our poly-logarithmic approximation algorithms for Ssbo and
Multi-Ssbo problems (main result (R1)).

• In Section 6, we state and prove our approximation-hardness results for both Ssbo and
Multi-Ssbo problems (main result (R2)).

• Section 7 contain all other results:

– In Section 7.1 we show that many Ssbo problems have improved solutions if certain
parameters are restricted in their range of values.

– In Section 7.2 we show the limitations of semidefinite programming based approaches
for solving Ssbo problems.

2 Scenario Model for Stochastic Budget Optimization

We discuss the scenario model4 and related problems using the language of sponsored search5. We
use the suffix Ssbo (Scenario Stochastic Budget Optimization) for various acronyms for different
versions of our problems. For the convenience of the readers and to delay introducing more involved
notations, we first start with a slightly simpler version of the model involving only one slot. We
refer to this version as the “uniform cost” case and describe it in the next section.

2.1 Single Slot Case: Uniform Cost Model

This basic model starts with the following assumptions:

• There is a single slot for advertising.

• We have a set of n keywords K1,K2, . . . ,Kn with the keyword Kj having a cost-per-click dj
(a positive integer).

• We have a positive integer B denoting the budget for the advertiser.

• We have a collection of m “scenarios” where the ith scenario is characterized by the following
parameters:

– A probability of εi (
∑m

i=1 εi = 1).

4The scenario model was introduced in [19]. For a very detailed discussion of prior works related to the approach
in the model, see Section 1.4 of [19].

5Our discussion can easily be adopted to other internet ad channels like display ads and behavioral targeting.
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– A “click vector” (ai,1, ai,2, . . . , ai,n) where each ai,j ≥ 0 is an integer. Each ai,j denotes
the number of clicks obtained by the jth keyword Kj in the ith scenario.

Scenarios can be thought of as sampling the model over various times6.
Our general goal is to compute n selection variables x1, x2, . . . , xn, where xj corresponds to the

jth keyword, to maximize a suitable total payoff. A crucial aspect of the discussed formulation is
that, if the budget is not limiting, then the payoff corresponds to the total number of expected
clicks, but if the budget turns out to be limiting for any scenario then the payoff scales the total
number of expected clicks by the fraction that the budget would provide7. Based on the above
intuition, our precise goal is maximize the total expected payoff over all scenarios, i.e.,

maximize E[payoff] =

m
∑

i=1

E[payoffi]

where the expected payoff E[payoffi] for the ith scenario is

E[payoffi] =







εi
∑n

j=1 ai,jxj, if
∑n

j=1 ai,jdjxj ≤ B
B

∑n
j=1 ai,jdjxj

(

εi
∑n

j=1 ai,jxj

)

, otherwise
(1)

Following [19], we distinguish between two versions of the problem based on the nature of the
selection variables:

Integral version (Uniform-Int-Ssbo): xj ∈ {0, 1} for all j. This corresponds to the case when
based on the stochastic information, either the advertiser chooses to win and pay for all clicks
for a keyword, or not at all. Hence, the strategy of the advertiser is deterministic.

Fractional version (Uniform-Frac-Ssbo): 0 ≤ xj ≤ 1 for all j. This can be thought of as a
strategy in which the advertiser treats these numbers as probabilities and bids for the keywords
in a randomized fashion based on these probabilities, thereby only winning (and paying for)
a portion of all clicks and impressions for each keyword. If the deterministic strategy is hard
to compute and provides a solution of bad quality then the randomized strategy is more
desirable.

Other than the scenario model, there are at least two other possible models for stochastic budget
optimization as discussed in [19]. In the proportional model there is just one global random variable
for the total number of clicks in the day that keeps the relative proportions of clicks for different
keywords the same, whereas in the independent keywords model each keyword comes with its own
probability distribution. However, among all these models this scenario-based model is perhaps one
of the most natural model of reality and provides an appropriate middle ground between complex
arbitrary joint probability distribution and a single distribution for all keywords. It was shown
in [19] that both Uniform-Int-Ssbo and Uniform-Frac-Ssbo are NP-hard. In the sequel, we
assume without loss of generality that 1 = d1 ≤ d2 ≤ . . . ≤ dn.

6Scenarios can be provided by the search engine for the advertisers, or used by the search engines to bid on behalf
of advertisers. Similarly, advertisers and other search engine optimizers can also “infer” scenarios indirectly using
trends and other data provided by search engines.

7The underlying assumption is that, within a scenario, the queries and keywords are well-mixed and, when budget
runs out, the ad campaign is halted for the period as is currently done. The queries and keywords are well-mixed not
only because of aggregation of streams from millions of users but also because of ad throttling that spreads out the
eligible ad campaigns over the period of a scenario. See [19] for exact details of justification.
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2.2 Single Slot Case: General Model

In a more realistic version of the Ssbo problems the cost-per-click values may vary slightly over a
range of scenarios due to their small errors in estimation. This can be modeled by introducing a
stretch parameter (small integer)8 1 ≤ κ = O (poly(log(m+ n))). Now, dj stands for the basic cost-
per-click for the keyword Kj , whereas the real cost-per-click for the keyword Kj in the ith scenario
is denoted by ci,j, with ci,j ∈ [dj , κdj)

9. Then, Equation (1) can be simply updated by replacing dj
in the equation of the ith scenario by ci,j . We refer to the integral and fractional versions of this
general case as Int-Ssbo and Frac-Ssbo, respectively; note that the Uniform-Ssbo problems
are obtained from the corresponding Ssbo problems by setting κ = 1.

2.3 Multi Slot Model

In the multi-slot case there are s ≥ 1 slots for each keyword with the generalized second price
auction for these slots. Let dj,k be an integer denoting the value of the basic cost-per-click the kth
slot of the jth keyword; we assume dj,1 ≤ dj,2 ≤ · · · ≤ dj,s. Let ci,j,k ∈ [dj,k, κdj,k) denote the
value of the real cost-per-click for the kth slot of the jth keyword in the ith scenario where κ is
the stretch parameter as in Section 2.2, and let B > 0 denote the budget (a positive integer) for
the advertiser. Our goal is now to compute a set of sn selection variables xj,k where the selection
variable xj,k corresponds to kth slot for the jth keyword. We again have a collection of m scenarios
where the ith scenario is characterized via:

• a probability εi (
∑m

i=1 εi = 1), and

• a “click vector” (ai,j,1, ai,j,2, . . . , ai,j,s) where each ai,j,k is a non-negative integer denoting the
number of clicks obtained by the kth slot of the jth keyword Kj in the ith scenario.

The goal is to compute the allocation variables xj,k’s with the constraints

∀ j :
s
∑

k=1

xj,k ≤ 1 (2)

to maximize the total expected payoff

E[payoff] =
m
∑

i=1

E[payoffi]

where

E[payoffi] =







εi
∑

j

∑

k ai,j,kxj,k, if
∑

j

∑

k ai,j,kci,j,kxj,k ≤ B
B

∑

j

∑

k ai,j,kci,j,kxj,k

(

εi
∑

j

∑

k ai,j,kxj,k

)

, otherwise
(3)

We again distinguish between two versions of the problem:

Integral version (Int-Multi-Ssbo): xj,k ∈ {0, 1} for all j and k. Here, xj,k = 1 if the advertiser
selects the kth slot for the jth keyword, and xj,k = 0 otherwise.

8Throughout the paper, the notation poly(a) denotes a polynomial in a, i.e., ac for some positive constant c.
9For example, the stretch parameter κ allows us to model situations such as when the real costs can be drawn

from a probability distribution with a mean around 1+κ
2

dj with a negligible probability of occurring outside a range
of ± 1−κ

2
dj of the mean. Note that this is just an illustration. We do not assume any specific probability distribution

for the variations of the real costs per click except that it varies within an interval of length κ.

5



Fractional version (Frac-Multi-Ssbo): 0 ≤ xj,k ≤ 1 for all j and k. Here, xj,k denotes the
probability that the advertiser selects the kth slot for the jth keyword and 1− (

∑s
k=1 xj,k) is

the probability with which the advertiser does not bid on the jth keyword at all.

Note that the scenario model for multi-slot stochastic budget optimization is quite different in
nature from the other multi-slot models such as the one discussed in [11] since, for example, one
can go under or over the budget in one scenario to get a better overall expected payoff.

2.4 Relevance and Significance of Scenario Models

Scenario models are a popular way of modeling optimization problems involving uncertainties in
parameters by creating a number of scenarios that depict the probability distribution of various
possibilities and then provide a solution that optimizes the expectations of outcomes over these
scenarios. The scenario model is important for at least two reasons as explained in [19], which we
state below. Firstly, market analysts often think of uncertainty by explicitly creating a set of a few
model scenarios, possibly attaching a weight to each scenario. Secondly, the scenario model gives us
an important tool into understanding the fully general problem with arbitrary joint distributions.
Allowing the full generality of an arbitrary joint distribution gives us significant modeling power,
but poses challenges to the algorithm designer. Since a naive explicit representation of the joint
distribution requires space exponential in the number of random variables, one often represents
the distribution implicitly by a sampling oracle. A common technique, Sampled Average Approx-
imation, is to replace the true distribution by a uniform or non-uniform distribution over a set of
samples drawn by some process from the sampling oracle, effectively reducing the problem to the
scenario model. In addition to their usual applications in operations research (e.g., see [9]), this
approach is getting more and more attention in Wall Street as financial portfolios are being created
in this way (e.g., see [22]). For example, Cocco, Consiglio and Zenios in [8] developed a scenario-
based optimization model for asset and liability management of participating insurance policies
with minimum guarantees and Mausser and Rosen in [15] developed three scenario optimization
models for portfolio credit risk.

In sponsored search, this is an appropriate model and embodies the “best response” strategy.
There is a complex function that maps the state of the world and the users to the queries they pose
and their actions such as whether they click on ads. The search engines give a limited amount of
information to help advertisers10, and advertisers can learn various scenarios that determine their
click vs cost behaviors to some extent by running experiments, analyzing their web traffics etc.
However, sponsored search products only provide a limited bidding language to structure one’s
campaign11 and hence, necessarily, most advertisers have to target different scenarios simultane-
ously with each bidding choice. This is the stochastic budget optimization problem we study in
this paper. One natural idea is for advertisers to recognize in real time the particular scenario
one faces and then apply the best bidding for that scenario. However, this is difficult to do in
practice because of limited and delayed information in the system, and it is also expensive to im-
plement. Furthermore, scenario models provide us with an important first step into understanding
the fully general problem with arbitrary joint distributions that might be hard to model and ana-
lyze since, for example, naive explicit representation of a joint distribution may require space that
is exponential in the number of random variables. Instead, techniques such as Sampled Average
Approximation explained in the preceding paragraph are used, effectively reducing the problem to

10For example, see https://adwords.google.com/select/TrafficEstimatorSandbox
11See for example, http://algo.research.googlepages.com/ec09-partI.pdf

6



the scenario model. Thus, stochastic budget optimization problems under the scenario model are
very appropriate for sponsored search applications.

We do acknowledge that other strategies besides the “best response” may be used by advertisers
in practice12, and stochastic budget optimization algorithms proposed here are not currently used
within the practical tools that are publicly available. Nevertheless, best response is a reasonable
strategy (even recommended by some search engines), and indeed many anecdotal conversations
with advertisers and sponsored search optimizers have clearly indicated to us that they would like
to bid to balance across myriad of scenarios. Our algorithms in this paper (even the dynamic
programming based ones) can be easily implemented in current systems.

2.5 Notational Remarks

As the reader may have already observed, precise definitions of the various models involve a lot
of variables and subscripts. To make the exposition clearer, we will therefore adopt the following
conventions:

• For variables involving keywords, scenarios and (for the multi-slot model) slots, we will use
subscripts i, j and k (and their obvious variations such as i1, i

′, etc.) for scenarios, keywords
and slots, respectively.

• Variables such as m, n, Kj , dj , B, εi, ai,j, ai,j,k, ci,j, ci,j,k, xj , xj,k, payoff, payoffi, κ, s and
B, when used in the context of the stochastic budget optimization models, will be used for
their intended meanings as described in Sections 2.1—2.3.

• Note that:

– m, n, dj , B, ai,j, ai,j,k, ci,j, ci,j,k and s are positive integers;

– 0 ≤ εi ≤ 1 and
∑m

i=1 εi = 1;

– 1 ≤ κ = O (poly(log(m+ n))) is an integer. We refer to this in the sequel by the phrase
“κ is a small integer”.

• The size of an input instance of our Sbo problems, which we will denote by size-of-input and
which is crucial in differentiating polynomial-time algorithms from pseudo-polynomial-time
algorithms, is as follows:

– For Int-Ssbo and Frac-Ssbo:

size-of-input = poly



m+ n+



 max
1≤i≤m
1≤j≤n

log2 ai,j



+



 max
1≤i≤m
1≤j≤n

log2 ci,j



+

(

max
1≤i≤m

1

εi

)



 .

– For Int-Multi-Ssbo and Frac-Multi-Ssbo,

size-of-input = poly









s+m+ n+









max
1≤i≤m
1≤j≤n
1≤k≤s

log2 ai,j,k









+









max
1≤i≤m
1≤j≤n
1≤k≤s

log2 ci,j,k









+

(

max
1≤i≤m

1

εi

)









.

On rare occasions, if we need to reuse the above-mentioned indices or variables and thus deviate
from these conventions, the accompanying text will make the deviation clear.

12By other strategies, we mean strategies in which the advertiser does not fix the strategies of other advertisers.
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3 Summary of Results and Proof Techniques

[19] left the computational complexity issues of the scenario model as the main open problem after
showing that both the integral and fractional versions of this problem, even for single slot case,
are NP-hard and noting that no non-trivial approximability results are known. While prior results
for (S)BO problems exploit insights from the Knapsack problem to associate some potential payoff
with each keyword, a central difficulty encountered in directly applying those techniques for our
models is that payoff from a keyword can be very different from one scenario to another.

3.1 Summary of Results

We provide a slightly coarse summary of the results obtained in this paper; precise bounds are
available in the corresponding technical section that proves the result.

Main Results

(R1) (Approximation algorithms): We provide algorithms that run in near-linear time and
achieve the following approximation ratios13:

• min {O(m), O(κ log dn)}-approximation for both Int-Ssbo and Frac-Ssbo and,

• min
{

O(m), O
(

s κ log∆ log2(m+ n)
)}

-approximation for Int-Multi-Ssbo and Frac-

Multi-Ssbo, where ∆ = maxj,k dj,k.

(R2) (Approximation hardness for the single and multi slot cases) We show that, unless
ZPP=NP, there exist instances of Int-Ssbo and Frac-Ssbo, with n keywords and m = n
scenarios each with equal probability, such that any polynomial-time algorithm for solving
these problems must have an approximation ratio of any one of the following (for any constant
0 < ε < 1):

• Ω
(

m1−ε
)

(and, thus, also Ω
(

n1−ε
)

), or

• Ω
(

κ log1−ε dn
)

.

This almost matches the upper bounds in (R1). Thus, we cannot in general improve the
approximation bound in (R1).

Since Ssbo problems are special case of Multi-Ssbo problems for s = 1, the approximation
hardness bounds for Ssbo can be extended to Multi-Ssbo, providing lower bounds of the
form Ω

(

m1−ε
)

, Ω
(

n1−ε
)

, or Ω
(

log κ · log1−ε dn
)

for Multi-Ssbo instances with n keywords,
m = n scenarios and s slots. We also show that Int-Multi-Ssbo is MAX-SNP-hard for s = 2
even when κ = 1 and cj,k = 1 for all j and k.

Other Results

In addition to the main results, we also prove a number of other results dealing with variations and
special cases of our problems.

Fixed parameter tractability issues: For certain parameter ranges of practical interest we
show that these optimization problems can be solved efficiently. If m or ns is fixed, Frac-
Multi-Ssbo has a polynomial time solution with an absolute error of δ for any fixed δ > 0. If

13The reader is reminded that κ = O (poly(log(m+ n))).
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additionally bids are polynomial in size, Int-Multi-Ssbo also has a polynomial time solution
with an absolute error of δ for any fixed δ > 0.

Limitations of semi-definite programming based approaches: The lower bounds in (R2)
have ε < 1 and thus leave a “very small” gap between this lower bound and the upper bounds
described in (R1). It is natural to ask if the gap could be eliminated; for example can we
design an approximation algorithm for the special case for κ = 1 whose approximation ratio

is, say, o
(

m
logm

)

or o
(

log dn
log log dn

)

? Although we are unable to provide a concrete proof that

such a polynomial time approximation algorithm does not exist, we nonetheless observe that
the natural semidefinite programming relaxation will not work since it has a large integrality

gap of m
2 = Θ

(

log dn
log log dn

)

.

Dual of Ssbo problems: Finally, in some cases, the dual of the stochastic budget optimization
problem may be of interest, where we are given a target expected number of clicks and the
goal is to minimize the expected budget spent while reaching the target. We present some
exact and approximate results for this dual version of the problem.

3.2 Brief Overview of Proof Techniques

In general, budget optimization problems are akin to knapsack problems14. But the stochastic
budget optimization problems studied in this paper are different because their budgets are “soft”,
i.e., they can be exceeded, if under a suitable scaling they meet the budget constraint, and this
improves the objective function. The stochastic budget optimization problems can be more in-
sightfully thought of as special bipartite quadratic programs (these with ±1 variables correspond
to Grothendieck’s inequality with a nice history, but we have 0/1 variables). Standard approaches
to solving other special cases of quadratic programs, for example, using relaxations via semi-definite
programming, do not provably work as we show. Instead, for upper bounds, we take alternative
combinatorial approaches. For showing hardness results, we use intuitions from connections of our
problems to these quadratic programs. For one proof, we show reduction from the hard instances
of the maximum independent set problem [14] on graphs to the bipartite 0/1 quadratic integer pro-
gramming reformulations of Frac-Ssbo and Int-Ssbo. While anecdotally one may indeed believe
these problems to be computationally hard, our results show that this is not true for many ranges
of parameters of interest, but do identify the parameter settings that make them computationally
hard. Taken together, our results are the first known non-trivial complexity results for stochastic
budget optimization problems under the scenario model beyond NP-hardness.

4 Sbo Problems and Bipartite Quadratic Integer Programs

In this section we show how to reformulate various Sbo problems as bipartite quadratic integer
programs (QIP). These reformulations are heavily used in later proofs in the paper. A bipartite
quadratic program is a quadratic program in which there is a bipartition of variables such that
every term involves at most one variable from each partition. A well-known example of such a
(strict) quadratic program on variables taking ±1 values is the so-called Grothendieck’s inequal-
ity [1]. However, as will show later, our quadratic program differs significantly in nature from this
inequality.

14See for example, http://algo.research.googlepages.com/ec09_pub.pdf
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4.1 Ssbo and QIP

(* Quadratic program (Q1) *) (* Quadratic program (Q2) *)
(* wi,j = yi,j ci,j for all i and j *) (* wi,j,k = yi,j,k ci,j,k for all i, j and k *)

maximize
m
∑

i=1

n
∑

j=1

αi xj yi,j maximize
m
∑

i=1

αi





n
∑

j=1

s
∑

k=1

xj,k yi,j,k





subject to subject to

∀ 1 ≤ i ≤ m : αi





n
∑

j=1

wi,jxj



 ≤ Bi ∀ 1 ≤ i ≤ m : αi





n
∑

j=1

s
∑

k=1

wi,j,k xj,k



 ≤ Bi

∀ 1 ≤ i ≤ m : 0 ≤ αi ≤ 1 ∀ 1 ≤ j ≤ n :
∑s

k=1 xj,k ≤ 1
∀ 1 ≤ j ≤ n : 0 ≤ xj ≤ 1 ∀ 1 ≤ i ≤ m : 0 ≤ αi ≤ 1

∀ 1 ≤ j ≤ n ∀ 1 ≤ k ≤ s : 0 ≤ xj,k ≤ 1

Figure 1: Quadratic Integer Programs for Sbo problems. Y is a matrix with non-negative entries
(yi,j for (Q1) and yi,j,k for (Q2)) and B1, B2, . . . , Bm are positive real numbers.

We show how to reformulate Ssbo as a bipartite quadratic integer program. Consider the
quadratic program (Q1) in Fig. 1. By “integral version” of (Q1) we refer to replacing the constraint
0 ≤ xi ≤ 1 by xi ∈ {0, 1}.

Proposition 1. The quadratic program (Q1) and its integral version are equivalent to Int-Ssbo

or Frac-Ssbo, respectively.

Proof. Consider an instance of Ssbo. Let yi,j = εi ai,j, wi,j = ci,j yi,j and Bi = εiB. Then, the
inequality

∑n
j=1 ai,jci,jxj ≤ B becomes

∑n
j=1 yi,jci,jxj ≤ Bi ≡

∑n
j=1wi,jxj ≤ Bi and the fraction

B
∑n

j=1 ai,jci,jxj
becomes

Bi
∑n

j=1wi,jxj
. Conversely, given an instance of (Q1), let B =

∑m
i=1 Bi,

εi =
Bi

B
and ai,j =

yi,j
εi

. Thus, εi ai,j = yi,j, the inequality
∑n

j=1wi,jxj ≤ Bi ≡
∑n

j=1 yi,jci,jxj ≤ Bi

is the same as
∑n

j=1 ai,jci,jxj ≤ B and the fraction
Bi

∑n
j=1wi,jxj

is the same as
B

∑n
j=1 ai,jci,jxj

.

Thus, in the sequel, we assume such a correspondence.
Now, consider a solution vector x = (x1, x2, . . . , xn) and α = (α1, α2, . . . , αm) for (Q1). Then

x also defines a solution vector for Ssbo. We must verify that this is indeed a valid solution vector
with a correct expected payoff. Let Qi =

∑n
j=1wi,jxj. If αiQi < Bi then αi = 1 since otherwise

the solution for (Q1) can be further improved, and then E[payoffi] =
∑n

j=1 yi,jxj, which is correct.

Otherwise αiQi = Bi and then E[payoffi] =
Bi

Bi/αi

∑n
j=1 yi,jxj = αi

∑n
j=1 yi,jxj, which is also

correct. This shows that for every instance of (Q1) there is a corresponding instance of Ssbo with
the same expected payoff.

Now, consider a solution vector x for Ssbo. Then, if Qi ≥ Bi then αi = Bi/Qi otherwise
αi = 1. It is easy to see in the same manner that this provides a valid solution of (Q1) with the
same objective value.

10



maximize αi

∑q
j=p yi,j xj

subject to αi

(

∑q
j=p ci,j yi,j xj

)

≤ Bi

∀ p ≤ j ≤ q : 0 ≤ xj ≤ 1

Figure 2: LP for ith row and pth
through qth column of Y .

Relationship to the Standard Knapsack Problems
If m = κ = 1 and α1 is set to a fixed constant, then
(Q1) reduces a special linear program which is equiva-
lent to the so-called (fractional) knapsack problem which
is well-studied in the literature. Extending this analogy,
by the phrase “the standard fractional knapsack problem
corresponding to the ith row of and pth through qth col-
umn of Y ”, we will mean the linear program as shown
in Fig. 2 (it is easy to see that there is an optimal solution of this linear program in which

αi = min

{

1, Bi

(
∑q

j=p ci,j yi,j)

}

). Since dp ≤ dp+1 ≤ · · · ≤ dq, the following well-known fact follows.

Fact 1. [12] An optimal solution to the linear program in Fig. 2 (“optimal payoff for the ith row
and pth through qth column of Y ”) is a “prefix solution”, i.e., there is an index j ′′′ such that xj = 1
for j < j ′′′, 0 < xj ′′′ ≤ 1 and xj = 0 for j > j ′′′.

4.2 Multi-Ssbo and QIP

The quadratic programming reformulation of Multi-Ssbo can also be obtained in a similar manner
and is shown as (Q2) in Fig. 1.

5 Poly-logarithmic Approximations for Ssbo and Multi-Ssbo (main

result (R1))

Theorem 1 (Near-linear time approximation). There is a

(i) min {O(m), O (κ log dn)}-approximation for both Int-Ssbo and Frac-Ssbo;

(ii) min {O(m), O (sκ log ∆)}-approximation for Frac-Multi-Ssbo and

(iii) min
{

O(m), O
(

sκ log ∆ log2(m+ n)
)}

-approximation for Int-Multi-Ssbo

where, for (ii) and (iii), ∆ = maxj,k dj,k. All these algorithms can be implemented in linear or
near-linear time using standard data structures and algorithmic techniques.

In the rest of this section, we prove the above theorem. As a first attempt, one might be tempted
to use recent techniques in designing efficient algorithms for multiple-knapsack problems [7, 16] for
our problem; however it is not difficult to design examples where such approaches fail badly since
our budget constraints are “soft” (they can be exceeded if scaling them gives better payoff) and
our probabilities are “arbitrary”. As a second attempt, one might take our quadratic programming
reformulation as discussed in Section 4 and semidefinite-programming based rounding approach
such as in [13]. However, it can be shown that the integrality gap of such a reformulation is very
large. The failure of these natural approaches shows the difficulty of the problems. Thus, we are
led to explore other combinatorial approaches to provide the desired approximation.

5.1 O(m)-approximation for Int-Ssbo and Frac-Ssbo

To get a O(m)-approximation we can do the following. For each i we solve the standard (integer
or fractional) knapsack problem for the ith row of Y ; let pi be the value of an optimal solution.
Then, take the best of these solutions, say of value p = max1≤i≤m{pi}. Each fractional knapsack

11



1. Partition the keywords into maximal groups such that if a group G contains pth through
qth keyword then dq/dp ≤ 2 and dq+1/dp > 2.

Let G be the set of such groups.
2. For each group G ∈ G consisting of keywords, say Kp,Kp+1, . . . ,Kq, do

Set xj = 1 for every p ≤ j ≤ q and set xj = 0 for all other j;
let E[payoff ′] be the payoff of this solution

3. Output the best of the solutions obtained in 2.

Figure 3: Algorithm for the case of κ = 1.

problem can be solved exactly in O(n log n) time [12] and a O(n log n) time greedy 2-approximation
algorithm for the integer knapsack problem is also well known [17].

We now note that E[payoff] ≤
∑m

i=1 pi. Indeed, consider an optimal solution of Ssbo. If αi = 1,
then by definition of pi we have E[payoffi] ≤ pi. If αi < 1, then we set αi = 1 and set a new value
of xj as x′j = αixj. This does not change E[payoffi] and now we again have E[payoffi] ≤ pi. Thus,
we have p ≥ E[payoff]/m.

If p = pi for some i, then the solution of the knapsack problem of value p can be extended to a
solution of Ssbo by setting αi′ = 0 for i′ 6= i.

5.2 O (κ log dn)-approximation for Int-Ssbo and Frac-Ssbo

Case of κ = 1: Uniform Cost Model

The algorithm is shown in Fig. 3. Consider a groupG ∈ G consisting of the keywords Kp,Kp+1, . . . ,Kq.
By the “Ssbo problem on G” we mean the instance of the Ssbo problem in which our click in-

put consists of the submatrix Yp,q =







y1,p y1,p+1 . . . y1,q
...

... . . .
...

ym,p ym,p+1 . . . ym,q






of Y containing all rows and pth

through qth columns, the costs-per-click dp, . . . , dq, the budgets B1, . . . , Bm, and the selection vari-
ables xp, . . . , xq. Let E[payoffG] be the value of expected payoff of an optimal solution for this

subproblem. Since maxG∈G E[payoffG] ≥
E[payoff]

|G| and |G| = O(log dn), the following lemma proves
the desired approximation bound.

Lemma 2. E[payoff ′] ≥
E[payoffG]

2
.

Proof. We only need to prove the lemma for the case when E[payoffG] is the total expected payoff of
an optimal solution of the Frac-Ssbo problem on G since obviously the total expected payoff of an
optimal solution of the Int-Ssbo problem on G is no more than E[payoffG]. Let D =

∑q
j=p dj yi,j

and β = |G|. By our choice of the group G,

dp

q
∑

j=p

yi,j ≤ D ≤ dq

q
∑

j=p

yi,j ≤ 2 dp

q
∑

j=p

yi,j.

Using the quadratic programming formulation (Q1) and remembering that ci,j = dj when κ = 1,
the Frac-Ssbo instance on G is equivalent to the following quadratic program (Q3):

12



(* Quadratic program (Q3) *)

maximize
∑m

i=1 αi

(

∑q
j=p yi,j xj

)

subject to ∀ 1 ≤ i ≤ m : αi

(

∑q
j=p dj yi,j xj

)

≤ Bi

∀ 1 ≤ i ≤ m : 0 ≤ αi ≤ 1
∀ p ≤ j ≤ q : 0 ≤ xj ≤ 1

Fix any optimal solution for our Frac-Ssbo instance on G, i.e., fix an optimal solution vector
(α∗

1, α
∗
2, . . . , α

∗
m) and (x∗p, x

∗
p+1, . . . , x

∗
q) of (Q3). In our solution sets xp = xp+1 = · · · = xq = 1;

thus αi = min
{

1, Bi

D

}

for every i and xj ≥ x∗j for every p ≤ j ≤ q.

Case 1: D ≤ Bi . Then, αi = 1 ≥ α∗
i , xj = 1 ≥ x∗j for p ≤ j ≤ q, and thus

αi





q
∑

j=p

yi,j xj



 ≥ α∗
i





q
∑

j=p

yi,j x
∗
j



 .

Case 2: D > Bi . Then, αi =
Bi

D
. Now, we have

αi





q
∑

j=p

yi,j xj



 =

(

Bi

D

)

×

q
∑

j=p

yi,j ≥

(

Bi

D

)

×

(
∑q

j=p dj yi,j

dq

)

=
Bi

dq
≥

1

2
×

Bi

dp

α∗
i





q
∑

j=p

yi,jx
∗
j



 ≤
Bi

∑q
j=p yi,jdjx

∗
j

×





q
∑

j=p

yi,jx
∗
j



 ≤
Bi

dp

where the inequality for α∗
i comes directly from the constraints of (Q3).

Thus, combining both cases, we have

E[payoff ′] =
m
∑

i=1

αi





q
∑

j=p

yi,j xj



 ≥
1

2
×

m
∑

i=1

α∗
i





q
∑

j=p

yi,j x
∗
j



 =
E[payoffG]

2

Case of κ > 1: General Single-slot Model

Using our δ-approximation algorithm for Uniform-Ssbo (for δ = O (log dn)) as outlined in Fig. 3,
we show how to use it as a subroutine to get a κ δ = O (κ log dn)-approximation for Int-Ssbo (and,
hence, also for Frac-Ssbo). The algorithm is shown in Fig. 4.

1. Replace (truncate) each ci,j by its new value c′i,j = dj.

2. Use the approximation algorithm in Fig. 3 with these new truncated values of ci,j’s.
Let x = (x1, x2, . . . , xn) and α = (α1, α2, . . . , αm) be the solution vectors returned.

3. Output x and α
′ = (α′

1, α
′
2, . . . , α

′
m) =

(

α1

κ
, α2

κ
, . . . , αm

κ

)

as our solution.

Figure 4: O(κ log dn)-approximation algorithm for Int-Ssbo.

We use the following notations:
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• x∗ = (x∗1, x
∗
2, . . . , x

∗
n) and α

∗ = (α∗
1, α

∗
2, . . . , α

∗
m) are the solution vectors for an optimal

solution of our (original) instance of Ssbo, and E[payoff∗] =
∑m

i=1 α
∗
i

(

∑n
j=1 yi,jx

∗
j

)

is the

total expected payoff of this optimal solution.

• x+ = (x+1 , x
+
2 , . . . , x

+
n ) and α

+ = (α+
1 , α

+
2 , . . . , α

+
m) are the solution vectors for an optimal

solution of the truncated instance of Ssbo, and E[payoff+] =
∑m

i=1 α
+
i

(

∑n
j=1 yi,jx

+
j

)

is the

total expected payoff of this optimal solution.

• E[payoff] =
∑m

i=1 α
′
i

(

∑n
j=1 yi,jxj

)

is the total expected payoff of the solution obtained by

using the algorithm in Fig. 4.

Proposition 2. The following statements are true:

(a) x and α
′ correspond to a valid solution of the Ssbo instance.

(b) E[payoff+] ≥ E[payoff∗].

(c) E[payoff] ≥ E[payoff+]
κ

.

Thus the algorithm in Fig. 4 is a O (κ log dn)-approximation.

Proof.

(a) α′
ici,j=

αi

κ
ci,j ≤

αi

κ
κdj=αidj , thus αi





n
∑

j=1

yi,j dj xj



 ≤ Bi implies α′
i





n
∑

j=1

yi,j ci,j xj



 ≤ Bi.

(b) The solution vectors x∗ and α
∗ for an optimal solution of the Ssbo instance is also a valid (not

necessarily optimal) solution vector for the truncated instance of Ssbo since c′i,j ≤ ci,j.

(c) This follows since α′
i =

αi

κ
.

5.3 Approximation Bounds for Frac-Multi-Ssbo and Int-Multi-Ssbo

(* Quadratic program (Q4) *)

maximize αi

(

∑n
j=1

∑s
k=1 yi,j,k xj,k

)

subject to

αi

(

∑n
j=1

∑s
k=1wi,j,k xj,k

)

≤ Bi

∀ 1 ≤ j ≤ n :
∑s

k=1 xj,k ≤ 1
0 ≤ αi ≤ 1

∀ 1 ≤ j ≤ n ∀ 1 ≤ k ≤ s : 0 ≤ xj,k ≤ 1

Figure 5: Multi-Ssbo restricted to the ith
scenario.

To get a O(m)-approximation we follow the same
approach as in Section 5.1. For each i we solve the
restriction of the Multi-Ssbo problem on the ith
scenario, i.e., the quadratic program (Q4) as shown
in Fig. 5, and then take the best of these solutions.
It is easy to see that an optimal solution of (Q4)

satisfies αi = min
{

1, Bi
∑n

j=1

∑s
k=1

wi,j,kxj,k

}

. For any

fixed value of αi, (Q4) is known in the literature as
the multiple-choice Knapsack problem with s n ob-
jects divided into n classes and a knapsack capacity
of Bi/αi; a O(1)-approximation algorithm for this
problem that runs in O

(

ns2
)

time is known [17].
We next show that algorithms for the single-slot

case can be used for the multi-slot model with appropriate multiplicative factors in the approxima-
tion ratio.

Lemma 3. There exists a O(s κ log ∆)-approximation (respectively, O
(

s log2(m+ n)κ log ∆
)

-
approximation) algorithm for Frac-Multi-Ssbo (respectively, Int-Multi-Ssbo).
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Proof. We first prove our claim for Frac-Multi-Ssbo. Consider the quadratic program (Q2)’
obtained from the quadratic program (Q2) for Frac-Multi-Ssbo by removing the constraints
∑s

k=1 xj,k ≤ 1 for 1 ≤ j ≤ n. If OPT and OPT′ are the optimal values of the objective functions
of (Q2) and (Q2)’, respectively, then obviously OPT′ ≥ OPT. A straightforward inspection shows
that (Q2)’ can be written down in the same form as (Q1) with s n variables and m constraints.
Thus, using the already proven result of Theorem 1(i) we obtain a solution for (Q2)’ whose
objective value is OPT

′

κ log(maxj,k dj,k)
= OPT

′

κ log∆ ≥ OPT

κ log∆ To convert this to a solution of Frac-Multi-

Ssbo(i.e., to satisfy the constraints
∑s

k=1 xj,k ≤ 1 for each j) we divide each xj,k by
∑s

k=1 xj,k
which decreases the total payoff by no more than a factor of s.

The result for Int-Multi-Ssbo follows by translating the above worst-case approximation
bound for Frac-Multi-Ssbo to a worst-case approximation of Int-Multi-Ssbo via the following
lemma.

Lemma 4. (Approximating Int-Multi-Ssbo via Frac-Multi-Ssbo) Suppose that we have
a η-approximation for Frac-Multi-Ssbo. Then, we also have a O(η γ) approximation for Int-

Multi-Ssbo where γ =

{

logm, if s = 1
log2(m+ n), otherwise

Proof. For a particular value of the vector α = (α1, α2, . . . , αm), (Q2) reduces to a linear program
on the variables x = (x1, x2, . . . , xn). For ease of description, we consider the case of s = 1 first
(i.e., the case of Frac-Ssbo). An inspection of (Q1) reveals that this linear program has exactly
n variables and m inequalities, where the ith inequality Di (for 1 ≤ i ≤ m) is of the form:

Di
def
≡
def
≡
def
≡ αi





n
∑

j=1

wi,j xj



 ≤ Bi

Consider a solution xf = (xf1 , x
f
2 , . . . , x

f
n). and α

f = (αf
1 , α

f
2 , . . . , α

f
m), of Frac-Ssbo with

L =
∑m

i=1

∑n
j=1 α

f
i yi,j x

f
j as the value of its objective. We may assume that L > 100 lnm since oth-

erwise the approximation guarantee can be trivially achieved. We employ the following randomized
rounding scheme to transform this solution to a solution of Int-Ssbo:

• For i = 1, 2, . . . , n, we round xfi randomly to 0 and 1 with probabilities xfi and 1 − xfi ,
respectively. Let xi ∈ {0, 1} be the resulting random variable.

• We return x = (x1, x2, . . . , xn) and α = (α1, α2, . . . , αm) as our solution where αi =
α
f
i

100 lnm

for 1 ≤ i ≤ m.

Let L′ =
∑m

i=1

∑n
j=1 αiyi,j xj be the new value of the objective and let Ei be the event that inequality

Di holds for this randomized solution. By linearity of expectation E[L′] = L
100 lnm

. Consider the
inequality Di, and let α′

i =
αi

Bi+1 . By linearity of expectation,

E



α′
i





n
∑

j=1

wi,jxj







 =
1

100 lnm
×

1

Bi + 1
× αf

i





n
∑

j=1

wi,jx
f
j



 <
1

100 lnm
×

Bi

Bi + 1

Since α′
i =

αi

Bi+1 , 0 ≤ α′
iwi,jxj =

αiwi,jxj

Bi+1 ≤ Bi

Bi+1 < 1 and thus α′
iwi,jxj can be thought of as an

independent Poisson trial whose probability of success (a value of 1) is α′
iwi,jxj and probability of
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failure (a value of 0) is 1 − α′
iwi,jxj . Thus, using standard Chernoff bound [18, Excercise 4.1], we

get:

Pr[Ei does not hold] = Pr



αi





n
∑

j=1

wi,jxj



 > Bi



 = Pr



α′
i





n
∑

j=1

wi,jxj



 >
Bi

Bi + 1



 < e−3 lnm <
1

m2

In a similar manner, one can show that Pr
[

L′ < L
200 lnm

]

< 1
m
. Thus, finally, using union bounds,

we get

Pr

[

L′ ≥
L

200 lnm

∧

(∧m
i=1Ei holds)

]

≥ 1−Pr

[

L′ <
L

200 lnm

]

−

(

m
∑

i=1

Pr [Ei does not hold]

)

> 1−
2

m

Thus, we achieve the desired approximation bound with 1− o(1) probability.
For the case of s > 1 (i.e., Frac-Multi-Ssbo), the same approach with some modifica-

tions works. In a nutshell, we have n additional constraints Fj (for j = 1, 2, . . . , n) of the form
∑s

k=1 xj,k ≤ 1. Thus, the total number of inequalities/equalities ism+n and we need to do the anal-
ysis with “ln(n+m)” replacing “lnm”. The only additional part that needs to be done is to show
how to handle the Fj constraints. Notice that the set of variables involved in Fj are disjoint from the
set of variables in any other Fj′ for j

′ 6= j. After rounding, we have
∑s

k=1 xj,k ≤ 100 ln(m+n). We
now select one of these variables xj1 to xj,s, say xj,`, such that xj,` = max1≤k≤s{

∑m
i=1 αixj,kyi,j,k },

set xj,` = 1 and set xj,k = 0 for k 6= `. After all these normalizations, we loose an additional factor
of 100 ln(m+ n) and all constraints are satisfied.

Note that the claim in Lemma 4 is “pessimistic” in nature; indeed, as our claim in Theorem 1
shows, for arbitrary parameter range both Int-Ssbo and Frac-Ssbo can be approximated to
within the same ratio.

6 Approximation-hardness Results for Ssbo andMulti-Ssbo (main
result (R2))

6.1 Approximation-hardness Bounds for Ssbo

Theorem 5 (Logarithmic inapproximability). There exist instances of Int-Ssbo and Frac-Ssbo,
with n keywords and m = n scenarios each with equal probability, such that, unless ZPP=NP, any
polynomial-time algorithm for solving these problems must have an approximation ratio of any one
of the following:

• Ω
(

m1−ε
)

(and, thus, also Ω
(

n1−ε
)

), or

• Ω
(

κ log1−ε dn
)

.

where 0 < ε < 1 is any constant.

Proof. We construct instances of Ssbo with n keywords and m = n scenarios such that, for15

any κ and any values of ci,j in the range [dj , κ dj), the claimed lower bound holds. We use the
reformulation of Frac-Ssbo and Int-Ssbo as a bipartite quadratic program (Q2) as discussed in
Section 4.

15Remember that in Section 2.5 we fixed bounds on κ, namely, κ = O (poly(log(m+ n))).
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The standard maximum independent set (MIS) problem is defined as follows. We are given an
undirected graph G = (V,E). A subset of vertices V ′ ⊆ V is called independent if for every two
vertices u, v ∈ V ′ we have {u, v} 6∈ E. The goal is to find an independent subset of vertices of
maximum cardinality. It is known that MIS cannot be approximated to within a factor of |V |1−ε

for any constant 0 < ε < 1 unless ZPP= NP [14].
For notational simplicity, let n = |V | and a = n12. Set m = n. Select an arbitrary order

v1, v2, . . . , vn of the vertices in V . Intuitively, the ith column and the (n + 1 − i)th row of Y
correspond to the vertex vi and the entries of the matrix Y are such that they are 0 above the
reverse diagonal and encodes the adjacency of vertices of G on or below the reverse diagonal.
Formally,

yi,j =















0 if i+ j < n+ 1
1 if i+ j = n+ 1
1 if i+ j > n+ 1 and {vn−i+1, vj} ∈ E
0 if i+ j > n+ 1 and {vn−i+1, vj} 6∈ E

Fix d1, d2, . . . , dn as d1 = 1 and di = a di−1 for 1 < i ≤ n. Thus, for all sufficiently large n,

ci1,j1
ci2,j2

≥
dj1
κ

κdj2
> n6 if j1 > j2. Let Bi = ci,n+1−i for 1 ≤ i ≤ m = n. Remembering that

wi,j = ci,j yi,j for all i and j, we have:

wi,j =















0 if i+ j < n+ 1
or if i+ j > n+ 1 and {vn−i+1, vj} 6∈ E

ci,j if i+ j = n+ 1
or if i+ j > n+ 1 and {vn−i+1, vj} ∈ E

Note that n1−ε = m1−ε = Ω
(

κ log1−ε′ dn

)

, where 0 < ε′ < 1 is a constant that depends on ε, since

dn = n12n and κ = poly (log(m+ n)) = poly (log(n)). Let ∆ind and ∆Q1 be the maximum number
of independent vertices in G and an optimal value of the objective of the fractional or integral
version of (Q1), respectively.

Lemma 6. ∆Q1 ≥ ∆ind.

Proof. Consider an optimal solution V ′ of MIS on G with |V ′| = ∆ind. We generate a solution of
(Q2) by setting

xi = αn−i+1 =

{

1, if vi ∈ V ′

0, otherwise

Note that, since V ′ is an independent set, if i + j > n + 1, vi ∈ V ′ and {vi, vj} ∈ E then vj 6∈ V ′

and thus xi = αn−i+1 = 1 and xj = αn−j+1 = 0.
First, we show that this is indeed a valid solution of (Q1). For any 1 ≤ i ≤ n− 1, consider the

constraint

αn−i+1





n
∑

j=1

wn−i+1,j xj



 ≤ Bn−i+1.

If αn−i+1 = 0, then the constraint is obviously satisfied since Bn−i+1 > 0. Otherwise, αn−i+1 =
xi = 1 and thus,

αn−i+1





n
∑

j=1

wn−i+1,j xj



 =
n
∑

j=1

wn−i+1,j xj = ci +
∑

i+j>n+1
{vi,vj}∈E

wn−i+1,j xj = cn+1−i,i = Bn+1−i
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Thus, all the constraints are satisfied. Finally, the value of the objective function is

m
∑

i=1

n
∑

j=1

αi xj yi,j =
∑

i+j=n+1
vj∈V ′

αixj =
∑

vj∈V ′

xj = ∆ind

and thus ∆Q1 ≥ ∆ind.

For the other direction, we first need a normalization lemma.

Lemma 7 (Normalization lemma). Consider an optimal solution of (Q1) with an objective value
of ∆Q1. Then, we can transform this solution to another solution of (Q1) of objective value ∆′

Q1

such that:

(a) xi ∈ {0, 1} for each i;

(b) ∆′
Q1 ≥ ∆Q1 − 1; and

(c) if {xi, xj} ∈ E then xi + xj ≤ 1.

Proof. Suppose that we are given an optimal solution of (Q1) with an objective value of ∆Q1.
First, we note some properties of this solution.

Proposition 3. The following statements are true:

(i) for every i, αn−i+1xi ≤ 1, and

(ii) for every i and j, if i+ j > n+ 1 and {vi, vj} ∈ E then αjxi ≤ n−6.

Proof. Consider the constraint αn−i+1

(

∑n
j=1wn−i+1,jxj

)

≤ Bn−i+1 = cn−i+1,i.

Since wn−i+1,i = cn−i+1,i, (i) follows.
(ii) is equivalent to the claim that αn−i+1xj ≤ n−6 if j > i. Since

cp,j
cq,i

> n6 if j > i (for any p

and q), (ii) follows.

Now we show how to “normalize” this solution such that each variable xi is 0 or 1, and the total
objective value does not decrease too much. Let Γ =

∑

i+j 6=n+1 αixjyi,j. By Proposition 3(ii),

Γ ≤ n2 × n−6 = n−4. Thus, setting Φ =
∑

i+j=n+1 αixjyi,j, it follows that Φ ≤ ∆Q1 ≤ Φ + n−4.
Thus, subsequently we concentrate on the quantity Φ.

If αn−i+1 = 0 for some i, then we can set xi = 0 without changing the value of Φ. Let
I = {n − i + 1 |αn−i+1 > 0 and xi > 0}. Consider the largest index n − i + 1 ∈ I. There are two
cases to consider:

Case 1: xi > n−3. By Proposition 3(i), αn−i+1 < n−3 and αn−j+1xj ≤ αn−j+1 < n−3 for every
j > i such that {vi, vj} ∈ E.

We set αn−i+1 = xi = 1 and set xj = αn−j+1 = 0 for every j > i such that {vi, vj} ∈ E. The
change in Φ is at most n× n−3 = n−2.

Case 2: xi ≤ n−3. We set αn−i+1 = xi = 0. The change in Φ is at most n−3.

We now remove the index n− i+ 1 from I and continue with the next largest index. We continue
until I = ∅. Since |I| ≤ n, the total change in Φ is at most n−1 < 1− n−4.

To complete the proof, we select vertices vj in the independent set if xj = 1.

18



To finish the proof of Theorem 5, we simply select those vertices vi for the independent set such
that xi = 1. We have now shown that ∆ind ≤ ∆Q1 ≤ ∆ind − 1. Thus, since ∆ind and ∆Q1 are
within a constant factor of each other and ∆ind cannot be approximated to with a factor of n1−ε

for any constant 0 < ε < 1, ∆Q1 cannot be approximated to within a factor of c n1−ε, or cm1−ε,
or c′ κ log1−ε dn for some positive constants c and c′.

6.2 Approximation Hardness Results for Multi-Ssbo

A first natural approach to prove an approximation hardness result for Multi-Ssbo would be to
generalize the approximation hardness result for the single-slot case (Q1) in Theorem 5 to the
multi-slot case (Q2). This can be trivially done by copying the construction of the single-slot case
to one of the slots in the multi-slot case. However, after this, one can observe that:

the construction for the single-slot case cannot again be copied to another slot because of
the constraints in Equation (2) which state that at most one selection variable in each slot
can be set to 1.

Formally, the lower bound construction for (Q1) can be extended to (Q2) as follows:

• Identify yi,j,1 of (Q2) with yi,j of (Q1) and set yi,j,2 = yi,j,3 = · · · = yi,j,s = 0 in (Q2).

• Identify ci,j,1 of (Q2) with ci,j of (Q1) and set ci,j,2 = ci,j,3 = · · · = ci,j,s = 0 in (Q2).

• Identify xj,k,1 of (Q2) with xj of (Q1).

This leads to the following approximation hardness result.

Corollary 8. There exist instances of Int-Multi-Ssbo and Frac-Multi-Ssbo, with n key-
words, m = n scenarios each with equal probability and s slots, such that, unless ZPP=NP, any
polynomial-time algorithm for solving these problems must have an approximation ratio of Ω

(

n1−ε
)

or Ω
(

κ log1−ε dn
)

, where 0 < ε < 1 is any constant.

The theorem below shows that Int-Multi-Ssbo is MAX-SNP-hard even when severely re-
stricted.

Theorem 9 (Inapproximability of Int-Multi-Ssbo with two slots).
Int-Multi-Ssbo is MAX-SNP-hard for s = 2 even when κ = 1 and cj,k = 1 for all j and k.

Proof. We reduce the MAX-2SAT-3 problem16 to our problem. MAX-2SAT-3 is defined as follows.
We are given a collection of m clauses C1, C2, . . . , Cm over n Boolean variables z1, z2, . . . , zn, where
every clause is a disjunction of exactly two literals and every variable occurs exactly 3 times (and,
thus, m = 3n/2). The goal is to find an assignment of truth values to variables to satisfy a maximum
number of clauses. This problem was shown to be MAX-SNP-hard in [3].

Given an instance of MAX-2SAT-3 we create an instance of Int-Multi-Ssbo (i.e., (Q2)) with
s = 2 as follows. Every variable zj corresponds to a keyword Kj with two slots. The variables xj,1
and xj,2 encode the truth assignments of the variable zj with xj,1 = 1 indicating that zj is true and
xj,2 = 1 indicating that zj is false; we will say that xj,1 and xj,2 are the slots corresponding to the
literals zj and ¬zj, respectively. There are exactly m scenarios, each with probability 1

m
, defined

in the following manner:

• Bi = 1 for 1 ≤ i ≤ m.

16Our reduction approach should also work if we start with MAX-2SAT-k for any constant k.
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• cj,k = 1 for 1 ≤ j ≤ n and 1 ≤ k ≤ 2 = s.

• For the ith clause Ci containing two literals, we have the ith scenario of the following form.
Let xj,k and xj′,k′ be the slots corresponding to the two literals of the clause. Then we set
yi,j,k = yi,j′,k′ = 1, and yi,j,k = 0 if j 6= j′ or k 6= k′. For example, if Ci = z2 ∨ (¬z3) then
yi,2,1 = yi,3,2 = 1 and yi,j,k = 0 for all other j and k.

An inspection of the construction reveals that it satisfies the following:

• Because this is an instance of Int-Multi-Ssbo, by Equation (2), for every 1 ≤ j ≤ n, either
xj,1 = 1 or xj,2 = 1 but not both. On the other hand, it is always possible to set at least one
of the two variables xj,1 = 1 or xj,2 = 1 without decreasing the total payoff. Thus setting
these variables correspond to a truth assignment.

• A scenario contributes a payoff of 1 if and only if at least one of two slots have been selected.
Thus, contribution of a scenario correspond to satisfying a clause.

By the above observations, we satisfy m′ clauses if and only if the above instance of Int-Multi-

Ssbo has a total payoff of m′.

7 Other Results

7.1 Improved Algorithms for Special Cases of Ssbo and Multi-Ssbo

By the phrase “within an additive error of δ” in Lemma 10 we mean that if our solution
returns an objective value of x when the optimal value is y then |x− y| ≤ δ.

Lemma 10.

(a) (Fixed number of scenarios) If m is fixed, Frac-Multi-Ssbo admits a pseudo-polynomial
time solution with an absolute error of δ for any fixed δ > 0, Int-Ssbo admits a pseudo-
polynomial time O(1)-approximation and Int-Multi-Ssbo admits a pseudo-polynomial
time O(log2 n)-approximation.

(b) (Fixed number of keywords) If ns is fixed, then Frac-Multi-Ssbo admits a pseudo-
polynomial time solution with an absolute error of δ for any fixed δ > 0.

(c) (Logarithmic number of keywords) if ns = O(logm) then Int-Multi-Ssbo admits a
polynomial time exact solution.

(d) (Fixed number of scenarios and polynomial bids) If m is fixed and the maximum size

of all the numbers, namely max

{

max
i,j,k

{yi,j,k}, max
i

{Bi}, max
i

{

1

εi

}

, max
i,j,k

{ci,j,k}

}

, is at most

poly(n) then Int-Multi-Ssbo admits a polynomial time solution with an absolute error of δ
for any fixed δ > 0.

Proof.
(a) and (b) We prove part (a) as follows (the proof for part (b) is similar). Consider the Frac-

Multi-Ssbo problem; let y = max
1≤i≤m
1≤j≤n
1≤k≤s

{yi,j,k}.

20



Proposition 4. Let α∗ = (α∗
1, α

∗
2, . . . , α

∗
m) and x∗ = (x∗1,1, . . . , x

∗
1,s, x

∗
2,1, . . . , x

∗
2,s, · · · · · · , x

∗
n,1, . . . , x

∗
n,s)

be the solution vectors for an optimal solution of value E[payoff ∗] =
∑m

i=1 α
∗
i

(

∑n
j=1

∑s
k=1 yi,j,k x

∗
j,k

)

.

Suppose that we approximate the vector α∗ by a vector αε = (α1,ε, . . . , αm,ε) such that |||α∗
i−αi,ε ||| ≤ ε

for each i. Then, if ε ≤
δ

nsy
we can compute a solution with a total expected payoff of at least

E[payoff]− δ.

Proof. Our algorithm is simple. Plugging the values of this αε in (Q2) reduces it to a linear pro-
gram, which can be solved optimally in polynomial time giving a solution vector, say xε. Our
solution vectors are αε and xε. Obviously, all the constraints are satisfied, so we just need
to check the total expected payoff of our solution. For notational convenience, let F(α,x) =
∑m

i=1 αi

(

∑n
j=1

∑s
k=1 yi,j,k xj,k

)

for two vectors x = (x1,1, . . . , x1,s, x2,1, . . . , x2,s, · · · · · · , xn,1, . . . , xn,s)

and α = (α1, . . . , αm); thus F(α∗,x∗) = E[payoff ∗]. Then,

||| F(α∗,x∗)− F(αε,x
∗) ||| ≤ ε

n
∑

j=1

s
∑

k=1

yi,j,k ≤ ε n s y

=⇒ F(αε,xε) ≥ F(αε,x
∗) ≥ F(α∗,x∗)− ε n s y ≥ F(α∗,x∗)− δ

To get such a αε, for every αi,ε we try out all rational numbers between 0 and 1 of the form

j δ
2n s y

for j = 0, 1, . . . ,
2n s y

δ
until we succeed. The total number of choices is at most

(

2nsy
δ

+ 1
)m

,

which is pseudo-polynomial17 in the size of the input since m is fixed.
The result for Int-Multi-Ssbo follows by using the above proof with Lemma 4.

(c) When ns = O(logm) then we can try out all possible poly(m) assignments of keywords to slots.
For each assignment, we can directly calculate the values of α1, α2, . . . , αm. We take the best of all
such solutions.

(d) Let p1(n) be a polynomial in n such that max

{

y, max
i

{Bi} , max
i,j,k

{wi,j,k}

}

< p1(n). By the

proof in part (a), to ensure an absolute error of δ, it suffices to try all vectors α = (α1, α2, . . . , αm) in
which each αi is a non-negative rational number with numerator and denominator at most p2(n) for
some polynomial p2(n), and provide a solution of Int-Multi-Ssbo for this α in polynomial time.
We will refer to Bi as the “expected budget” for the ith scenario. Let E[payoff (j, k, b1, . . . , bm) ]
be the optimal value of the expected payoff when no slot was selected after the kth slot of the jth
keyword and the expected budget for the ith scenario was bi. It is easy to see that the following
recurrence holds:

E [ payoff(j, k, b1, . . . , bm) ] = max

{

m
∑

i=1

yi,j,k +E [ payoff(j − 1, s, b1 − α1w1,j,k, . . . , bm − αmwm,j,k) ] ,

E [ payoff(j, k − 1, b1, . . . , bm) ]

}

Based on the above recurrence, it is easy to design a polynomial time dynamic programming
algorithm to compute the optimal solution E [ payoff(n, s,B1, . . . , Bm) ] of Int-Multi-Ssbo.

17The running time is not strongly polynomial since the input size depends polynomial on log2 y (see Section 2.5).
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7.2 Limitations of the Semidefinite Programming Relaxation Approaches for
Ssbo

(* Vector program (V) *)
maximize

∑m
i=1

∑q
j=p yi,j U i � Vj

subject to ∀ 1 ≤ i ≤ m :
∑n

j=1 ci,j yi,j U i � Vj ≤ Bi

∀ 1 ≤ i ≤ m : ∀ 1 ≤ j ≤ n : U i � Vj ≥ 0
∀ 1 ≤ i ≤ m : U i � U i ≤ 1
∀ 1 ≤ i ≤ m : U i ∈ R

m+n

∀ 1 ≤ j ≤ n : Vj � Vj ≤ 1
∀ 1 ≤ j ≤ n : Vj ∈ R

m+n

Figure 6: SDP-relaxation of (Q1).

A natural Semidefinite programming (SDP) relaxation approach to solve quadratic programs
such as (Q1), extensively used in existing literatures for efficient approximations of quadratic
programs for MAX-CUT, MAX-2SAT and many other problems [21], is as follows. We first add
some redundant inequalities to (Q1). For every i and j we add the inequality αixj ≥ 0. Clearly,
this does not change the solutions of (Q1). Then, (Q1) can be relaxed to a vector program (V)
by replacing the variables by (m+n)-dimensional vectors and the product of variables by the inner
product (denoted by �) of the corresponding vectors. The resulting vector program is shown in
Fig. 6; it is well known that (V) is a relaxation of (Q1) (e.g., see [21]).

Since the lower bounds in Theorem 5 have ε < 1 and thus leaves a “very small” gap between
this lower bound and the upper bound in Theorem 1, one might wonder if the gap can be somewhat
narrowed down by designing an approximation algorithm based on the SDP-relaxation approaches

whose approximation ratio is, say, o
(

m
logm

)

or o
(

log dn
log log dn

)

? However, we show that the large

integrality gap of the SDP-relaxation does not allow for such a possibility.

Lemma 11 (Limitations of SDP-relaxation approaches). Let κ = 1. Let OPTQ1 and OPTV be the
total optimal payoff for an instance of (Q1) and the optimal value of the objective function of (V),

respectively. Then,
OPTV

OPTQ1
≥

m

2
= Θ

(

log dn
log log dn

)

.

Proof. We reuse the notations and terminologies used in the proof of Theorem 5. Let the given
graph G be a completely connected graph; thus ∆ind = 1. We construct an instance of Ssbo

as in Theorem 5. Thus, ∆Q1 < 1 + ∆ind = 2. Note that cn = dn = m6m and thus m =
Θ(log dn/ log log dn).

However, we show that OPTvector ≥ m. Let U 1, . . . ,Um be a set of mutually orthogonal unit-
norm vectors in R

m+n and let Vi = Um−i+1 for 1 ≤ i ≤ m. Thus, U i � Vj is 1 if i + j = m + 1
and is 0 otherwise, and U i � U i = Vi � Vi = 1 for all i. Obviously,

∑m
i=1

∑n
j=1 yi,j U i � Vj = m. We

now verify that this is indeed a valid solution of (V) by checking that it satisfies all the constraints
(

∑n
j=1wi,j U i � Vj

)

≤ Bi for 1 ≤ i ≤ n. It can be seen that
(

∑n
j=1wi,j U i � Vj

)

= wi,m−i+1 =

cm−i+1 = Bi.

7.3 Combinatorial Dual of Ssbo Problems

In Dual-Ssbo, the natural combinatorial dual version of Ssbo, we are given a lower bound, say P ,
on E[payoff]. Our goal is to compute the minimum possible value of the budget B of the advertiser
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(* Quadratic program (Dual-Q1) *)
minimize B
subject to

∑m
i=1

∑n
j=1 αixjyi,j ≥ P

∀ 1 ≤ i ≤ m : αi

(

∑n
j=1wi,j xj

)

≤ εi B

∀ 1 ≤ i ≤ m : 0 ≤ αi ≤ 1
∀ 1 ≤ j ≤ n : 0 ≤ xi ≤ 1

Figure 7: Quadratic program for Dual-Ssbo.

such that his/her total expected payoff is at least P . The dual version Dual-Multi-Ssbo of
Multi-Ssbo can be defined in a manner analogous to that of Dual-Ssbo. Dual-Ssbo can be
reformulated as the quadratic program (Dual-Q1) shown in Fig. 7.

Obviously, Dual-Ssbo is NP-hard since Ssbo is NP-hard. For a given required expected profit
P, let BP be the minimum budget that achieves the expected total profit P. We define a bi-criteria
approximation for Dual-Ssbo in the following manner:

a (δ, γ)-approximation for Dual-Ssbo, for δ, γ ≥ 1, is a solution that achieves an
expected total profit of at least P

δ
with a budget of γ BP .

Lemma 12.
(a) (Inapproximability of Dual-Ssbo via inapproximability of Ssbo)

• If Frac-Ssbo cannot be approximated to within a ratio of ρ > 1 for some parameter range,
then Dual-Frac-Ssbo also cannot be approximated to within a ratio of ρ for the same
parameter range.

• If Int-Ssbo cannot be approximated to within a ratio of ρ > 1 for some parameter range,
then Dual-Int-Ssbo also cannot be approximated to within a ratio of ρ

200 lnm
for the same

parameter range.

(b) (Bi-criterion approximation of Dual-Frac-Ssbo via Frac-Ssbo) If Frac-Ssbo can
be approximated to within a ratio of ρ > 1 for some parameter range, then Frac-Ssbo has a
(ρ, 1)-approximation in the same parameter range.

Proof. Let E
[

payoffB
]

be the optimal total expected payoff for Ssbo when the budget is B. For
any constant ∆ > 1, a solution of (Q1) with a budget of B is obviously also a solution of the
same instance of (Q1) with a budget of ∆B. This implies E

[

payoff∆B
]

≥ E
[

payoffB
]

. Let

p =
∑m

i=1

∑n
j=1 yi,j and b = max1≤i≤m

{

∑n
j=1 ai,j ci,j

}

; note that both log2 p and log2 b are

polynomial in the size of the input (see Section 2.5).
We prove (a) by contradiction. Suppose that some version ofDual-Ssbo has a ρ-approximation.

Consider an instance of the same version of Ssbo and suppose the budget is B. We do a binary
search in the range of positive integers [1, p] in polynomial time with the approximation algorithm
for Dual-Ssbo to find a P ∈ [1, p] such that BP−1 < ρB but BP ≥ ρB. Consider this solution of
Dual-Ssbo and suppose that B∗ is the actual optimal value of the budget corresponding to the

total expected payoff P. Thus, B∗ ≥ BP

ρ
≥ B and E

[

payoffBP

]

≥ E

[

payoffB∗
]

≥ E
[

payoffB
]

.

Suppose that we now divide every xi by ρ. This provides a valid solution of Frac-Ssbo with a
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total expected payoff of at least
E

[

payoffBP

]

ρ
. By Lemma 4, from this valid solution of Frac-Ssbo

one can obtain a solution of Int-Ssbo with a total expected payoff of at least
E

[

payoffBP
]

200 ρ lnm
.

To prove (b), suppose that some version of Ssbo with a budget of B has a ρ-approximation
algorithm. Consider an instance of the same version of Dual-Ssbo with a requirement of to-
tal expected payoff of P and let BP be the value of an optimal budget for this instance. Since
(

1−
1

B + 1

)

E
[

payoffB+1
]

≤ E
[

payoffB
]

≤ E
[

payoffB+1
]

, we do a binary search in the range

of positive integers [1, b] in polynomial time with the ρ-approximation algorithm for Ssbo to find
a B ∈ [1, b] such that P

ρ
≤ E

[

payoff B
]

≤ ρP + 1. Thus, this provides a solution of the Dual-

Ssbo with a total expected payoff of at least P
ρ

and a budget of at most BP , giving the desired
(ρ, 1)-approximation in (b).

8 Conclusion

We have presented the first known approximation algorithms as well as hardness results for stochas-
tic budget optimization under the scenario model. The scenario model is natural in many areas,
and it is particularly apt for internet ad systems. We obtained our results by making the connection
between these problems and a special case of bipartite quadratic programs; we exploited this intu-
ition crucially in both approximation algorithms and hardness proofs. These classes of quadratic
programs may have independent applications elsewhere.

Our work shows that there are several instances of parameters where stochastic budget opti-
mizations are solvable with reasonable computational resource even with multiple slots. Our hope
is that therefore, in practice, one can carefully model particular applications such as sponsored
search, so that the parameters are suitable, and advertisers can optimize their campaigns more
effectively than is typically done now by applying some of the algorithms in this paper.
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