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Abstract–Circular permutation connects the N and C ter-
mini of a protein and concurrently cleaves elsewhere in the
chain, providing an important mechanism for generating novel
protein fold and functions. However, their in genomes is un-
known because current detection methods can miss many oc-
curances, mistaking random repeats as circular permutation.
Here we develop a method for detecting circularly permuted
proteins from structural comparison. Sequence order indepen-
dent alignment of protein structures can be regarded as a special
case of the maximum-weight independent set problem, which is
known to be computationally hard. We develop an efficient ap-
proximation algorithm by repeatedly solving relaxations of an
appropriate intermediate integer programming formulation, we
show that the approximation ratio is much better then the theo-
retical worst case ratio of � � 
 �  . Circularly permuted proteins
reported in literature can be identified rapidly with our method,
while they escape the detection by publicly available servers for
structural alignment.

Keywords–circular permuations, integer programming, lin-
ear programming, protein structure alignment

INTRODUCTION

A circularly permuted protein arises from ligation of the N
and C termini of a protein and concurrent cleavage elsewhere
in the chain [1, 2]. In nature, circular permutation often orig-
inate from tandem repeats via duplication of the C-terminal
of one repeat together with the N-terminal of the next re-
peat, as is the case of swaposin. Another mechanism is liga-
tion and cleavage of peptide chains during post-translational
modification, as is the case of concanavalin A. The full ex-
tent of circular permutation and thier biological consequences
are currently unknown. Discovery of circular permutation at
genome wide scale will enable systematic studies of its con-
tribution to the generation of novel protein function and novel
protein fold.

Currently, sequence alignment based methods are the
only available tools for detecting circular permutations.
These include postprocessing output from standard dynamic
programming methods, as well as customized algorithms [3].
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Sequence based methods can miss many circularly permuted
proteins, because either one orboth fragments may escape
detection by local alignment if the two proteins are distantly
related.

Protein structures are far more conserved than sequences,
and they can reveal very distant evolutionary relationship [4].
Jung et. al. [5] showed that there is potential to discover re-
motely related protein domains by artifically permutating pro-
teins and superimposing them on native domains in the pro-
tein structure database. Detecting circular permutation from
structures has the promise to uncover many more ancient per-
mutation events that escape sequence methods.

In this study, we describe a new algorithm for detecting
circular permutation in protein structures. We show with ex-
amples that our algorithm can align circular permutations re-
ported in literature. Our work introduces an efficient approx-
imate method for protein substructure comparison. Two pro-
tein structures are first cut into pieces exhaustively of vary-
ing lengths and then compared. An approximation algorithm
is used to search for optimalcombination of peptide pieces
from both structures. With the special nature of spatial dis-
tribution of proteins, a fractional version of local-ratio ap-
proach for scheduling split-interval graphs works well for de-
tecting very similar spatial substructures. Our experimenta-
tion showed that the approximation ratio is excellent, with an
average value of at least� � � � � � .

STRUCTURAL ALIGNMENT OF CIRCULARLY PERMUTED

PROTEINS

Three simplified protein structures that are related by circular
permutation are shown in Figure 1. The three corresponding
domains (labeled A, B, and C, respectively) are all very sim-
ilar across proteins. The global spatial arrangements of these
three domains are also very similar. However, the orderings
of these domains in primary sequence are completely differ-
ent.

The discontinuity and different ordering of spatially
neighboring domains in primary sequence makes the detec-
tion of global structural similarity. Most structural alignment
methods are unable to connect the break where circular per-
mutation occurs, and would prematurely terminates the align-
ment. In addition, the reverse ordering of residues within a
domain between two proteins also poses challenge for such
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Figure 1:Three cartoon protein structures related by a circular per-
mutation. The location of domains A,B,C are shown in a primary se-
quence layout below each structure.

methods. For example, the A domain in Figure 1a is ordered
from N to C. The same domain in Figure 1b is ordered from
C to N. The algorithm outlined below is well-suited to solve
these types of challenging problems.

Basic Methodology We first introduce some notations: A
substructure� � of a protein structure� � is a continuous frag-
ment � � � 	 �  � � � � � � � , where�  � � � are the residue num-
bers of the beginning and end of the substructure, respec-
tively, and � � �  � � � � ! � � ! . A residue# � � � is part
of substructure� � if �  � # � � � . � � is the set of all possi-
ble continuous substructures or fragments of protein structure� � , i.e., � � � * 	 �  � � � � . . � / � � / � 2  � 2 � , and � / are similarly
defined.

The problem of protein substructure comparison is cap-
tured in the followingBasic Substructure Similarity Identifi-
cation (BSSI3 4 5 ) problem.

Definition 1 Instance: a set6 8 6 : ; 6 > of ordered pairs of substructures
of ? @ and ? A and asimilarity function B C 6 D F H mapping these
pairs of substructures to similarityvalues (non-negative real numbers).

Valid solutions: a set I J @ L J A L N N N L J Q S TI U J : W @ L J > W @ X L U J : W A L J > W A X L N N N L U J : W Q L J > W Q X S of pairs of sub-
structures such thatJ Z W [ ] 6 Z and J Z W ^ ] 6 Z are disjoint for` ] I a L c S and d eT f .

Objective: maximize the total similarity of the selectiong Q[ i @ B U J : W [ L J > W [ X .

The BSSI3 4 5 problem is a special case of the famous
maximum-weight independent set (MWIS) problem in graph
theory [6]. BSSI3 4 5 is MAX-SNP-hard even when the sub-
structures are restricted to short lengths [7]1. Our approach
is to adopt the approximation algorithm for scheduling split-
interval graphs [7], which is based on a fractional version of
the local-ratio approach. We introduce the following defini-
tions:k

The conflict graphl n o p q n r s n u for any subsetv w x , is
a graph in whichq n o v and s n consists of all distinct pairs
of vertices z p { : r { > u r p { } : r { } > u ~ from q n such that{ [ and { } [
arenot disjoint for some� � z � r � ~ .k
The closed neighborhood of a vertex� of l n , denoted by
Nbrn � � � , is defined asz � � z � r � ~ � s n ~ � z � ~ .

The recursive algorithm for solving BSSI3 4 5 is as fol-
lows:

1A maximization problem being MAX-SNP-hard implies that there exists
a constant� � � � �

such that no polynomial time algorithm can return a
solution with a value of at leastU � � � X times the optimum value.

Table I:The LP formulation of the BSSI problem.

Maximize
g � � � B U J X N � �

subject to �
� � � � � � � � � i � � � W �   ¢ � � £ � W � � ¤ � ¥ ¦ ] 6 : (1)

�
� � �   � �   � � i � � � W �   ¢ � � £ � W �   ¤ � ¥ ¦ ] 6 > (2)

£ � W � � � � � © � ¥ J T U J : L J > X ] 6 (3)£ � W �   � � � © � ¥ J T U J : L J > X ] 6 (4)

� � L £ � W � � L £ � W �   © � ¥ J T U J : L J > X ] 6 (5)

k
Remove every substructure pairs{ o p { : r { > u � x such that® p { : r { > u ¯ ° . If x o ² after these removals, then return² as
the solution.k
Solve a linear programming (LP) formulation of the BSSI

� W ³
problem by relaxing a corresponding integer programming
version of the BSSI

� W ³ problem. For every{ o p { : r { > u � x ,
introduce three indicator variables¶ �

, · � W � �
and · � W �   �z ° r ¸ ~ , but relaxed to real numbers. The LP formulation is

shown in Table I.k
For every vertex{ � x of l �

, compute itslocal conflict

number ¹ � W � W ³ o �
º �

Nbr» ¼ � ½ ¶ º . Let { ¾ ¿ À be a vertex with

the minimum local conflict numberÁ � W ³ o Ä Å Ç � z ¹ � W � W ³ ~ .
Define a new similarity function® À È Ê from ® as follows® À È Ê p { u o Ì ® p { u r if � Í� Nbr

� � { ¾ ¿ À �® p { u Î ® p { ¾ ¿ À u r otherwise
.k

Recursively solve the BSSI
� W ³ Ï Ð Ò problem using the same ap-

proach. Letx } w x be the solution returned.k
If the substructure pair{ ¾ ¿ À can be selected together with all
the pairs inx } then returnx } � z { ¾ ¿ À ~ as the solution, else
return x } as the solution.

A brief explanation of the various inequalities in the LP
formulation as described above is as follows:k

The interval clique inequalities in (1) (resp.(2)) ensures that
the various substructures ofÕ : (resp. Õ > ) in the selected pairs
of substructures fromx are mutually disjoint.k
Inequalities in(3) and(4) ensure consistencies between the in-
dicator variable for substructure pair{ and its two substruc-
tures { : and { > .k
Inequalities in(5) ensure non-negativity of the indicator vari-
ables.

In implementation, the graphÖ × is considered implic-
itly via intersecting intervals. The interval clique inequali-
ties can be generated via asweepline approach. The running
time depends on the number of recursive calls and the times
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Figure 2:A simplified representation of the Basic Substructure Sim-
ilarity Identification problem: a) The cartoon representation of circu-
larly permuted proteins � � and � � , b) The problem represented as a
graph where each node, � , represents an aligned fragment pair and
each edge represents a conflict, where the same residues are con-
tained in different fragments and c) An illustration how sweep lines
(dashed) can identify overlapping aligned pairs.

needed to solve the LP formulations. Let LP�  " $ % denote the
time taken to solve a linear programming problem on vari-
ables and$ inequalities. Then the worst-case running time
of the above algorithm is

� � ' ( ' � LP � ) ' ( ' " + ' ( ' � ' ( / ' � ' ( 3 ' % % .
However, the worst-case time complexity happens under the
excessive pessimistic assumption that each recursive call re-
moves exactly one vertex of5 6 , namely 7 � � 	 only, from
consideration, which is unlikely to occur in practice as our
computational results show.

The performance ratio of our algorithm is as follows. Let
 be the maximum of all the
 8 : ; ’s in all the recursive calls.
Proofs in [7] translate to the fact that
 < � and the above
algorithm returns a solution whose total similarity is at least/ times that of the optimum. The value of
 is much smaller
compared to� in practice (e.g., 
 = > @ + ) ).

Implementation and Computational Details. We present a
simplified example for illustration two protein structuresB D
(Figure 2a) andB E (Figure 2a) are selected for alignment.
HereB E is the structure to be aligned to the reference structureB D . We systematically cutB E into fragments of length 7–25
and exhaustively compute a similarity score of each fragment
from B E to all possible fragments of equal length inB D . Each
fragment pair can be thought of as a vertex in a graph, as
shown in Figure 2b.

Suppose we have the following similarity scores for
aligned substructures:G I � K L M G I I P Q � L I P R Q � R L L M � Q G I � S L MG I I � Q � L I � R Q � R L L M � Q G I � � L M G I I � Q � L I � R Q � R L L M � Q G I � � L MG I I � Q � L I � R Q � R L L M � Q and G I � � L M G I I � Q P V L I � R Q P V R L L M � �

We can describe the problem of selecting the best struc-
tural fragment pairs as to maximize ! # % � + ! # ( � + ! # . �) ! # / � 2 ! # 4 .

Figure 2b shows the conflict graph for the set of frag-
ments. A sweep line (shown as dashed lines in Figure 2c) is
implicitly constructed (

� �  % time after sorting) to determine
which vertices of fragment pair overlap. A conflict is shown

Table II: The constraints of the consflict graph for the set of frag-
ments in Figure 2c.

Interval Clique inequality: (1)Y Z % [ Z ] _ P
Line sweep at 1Y Z ( [ Z ] 6 Y Z . [ Z ] _ P
Line sweep at 4, 5Y Z . [ Z ] 6 Y Z / [ Z ] _ P
Line sweep at 6, 7Y Z / [ Z ] _ P
Line sweep at 8Y Z 4 [ Z ] _ P
Line sweep at 9

Interval Clique inequality: (2)Y Z % [ Z ` _ P
Line sweep at 1’Y Z ( [ Z ` 6 Y Z . [ Z ` _ P
Line sweep at 4’, 5’Y Z . [ Z ` 6 Y Z / [ Z ` _ P
Line sweep at 6’, 7’Y Z / [ Z ` _ P
Line sweep at 8’Y Z 4 [ Z ` _ P
Line sweep at 9’

Interval Clique inequalities: (3, 4)Y Z % [ Z ] c Y Z % d V , Y Z % [ Z ` c Y Z % d VY Z ( [ Z ] c Y Z ( d V , Y Z ( [ Z ` c Y Z ( d VY Z . [ Z ] c Y Z . d V , Y Z . [ Z ` c Y Z . d VY Z / [ Z ] c Y Z / d V , Y Z / [ Z ` c Y Z / d VY Z 4 [ Z ] c Y Z 4 d V , Y Z 4 [ Z ` c Y Z 4 d V

in Figure 2b as edges between vertices. Vertices7 / and 7 7
do not conflict with any other fragments, while7 3 and 7 9
conflict with 7 ; . For this graph, the constraints in the linear
programming formulation are shown in Table II. The linear
programming problem is solved using the BPMPD package
[8].

The algorithm guarantees that there is a vertex7 < that
satisfies e Z > 6 f Z @ i

Nbr j Z > k e Z @ _ � Q and all vertices are

searched to find such a vertex. We then updateA � 7 B % for
vertices that are neighbors of7 < : G new I � l L M G I � l L cG I � m L Q if � l n Nbr C � m E Vertices that have no neighbors, such
as 7 / and 7 7 in our example, are included in our final solu-
tion. Using the updated values ofA � 7 < % , we remove vertices
of substructure pairs that have score less than 0, and recur-
sively solve the (smaller) LP problem again. The selected
final set of fragments are then used to construct a substruc-
ture of B E . They are then aligned structurally by minimizing
cRMSD.

Similarity score. The similarity scoreA � 7 % = A � 7 D " 7 E %
between two aligned substructures7 D and 7 E is a
weighted sum of a shape similarity value derived from
cRMSD value and a sequence composition score (SCS):
SCS = f H< I / J � L D : < " L E : < % " where L D : < and L E : < N are the
amino acid residue type at aligned positionN , O the number
of residues in the aligned fragment, andJ � L D : < " L E : < % the
similarity score betweenL D : < and L E : < by the modified
BLOSUM50 matrix, in which a constant is added to all
entries such that the smallestentry is 1.0. The similarity
scoreA � 7 D " 7 E % is calculated as follows:

G I � � Q � � L M S I T c
cRMSDL 6 V I SCSLW Q

For the current implementation,X = 2 Z " [ = 2 , and ] = z .
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Table III: Results from the structural alignment of circularly per-
muted protein, where

�
equal the number of aligned residues in the

final solution. Human-made circularly permuted proteins are listed at
the bottom separated by a line from naturally occurring proteins.

PDB/Size PDB/Size Frag-
�

cRMSD
ments

1rin/180 2cna/237 3 45 0.877
1rsy/121 1qas/123 4 44 1.107
1nkl/78 1qdm/74 6 48 1.832
1onr/316 1fba/360 7 77 2.444
1aqi/191 1boo/259 4 66 3.571
1avd/123 1swg/112 6 66 0.815
1gbg/214 1ajk/212 5 110 0.347

Figure 3:The structure of concanavalin A (2cna) (a) and its super-
position to lectin from garden pea (1rin) (shown in gray) (b). The
residues spanning the break due to the circular permutation are high-
lighted in red.

To improve computational efficiency, a threshold mea-
sure is introduced to immediately exclude low scoring frag-
ment pairs from further consideration. Only fragment pairs
scoring above the threshold will be candidates to be included
in the final solution. In the above example, we assume that
only fragment pairs represented by vertices� � , � � , � � , � � ,
and � � (Figure 2b) are above the threshold.

RESULTS

We discuss the structural alignments of several well known
examples of naturally occurring circularly permuted proteins.

The results including other examples are summarized in
Table III, which includes two additional examples of experi-
mentally constructed human-made permuted proteins. None
of them are found by existing servers.

The first naturally occurring circular permutation was
found in concanavalin A. and lectin favin. The structures of
lectin from garden pea (1rin) and concanavalin A (2cna)
(Figure 3a,b). In the structural alignment, three fragments
align over 45 residues with a root mean square distance of
0.82Å. The superposition based on the aligned fragments is
shown in Figure 3b. The residues spanning a break in the
backbone due to the permutation are highlighted in red.

DISCUSSION

The approximation algorithm introduced in this work can find
good solutions for the problem of detecting circular permuted
proteins. In contrast to methods based on sequence align-
ment alone, the ability to incorporate both structural and se-
quence similarity is critical. An experimentation in the align-
ment of1rin and2cna illustrates this point. After turning
off the contribution from cRMSD in the similarity function

� � � � 	 � �  by setting � � � , we find altogether 452 frag-
ments that score in the top 10% of the set of all SCS scores.
This number is too large as the size of the conflict graph will
be large. This makes subsequent comparison very difficult.
Similarly, cRMSD measurement alone is inadequate for com-
parison. When matching fragments from1rin and2cna,
we find there are 287 fragments that can be aligned with an
cRMSD value� � � � Åafter setting	 � � . The use of com-
posite similarity function is therefore essential to reduce false
positives in substructure alignments.

In our method, scoring function plays pivotal role in de-
tecting substructure similarity of proteins. Much experimen-
tations are needed to optimize thesimilarity scoring system
for general sequence order independent structural alignment.
A necessary ingredient for a fully automated search of cir-
cular permuted proteins in database is a statistical measure-
ment of significance of matched substructures. Since cRMSD
measurement and therefore� � � � 	 � �  strongly depends on the
length of matched parts and the gaps of the sequence break,
a statistical model assessing the� -value of a measured� � � 
against a null model needs to be developed. Circular permu-
tations that are likely to be biologically significant can then
be automatically declared [4].
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