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Recent crisis in the global financial world has generated renewed interests in fragilities of global finan-
cial networks among economists and regulatory authorities. In particular, a potential vulnerability of
the financial networks is the ‘financial contagion’ process in which insolvencies of individual entities
propagate through the ‘web of dependencies’ to affect the entire system. In this paper, we formalize an
extension of a financial network model originally proposed by Nier et al. for scenarios such as the over-
the-counter derivatives market, define a suitable global stability measure for this model, and perform a
comprehensive evaluation of this stability measure over more than 700,000 combinations of networks
types and parameter combinations. Based on our evaluations, we discover many interesting implications
of our evaluations of this stability measure and derive topological properties and parameter combinations
that may be used to flag the network as a possible fragile network. An interactive software FIN-STAB for
computing the stability is available from www2.cs.uic.edu/∼dasgupta/financial-simulator-files.
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1. Introduction

Recent unprecedented level of global financial crisis has clearly exposed potential weaknesses of the
global economic system, renewing interests in the determination of fragilities of various segments of
the global economy. Since financial institutions governed by borrowing, lending and participation in
risky investments played a crucial role in this crisis, they have attracted a major part of the attention
of economists; see [1] for a survey. The issue of instability of free market-based financial systems is
not new and has been under discussion among the economists starting with the early works of [2,3]
during the 1930s great depression era. However, the exact causes of such instabilities have not been
unanimously agreed upon yet. Economists such as Ekelund and Thornton [4] contend that a major
reason for the recent financial crisis is the enactment of an act that removed several restrictions on
mixing investment and consumer banking, whereas other economists such as Calabria disagree with
such an assertion [5]. Some economists such as Minsky have argued that such instabilities are are
systemic for many modern market-based economic systems [6].

One motivation in this paper to investigate global stabilities of financial networks comes from the
point of view of a regulatory agency (as was also the case, for example, in [1]). A regulatory agency
with sufficient knowledge about a part of a global financial network is expected to periodically evaluate
the stability of the network, and flag the network ex ante for further analysis if it fails some preliminary
test or exceeds some minimum threshold of vulnerability. In this motivation, flagging a network as
vulnerable does not necessarily imply that such is the case, but that such a network requires further

c© The authors 2014. Published by Oxford University Press. All rights reserved.
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314 B. DASGUPTA AND L. KALIGOUNDER

analysis based on other aspects of free market economics that are not or simply cannot be modelled.1

While too many false positives may drain the finite resources of a regulatory agency for further analysis
and investigation, this motivation assumes that vulnerability is too important an issue to be left for an
ex post analysis.

Similar to prior research works such as [1,7–11], our study of the vulnerability of financial net-
works also assumes the absence of government intervention as banks become insolvent. While this is
an extreme worst-case situation, the main goal of such type of studies is to see whether the network can
survive a shock even under extreme situations. A further reason for not allowing any intervention is,
unlike the case of public health issues such as controlling spread of epidemics, government intervention
in a capitalist financial system is often not allowed or requires complex political and administrative
operatives.

2. Brief review of related prior works on financial networks

Although there is a large amount of literature on stability of financial systems [7–10,12–28], very few
prior papers have mathematically defined a global stability measure and performed a comprehensive
evaluation of such a measure as done in this paper. A most recent research work related to our work
is the paper by Minoiu and Reyes [17] in which the authors analysed global banking networks data on
cross-border banking flows for 184 countries during 1978–2010 using local connectivity and clustering
measures. Below we review other related prior research works. Although ordinarily one would expect
the risk of contagion to be larger in a highly interconnected banking system, prior simulation works
indicate that higher connectivity among banks may sometimes lead to lower risk of contagion. Owing
to the large volume of prior research works, we are only able to review a selected subset of related prior
research works, leaving many other exciting research results in the bibliographies of the cited papers.

Allen and Gale [19] found that when consumers have the liquidity preferences as introduced by
Diamond and Dybvig [20] and have random liquidity needs, banks perfectly insure against liquidity
fluctuations by exchanging interbank deposits, but the connections created by swapping deposits expose
the entire system to contagion. Based on such studies, Allen and Gale [19] concluded that incomplete
networks are more prone to contagion than networks with maximum connectivity since better-connected
networks are more resilient via transfer of proportion of the losses in one bank’s portfolio to more banks
through interbank agreements. On the other hand, Gai and Kapadia [10] argued that the higher is the
connectivity among banks the more will be the contagion effect during crisis. Freixas et al. [21] explored
the case of banks that face liquidity fluctuations due to the uncertainty about consumers withdrawing
funds. Haldane [22] suggested that contagion should be measured based on the interconnectedness of
each institution within the financial system. Liedorp et al. [23] argued that both large lending and bor-
rowing shares in interbank markets increase the riskiness of banks active in the dutch banking market.

Dasgupta [24] explored how linkages between banks, represented by cross-holding of deposits, can
be a source of contagious breakdowns by investigating how depositors, who receive a private signal
about fundamentals of banks, may want to withdraw their deposits if they believe that enough other
depositors will do the same. Lagunoff and Schreft [25] studies a network model in which the return on
an agents’ portfolio depends on the portfolio allocations of other agents. Iazzetta and Manna [26] used
network topology analysis on monthly data on deposits exchange to gain more insight into the way a
liquidity crisis spreads. Nier et al. [9] explored the dependency of systemic risks on the structure of the

1 For example, some such factors are the rumors and panics caused by the insolvency of a large bank and a possible subsequent
credit freeze. While fears, panics and rumors are all real aspects in networked economics, there are hardly any universally agreed
upon good way of modelling them.

 by guest on A
ugust 23, 2014

http://com
net.oxfordjournals.org/

D
ow

nloaded from
 

http://comnet.oxfordjournals.org/


STABILITY OF FINANCIAL NETWORKS 315

banking system and the resilience (or lack thereof) of such a system to contagious defaults via graph
theoretic approach. Corbo and Demange [27] explored the relationship of the structure of interbank
connections to the contagion risk of defaults given the exogenous default of set of banks. Babus [28]
studied how the trade-off between the benefits and the costs of being linked changes depending on the
network structure, and observed that, when the network is maximal, liquidity can be redistributed in the
system to make the risk of contagion minimal.

Acemoglu et al. [14] and Zawadowski [29] do investigate the stability of financial networks, but
differently from our study. They consider two specific network topologies, namely the ring topology and
the complete network topology, as opposed to a more general class of topologies in our study [14,29].
They also consider only the effect of the shock propagation for a few discrete time steps, as opposed to
our study [14,29]; in the terminology of [7], this can be thought of as a ‘violent death’ of the network
as opposed to the ‘slow poisoning death’ that our paper investigates. The model and structure/terms of
bilateral interbank agreements in [14], namely that banks lend to one another through debt contracts
with contingency covenants, is quite different from ours. As a results, the conclusions in [14,29] do not
directly apply to our model and the corresponding simulation environment.

Attribute propagation models have been investigated in the past in other contexts such as influence
maximization in social networks [30–33], disease spreading in urban networks [34–36] and percolation
models in physics and mathematics [37]. However, the shock propagation model in this paper is very
different from all these models. For example:

• Almost all of the other models include a trivial solution in which the attribute spreads to the entire
network if we inject each node individually with the attribute. This is not the case with the shock
propagation model.

• If shocking a subset of nodes makes x nodes in the network fail, then adding more nodes to this
subset may not necessarily lead to the failure of x or more than x nodes of the network.

• The complexity of many previous attribute propagation models arises due to the presence of cycles
in the graph. In contrast, the shock propagation model may be highly complex even when the given
network is acyclic. Instead, a key component of the complexity arises due to two or more directed
paths sharing a node.

3. Organization of the paper

The rest of the paper is organized as follows:

• In Section 5 we describe the network model and the corresponding stability measure. In particular,

◦ in Section 5.1, we define the balance sheet equations and the two (homogeneous and hetero-
geneous) versions of our model that provide an appropriate formalization and extension of the
basic prior model of [8,9].

◦ in Sections 5.2 and 5.3, we provide formalizations of how the initial failures of some nodes in
the network (i.e. a shock) originate, and how such failures are propagated to other network nodes
in successive time steps using a discrete-time shock propagation equation.

◦ in Section 5.5, we define our global network stability measure K .

◦ in Sections 5.4 and 5.6, we provide rationales for the network model and the global stability
measure, respectively.
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316 B. DASGUPTA AND L. KALIGOUNDER

• In Section 6, we describe our simulation environment and the combinations of parameters that are
being explored. In particular,

◦ in Section 6.1, we discuss the random network models for generation of network topologies.

◦ in Section 6.2, we state and justify the two modes of initial failures (idiosyncratic and coordi-
nated) that are being used in the simulation.

◦ in Sections 6.3 and 6.4, we describe the combinations of parameters used for homogeneous and
heterogeneous networks and few other minor details of the simulation environment.

• In Section 7, we discuss our findings from the evaluation of the stabilities of the networks.
In particular,

◦ Our six conclusions ①–⑥ for the stability measure involving various combinations of network
topology and parameters appear in Sections 7.1–7.4.

◦ In Section 7.5, we discuss two phase transition properties of the stability measure with an intu-
itive explanation for one of them.

Though the issue of stability of financial systems has been discussed by prior researchers [7–10,12–28],
no prior paper has performed a comprehensive evaluation of a global stability measure as done in this
paper.

4. Economic policy implications

Returning to our original motivation of flagging financial networks for potential vulnerabilities, our
results suggest that a network model similar to that used in the paper may be flagged for the following
cases:

• the equity to asset ratios of most banks are low,

• the network has a highly skewed distribution of external assets and inter-bank exposures among its
banks and the network is sufficiently sparse,

• the network does not have either a highly skewed distribution of external assets or a highly skewed
distribution of inter-bank exposures among its banks, but the network is sufficiently dense.

5. Our financial network model and stability measure

Since our model has a large number of parameters, for the benefit of the reader we have included a short
definition for major parameters at the beginning of each subsection where they are used.

A list of major parameters used in this section
E total external asset I total inter-bank exposure γ ratio of equity to asset

w(e)
=

w(u, v)

weight of edge
e = (u,v)

ιv interbank asset ev
effective share of

total external asset

av total asset bv total interbank borrowing cv net worth (equity)
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STABILITY OF FINANCIAL NETWORKS 317

Table 1 Relevant balance sheet details of a node v in the network [7–9]. The total amount of external
assets E is assumed to be large enough such that bv − ιv + σvE is positive

Assets Liabilities

ιv =
∑

(v,u)∈E w(v, u) Interbank asset bv =
∑

(u,v)∈E w(u, v) Total interbank
borrowing

ev = bv − ιv + σvE Effective share of total
external asset

cv = γ av Net worth (equity)

av = bv + σvE Total asset

5.1 Network model and balance sheet

We state a formalization of an ex ante financial network model similar to what has been used by
researchers from Bank of England and elsewhere [1,8–11]. As was done by these prior researchers,
we formulate our model in terms of balance-sheet ‘insolvency cascades’ in a network of financial insti-
tutions (hereafter simply called ‘banks’ and ‘banking networks’) with interlinked balance sheets, where
losses flow into the asset side of the balance sheets. The same formulation can be used to analyse cas-
cades of cash-flow insolvency in over-the-counter derivatives markets. From now on, we will refer to
balance-sheet insolvency simply as insolvency.

The banking network is represented by a parameterized node-weighted and edge-weighted directed
graph G= (V , E, Γ ) in the following manner2:

• Γ = {E , I , γ } is the set of parameters where

– E ∈R is the total external asset,

– I ∈R is the total inter-bank exposure,

– A=I + E is the total asset, and

– γ ∈ (0, 1) is the ratio of equity to asset.

• V is the set of n banks where

– the node weight σv ∈ [0, 1] denotes the share of total external asset for each bank v ∈ V
(
∑

v σv = 1).

• E represents the set of m direct inter-bank exposures where

– w(e)=w(u, v) > 0 is the weight of a directed edge e= (u, v) ∈ E.

The (interlocked) balance sheet for each node (bank) v ∈ V is shown in Table 1. Two types of bank-
ing network models are considered.

Homogeneous model: E and I are equally distributed among the nodes and the edges, respectively,
i.e. σv = 1/n for every node v, and w(e)=I /m for every edge e.

Heterogeneous model: E and I are not necessarily equally distributed among the nodes and the
edges, respectively.

2 The parameters E , I , A, γ and Φ were also used by prior researchers, and the parameters σv and w(e) are generalizations of
parameters used by prior researchers.
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318 B. DASGUPTA AND L. KALIGOUNDER

Both homogeneous and heterogeneous network models are relevant in practice, and have been investi-
gated by prior researchers such as [1,7,9–11,38].

5.2 Initial insolvency via shocks

A list of major parameters and definitions used in this section
V✖ set of initially shocked nodes Φ severity of initial shock t time variable

shocking mechanism:
rule to select an initial subset
of nodes to be shocked

The initial insolvencies of a banking network at time t= 0 are caused by ‘shocks’ received by a sub-
set ∅⊂ V✖ ⊆ V of nodes. Such shocks can occur, for example, due to operational risks (e.g. frauds3) or
credit risks, and has the effect of reducing the external assets of an selected subset of banks.4 Mathemat-
ically, the effect of the initial shock is to simultaneously decrease the external assets of each shocked
node v ∈ V✖ from ev by sv =Φ ev, thereby reducing the net worth of v from its original value cv to
cv − sv, where (0, 1] 	Φ > γ is a parameter denoting the severity of the initial shock.

In the rest of the paper, by the phrase ‘shocking mechanism’, we refer to the rule that is used to
select the initial subset of nodes to be shocked.5

5.3 Insolvency propagation equation

A list of major parameters used in this section

degin(v) in-degree of node v V✂(t, V✖)
set of nodes that became insolvent before time t
when initial shock is provided to nodes in V✖

Let the notation degin(v) denote the in-degree of node v. The insolvencies propagate in discrete
time units t= 0, 1, 2, . . .; we add ‘(. . . , t, V✖, . . .)’ to all relevant variables to indicate their dependences
on t and on the set V✖ of initially shocked nodes. A bank becomes insolvent if its modified net worth
becomes negative, and such a bank is removed from the network in the next time step. Let V✂(t, V✖)⊆
V denote the set of nodes that became insolvent before time t when an initial shock is provided to the
nodes6 in V✖. The insolvencies of banks at time t affect the equity of other banks in the network at the
next time step t + 1 by the following non-linear ‘insolvency propagation equation’7,8:

∀ u ∈ V \ V✂(t, V✖) : cu(t + 1, V✖)= cu(t, V✖)−
∑

v :

(cv(t,V✖)<0)∧
(v∈V\V✂(t,V✖))∧

((u,v)∈E)

min{|cv(t, V✖)|, bv}
degin(v, t, V✖)

(5.1)

3 Iyer and Peydro [39] show that fraud is an important cause of bank insolvency.
4 Nier et al. [9] considered shocking only one (or a few) bank and empirically studying the effect of the shock on the entire

network. Berman et al. [7], on the other hand, analysed the computational complexity issues of the problem of selecting a subset
of nodes such that shocking them will make the network fail.

5 Shocking mechanisms were not formally defined by prior researchers, but it was often implicit in their discussions.
6 Thus, in particular, degin(v, t, V✖) is the in-degree in the graph induced by the nodes in V \ V✂(t, V✖).
7 An equation of same flavour with some simplification and omitted details was described in words by Nier et al. [9] and

Eboli [8].
8 Equation (5.1) is highly non-linear. The results in [7] indicate that in general it is NP-hard to find a subset V✖ of initially

shocked nodes such that | lim
t→∞V✂(t, V✖)| is exactly or approximately maximized.
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STABILITY OF FINANCIAL NETWORKS 319

Fig. 1. Pictorial illustration of the shock transmission equation for a node v from time t to time t + 1.

In Equation (5.1), the term |cv(t, V✖)|/degin(v, t, V✖) ensures the loss of equity of an insolvent bank
to be distributed equitably among its creditors who have not become insolvent yet, whereas the term
bv/degin(v, t, V✖) ensures that the total loss propagated cannot be more than the total interbank expo-
sure of the insolvent bank; see Fig. 1 for a pictorial illustration. The insolvency propagation continues
until no new bank becomes insolvent. For notational convenience, we may use (. . . , t, . . .) instead of
(. . . , t, V✖, . . .) when V✖ is clear from the context or is irrelevant.

5.4 Rationale for the network model and insolvency propagation equation

As prior researchers [9,16,40] have commented:

conceptual frameworks from the theory of weighted graphs with additional parameters may
provide a powerful tool for analysis of banking network models.

Several parametric graph-theoretic models, differing in the way edges are interpreted and additional
parameters are used to characterize the contagion, have been used by prior researchers in finance and
banking industry to study various research questions involving financial systems [1,7–9,29,38,41–46].
As noted by researchers in [9,44]:

the modelling challenge in studying banking networks lies not so much in analyzing a
model that is flexible enough to represent all types of insolvency cascades, but in studying
a model that can mimic the empirical properties of these different types of networks.

The insolvency propagation model formalized and evaluated in this paper using a mathematically pre-
cise abstraction is similar to or a generalization of the models in [1,7–11,38,44] that represent cascades
of cash-flow insolvencies. As [44] observes, over-the-counter (OTC) derivatives and similar markets
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320 B. DASGUPTA AND L. KALIGOUNDER

are prone to this type of cascades. In such markets parties deal directly with one another rather than
passing through an exchange, and thus each party is subject to the risk that the other party does not
fulfill its payment obligations. The following example from [44] illustrates chains of such interactions.

Consider two parties A and B, such that A has a receivable from party B upon the real-
ization of some event. If B does not dispose of enough liquid reserves, it will default on
the payment. Now consider that B has entered an off-setting contract with another party
C, hedging its exposure to the random event. If C is cash-flow solvent, then the payment
will flow through the intermediary B and reach A. However, if C is cash-flow insolvent
and defaults, then the intermediary B might become cash-flow insolvent if it depends on
receivables from C to meet its payment obligations to A. [44]

The length of such chains of interactions in some OTC markets, like the credit default swap market, is
significant [47,48], thereby increasing the probability of cascade of cash-flow insolvencies [40]. As [9]
observes, an insolvency propagation model such as the one studied here

conceptualises the main characteristics of a financial system using network theory by relat-
ing the cascading behavior of financial networks both to the local properties of the nodes
and to the underlying topology of the network, allowing us to vary continuously the key
parameters of the network.

Although the cascading effect studied is of somewhat special and simplified nature, as noted by [1]:

This is a deliberate oversimplification, aimed at a clearer understanding of how an initial
failure can propagate shocks throughout the system.

5.5 A measure of global stability9

A list of major parameters used in this section

Υ a shocking
mechanism

ξ(K , G, γ , Φ, Υ )= x

on an average 100x% nodes of the network become
insolvent with the given values of γ and Φ if we
provide an initial shock to a random subset of
100K % of nodes selected using the shocking
mechanism Υ

Consider a banking network model as described in Sections 5.1–5.3. Let K ∈ (0, 1] be a real
number10 denoting the fraction of nodes in V that received the initial shock under a shocking mech-
anism Υ and let SΥ ,K be the set of all possible (K n)-element subsets of V . The vulnerability index11

of the network is then defined as12

ξ(K , G, γ , Φ, Υ )= 1

n
× E

[∣∣∣ lim
t→∞V✂(t, V✖)

∣∣∣ : V✖ is selected randomly fromSΥ ,K

]
In the above definition, the 1/n factor is only for a min–max normalization [51] to ensure that 0 �
ξ(K , G, γ , Φ, Υ ) � 1. Noting that no new node in the network may fail at a time t � n, we may simplify

9 A mathematically precise definition of global stability measure was omitted by most prior researchers.
10 K is a new parameter not used by prior researchers.
11 Although simple topological properties such as clustering coefficients have been used by authors to study properties of

networks [49,50], they are too simplistic for stability analysis of financial networks.
12 In this definition, we implicitly assume that the shocking mechanism Υ allows one to select at least one set of K n nodes

for the initial shock. Otherwise, we define ξ to be zero.
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Table 2 A summary of simulation environment and explored parameter space

Parameter Explored values for the parameter

Network type
Homogeneous

} Total
number of
parameter

combinations
> 700, 000

(α, β)-heterogeneous α = 0.1, β = 0.95
α = 0.2, β = 0.6

network topology
Directed scale-free

Average degree 1 (in-arborescence)
Average degree 3
Average degree 6

Directed Erdös-Rényi Average degree 3
Average degree 6

Shocking mechanism Idiosyncratic, coordinated

Number of nodes 50, 100, 300

E/I 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5

Φ 0.5, 0.6, 0.7, 0.8, 0.9

K 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

γ 0.05, 0.1, 0.15, . . . , Φ − 0.05

the above expression for ξ as:

ξ(K , G, γ , Φ, Υ )= 1

n
× E[|V✂(n, V✖)| : V✖ is selected randomly fromSΥ ,K ]


⇒ Pr[|V✂(n, V✖)|� nξ(K , G, γ , Φ, Υ ) : V✖ is selected randomly fromSΥ ,K ] > 0

As an example, ξ(0.1, G, 0.3, 0.5, random)= 0.9 means that with positive probability 90% nodes of the
network G become insolvent with γ = 0.3 and Φ = 0.5 if we provide an initial shock to a random
subset of 10% of nodes of G. Note that lower values of ξ imply higher global stability of a network. For
simplicity, we may omit the arguments of ξ when they are clear from the context. A pseudo-code for
calculating ξ is shown in Fig. 2.

5.6 Rationale for the global stability measure

It is possible to think of other alternate measures of global stability than the one quantified above.
However, the measure introduced above is in tune with the ideas that references [1,8,9,38] directly
(and, some other references such as [11,41,42] implicitly) used to empirically study their networks.
Thus, in formalizing our global stability measure, we have decided to follow the cue provided by other
researchers in the banking industry who have studied various insolvency propagation models. Measures
of similar flavour have also been used by prior researchers in social networks in the context of influence
maximization [31,32].

6. Simulation environment and explored parameter space

In Table 2 we provide a summary of our simulation environment and explored parameter space. Indi-
vidual components of the summary are discussed in Sections 6.1–6.4.
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322 B. DASGUPTA AND L. KALIGOUNDER

Fig. 2. Pseudo-code for calculating ξ(K , G, γ , Φ, Υ ). Comments in the pseudo-code are enclosed by (∗ and ∗). An implementa-
tion of the pseudo-code is available at www2.cs.uic.edu/∼dasgupta/financial-simulator-files.

6.1 Network topology13

We consider two topology models previously used by economists to generate random financial net-
works:

13 One may obviously ask: why not use ‘real’ networks? There are several obstacles however that make this desirable goal
impossible to achieve. For example: (a) due to their highly sensitive nature, such networks with all relevant parameters are rarely
publicly available. (b) For the kind of inferences that we make in this paper, we need hundreds of thousands of large networks to
have any statistical validity (in this paper, we explore more than 700,000 networks).
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STABILITY OF FINANCIAL NETWORKS 323

root

L1 L2 L3 L4

Fig. 3. An in-arborescence graph.

• the directed scale-free (SF) network model [52] that has been used by prior financial network
researchers such as [44,45,53,54], and

• the directed Erdös-Rényi (ER) network model [55] that has been used by prior financial network
researchers such as [10,27,56–58].

Generation of directed ER networks is computationally trivial: given a value 0 < p < 1 that parameter-
izes the ER network, for every ordered pair of distinct nodes (u, v) we let Pr[(u, v) ∈ E]= 1/p. Letting
p= d/n generates a random ER network whose average degree is d with high probability.

The directed SF networks in this paper are generated using the algorithm outlined by Bollobas
et al. [55]. The algorithm works as follows. Let a, b, η, δin (in-degree) and δout (out-degree) be non-
negative real numbers with a+ b+ η= 1. The initial graph G(0) at step 
= 0 has just one node with
no edges. At step 
 > 0 the graph G(
) has exactly 
 edges and a random number n
 of nodes. For 
 � 0,
G(
+ 1) is obtained from G(
) by using the following rules:

• With probability a, add a new node v together with an edge from v to an existing node w, where w
is chosen randomly such that

Pr[w= u]= (din(u)+ δin)

(
+ δinn
)

for every existing node u, where din(u) is the in-degree of node u in G(
).

• With probability b, add an edge from an existing node v to an existing node w, where v and w are
chosen independently, such that

Pr[v= u]= dout(u)+ δout


+ δoutn


for every existing nodeu

Pr[w= u]= din(u)+ δin


+ δinn


for every existing nodeu

where dout(u) is the out-degree of node u in G(
).

• With probability η, add a new node w and an edge from an existing node v to w, where v is chosen
such that Pr[v= u]= (dout(u)+ δout)/(
+ δoutn
) for every existing node u.
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324 B. DASGUPTA AND L. KALIGOUNDER

To study the effect of connectivity on network stability, we generated random SF and ER networks with
average degrees14 of 3 and 6.

In addition, to study the effect of sparse hierarchical topology on network stability, we used the
Barábasi-Albert preferential-attachment model [52] to generate random in-arborescence networks. In-
arborescences are directed rooted trees with all edges oriented towards the root (see Fig. 3), and have
the following well-known topological properties:

• They belong to the class of sparsest connected directed acyclic graphs.

• They are hierarchical networks, i.e. the nodes can be partitioned into levels L1, L2, . . . , Lp such that
L1 has exactly one node (the ‘root’) and nodes in any level Li have directed edges only to nodes in
Li−1 (see Fig. 3). The root may model a ‘central bank’ that lends to other banks but does not borrow
from any bank.

The algorithm for generating a random in-arborescence network G using the preferential-attachment
model [52] is as follows:

• Initialize G= (V , E) to have one node (the root) and no edges.

• Repeat the following steps till G has n nodes:

– Randomly select a node u in G such that, for every node v in G, Pr[u= v]=
deg(v)/

∑
w∈V deg(w) where deg(y) denotes the degree of node y in G.

– Add a new node x and an undirected edge {x, u} in G.

• Orient all the edges towards the root.

6.2 Shocking mechanisms Υ

Recall that a shocking mechanism Υ provides a rule to select the initial subset of nodes to be shocked.
The following two mechanisms are used to select the nodes to receive the initial shock.

Idiosyncratic (random) shocking mechanism. We select a subset of nodes uniformly at random. This
corresponds to random idiosyncratic initial insolvencies of banks, and is a choice that has been used by
prior researchers such as [1,9–11,38].

Coordinated shocking mechanism.15 In this type of non-idiosyncratic correlated shocking mecha-
nism, we seek to play an adversarial role16 in selecting nodes for the initial shock that may cause more
damage to the stability of the network. The selection of an adversarial strategy depends on whether

14 There are many ways to fix the parameters to get the desired average degree. For example, as observed
in [55], letting δout = 0 and α > 0, one obtains E[number of nodes inG(t) of in-degreex]∝ x−(1+(1+δin(α+η))/(α+β))t and
E[number of nodes inG(t) of out-degreex]∝ x−((2−α)/(1−α))t.

15 While correlated shocking mechanisms affecting a correlated subset of banks are relevant in practice, prior researchers such
as [1,9–11,38] have mostly used idiosyncratic shocking mechanisms. There are at least two reasons for this. First, idiosyncratic
shocks are a cleaner way to study the stability of the topology of the banking network. Secondly, it is not a priori clear what
kind of correlations in the shocking mechanism would lead to failure of more nodes than idiosyncratic shocks in a statistically
significant way. Our coordinated shocking mechanism intuitively corresponds shocks in which banks that are ‘too big to fail’ in
terms of their assets are correlated. Our conclusion ⑥ shows that coordinated shocks do indeed cause more statistically significant
damage to the stability of the network as opposed to random shocks.

16 Usage of adversarial strategies in measuring the worst-case bounds for network properties are very common in the algorith-
mic literature; see, for example, [59].
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STABILITY OF FINANCIAL NETWORKS 325

the network is homogeneous or heterogeneous. The coordinated shocking mechanism falls under the
general category of correlated shocks where the nodes with high (weighted) in-degrees are correlated.

For homogeneous networks, recall that all nodes have the same share of the total external asset E .
However, the total interbank exposure bv of a node v is directly proportional to the in-degree of v, and,
as per Equation (5.1), nodes with higher inter-bank exposures are more likely to transmit the shock to
a larger number of other nodes. Thus, we play an adversarial role by selecting a set of K n nodes in
non-increasing order of their in-degrees starting from a node with the highest in-degree.

For heterogeneous networks, nodes with higher ‘weighted’ in-degrees (i.e. with higher values of the
sum of weights of incoming edges) represent nodes that have larger external assets than other nodes,
and have more inter-bank exposures. Thus, for heterogeneous networks we play an adversarial role by
selecting K n nodes in non-increasing order of their weighted in-degrees starting from a node with the
highest weighted in-degree.

6.3 Network type: (α, β)-heterogeneous networks

Recall that in a heterogeneous network it is possible to have a few banks whose external assets or
interbank exposures are significantly larger than the rest of the banks, i.e. it is possible to have a few
banks that are ‘too big’, and thus heterogeneous networks permit investigation of the effect of such
big banks on the global stability of the entire network. To this end, we define a (α, β)-heterogeneous
network as follows.

Definition 6.1 ((α, β)-heterogeneous network) Let Ṽ ⊆ V be a random subset V of αn nodes and let
Ẽ be the set of edges that have at least one end-point from Ṽ . For 0 < α, β < 1, a (α, β)-heterogeneous
network G= (V , E) is one in which the total external and internal assets are distributed in the following
manner:

Distribution of E :

• distribute βE part of the total external asset E equally among the α n nodes in Ṽ , and

• distribute the remaining part (1− β)E of E equally among the remaining (1− α)n nodes.

Distribution of I :

• Distribute βI part of the total interbank exposure I equally among a random subset of α|Ẽ|
of edges from the edges in Ẽ, and

• distribute the remaining part (1− β)I of I equally among the remaining |E| − α|Ẽ| edges.

We performed our simulations for (α, β)-heterogeneous networks for (α, β)= (0.1, 0.95) and
(α, β)= (0.2, 0.6). The combination (α, β)= (0.1, 0.95) corresponds to the extreme situation in which
95% of the assets and exposures involve 10% of banks, thus creating a minority of banks that are sig-
nificantly larger than the remaining banks. The other combination (α, β)= (0.2, 0.6) corresponds to a
less extreme situation in which there are a larger number of moderately large banks.

6.4 Other minor details

To correct statistical biases, for each combinations of parameters, shock types and network types, we
generated 10 corresponding random networks and computed the average value of the vulnerability index
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326 B. DASGUPTA AND L. KALIGOUNDER

Table 3 Comparison of stabilities of (α, β)-heterogeneous networks with their homogeneous counter-
parts over all parameter ranges. The numbers are the percentages of data points for which
ξ(α,β)−heterogeneous was at least ξhomogeneous

ER average ER average SF average SF average
In-arborescence degree 3 degree 6 degree 3 degree 6

α= 0.1 α= 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α= 0.2 α= 0.1 α= 0.2
β = 0.95 β = 0.6 β = 0.95 β = 0.6 β = 0.95 β = 0.6 β = 0.95 β = 0.6 β = 0.95 β = 0.6

Coordinated
shock

66.91% 60.22% 99.26% 98.91% 98.46% 98.00% 98.22% 91.68% 99.13% 97.4%

Idiosyncratic
shock

92.75% 81.79% 97.76% 96.81% 98.16% 97.61% 98.86% 94.84% 98.83% 97.22%

over these 10 runs. For ER and SF random networks, we selected the values of network generation
parameters such that the expected number of edges of the network is 3n or 6n depending on whether we
require the average degree of the network to be 3 or 6, respectively.

The minimum difference between two non-identical values of the average vulnerability index over
10 runs for two n-node networks is 1/(10n). Thus, to allow for minor statistical biases introduced by any
random graph generation method, we consider two vulnerability indices to be same (within the margin
of statistical error) if their absolute difference is no more than 1/(3n), which is above 1/(10n) but no
more than 0.7% of the total range of the vulnerability indices.

Finally, we can assume without loss of generality that I =m, since otherwise if μ=I /m |= 1 then
we can divide each of the quantities ιv, bv and E by μ without changing the outcome of the insolvency
propagation procedure.

7. Results

In this section, we discuss our uncovering of many interesting relationships of the stability with other
relevant parameters of the network based on our comprehensive evaluation and analysis of this stabil-
ity measure. It is easy to see that there are many (at least several thousands, but significantly more in
most cases) networks in the original sets of networks that are compared in two different scenarios in
Tables 3–7, 9–11 and related Supplementary tables, thereby assuring the statistical validity of the com-
parison results.

7.1 Effect of unequal distribution of total assets E and I

As our analysis shows, nodes with disproportionately large external assets affect the stability of the
entire network in an adverse manner, and more uneven distribution of assets among nodes in the network
makes the network less stable.

7.1.1 Effect on global stability For the same value of the common parameters n, E /I , K , Φ and
γ , for the same for network type (ER, SF or in-arborescence) of same average degree (6, 3 or 1) and
for the same shocking mechanism Υ (coordinated or idiosyncratic), we compared the value of ξ for the
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Table 4 Residual instabilities of homogeneous versus heterogeneous networks under coordinated
shocks. The percentages shown are the percentages of networks for which ξ < 0.05 or ξ < 0.1 or
ξ < 0.2. See also Supplementary Tables S1–S9

Coordinated shock

Φ = 0.5, γ = 0.45 Φ = 0.5, γ = 0.40

ξ < 0.05 ξ < 0.1 ξ < 0.2 ξ < 0.05 ξ < 0.1 ξ < 0.2

|V | = 50 homogeneous In-arborescence 73% 73% 73% 0% 31% 59%
ER, average degree 3 89% 100% 100% 43% 84% 100%
ER, average degree 6 100% 100% 100% 100% 100% 100%
SF, average degree 3 44% 84% 100% 25% 57% 88%
SF, average degree 6 100% 100% 100% 100% 100% 100%

(0.1, 0.95)- in-arborescence 0% 0% 0% 0% 0% 0%
heterogeneous ER, average degree 3 0% 0% 1% 0% 0% 0%

ER, average degree 6 8% 9% 10% 2% 6% 6%
SF, average degree 3 2% 6% 15% 0% 2% 5%
SF, average degree 6 18% 23% 30% 9% 10% 11%

(0.2, 0.6)- in-arborescence 0% 0% 9% 0% 0% 9%
heterogeneous ER, average degree 3 4% 7% 19% 2% 6% 16%

ER, average degree 6 8% 12% 24% 6% 7% 16%
SF, average degree 3 2% 6% 22% 0% 2% 18%
SF, average degree 6 8% 12% 24% 7% 8% 16%

|V | = 100 Homogeneous in-arborescence 73% 73% 73% 0% 34% 73%
ER, average degree 3 66% 100% 100% 25% 64% 100%
ER, average degree 6 100% 100% 100% 100% 100% 100%
SF, average degree 3 29% 61% 100% 20% 42% 83%
SF, average degree 6 100% 100% 100% 90% 100% 100%

(0.1, 0.95)- in-arborescence 0% 0% 0% 0% 0% 0%
heterogeneous ER, average degree 3 0% 0% 6% 0% 0% 1%

ER, average degree 6 6% 6% 6% 4% 6% 6%
SF, average degree 3 0% 0% 7% 0% 0% 3%
SF, average degree 6 6% 10% 15% 6% 6% 6%

(0.2, 0.6)- in-arborescence 0% 0% 9% 0% 0% 9%
heterogeneous ER, average degree 3 0% 6% 16% 0% 4% 16%

ER, average degree 6 6% 7% 16% 6% 6% 16%
SF, average degree 3 0% 2% 14% 0% 1% 13%
SF, average degree 6 7% 8% 17% 6% 7% 16%

|V | = 300 Homogeneous in-arborescence 73% 73% 73% 0% 55% 73%
ER, average degree 3 71% 97% 100% 22% 60% 100%
ER, average degree 6 100% 100% 100% 100% 100% 100%
SF, average degree 3 22% 44% 86% 18% 36% 74%
SF, average degree 6 100% 100% 100% 88% 100% 100%

(continued)
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Table 4 Continued.

Coordinated shock

Φ = 0.5, γ = 0.45 Φ = 0.5, γ = 0.40

ξ < 0.05 ξ < 0.1 ξ < 0.2 ξ < 0.05 ξ < 0.1 ξ < 0.2

(0.1, 0.95)- in-arborescence 0% 0% 0% 0% 0% 0%
heterogeneous ER, average degree 3 0% 0% 6% 0% 0% 1%

ER, average degree 6 6% 6% 6% 0% 6% 6%
SF, average degree 3 0% 0% 10% 0% 0% 2%
SF, average degree 6 6% 6% 16% 6% 6% 6%

(0.2, 0.6)- in-arborescence 0% 0% 9% 0% 0% 9%
heterogeneous ER, average degree 3 0% 6% 16% 0% 4% 16%

ER, average degree 6 6% 6% 16% 6% 6% 16%
SF, average degree 3 0% 0% 13% 0% 0% 12%
SF, average degree 6 6% 7% 16% 6% 6% 16%

Table 5 Absolute values of the largest change of the vulnerability index ξ in the range
0.25 � E /I � 3.5

Average values of |max0.25�E /I �3.5{ξ}
−min0.25�E /I �3.5{ξ}|

Coordinated shock Idiosyncratic shock

(0.1, 0.95)-heterogeneous in-arborescence 0.017 0.045
(0.2, 0.6)-heterogeneous in-arborescence 0.007 0.017
(0.1, 0.95)-heterogeneous ER, average degree 3 0.066 0.073
(0.2, 0.6)-heterogeneous ER, average degree 3 0.040 0.041
(0.1, 0.95)-heterogeneous ER, average degree 6 0.111 0.116
(0.2, 0.6)-heterogeneous ER, average degree 6 0.084 0.078
(0.1, 0.95)-heterogeneous SF, average degree 3 0.119 0.094
(0.2, 0.6)-heterogeneous SF, average degree 3 0.034 0.032
(0.1, 0.95)-heterogeneous SF, average degree 6 0.200 0.179
(0.2, 0.6)-heterogeneous SF, average degree 6 0.054 0.054

Table 6 Effect of connectivity on the stability for homogeneous networks under coordinated
and idiosyncratic shocks. The percentage shown for a comparison of the type ‘network A
versus network B’ indicates the percentage of data points for which the stability of networks
of type A was at least as much as that of networks of type B

ER average degree 3 versus SF average degree 3 versus
ER average degree 6 SF average degree 6

coordinated shock idiosyncratic shock coordinated shock idiosyncratic shock

97.43% 97.05% 98.89% 98.29%
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Table 7 Effect of connectivity on the stability under coordinated and idiosyncratic shocks for (A) (α, β)-heterogeneous ER and SF net-
works and (B) (α, β)-heterogeneous in-arborescence versus (α, β)-heterogeneous SF networks. The percentage shown for a comparison
of the type ‘network A versus network B’ indicates the percentage of data points for which the stability of networks of type A was at least
as much as that of networks of type B

(A)

(0,1,0.95) ER average degree 6 (0.2,0.6) ER average degree 6 (0,1,0.95) SF average degree 6 (0.2,0.6) SF average degree 6
versus versus versus versus
(0,1,0.95) ER average degree 3 (0.2,0.6) ER average degree 3 (0,1,0.95) SF average degree 3 (0.2,0.6) SF average degree 3

(B)
Coordinated Idiosyncratic Coordinated Idiosyncratic Coordinated Idiosyncratic Coordinated Idiosyncratic
shock shock shock shock shock shock shock shock
89.3% 82.39% 68.12% 61.46% 85.51% 73.81% 69.29% 73.07%

(0,1,0.95) SF average degree 3 and average degree 6 (0.2,0.6) SF average degree 3 and average degree 6
versus versus

(0.1,0.95)-heterogeneous in-arborescence (SF ave. degree 1) (0.2,0.6)-heterogeneous in-arborescence (SF ave. degree 1)

Coordinated shock Idiosyncratic shock Coordinated shock Idiosyncratic shock
85.7% 81.86% 56.21% 51.07%
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330 B. DASGUPTA AND L. KALIGOUNDER

homogeneous network with the corresponding values of ξ for (0.1, 0.95)-heterogeneous and (0.2, 0.6)-
heterogeneous networks. The comparison results shown in Table 3 show most of the entries as being at
least 90%. Thus, we conclude that

① networks with all nodes having the same external assets display higher stability over
similar networks with fewer nodes having disproportionately higher external assets.

Formal intuition behind the conclusion in ①
In spite of the highly non-linear nature of Equation (5.1), the following formal intuition may help to

explain the conclusion in ①.

Lemma 7.1 (see Section A.1 of the appendix for a proof) Fix γ , Φ, E , I and the graph G. Consider
any node v ∈ V✖ and suppose that v fails due to the initial shock. For every edge (u, v) ∈ E, let Δhomo(u)

and Δhetero(u) be the amount of shock received by node u at time t= 1 if G is homogeneous or hetero-
geneous, respectively. Then,

E[Δhetero(u)] � β

α
E[Δhomo(u)]= 9.5 E[Δhomo(u)], if(α, β)= (0.1, 0.95)

3 E[Δhomo(u)], if(α, β)= (0.2, 0.6)

Lemma 7.1 implies that E[Δhetero(u)] is much bigger than E[Δhomo(u)], and thus more nodes are
likely to fail beyond t > 0 leading to a lower stability for heterogeneous networks.

7.1.2 Effect on residual instability For homogeneous networks, if the equity to asset ratio γ is close
enough to the severity of the shock Φ then the network almost always tends to be perfectly stable, as one
would intuitively expect. However, the above property is not true in general for highly heterogeneous
networks in the sense that, even when γ is close to Φ, these networks (irrespective of their topologies
and densities) have a minimum amount of global instability (which we term as the residual instability).17

In Table 4 and Supplementary Tables S1–S9, we tabulated residual instabilities for different types of
homogeneous and heterogeneous networks under coordinated and idiosyncratic shocks. The numbers
in these tables show, for each combination of network types, |V |, shocking mechanism and values
of Φ and γ such that |Φ − γ | = 0.05, the percentage of networks with this combination for which
the vulnerability index ξ was less than 0.05, 0.1 or 0.2. As the reader will observe, all the numbers
for heterogeneous networks are significantly lower than their homogeneous counter-parts. Thus, we
conclude that

② a heterogeneous network, in contrast to its corresponding homogeneous version, has a
residual minimum instability even if its equity to asset ratio is very large and close to the
severity of the shock.

7.2 Effect of total external assets

A controversial belief regarding the cause of the collapse of many major financial institutions around
2007 asserts that removal of the separation between investment and consumer banking allowed a ripple

17 For visual illustrations to this phenomena, see Supplementary Figs S1–S3. For example, in Supplementary Fig. S1, when γ

is 45% and Φ is only 5% more than γ , the vulnerability index ξ is approximately 0 for all the 9 combinations of parameters, but
in Supplementary Figs S2–S3 all the 18 networks have a value of ξ �0.1 even when γ is 45% and the severity of the shock is
only 5% more than γ .
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effect of insolvencies of individual banks to other banks [4,5]. In our setting, the quantity E /I controls
the total (normalized) amount of external investments of all banks in the network. Thus, varying the ratio
E /I allows us to investigate the role of the magnitude of total external investments on the stability of
our banking network (see Table 5). All the entries in Table 5 are close to 0, showing that heterogeneous
networks exhibited very small average changes in the vulnerability index ξ when E/I was varied. Thus,
we conclude that

③ For heterogeneous banking networks, global stabilities are affected very little by the
amount of the total external asset E in the system.

Visual illustrations of ③ are shown in Supplementary Figs S4 and S5 for homogeneous and heteroge-
neous networks, respectively.

7.3 Effect of network connectivity

Although it is clear that connectivity properties of a banking network has a crucial effect on its stability,
prior researchers have drawn mixed conclusions on this. For example, Allen and Gale [19] concluded
that networks with less connectivity are more prone to contagion than networks with higher connectiv-
ity due to improved resilience of banking network topologies with higher connectivity via transfer of
proportion of the losses in one bank’s portfolio to more banks through interbank agreements. On the
other hand, Babus [28] observed that, when the network connectivity is higher, liquidity can be redis-
tributed in the system to make the risk of contagion lower, and Gai and Kapadia [10] observed that
higher connectivity among banks leads to more contagion effect during a crisis. The mixed conclusions
arise because links between banks have conceptually two conflicting effects on contagion, namely

• more interbank links increases the opportunity for spreading insolvencies to other banks,

• but, more interbank links also provide banks with co-insurance against fluctuating liquidity flows.

As our findings show, these two conflicting effects have different strengths in homogeneous versus
highly heterogeneous networks, thus justifying the mixed conclusions of past researchers.

Homogeneous networks. Recall that in a homogeneous network all banks have the same external
asset. Table 6 shows sparser homogeneous networks with lower average degrees to be more stable for
same values of other parameters. Thus, we conclude that

④ For homogeneous networks, higher connectivity leads to lower stability.

Heterogeneous networks. In a heterogeneous network, there are banks that are ‘too big’ in the sense
that these banks have much larger external assets and inter-bank exposures compared with the remain-
ing banks. Table 7 shows that for heterogeneous network models denser networks with higher average
degree are more stable than the corresponding sparser networks for same values of other parameters,
especially when the heterogeneity of the network is larger (i.e. when α = 0.1, β = 0.95). Thus, we con-
clude that

⑤ For heterogeneous networks, higher connectivity leads to higher stability.

Formal intuition behind the conclusions in ④ and ⑤
Informally, conclusions ④ and ⑤ indicate that in homogeneous networks higher connectivity leads to

more opportunity for spreading insolvencies to other banks whereas in heterogeneous networks higher
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connectivity provides banks with co-insurance against fluctuating liquidity flows through shared inter-
bank assets. However, a precise formal treatment of mechanism that drives such conclusions is compli-
cated due to several reasons such as the random nature of the networks, the randomness in asset dis-
tribution for heterogeneous networks and the non-linear nature of the insolvency propagation equation.
Nevertheless, we provide the following, somewhat simplified, formal reasoning. We will use the fol-
lowing notations and conventions18:

• degave = |E|/n will denote the average degree of a graph G. It is assumed that degave is a small
positive integer constant independent of n (e.g. in our simulation work, degave ∈ {1, 3, 6}).

• Δx will denote a small change for the value x of a variable.

• For two functions f (r) and g(r) of a variable r, we will use the notation f ≈ g (respectively, f � g,
f � g) if limr→∞ f (r)/g(r)= 1 (respectively, limr→∞ f (r)/g(r) � 1, limr→∞ f (r)/g(r) � 1).

• The standard phrase ‘with high probability’ (or w.h.p. in short) refers to a probability p(n) such
that limn→∞ p(n)= 0.

• If necessary, we will use the superscripts ‘homo’ and ‘hetero’ to denote the value of a quantity for
homogeneous and heterogeneous networks, respectively.

Consider a node v ∈ V✖ with degin(v) > 1 and suppose that v fails due to the initial shock at t= 0.
By Equation (5.1), for every edge (u, v) ∈ E, the amount of shock u receives from v is given by B=
min{A, c1} with

A= Φ(c1 degin(v)− c1 degout(v)+ c2 E )− γ (c1 degin(v)+ c2 E )

degin(v)

= c1(Φ − γ )+ c2(Φ − γ )
E

degin(v)
− c1Φ

degout(v)

degin(v)
(7.1)

for some appropriate positive quantities c1 and c2 that may be estimated as follows:

• If G is homogeneous, then chomo
1 =I /n degave = 1 and chomo

2 = 1/n.

• If G is (α, β)-heterogeneous, then chetero
1 and chetero

2 are random variables independent of degave.
Using the notations in Definition 6.1 the expected value of chetero

2 may be estimated as follows:

E[chetero
2 ]= Pr[v ∈ Ṽ ] βE

αn + Pr[v /∈ Ṽ ] (1−β)E
(1−α)n

E
= α

βE
αn + (1− α)

(1−β)E
(1−α)n

E
= 1

n

The expected value of chetero
1 depends on the nature (SF or ER) of the random network; its estimation

is therefore deferred until later.

Our goal is to provide evidence for a claim of the following nature for either random SF or random ER
networks:

For many realistic network parameter combinations, w.h.p. increasing connectivity from
d to d +Δd decreases the expected amount of shock transmitted by a failed node v to u
in homogeneous networks (causing improved stability) but increases the expected amount

18 In standard algorithmic analysis terminologies, f ≈ g implies f (r)/g(r)= 1± o(1).
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of shock transmitted by a failed node v to u in heterogeneous networks (leading to worse
stability).

The case of random SF networks. If G is a directed SF network, then the discrete probability density
function for the degree of any node v in G is given by:

∀k ∈ {1, 2, . . . , n− 1} : Pr[degin(v)= k]= Pr[degout(v)= k]=Ck−μ

where μ > 2 is the constant for the exponent of the distribution and C > 0 is a constant such that
E[degin(v)]=E[degout(v)]= degave. For example, for our random in-arborescence networks, the results
in [52] imply μ= 3. To simplify exposure, in the following we assume that μ= 3, though the analysis
can be extended in a straightforward manner for any other μ > 2. ζ(s)=∑∞x=1 x−s is the well-known
Riemann zeta function; it is well known that ζ(s)≈∑n−1

x=1 x−s for any s > 2 and for all large n (see [60,
pp. 74–75]) and ζ(s) < 2s−1/(2s−1 − 1) for any s > 1 (see [60, p. 489]). In particular, it is known that
ζ(2)= π2/6, ζ(3)= 1.2020569 · · · and ζ(4)= π4/90. Note that

E[degin(v)]= degave ≡
n−1∑
k=1

(Ck−3)= degave⇒C≈ degave

ζ(2)
= 6degave

π2

Lemma 7.2 (see Section A.2 of the appendix for a proof) E[1/degin(v)|degin(v) > 0]≈ (π2/15)degave
and Var[degin(v)]≈ (6degave/π

2) ln n.

We now provide an estimation of chetero
1 using the notations in Definition 6.1.

Lemma 7.3 (see Section A.3 of the appendix for a proof) W.h.p. 1+ α − β − αβ/2 � E[chetero
1 ] �

(1+ αβ − α2 − β − α2β)/(1− 2α).

Due to the above lemma, we may assume that

w.h.p.
0.156875 � E[chetero

1 ] � 0.16, if G is (0.1,0.95)-heterogeneous
0.54 � E[chetero

1 ] � 0.76, if G is (0.2,0.6)-heterogeneous

We will investigate the sensitivity of the amount of shock A transmitted from v to u as the average
degree degave is changed while keeping all other parameters the same. For notational convenience, the
parameters are normalized such that I = n degave at the initial value d of degave. As degave is increased
from d to d +Δd, I is still kept the same. Thus,

I | at
degave=d+Δd

=I | at
degave=d

⇒ chomo
1 | at

degave=d+Δd
=

I | at
degave=d+Δd

n(d +Δd)
= nd

n(d +Δd)
= d

d +Δd

Equation (7.1) gives the following for homogeneous and heterogeneous networks:
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334 B. DASGUPTA AND L. KALIGOUNDER

• If G is a homogeneous network then

E[Ahomo | degave = d]≈ (Φ − γ )+ E (Φ − γ )

n
E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

−Φ E[degout(v)]E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

= (Φ − γ )+ π2E (Φ − γ )

15n
d − π2Φ

15
d2

E[Ahomo | degave = d +Δd]≈ d

d +Δd
(Φ − γ )+ E (Φ − γ )

n
E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

− d

d +Δd
ΦE[degout(v)]E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

= d

d +Δd
(Φ − γ )+ π2E (Φ − γ )

15n
(d +Δd)

− d

d +Δd

π2Φ

15
(d +Δd)2

ΔE[Ahomo]=E[Ahomo | degave = d +Δd]− E[Ahomo | degave = d]

≈− Δd

d +Δd
(Φ − γ )+ π2E (Φ − γ )

15n
Δd − π2Φ

15
dΔd

• If G is a heterogeneous network then

E[Ahetero]= (Φ − γ )E[chetero
1 ]+ E (Φ − γ )

n
E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

−ΦE[chetero
1 ]E[degout(v)]E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

which provides the following bounds:

E[Ahetero | degave = d]≈ (Φ − γ )E[chetero
1 ]+ π2E (Φ − γ )

15n
d − π2Φ

15
d2

E[chetero
1 ]

E[Ahetero | degave = d +Δd]≈ (Φ − γ )E[chetero
1 ]+ π2E (Φ − γ )

15n
(d +Δd)− π2Φ

15
d2

E[chetero
1 ]

ΔE[Ahetero]=E[Ahetero | degave = d +Δd]− E[Ahetero | degave = d]

≈ π2E (Φ − γ )

15n
Δd − π2Φ

15
dΔd E[chetero

1 ]

 by guest on A
ugust 23, 2014

http://com
net.oxfordjournals.org/

D
ow

nloaded from
 

http://comnet.oxfordjournals.org/


STABILITY OF FINANCIAL NETWORKS 335

Now note that

ΔE[Ahomo] � 0⇒ Φ − γ

d +Δd
+ π2Φd

15
>

π2E (Φ − γ )

15n

≡
(

1

d +Δd
+ π2d

15
− π2E

15n

)
Φ >

(
1

d +Δd
− π2E

15n

)
γ (7.2)

ΔE[Ahetero] � 0⇒ E (Φ − γ )

n
> Φd E[chetero

1 ]≡
(

E

n
− d E[chetero

1 ]

)
Φ >

(
E

n

)
γ

⇒ w.h.p.

(
E

n
− d

1+ αβ − α2 − β − α2β

1− 2α

)
Φ >

(
E

n

)
γ (7.3)

It is easy to verify that constraints (7.2) and (7.3) are satisfied for many natural combina-
tions of parameters. In fact, the constraints (7.2) and (7.3) are almost always satisfied when E
grows moderately linearly with n. To see this informally, note that since α� β and α is small,
(1+ αβ − α2 − β − α2β)/(1− 2α)≈ 1− β and thus (7.3) is approximately(

E

n
− d(1− β)

)
Φ >

(
E

n

)
γ (7.3′)

Now suppose that E < d(1− β)n. Then, (7.2) and (7.3′) are always satisfied since Φ > γ . For a numer-
ical example, suppose that G is a (0.1, 0.95)-heterogeneous network (i.e. α = 0.1 and β = 0.95), d = 3,
Δd = 1, γ = 0.2 and Φ = 0.4. Then constraints (7.2) and (7.3) reduce to:

0.5+ 0.4π2 − 2π2E

15n
> 0.25− π2E

15n
and

2E

n
− 0.94125 >

E

n

and these constraints can be satisfied when E grows moderately linearly with n, i.e. when 0.94125n <

E < 6.38n.
The case of random ER networks. In a random ER network, the probability of having a particular

edge is given by the following set of independent Bernoulli trials:

∀u, v ∈ V with u |= v : Pr[(u, v) ∈ E]= p= degave

n− 1

Thus, for every k ∈ {0, 1, 2, . . . , n− 1}:

Pr[degin(v)= k]= Pr[degout(v)= k]=
(

n− 1

k

)
pk(1− p)(n−1)−k

E[degin]=E[degout]= p(n− 1)= degave

Var[degin(v)]=Var[degout(v)]= p(1− p)(n− 1)=
(

1− degave

n− 1

)
degave

Since degave = p(n− 1) is a constant, one can approximate the above binomial distribution by a Pois-
son’s distribution [61, p. 72] to obtain

Pr[degin(v)= k]= Pr[degout(v)= k]≈ e−degave
(degave)

k

k!
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Table 8 Values of Υ (x) and ∂Υ (x)/∂x for a few small integral values of x using straightfor-
ward calculations

x=
2 3 4 5 6 7 8 9 10 11 12

Υ (x)≈ 0.499 0.411 0.324 0.256 0.207 0.172 0.147 0.128 0.113 0.101 0.091
∂Υ (x)

x
≈ 0.432 0.284 0.245 0.256 0.199 0.166 0.143 0.125 0.111 0.100 0.090

Lemma 7.4 (see Section A.4 of the appendix for a proof) |E[1/degin(v)]−∑�3degave+10�
k=1 (1/k) e−degave

(degave)
k

k! |� 10−10 and (∂/∂d)E[1/degin(v) | degave = d]≈ (1− e−d)/d.

For notational convenience, let Υ (x)=∑�3x+10�
k=1 (1/k) e−x(xk/k!). Since 10−10 is an extremely small

number for our purposes, we will just use E[1/degin(v)]≈Υ (degave) in the sequel. Values of Υ (x) and
∂Υ (x)/∂x= (1− e−x)/x for a few small integral values of x are shown in Table 8. It is easy to see that
limx→∞ Υ (x)= 0 and, for large x, ∂Υ (x)/∂x≈ 1/x.

As before, we first provide an estimation of chetero
1 using the notations in Definition 6.1.

Lemma 7.5 (see Section A.5 of the appendix for a proof) W.h.p. 1+ α − β − αβ/2 � E[chetero
1 ] �

(1+ αβ − α2 − β − α2β)/(1− 2α).

Using the above result, the following bounds hold:

• If G is a homogeneous network, then

∂

∂d
chomo

1

∣∣∣∣ at
degave=d

= lim
Δd→0

I | at
degave=d+Δd

/n(d +Δd)−I | at
degave=d

/nd

Δd

= lim
Δd→0

nd/n(d +Δd)− 1

Δd
=− 1

d

E[Ahomo | degave = d]= chomo
1 (Φ − γ )+ E (Φ − γ )

n
E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

− chomo
1 ΦE[degout(v)]E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

≈ chomo
1 (Φ − γ )+ E (Φ − γ )

n
Υ (d)− chomo

1 ΦdΥ (d)
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∂

∂d
E[Ahomo | degave = d]

≈ (Φ − γ )
∂

∂d
chomo

1

∣∣∣∣ at
degave=d

+ E (Φ − γ )

n

∂

∂d
Υ (d)−Φ

∂

∂d
(chomo

1 | at
degave=d

dΥ (d))

=−Φ − γ

d
+
(

E (Φ − γ )

n

)(
1− e−d

d

)
−Φ(−Υ (d)+ Υ (d)+ 1− e−d)

using product rule of derivatives

=−Φ − γ

d
+
(

E (Φ − γ )

n

)(
1− e−d

d

)
−Φ(1− e−d)

• If G is a heterogeneous network, then

E[Ahetero]= (Φ − γ )E[chetero
1 ]+ E (Φ − γ )

n
E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

−ΦE[chetero
1 ]E[degout(v)]E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]

which provides the following bounds w.h.p.:

E[Ahetero | degave = d]≈ (Φ − γ )E[chetero
1 ]+ E (Φ − γ )

n
Υ (d)−ΦdΥ (d)E[chetero

1 ]

∂

∂d
E[Ahetero | degave = d]

� E (Φ − γ )

n

∂

∂d
Υ (d)−Φ

(
1+ αβ − α2 − β − α2β

1− 2α

)
∂

∂d
(dΥ (d))

=
(

E (Φ − γ )

n

)(
1− e−d

d

)
−Φ

(
1+ αβ − α2 − β − α2β

1− 2α

)
(1− e−d + Υ (d))

using product rule of derivatives

Now note the following:

∂

∂d
E[Ahomo | degave = d] � 0

⇒ Φ − γ

d
+Φ(1− e−d) >

(
E (Φ − γ )

n

)(
1− e−d

d

)

≡
(

1

d
+ 1− e−d − E

n

(
1− e−d

d

))
Φ >

(
1

d
− E

n

(
1− e−d

d

))
γ (7.4)
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338 B. DASGUPTA AND L. KALIGOUNDER

Table 9 Comparisons of strengths of coordinated versus idiosyncratic shocks. The percentages indi-
cate the percentage of total number of data points (combinations of parameters Φ, γ , E and K ) for
that network type that resulted in ξc � ξr, where ξc and ξr are the vulnerability indices under coordi-
nated and idiosyncratic shocks, respectively

(α, β)-heterogeneous networks

In-arborescence ER average degree 3 ER average degree 6 SF average degree 3 SF average degree 6
α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2 α = 0.1 α = 0.2
β = 0.95 β = 0.6 β = 0.95 β = 0.6 β = 0.95 β = 0.6 β = 0.95 β = 0.6 β = 0.95 β = 0.6

56.64% 57.27% 89.66% 90.97% 98.99% 98.04% 93.16% 64.13% 94.44% 66.48%

homogeneous networks
In-arborescence ER average degree 3 ER average degree 6 SF average degree 3 SF average degree 6

84.62% 74.97% 78.59% 81.15% 54.80%

∂

∂d
E[Ahetero | degave = d] � 0

⇒
(

E (Φ − γ )

n

)(
1− e−d

d

)
> Φ

(
1+ αβ − α2 − β − α2β

1− 2α

)(
1− e−d + Υ (d)

)

≡
(

E

n

(
1− e−d

d

)
−
(

1+ αβ − α2 − β − α2β

1− 2α

)(
1− e−d + Υ (d)

))
Φ >

E

n

(
1− e−d

d

)
γ

(7.5)

It is easy to verify that constraints (7.4) and (7.5) are satisfied for many natural combinations of param-
eters. For example, the constraints (7.4) and (7.5) are almost always satisfied if d is sufficiently large.
To see this informally, note that if d is large then 1/d, e−d , Υ (d)≈ 0. Moreover, since α� β and α is
small, (1+ αβ − α2 − β − α2β)/(1− 2α)≈ 1− β and then constraints (7.4) and (7.5) reduce to

(
1− E

nd

)
Φ �− E

nd
γ ≡Φ � E /nd

E /nd − 1
γ (7.4)d�0

(
E

nd
− 1+ β

)
Φ � E

nd
γ ≡Φ � E /nd

E /nd − 1+ β
γ (7.5)d�0

If E > nd then E /n d/(E /nd − 1) > 1 and E /nd/(E /nd − 1+ β) < E /nd/(E /nd − 1); thus both
(7.4)d�0 and (7.5)d�0 can be satisfied by choosing Φ appropriately with respect to γ . For a numeri-
cal example, suppose that G is a (0.1, 0.95)-heterogeneous network (i.e. α= 0.1 and β = 0.95), d = 10,
and E = 12 n. Then constraints (7.4),(7.5) reduce to:

1.17 <
Φ

γ
< 11

which corresponds to most settings of Φ and γ used in our simulation.
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7.4 Random versus correlated initial failures

For most parameter combinations, our results, tabulated in Table 9, show that coordinated shocks, which
are a type of correlated shocks, resulted in insolvencies of higher number of nodes as opposed to idiosyn-
cratic shocks for the same network with the same parameters, often by a factor of two or more. For
example, Table 9 shows that for (0.1, 0.95)-heterogeneous ER networks of average degree 6 the vulner-
ability index under coordinated shocks is at least as much as the vulnerability index under idiosyncratic
shocks 98.99% of the time. Thus, we conclude:

⑥ correlated shocking mechanisms are more appropriate to measure the worst-case stability
compared with idiosyncratic shocking mechanisms.

For visual illustrations of ⑥, see Supplementary Figs S6–S11.

7.5 Phase transition properties of stability

Phase transitions are quite common when one studies various topological properties of graphs [62].
The stability measure exhibits several sharp phase transitions for various banking networks and com-
binations of parameters; see Supplementary Figs S1–S4 for visual illustrations. We discuss two such
interesting phase transitions in the following, with an intuitive theoretical explanation for one of them.

7.5.1 Dense homogeneous networks Based on the behaviour of ξ with respect to (Φ − γ ), we
observe that, for smaller value of K and for denser ER and SF networks under either coordinated
or idiosyncratic shocks, there is often a sharp decrease of stability when γ was decreased beyond a
particular threshold value. For example, with Φ = 0.5 and K = 0.1, 100-node dense (average degree
6) SF and ER homogeneous networks exhibited more than ninefold increase in ξ around γ = 0.15 and
γ = 0.1, respectively; see Supplementary Fig. S1 for visual illustrations.

To investigate the global extent of such a sharp decrease at a threshold value of γ in the range
[0.05, 0.2], we computed, for each of the five homogeneous network types under coordinated shocks
and for each values of the parameters |V |, Φ, E /I and K , the ratio

Λ

(
n, Φ,

E

I
, K

)
= max0.05�γ�0.2{ξ} −min0.05�γ�0.2{ξ}

maxentire range of γ {ξ} −minentire range of γ {ξ}
that provides the maximum percentage of the total change of the vulnerability index that occurred within
this narrow range of γ . The values of Λ(n, Φ, E /I , K ) for the dense ER and SF homogeneous net-
works under coordinated shocks are shown in Table 10 for Φ = 0.5, 0.8 and K = 0.1, 0.2, 0.3, 0.4, 0.5
(the behaviour of ξ is similar for other intermediate values of Φ). If the growth of ξ with respect to γ was
uniform or near uniform over the entire range of γ , Λ would be approximately λ= 0.2−0.05

0.45−0.05 = 0.375;
thus, any value of Λ significantly higher than λ indicates a sharp transition within the above-mentioned
range of values of γ . As Table 10 shows, a significant majority of the entries for Φ � 0.8 and κ � 0.2
are 2λ or more.

7.5.2 Homogeneous in-arborescence networks Homogeneous in-arborescence networks under coor-
dinated shocks exhibited a sharp increase in stability as the ratio E /I of the total external asset to the
total interbank exposure the system is increased beyond a particular threshold provided the equity to
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Table 10 Values of Λ(n, Φ, E/I, K )= max0.05�γ�0.2{ξ}−min0.05�γ�0.2{ξ}
maxentire range of γ {ξ}−minentire range of γ {ξ} for homogeneous dense ER and SF networks under coordinated

shocks. Entries that are at least 2× 0.375 are shown in boldface

Φ = 0.5 Φ = 0.8

ER average degree 6 SF average degree 6 ER average degree 6 SF average degree 6

K =K =K = K =K =K = K =K =K = K =K =K =
E/I |V| 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.25 50 0.79 0.77 0.79 0.83 0.81 0.99 0.98 0.97 0.95 0.93 0.81 0.77 0.77 0.74 0.7 0.95 0.9 0.85 0.78 0.72
100 0.8 0.79 0.81 0.77 0.77 0.99 0.97 0.95 0.92 0.9 0.84 0.81 0.79 0.76 0.72 0.95 0.86 0.79 0.71 0.66
300 0.93 0.89 0.86 0.83 0.81 0.98 0.96 0.93 0.9 0.88 0.83 0.8 0.79 0.76 0.71 0.89 0.79 0.71 0.63 0.59

0.5 50 0.79 0.77 0.79 0.83 0.81 0.99 0.98 0.97 0.95 0.93 0.83 0.78 0.78 0.74 0.68 0.95 0.89 0.84 0.78 0.72
100 0.8 0.79 0.81 0.77 0.77 0.99 0.97 0.95 0.92 0.9 0.83 0.81 0.79 0.76 0.71 0.94 0.85 0.78 0.71 0.65
300 0.93 0.89 0.86 0.83 0.81 0.98 0.96 0.93 0.9 0.88 0.83 0.81 0.79 0.76 0.7 0.88 0.78 0.7 0.63 0.61

0.75 50 0.79 0.77 0.79 0.83 0.81 0.99 0.98 0.97 0.95 0.93 0.84 0.78 0.77 0.73 0.67 0.95 0.89 0.83 0.77 0.71
100 0.8 0.79 0.81 0.77 0.77 0.99 0.97 0.95 0.92 0.9 0.83 0.82 0.8 0.76 0.71 0.94 0.85 0.77 0.7 0.65
300 0.93 0.89 0.86 0.83 0.81 0.98 0.96 0.93 0.9 0.88 0.83 0.8 0.78 0.74 0.69 0.9 0.77 0.69 0.63 0.61

1 50 0.78 0.77 0.78 0.79 0.79 0.99 0.96 0.93 0.88 0.82 0.83 0.79 0.78 0.72 0.67 0.95 0.89 0.83 0.76 0.69
100 0.8 0.8 0.8 0.8 0.78 0.98 0.93 0.87 0.81 0.75 0.83 0.81 0.8 0.76 0.7 0.95 0.83 0.74 0.66 0.61
300 0.87 0.82 0.83 0.81 0.77 0.97 0.91 0.87 0.81 0.75 0.82 0.79 0.78 0.74 0.69 0.86 0.71 0.61 0.57 0.55

1.25 50 0.78 0.77 0.78 0.79 0.79 0.99 0.96 0.93 0.88 0.82 0.84 0.79 0.79 0.73 0.67 0.95 0.89 0.83 0.76 0.69
100 0.8 0.8 0.8 0.8 0.78 0.98 0.93 0.87 0.81 0.75 0.83 0.82 0.8 0.76 0.7 0.95 0.83 0.74 0.67 0.61
300 0.87 0.82 0.83 0.81 0.77 0.97 0.91 0.87 0.81 0.75 0.83 0.8 0.78 0.74 0.68 0.86 0.7 0.63 0.59 0.56

1.5 50 0.78 0.77 0.78 0.79 0.79 0.99 0.96 0.93 0.88 0.82 0.84 0.8 0.79 0.72 0.65 0.94 0.89 0.83 0.76 0.69
100 0.8 0.8 0.8 0.8 0.78 0.98 0.93 0.87 0.81 0.75 0.83 0.81 0.79 0.74 0.68 0.94 0.81 0.72 0.67 0.62
300 0.87 0.82 0.83 0.81 0.77 0.97 0.91 0.87 0.81 0.75 0.82 0.8 0.77 0.73 0.67 0.85 0.69 0.62 0.59 0.56

1.75 50 0.78 0.77 0.78 0.79 0.79 0.99 0.96 0.93 0.88 0.82 0.83 0.78 0.78 0.72 0.65 0.94 0.89 0.82 0.76 0.69
100 0.8 0.8 0.8 0.8 0.78 0.98 0.93 0.87 0.81 0.75 0.83 0.8 0.78 0.74 0.66 0.93 0.81 0.73 0.67 0.63
300 0.87 0.82 0.83 0.81 0.77 0.97 0.91 0.87 0.81 0.75 0.82 0.8 0.77 0.72 0.66 0.83 0.68 0.61 0.6 0.59

2 50 0.79 0.77 0.76 0.77 0.76 0.99 0.95 0.89 0.83 0.77 0.83 0.79 0.78 0.72 0.65 0.94 0.89 0.8 0.72 0.64
100 0.8 0.84 0.8 0.78 0.76 0.98 0.89 0.81 0.71 0.69 0.82 0.79 0.77 0.72 0.64 0.93 0.78 0.69 0.65 0.6
300 0.85 0.83 0.8 0.78 0.75 0.95 0.88 0.79 0.72 0.61 0.81 0.79 0.77 0.71 0.65 0.81 0.64 0.59 0.58 0.57

(continued)
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Table 10 Continued.

Φ = 0.5 Φ = 0.8

ER average degree 6 SF average degree 6 ER average degree 6 SF average degree 6

K =K =K = K =K =K = K =K =K = K =K =K =
E/I |V| 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

2.25 50 0.79 0.77 0.76 0.77 0.76 0.99 0.95 0.89 0.83 0.77 0.83 0.79 0.78 0.72 0.65 0.94 0.88 0.8 0.72 0.63
100 0.8 0.84 0.8 0.78 0.76 0.98 0.89 0.81 0.71 0.69 0.83 0.8 0.77 0.7 0.62 0.93 0.78 0.7 0.65 0.6
300 0.85 0.83 0.8 0.78 0.75 0.95 0.88 0.79 0.72 0.61 0.82 0.8 0.77 0.71 0.64 0.8 0.65 0.6 0.6 0.56

2.5 50 0.79 0.77 0.76 0.77 0.76 0.99 0.95 0.89 0.83 0.77 0.82 0.78 0.78 0.71 0.64 0.94 0.87 0.77 0.69 0.61
100 0.8 0.84 0.8 0.78 0.76 0.98 0.89 0.81 0.71 0.69 0.81 0.8 0.76 0.69 0.6 0.92 0.77 0.69 0.63 0.58
300 0.85 0.83 0.8 0.78 0.75 0.95 0.88 0.79 0.72 0.61 0.82 0.8 0.76 0.69 0.62 0.79 0.63 0.59 0.59 0.56

2.75 50 0.79 0.77 0.76 0.77 0.76 0.99 0.95 0.89 0.83 0.77 0.8 0.77 0.77 0.69 0.61 0.94 0.87 0.76 0.66 0.59
100 0.8 0.84 0.8 0.78 0.76 0.98 0.89 0.81 0.71 0.69 0.81 0.79 0.75 0.68 0.6 0.92 0.77 0.69 0.63 0.58
300 0.85 0.83 0.8 0.78 0.75 0.95 0.88 0.79 0.72 0.61 0.81 0.8 0.75 0.69 0.61 0.78 0.63 0.6 0.6 0.56

3 50 0.78 0.79 0.79 0.76 0.72 0.98 0.94 0.86 0.77 0.7 0.8 0.78 0.76 0.69 0.59 0.94 0.87 0.76 0.66 0.58
100 0.79 0.81 0.8 0.77 0.73 0.98 0.87 0.73 0.68 0.63 0.8 0.78 0.74 0.66 0.57 0.92 0.77 0.69 0.63 0.56
300 0.87 0.8 0.78 0.75 0.71 0.94 0.84 0.72 0.61 0.58 0.81 0.79 0.75 0.68 0.6 0.77 0.62 0.61 0.6 0.55

3.25 50 0.78 0.79 0.79 0.76 0.72 0.98 0.94 0.86 0.77 0.7 0.8 0.79 0.76 0.68 0.57 0.94 0.88 0.75 0.65 0.55
100 0.79 0.81 0.8 0.77 0.73 0.98 0.87 0.73 0.68 0.63 0.81 0.79 0.74 0.65 0.55 0.92 0.77 0.69 0.62 0.53
300 0.87 0.8 0.78 0.75 0.71 0.94 0.84 0.72 0.61 0.58 0.81 0.79 0.74 0.67 0.58 0.77 0.61 0.61 0.59 0.52

3.5 50 0.78 0.79 0.79 0.76 0.72 0.98 0.94 0.86 0.77 0.7 0.81 0.78 0.75 0.67 0.55 0.94 0.87 0.75 0.64 0.54
100 0.79 0.81 0.8 0.77 0.73 0.98 0.87 0.73 0.68 0.63 0.81 0.79 0.73 0.64 0.54 0.92 0.76 0.69 0.62 0.52
300 0.87 0.8 0.78 0.75 0.71 0.94 0.84 0.72 0.61 0.58 0.81 0.78 0.73 0.65 0.56 0.76 0.61 0.61 0.59 0.52
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asset ratio γ was approximately Φ/2. For example, for a 50-node homogeneous in-arborescence net-
work under coordinated shock, ξ exhibited a sharp decrease from 0.76 to 0.18 for E /I ∈ [0.75, 1],
K = 0.1, Φ = 0.5 and γ = 0.25=Φ/2; see Supplementary Fig. S4 for a visual illustration.

To investigate the global extent of such a sharp decrease of ξ around a threshold value of E /I
in the range [0.5, 1] with γ ≈Φ/2, we computed, for each type of shocking mechanism, and for each
values of the parameters n, Φ, γ ≈Φ/2, and κ of the homogeneous in-arborescence network, the ratio

Δ(n, Φ, γ , K )= max0.5�E /I �1{ξ} −min0.5�E /I �1{ξ}
maxentire range of E {ξ} −minentire range of E {ξ}

that provides the maximum percentage of the total change of the vulnerability index that occurred within
this range of E /I . If the growth of ξ with respect to E /I was uniform or near uniform over the entire
range of E /I , Δ would be approximately δ= 1−0.5

3.5−0.25 ≈ 0.16; thus, any value of Δ significantly higher
than δ indicates a sharp transition within the above-mentioned range of E /I . As Table 11 shows,
when γ =Φ/2 a significant majority of the entries are coordinated shocks and many entries under
idiosyncratic shocks are at least 2δ.

Formal intuition
A formal intuition behind such a sharp decrease of ξ can be provided as follows.

Lemma 7.6 (see Section A.6 of the appendix for a proof) Fix γ , Φ, I , a homogeneous in-arborescence
network G and assume that γ ≈Φ/2. Consider any node v ∈ V✖ with degin(v) > 1, suppose that v fails
due to the initial shock. Let u be any node such that u is a ‘leaf node’ (i.e. degin(u)= 0), and (u, v) ∈ E.
Then, as the total external asset E of the network is varied, there exists a threshold value Eτ (u) such
that

• if E < Eτ (u), then u will become insolvent, but

• if E > Eτ (u), then u will not become insolvent at any time t � 1, and the shock will not propagate
any further through u.

The next lemma provides a lower bound, using the degree distributions of the Barábasi–Albert
preferential-attachment model [52], on the expected value of the number of leaves in a random in-
arborescence network for which Lemma 7.6 can be applied.

Lemma 7.7 (see Section A.7 of the appendix for a proof) Consider a random in-arborescence
G= (V , E) generated by the Barábasi–Albert preferential-attachment algorithm [52] as outlined in
Section 6.1 and let

V̂ = {u ∈ V | (degin(u)= 0) ∧ (∃ v : ((degin(v) > 1) ∧ ((u, v) ∈ E)))}
Then, E[|V̂ |] � n/8− 11/8.

Let ξ(E ) be the value of ξ parameterized by E (keeping all other parameters unchanged), and let

Eτmin =min{Eτ (u) | degin(u)= 0, (u, v) ∈ E anddegin(v) > 1}
Eτmax =max{Eτ (u) | degin(u)= 0, (u, v) ∈ E anddegin(v) > 1}

It then follows that

E[ξ(Eτmin)]− E[ξ(Eτmax)] � n/8− 11/8

n
≈ 1

8
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Table 11 Values of Δ(n, Φ, γ , K )= max0.5�E/I�1{ξ}−min0.5�E/I�1{ξ}
maxentire range of E{ξ}−minentire range of E{ξ} for homogeneous in-arborescence networks. Entries that are at least

2× 0.16 are shown in boldface black. Entries that are at least 3
2 × 0.16 are shown in boldface grey

←KKK→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Coordinated |V | = 50 Φ = 0.5 γ = 0.25 0.87 0.86 0.84 0.83 0.83 0.83 0.83 0.83 0.83
shock γ = 0.3 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Φ = 0.6 γ = 0.3 0.27 0.49 0.52 0.52 0.52 0.52 0.52 0.52 0.52
γ = 0.35 0.27 0.51 0.37 0.37 0.37 0.37 0.37 0.37 0.37

Φ = 0.7 γ = 0.35 0.27 0.48 0.59 0.64 0.65 0.65 0.65 0.65 0.65
γ = 0.4 0.30 0.34 0.32 0.29 0.29 0.29 0.29 0.29 0.29

Φ = 0.8 γ = 0.4 0.24 0.42 0.47 0.47 0.47 0.47 0.47 0.47 0.47
γ = 0.45 0.33 0.45 0.43 0.41 0.40 0.40 0.40 0.40 0.40

Φ = 0.9 γ = 0.45 0.24 0.47 0.54 0.56 0.56 0.56 0.56 0.56 0.56
γ = 0.5 0.28 0.38 0.37 0.34 0.32 0.32 0.32 0.32 0.32

|V | = 100 Φ = 0.5 γ = 0.25 0.95 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93
γ = 0.3 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Φ = 0.6 γ = 0.3 0.39 0.27 0.33 0.31 0.29 0.29 0.29 0.29 0.29
γ = 0.35 0.32 0.24 0.28 0.30 0.32 0.32 0.32 0.32 0.32

Φ = 0.7 γ = 0.35 0.39 0.57 0.67 0.69 0.69 0.69 0.69 0.69 0.69
γ = 0.4 0.36 0.44 0.42 0.42 0.42 0.42 0.42 0.42 0.42

Φ = 0.8 γ = 0.4 0.36 0.49 0.54 0.53 0.53 0.53 0.53 0.53 0.53
γ = 0.45 0.37 0.46 0.47 0.48 0.48 0.48 0.48 0.48 0.48

Φ = 0.9 γ = 0.45 0.39 0.56 0.66 0.67 0.67 0.67 0.67 0.67 0.67
γ = 0.5 0.37 0.47 0.48 0.47 0.47 0.47 0.47 0.47 0.47

|V | = 300 Φ = 0.5 γ = 0.25 0.93 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93
γ = 0.3 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Φ = 0.6 γ = 0.3 0.39 0.27 0.29 0.25 0.25 0.25 0.25 0.25 0.25
γ = 0.35 0.31 0.14 0.16 0.14 0.14 0.14 0.14 0.14 0.14

Φ = 0.7 γ = 0.35 0.40 0.53 0.61 0.62 0.62 0.62 0.62 0.62 0.62
γ = 0.4 0.34 0.36 0.34 0.33 0.33 0.33 0.33 0.33 0.33

continued.
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Table 11 continued.

←KKK→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Φ = 0.8 γ = 0.4 0.38 0.47 0.50 0.50 0.50 0.50 0.50 0.50 0.50
γ = 0.45 0.39 0.43 0.42 0.40 0.40 0.40 0.40 0.40 0.40

Φ = 0.9 γ = 0.45 0.40 0.53 0.60 0.61 0.61 0.61 0.61 0.61 0.61
γ = 0.5 0.39 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.43

Idiosyncratic |V | = 50 Φ = 0.5 γ = 0.25 0.95 0.95 0.95 0.76 0.77 0.37 0.08 0.11 0.25
shock γ = 0.3 0.95 0.95 0.93 0.99 0.76 0.33 0.07 0.23 0.29

Φ = 0.6 γ = 0.3 0.08 0.37 0.32 0.47 0.48 0.21 0.35 0.39 0.25
γ = 0.35 0.08 0.12 0.27 0.30 0.38 0.27 0.24 0.13 0.16

Φ = 0.7 γ = 0.35 0.08 0.15 0.12 0.04 0.26 0.13 0.07 0.11 0.15
γ = 0.4 0.04 0.06 0.03 0.25 0.17 0.06 0.09 0.06 0.08

Φ = 0.8 γ = 0.4 0.05 0.09 0.13 0.21 0.12 0.10 0.08 0.14 0.10
γ = 0.45 0.02 0.17 0.08 0.27 0.17 0.19 0.05 0.04 0.08

Φ = 0.9 γ = 0.45 0.09 0.07 0.20 0.21 0.03 0.12 0.02 0.17 0.17
γ = 0.5 0.08 0.04 0.13 0.24 0.12 0.10 0.10 0.06 0.10

|V | = 100 Φ = 0.5 γ = 0.25 0.98 0.96 0.98 0.96 0.67 0.37 0.16 0.03 0.16
γ = 0.3 0.99 1.00 0.95 0.99 0.71 0.31 0.07 0.11 0.26

Φ = 0.6 γ = 0.3 0.04 0.15 0.3 0.44 0.03 0.08 0.22 0.16 0.06
γ = 0.35 0.03 0.04 0.29 0.30 0.17 0.33 0.06 0.10 0.10

Φ = 0.7 γ = 0.35 0.02 0.11 0.09 0.23 0.13 0.01 0.10 0.05 0.06
γ = 0.4 0.02 0.1 0.16 0.11 0.12 0.13 0.05 0.03 0.05

Φ = 0.8 γ = 0.4 0.03 0.03 0.07 0.07 0.07 0.04 0.06 0.02 0.08
γ = 0.45 0.03 0.06 0.14 0.17 0.09 0.13 0.08 0.03 0.08

Φ = 0.9 γ = 0.45 0.04 0.07 0.07 0.10 0.14 0.10 0.09 0.08 0.07
γ = 0.5 0.05 0.15 0.10 0.07 0.08 0.13 0.02 0.06 0.04

continued.

 by guest on August 23, 2014 http://comnet.oxfordjournals.org/ Downloaded from 

http://comnet.oxfordjournals.org/


STA
B

IL
IT

Y
O

F
FIN

A
N

C
IA

L
N

E
T

W
O

R
K

S
345

Table 11 continued.

←KKK→
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

|V | = 300 Φ = 0.5 γ = 0.25 1.00 0.99 0.98 1.00 0.69 0.36 0.16 0.07 0.16
γ = 0.3 1.00 0.98 0.96 1.00 0.69 0.36 0.12 0.06 0.23

Φ = 0.6 γ = 0.3 0.03 0.12 0.03 0.21 0.12 0.14 0.12 0.08 0.14
γ = 0.35 0.04 0.03 0.01 0.15 0.08 0.04 0.07 0.09 0.04

Φ = 0.7 γ = 0.35 0.06 0.08 0.13 0.17 0.14 0.05 0.07 0.02 0.08
γ = 0.4 0.03 0.06 0.09 0.11 0.10 0.08 0.02 0.02 0.05

Φ = 0.8 γ = 0.4 0.04 0.09 0.12 0.14 0.12 0.11 0.04 0.05 0.08
γ = 0.45 0.04 0.17 0.11 0.15 0.17 0.09 0.04 0.04 0.05

Φ = 0.9 γ = 0.45 0.05 0.08 0.11 0.18 0.14 0.02 0.03 0.04 0.07
γ = 0.5 0.05 0.07 0.10 0.21 0.11 0.09 0.04 0.01 0.05
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and ξ(E ) exhibits a sharp decrease around the range [Eτmin , Eτmax ]. In practice, the extent of this decrease
is expected to be much more than the pessimistic lower bound of 1

8 , as our simulation results clearly
show.

8. Concluding remarks

In this paper, we have initiated a methodology for systematic investigation of the global stabilities
of financial networks that arise in OTC derivatives market and elsewhere. Our results can be viewed
as a much needed beginning of a systematic investigation of these issues, with future research works
concentrating on further improving the network model, the stability measure and parameter choices.

Supplementary data

Supplementary data are available at Journal of Complex Networks online.
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Appendix

A.1 Proof of Lemma 7.1

We will reuse the notations in Definition 6.1. Using Equation (5.1), for every edge (u, v) ∈ E, the amount
of shock received by node u at time t= 1 is as follows:
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• If G is homogeneous then

E[Δhomo(u)]= min{Φ(degin(v)− degout(v)+ E /n)− γ (degin(v)+ E /n), degin(v)}
degin(v)

=min

{
(Φ − γ )+ (E /n)(Φ − γ )−Φ degout(v)

degin(v)
, 1

}

• If G is (α, β)-heterogeneous, then σv = β/α and, using linearity of expectation, we get

E[bv]=E

⎡
⎣ ∑

(u,v)∈Ẽ

(
α

βI

α|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)⎤⎦

= degin(v) E

[(
β

I

|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)]

E[bv − ιv]=E

⎡
⎣ ∑

(u,v)∈Ẽ

(
α

βI

α|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)
−
∑

(v,u)∈Ẽ

(
α

βI

α|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)⎤⎦

=
∑

(u,v)∈Ẽ

E

[(
β

I

|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)]

−
∑

(v,u)∈Ẽ

E

[(
beta

I

|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)]

= (degin(v)− degout(v))E

[(
β

I

|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)]

E[Δhetero(u)]=E

[
min{Φ(bv − ιv + σvE )− γ (bv + σvE ), bv}

degin(v)

]

=min

{
E

[
Φ(bv − ιv + σvE )− γ (bv + σvE )

degin(v)

]
, E

[
bv

degin(v)

]}

=min

{
Φ

degin(v)
E[bv − ιv]+ ΦσvE

degin(v)
− γ

degin(v)
E[bv]− γ σvE

degin(v)
,

1

degin(v)
E[bv]

}

=min

{
Φ

degin(v)
(degin(v)− degout(v)) E

[(
β

I

|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)]
+ ΦσvE

degin(v)

− γ

degin(v)
degin(v)E

[(
β

I

|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)]

− γ σvE

degin(v)
, E

[(
β

I

|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)]}
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=min

{
Φ(degin(v)− degout(v))− γ degin(v)

degin(v)
E

[(
β

I

|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)]

+ (Φ − γ )σvE

degin(v)
, E

[(
β

I

|Ẽ| + (1− α)
(1− β)I

|E| − α|Ẽ|

)]}

� min

{
Φ(degin(v)− degout(v))− γ degin(v)

degin(v)
βE

[
I

|Ẽ|

]
+ (Φ − γ )σvE

degin(v)
, βE

[
I

|Ẽ|

]}

� min

{(
Φ(degin(v)− degout(v))− γ degin(v)

degin(v)

)(
β

α

)
+
(

β

α

)(
(Φ − γ )E

degin(v)

)
,
β

α

}

sinceE

[
I

|Ẽ|

]
=E

[ |E|
|Ẽ|

]
= α

� β

α
min

{
(Φ − γ )+ (Φ − γ )E −Φ degout(v)

degin(v)
, 1

}

� β

α
E[Δhomo(u)]

A.2 Proof of Lemma 7.2

Using standard probabilistic calculations, we get

E

[
1

degin(v)

∣∣∣∣ degin(v) > 0

]
=

n−1∑
k=1

1

k
Pr[degin(v)= k]=C

n−1∑
k=1

k−4 ≈Cζ(4)≈ π2

15
degave

Var[degin(v)]=E[(degin(v))2]− (E[degin(v)])2 =
n−1∑
k=1

k2(Ck−3)− (degave)
2

=C
n−1∑
k=1

1

k
− (degave)

2 ≈ 6degave

π2
ln n− (degave)

2 ≈ 6degave

π2
ln n

A.3 Proof of Lemma 7.3

Let D =∑v∈Ṽ degin(v)+∑v∈Ṽ degout(v). By linearity of expectation, we have

E[D]= 2
∑
v∈Ṽ

E[degin(v)]= 2αsn degave

and similarly, since degin(v) is independent of any other degin(u) for u |= v, we have

Var[D]= 2
∑
v∈Ṽ

Var[degin(v)]≈ 12 degave

π2
αn ln n
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Thus, via Chebyschev’s inequality [63, p. 37], for any positive λ we have

Pr[|D − E[D]|� λ
√

Var[D]] � 1

λ2
≡ Pr

[
|D − 2αn degave|� λ

√
12 degave

π2
αn ln n

]
� 1

λ2

Setting λ=
√

π2 ln n/12α gives Pr[|D − 2αn degave|�
√

n degave ln n] � 12α/π2 ln n and thus
w.h.p. D ≈ 2αn degave. Since D/2 � |Ẽ|� D , it now follows that

αn degave � E[|Ẽ|] � 2αn degave

w.h.p. αn degave � |Ẽ|� 2αn degave

Also, note that Pr[(u, v) ∈ Ẽ]= Pr[v ∈ Ṽ ]= α. Ẽ1 be a random subset of α|Ẽ| of edges from the edges
in Ẽ as used in Definition 6.1. This implies that

E[chetero
1 ]= Pr[(u, v) ∈ Ẽ1]

(
βI

α|Ẽ|

)
+ (1− Pr[(u, v) ∈ Ẽ1])

I − βI

|E| − α|Ẽ|

= α Pr[(u, v) ∈ Ẽ]

(
βI

α|Ẽ|

)
+ (1− α Pr[(u, v) ∈ Ẽ])

I − βI

|E| − α|Ẽ|

= α2

(
βI

α|Ẽ|

)
+ (1− α2)

I − βI

|E| − α|Ẽ|

⇒ w.h.p. α2 βn degave

2αn degave
+ (1− α2)

(1− β)n degave

n degave − αn degave

� E[chetero
1 ] � α2 βn degave

αn degave
+ (1− α2t)

(1− β)n degave

n degave − 2αn degave

≡ w.h.p.
αβ

2
+ (1+ α)(1− β) � E[chetero

1 ] � α β + (1− α2)(1− β)

1− 2α

≡ w.h.p. 1+ α − β − αβ

2
� E[chetero

1 ] � 1+ αβ − α2 − β − α2β

1− 2α

A.4 Proof of Lemma 7.4

E[1/degin(v)]=∑n−1
k=1(1/k) Pr[degin(v)= k]=∑n−1

k=1(1/k) e−degave((degave)
k/k!). It is easy to see that

extending the finite series to an infinite series does not change the asymptotic value of the series since

∞∑
k=1

1

k
e−degave

(degave)
k

k!
−

n−1∑
k=1

1

k
e−degave

(degave)
k

k!

=
∞∑

k=n

1

k
e−degave

(degave)
k

k!

� e−degave

n

∞∑
k=n

(degave)
k

k!
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�
(

e−degave

n

)(
(degave)

n

n!

)(
max

0�x�degave

{ex}
)

using the Lagrange remainder term
for the Maclaurin series expansion of edegave

=
(

e−degave

n

)(
(degave)

n

n!

)
edegave

= (degave)
n

n(n!)

and limn→∞ (degave)
n/n(n!) because degave is a constant independent of n. Thus, we can conclude that∑∞

k=1(1/k) e−degave((degave)
k/k!)≈∑n−1

k=1(1/k) e−degave((degave)
k/k!). It now follows that

∂

∂d
E

[
1

degin(v)

∣∣∣∣ degave = d

]
≈ ∂

∂d

∞∑
k=1

1

k
e−d dk

k!

= e−d
∞∑

k=1

dk−1

k!
= e−d

d

∞∑
k=1

dk

k!
= e−d

d
(ed − 1)= 1− e−d

d

This proves one of the claims in the lemma. To prove the other claim, using a well-known approximation
on the first inverse moment of Poisson’s distribution [64, p. 173] we have

∣∣∣∣∣∣
∞∑

k=1

1

k
e−degave

(degave)
k

k!
−
�3 degave+10�∑

k=1

1

k
e−degave

(degave)
k

k!

∣∣∣∣∣∣< 10−10

and therefore we obtain∣∣∣∣∣∣
n−1∑
k=1

1

k
e−degave

(degave)
k

k!
−
�3 degave+10�∑

k=1

1

k
e−degave

(degave)
k

k!

∣∣∣∣∣∣� 10−10

A.5 Proof of Lemma 7.5

Let D =∑v∈Ṽ degin(v)+∑v∈Ṽ degout(v). We can reuse the proof of Lemma 7.3 provided we
show that E[D]= 2αn degave and w.h.p. D ≈ 2αn degave. By linearity of expectation, we have
E[D]= 2

∑
v∈Ṽ E[degin(v)]= 2αn degave, and similarly Var[D]= 2

∑
v∈Ṽ Var[degin(v)]= 2αn(1−

degave/(n− 1)) degave ≈ 2αn degave. Thus, via Chebyschev’s inequality, for any positive λ we have

Pr[|D − E[D]|� λ
√

Var[D]] � 1

λ2
≡ Pr[|D − 2αn degave|� λ

√
2αn degave] � 1

λ2

Setting λ=√ln n/2α gives

Pr[|D − 2αn degave|�
√

n degave ln n] � 2α

ln n

and thus w.h.p. D ≈ 2αn degave.
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A.6 Proof of Lemma 7.6

The amount of shock μ transmitted from v to u is given by

μ=min

{
(Φ − γ )

(
1+ E

n degin(v)

)
+Φ

degout(v)

degin(v)
, 1

}

Since G is an in-arborescence, degout(v) � 1. First, consider the case of degout(v)= 0. In this case,
μ=min{(Φ − γ )(1+ E /n degin(v)), 1} and thus we have

cu(1)= cu(0)− μ= γ
E

n
−min

{
(Φ − γ )

(
1+ E

n degin(v)

)
, 1

}

Assuming γ ≈Φ/2, we have

cu(1)≈ γ
E

n
+ degin(u)−min

{
γ

(
1+ E

n degin(v)

)
, 1

}

=min

{
γ

(
E

n
− 1− E

n degin(v)

)
, γ

E

n
− 1

}

There are two cases to consider:

• If γ (E /n− 1− E /n degin(v)) � γ (E /n)− 1 then

cu(1)≈ γ

(
E

n
− 1− E

n degin(v)

)
= γ

(
E

n

(
1− 1

degin(v)

)
− 1

)

Thus, if E > Eτ1(u)= n/(1− 1/degin(v)) then cu(1) would be strictly positive, the node u will not
become insolvent at time t= 1, but if E < Eτ1(u) then cu(1) would be strictly negative and u would
fail.

• Otherwise, cu(1)≈ γ (E /n)− 1. Thus, if E > Eτ2(u)= n/E then cu(1) would be strictly positive,
the node u will not become insolvent at time t= 1, but if E < Eτ1(u) then cu(1) would be strictly
negative and u would fail.

A similar analysis may be carried out if degout(v)= 1 leading to slightly two different threshold values,
say Eτ3(u) and Eτ4(u). Since degout(u)= 1, if u does not become insolvent at time t= 1 then it does not
become insolvent for any t > 1 as well.

A.7 Proof of Lemma 7.7

Let r be the root node of G. Note that, for any node u ∈ V \ {r}, degout(u)= 1. Thus, using the
results in [52], it follows that for any node u ∈ V \ {r}, Pr[degin(u)= k − 1]∝ 1/k3 and in particular
Pr[degin(u)= 1] � 1

4 . For j= 0, 2, . . . , n, let nj be the number of nodes u of G with degin(u)= j. Thus,

 by guest on A
ugust 23, 2014

http://com
net.oxfordjournals.org/

D
ow

nloaded from
 

http://comnet.oxfordjournals.org/


354 B. DASGUPTA AND L. KALIGOUNDER

n=∑n
j=0 nj, |E| = n− 1=∑n

j=1 jnj, and

∑
u∈V\{r}

Pr[degin(u)= 1] � E[n1] � 1+
∑

u∈V\{r}
Pr[degin(u)= 1]

≡ n− 1

4
� E[n1] � 1+ n− 1

4

≡E[n1]= n− 1

4
+ t for somet ∈ [0, 1]

Letting n>1 =
∑n

j=2 nj, we have

E[n0 + n>1]= n− E[n1]= 3n+ 1

4
− t

E

⎡
⎣ n∑

j=1

jnj

⎤
⎦= n− 1≡E[n1]+ E

⎡
⎣ n∑

j=2

j nj

⎤
⎦= n− 1

≡E[n1]+ 2 E[n>1] � n− 1⇒E[n>1] � n− 1− (3n+ 1)/4+ t

2
= n

8
+ 4t − 5

8

E[n0]= n− E[n1]− E[n>1] � n−
(

n− 1

4
+ t

)
−
(

n

8
+ 4t − 5

8

)
= n

8
+ 7

8
− 3t

2

and hence we can bound E[|V̂ |] as

E[|V̂ |]=E[n0]− E[|{u ∈ V |(degin(u)= 0) ∧ (∃ v : ((degin(v)= 1) ∧ ((u, v) ∈ E)))}|]

� E[n0]− E[n1] �
(

n

8
+ 7

8
− 3t

2

)
−
(

n− 1

4
+ t

)
= n

8
+ 9

8
− 5t

2
� n

8
− 11

8
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