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Establishing family relationships, such as parentage and sibling relationships, can be ex-

tremely important in biological research, especially in wild species, as they are often key

to understanding evolutionary, ecological, and behavioral processes. Because it is often not

possible to determine familial relationships from field observations alone, the reconstruction

of sibling relationships often depends on informative genetic markers coupled with accu-

rate sibling reconstruction algorithms. Most studies in the literature reconstruct sibling

relationships using methods that are based on either statistical analyses (i.e., likelihood es-

timation) or combinatorial concepts (i.e., Mendelian inheritance laws) of genetic data. In

this paper we present a novel computational framework that integrates both combinatorial

concepts and statistical analyses into one sibling reconstruction optimization model. To

solve this integrated optimization model, we propose a column generation approach with a

branch-and-price method. Under the assumption of parsimonious reconstruction, the master

problem is to find the minimum set of sibling groups to cover the tested population. Pricing

subproblems, which include both statistical similarity and combinatorial concepts of genetic

data, are iteratively solved to generate high-quality sibling group candidates. Tested on real

biological datasets, our approach is shown to efficiently provide reconstruction results that

are more accurate than the ones provided by other state-of-the-art reconstruction algorithms

in the literature.
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1. Introduction

A sibling group is defined as a set of individuals that share the same parents. The sib-

ling reconstruction problem (SRP) focuses on establishing sibling relationships (and groups)

among individuals that are sampled and genotyped without parental information. In this

paper, we are limiting our work to full sibling reconstruction, which is to group individuals

that share both their mother and father. In studies of important biological phenomena,

including mating systems, demographics, social structures and behavior, the SRP has be-

come increasingly important. Among molecular genetic markers, microsatellites have been

widely used for reconstructing pedigree relationships because they can exhibit high levels

of intra-specific polymorphism, are codominantly inherited, and effectively detect variation

among individuals and populations (Queller et al., 1993).

Over the past decade, using microsatellite data, several sibling reconstruction approaches

have been developed. Those approaches are largely based on either statistical analyses or

combinatorial concepts of microsatellite data. Statistical approaches in principle measure the

likelihood of offspring partitions for the sample as a whole (aka group likelihood/relatedness

score) that is in turn used to infer and construct probable sibling groups (Painter, 1997;

Smith et al., 2001; Beyer and May, 2003; Thomas and Hill, 2002; Butler et al., 2004; Kono-

valov et al., 2004; Wang, 2004; Wang and Santure, 2009). They are generally accurate when

applied to error-free datasets. However, almost every real-life dataset contains genotyping

errors such as null alleles, allele dropouts, and false alleles. Also, statistical approaches are

computationally expensive and memory-consuming as they have to estimate the likelihood or

relatedness of all possible pairs or group partitions, making computational time and memory

grow drastically with the population size. There have been a few studies that attempted to

integrate optimization concepts into statistical approaches to improve the relatedness esti-

mation, but the improvement was extremely limited (Almudevar and Field, 1999; Beyer and

May, 2003; Almudevar, 2007, 2003). Combinatorial approaches have been recently devel-

oped by our group and applied to the SRP with some degree of success (Berger-Wolf et al.,

2005, 2007; Chaovalitwongse et al., 2007). The basic idea of combinatorial approaches is to
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impose the combinatorial concepts of Mendelian inheritance laws on reconstructing offspring

partitions. Specifically, the SRP can be formulated as a mathematical programming prob-

lem with the combinatorial constraints derived from inheritance rules. These approaches

first construct a large number of possible sibling groups, and then, based on the assumption

of parsimony, select the minimum number of groups so that the entire population is cov-

ered. Chaovalitwongse et al. (2010) proposed a complete mixed integer programming (MIP)

model of the SRP, and developed an iterative mathematical programming algorithm to re-

construct high-quality sibling groups one by one. Subsequently, Chou et al. (2012) developed

a randomized greedy algorithm to efficiently find good reconstruction solutions.

Because of the hard constraints on the inheritance laws, the reconstruction accuracy of

combinatorial approaches depends heavily on the integrity of the data. A few genotyping

errors can make true (actual) sibling groups violate the Mendelian constraints. Consequently,

combinatorial approaches fail to consider offspring partitions of the true sibling groups.

Although our group developed an error-tolerant approach based on the consensus concept,

it is extremely slow and requires massive computation memory – making it not useful in

practice (Sheikh et al., 2008). In this study, we develop a new optimization framework that

incorporates both combinatorial concepts and statistical analyses to efficiently provide a more

robust and accurate reconstruction solution. In our framework, we use a column generation

approach to model the SRP as a set covering problem (also called the master problem).

The master problem is to select the minimum number of reconstructed sibling groups that

can cover every individual in the population. To generate high-quality reconstructed sibling

groups, we use a branch-and-price method and iteratively solve pricing subproblems, in which

statistical similarity and combinatorial inheritance laws constraints are incorporated.

The outline of this paper is as follows. In Section 2, we introduce the biological back-

ground of the SRP and describe combinatorial concepts (constraints) derived from Mendel’s

laws and statistical similarity measures of genetic data. In Section 3, we present the basic

framework of the column generation for the SRP. Computational results on real biological

datasets and performance comparison with existing approaches are presented in Section 4.

We draw final conclusions regarding our work in Section 5.
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2. Biological Background of Sibling Reconstruciton

2.1 Basic Biological Definitions

A chromosome is an organized structure of DNA and protein found in cells. Microsatellite

genotyping often targets multiple, specific locations of DNA sequence on the chromosome,

called loci (singular locus). At each locus (i.e., DNA location) on a chromosome, a variant

of repeated DNA sequences, called an allele, is present. In this study, we focus on diploid

organisms, which have two copies of each chromosome – one set inherited from the mother

and another set from the father. A genotype is thus the combination of alleles from the

chromosome pairs present in an individual for a given set of loci. If two identical alleles

are present at a given locus, an individual is considered to be homozygous. On the other

hand, if two different alleles are present at a given locus, an individual is considered to be

heterozygous. It is important to note that microsatellite loci are generally unlinked, so that

transmission patterns at each locus are independent.
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Figure 1: An example of microsatellite data from a sample of five shrimp genotyped at two
loci from a chromosome pair. Individual genotypes are defined by a pair of codominant
alleles at each locus.

In Figure 1, we illustrate a schematic example of microsatellite data from a sample of

five shrimp. Two microsatellite loci are genotyped from each shrimp. At locus 1 in shrimp

a, DNA sequences (CA) are repeated twice (denoted by (CA)2) in one chromosome and

repeated three times (denoted by (CA)3) in the other chromosome. (CA)2 and (CA)3 are

encoded by alleles !1 and !2 at locus 1. Similarly, at locus 2 in shrimp a, DNA sequences

(GA)2, and (GA)3 are encoded by alleles !11 and !13, for example. Note that allele encoding
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can vary from one locus to another, i.e., allele !1 at loci 1 and 2 represent different DNA

sequences. Shrimp a, d and e are heterozygous at both loci whereas shrimp b is homozygous

at locus 2 and shrimp c is homozygous at locus 1.

It is important to note that it is not possible to distinguish which allele came from the

mother or the father unless the parental genotypes are known and they share no alleles.

Therefore, two pairs of alleles at a locus are unordered, e.g., (!11/!13) and (!13/!11), are

considered to be the same genotype.

2.2 Mathematical Notations of Microsatellite Data

To represent microsatellite data in a mathematical form, we shall define the following no-

tations, which will be used throughout the paper. Figure 2 illustrates a mathematical rep-

resentation for a sample of five individuals genotyped at two microsatellite loci (shown in

Figure 1).

Sets and Elements

I: the set of individuals in a population, indexed by i.

J : the set of all possible sibling groups, indexed by j.

Ij : the set of individuals in sibling group j ∈ J . Hence, Ij ⊆ I.

L: the set of loci, indexed by l.

Kl: the set of alleles at locus l ∈ L in the entire population, indexed by k.

K̃jl: the set of alleles at locus l ∈ L of sibling group j.

K̂il: the set of alleles at locus l ∈ L of individual i.

K̈il: the homozygous allele at locus l of individual i.

From these notations, we can derived the following relationships. For any locus l, |K̂il| ≤ 2,
⋃

i∈Ij K̂il = K̃jl and
⋃

i∈I K̂il = Kl. For any l ∈ L and i ∈ I, |K̈il| ≤ 1 and K̈il ⊆ K̂il, and

the equal sign is valid if and only if individual i has a pair of identical alleles at locus l. For

example, the microsatellite genotype of shrimp a can be represented by Ka1 = {1, 2} and

Ka2 = {11, 13}.
In Chaovalitwongse et al. (2010), our group introduced a matrix representation of mi-

crosatellite data. The input parameters from microsatellite data can be defined by the

integer indicator αl
ik, where αl

ik = 1 when a single allele k is present at locus l of individual

i, αl
ik = 2 when homozygous alleles k are present at locus l of individual i, and 0 otherwise.

For instance, in Figure 2, α2
d,14 = 1 indicates that shrimp d has allele !14 at locus l = 2,

while α1
c,3 = 2 indicates that shrimp c has homozygous allele !3 at locus l = 1.
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Figure 2: A visual illustration of the mathematical notations for a sample of five individuals
genotyped at two microsatellite loci (shown in Figure 1).

2.3 Combinatorial Implications of Mendel’s Laws

Mendel’s laws (or Mendelian inheritance laws) (Bowler, 1989; Mendel, 1901) laid down simple

rules of inheritance: an offspring inherits one allele from each of its parents at each locus

and the inheritance pattern of alleles at one locus is independent of the other loci. Based on

these rules, our group introduced the 4-allele condition as a necessary (but not sufficient)

condition to ensure the sibling construction to be genetically consistent (Berger-Wolf et al.,

2005; Chaovalitwongse et al., 2007). Specifically, the 4-allele condition requires that for any

sibling group, the number of alleles at each locus is less than or equal to four (|
⋃

i∈IjK̂il| ≤ 4).

Subsequently, our group also proposed the 2-allele condition, which is tighter and more

restricted than the 4-allele condition (Berger-Wolf et al., 2007). In Chaovalitwongse et al.

(2010), we derived the mathematical constraints of the 2-allele condition for sibling group
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as follows:

Definition 1 (2-allele constraints) A sibling group j of individuals Ij satisfies the 2-

allele condition if and only if they satisfy the following conditions:

(i) at any locus l ∈ L, the sum of the numbers of different alleles and homozygous alleles is

less than or equal to 4, i.e., |
⋃

i∈IjK̂il|+ |
⋃

i∈IjK̈il| ≤ 4, and

(ii) at any locus l ∈ L, each allele k appears together with no more than two other alleles

(excluding itself), i.e., |
⋃

i:i∈Ij ,k∈K̂il
K̂il \ {k}| ≤ 2.

From the example in Figure 2, shrimp a and b can be included in the same biologically

consistent sibling group because they satisfy both constraints (i) and (ii). Specifically, the

group j = {a, b} has alleles K̃j1 = {1, 2, 3} at locus l = 1, and alleles K̃jl = {11, 12, 13} and

homozygous alleles K̈jl = {12} at locus l = 2. We can see that the sum of the numbers of

alleles and homozygous alleles is less than or equal to 4, and each allele appears with at most

two others alleles at both loci. On the other hand, shrimps b, c, and d cannot be included in

the same sibling group because the group {b, c, d} fails to satisfy the constraint (i). That is,

the sum of the numbers of alleles {2, 3, 4, 5} and homozygous alleles {3} exceeds 4 at locus

l = 1.

3. Mathematical Model and Solution Methods

3.1 Mathematical Formulation of Sibling Reconstruction

The SRP is mathematically formulated as follows. Given a set of individuals i ∈ I charac-

terized by a set of loci l ∈ L; each containing alleles k ∈ Kl, assume there is a completely

enumerated set of all possible sibling groups J . We define the following variables:

Parameter and Variable

δij : the binary indicator such that δij = 1 if individual i is included in sibling group j, and 0 otherwise.

zj : the binary decision variable such that zj = 1 if group j is included in the solution, and 0 otherwise.

The SRP herein aims to find a minimum set of sibling groups that cover the entire population.

The set covering formulation (Min-SCP) of the SRP is as follows:

(Min-SCP) min
∑

j∈J

zj (1)

s.t.
∑

j∈J

δijzj ≥ 1 ∀ i ∈ I, (2)

zj ∈ {0, 1}, ∀ j ∈ J. (3)
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The objective function in Equation (1) minimizes the total number of the selected sibling

groups. The constraints in Equation (2) ensure that every individual is covered by a selected

group. The constraints in Equation (3) are the logical constraints for variables. As mentioned

previously, the number of possible sibling groups grows exponentially with the population

size. Therefore, it is impractical to enumerate all the groups. In the following sections, we

develop a column generation approach to obtain optimal solutions to the LP relaxation of

Min-SCP and a branch-and-price method to obtain optimal, integral solutions to Min-SCP.

3.2 Column Generation

Column generation has been widely and successfully applied to many large-scale combi-

natorial optimization problems when the number of variables (e.g., sibling groups) is too

large to enumerate explicitly (Desrosiers et al., 1984). In this section, we propose a col-

umn generation approach developed for solving the Min-SCP. Note that sibling groups and

columns are interchangeable in the following context. The procedure starts with an initial

solution, i.e., a subset of sibling groups. We then solve the restricted master problem of the

Min-SCP and obtain the dual costs of the constraints. To improve the restricted master

problem, we solve the pricing subproblems based on the dual cost information to generate

new sibling groups with positive reduced costs. Subsequently, these groups are added to the

restricted master problem, and the updated restricted master problem is resolved again. The

procedure iterates until no new sibling groups with positive reduced costs are found. This

termination condition implies that the current LP solution of master problem is optimal.

The components in the proposed column generation approach are described in the following

subsections.

3.2.1 Pricing Subproblem

For the subproblem formulation, a set of variables are defined as follows:

Variables (continuous)

πi: the non-negative dual variable associated to the constraints in Equation (2).

xij : the binary variable such that xij = 1 if individual i is assigned in sibling group j, and 0 otherwise.

yljk: the integer variable such that yljk = 1 if allele k is included in the allele set at locus l of group

j, yljk = 2 if allele k is included as a homozygous allele in the allele set at locus l of group j, and 0
otherwise.

vljkk′ : the binary variable such that vljkk′ = 1 if allele k appears with allele k′ at locus l in group j,
and 0 otherwise.

8
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For a sibling group j, the reduced cost of zj is written by

c̄j =
∑

i∈I

δijπi − 1, ∀j ∈ J. (4)

Therefore, the pricing subproblem at every column generation iteration attempts to find the

sibling group j with a maximum value of c̄j.

In particular, when solving the subproblem, we determine the assignment of individuals

into a new sibling group j, subject to the 2-allele constraints. This can be formulated as a

weighted maximization problem (WMP) as follows:

(WMP) max
∑

i∈I

πixij (5)

s.t. αl
ikxij ≤ yljk ∀ i ∈ I, k ∈ Kl, l ∈ L, (6)
∑

k∈Kl

yljk ≤ 4 ∀ l ∈ L, (7)

∑

i∈I

αl
ikα

l
ik′xij ≤ Mvljkk′ ∀ k ∈ Kl, k

′ ∈ Kl\k, l ∈ L, (8)

∑

k′∈Kl\k

vljkk′ ≤ 2 ∀ k ∈ Kl, l ∈ L, (9)

xij, v
l
jkk′ ∈ {0, 1}; yljk ∈ {0, 1, 2} ∀ i ∈ I, k and k′ ∈ Kl, l ∈ L.(10)

It is important to note that the subscript j for all the variables can be dropped from the WMP

because only one sibling group j is generated at a time when solving WMP. The dual variables

πi here are the weights of individuals to be selected. The objective in Equation (5) maximizes

the weighted sum of individuals assigned to the current sibling group. The constraints in

Equations (6)-(9) ensure that all individuals assigned to the current sibling group must

satisfy the 2-allele constraints. Specifically, the constraints in Equations (6)-(7) ensure that

the condition (i), described in Section 2.3, is satisfied. The constraints in Equation (6) are

the logical constraints of integer variable yljk to keep track of the heterozygous or homozygous

allele indication. The constraints in Equation (7) ensure that in group j, the sum of the

numbers of different and homozygous alleles is less than or equal to 4. The constraints in

Equations (8)-(9) ensure that the condition (ii), described in Section 2.3, is satisfied. The

constraints in Equation (8) are the logical constraints for vljkk′ to indicate whether the allele

pair k and k′ appears together at locus l in group j. Here M is a large positive number

defined by M = |I| + 1. The constraints in Equation (9) ensure that no allele at locus l

in group j appears with more than two other alleles (excluding itself). The constraints in

Equation (10) are the binary and integer constraints for variables.

9
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In column generation iteration, the subproblem is usually solved multiple times. The

efficacy of the subproblem affects the overall performance of the column generation greatly.

Therefore, it is critical to generate high quality variables in a timely fashion when implement-

ing column generation. Next, we present several methods to improve the solution approach

for the subproblem.

3.2.2 Integration of Similarity Measure in the Subproblem

Statistical approaches have been widely used to measure the similarity of microsatellite

genotypes for a group of individuals (Beyer and May, 2003; Thomas and Hill, 2002; Butler

et al., 2004; Konovalov et al., 2004). We here propose a simple pairwise statistical measure

of the similarities for all individual pairs. For a pair of two individuals i and i′ ∈ I, the

similarity score at locus l ∈ L, denoted by qlii′ , can be calculated as follows:

qlii′ =






1 if
∑
k∈Kl

|αl
ik − αl

i′k| = 0;

0.5 if
∑
k∈Kl

|αl
ik − αl

i′k| = 2;

0 if
∑
k∈Kl

|αl
ik − αl

i′k| = 4.

(11)

If two individuals have both alleles in common at locus l, then qlii′ = 1. If there is only one

allele in common, then qlii′ = 0.5. If there are no alleles in common, then qlii′ = 0. After the

similarity score for each locus is obtained, the pairwise similarity score across all loci can be

computed as the sum of locus similarities:

qii′ =
∑

l∈L

qlii′ ∀ i, i′ ∈ I. (12)

Hence, qii′ can be viewed as the measure of how similar two individuals are. We then integrate

the similarity measure with the dual variables as a weighted similarity score as follows:

q̄ii′ = qii′ × πi × πi′ ∀ i, i′ ∈ I, (13)

where πi and πi′ are the dual variables of individual i and i′. Consequently, the objective

function of WMP is modified with the same constraints. A similarity maximization problem

(SMP) is formulated as follows:

(SMP) max
∑

i∈I

∑

i′∈I

q̄ii′xixi′ (14)

s.t. (6)− (9).

10
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Compared with WMP, SMP aims to generate a sibling group that includes as many valuable

(i.e., πi > 0) and similar (i.e., q̄ii′) individuals i as possible. For example, consider individuals

a, d, e in Figure 1 and assume all the dual variables have the same positive value. The sibling

group {a, d} and the sibling group {a, e} have the same objective values in WMP; however,

the group {a, d} is, in fact, preferable over the group {a, e} in SMP.

In order to solve the quadratic SMP with a standard MIP solver, we employ a linearization

technique proposed by Chaovalitwongse et al. (2004) to reformulate the quadratic program

as an equivalent mixed integer linear program. The linearized model is reformulated as

follows. We define the additional decision variables si as the total pairwise similarity score

for individual i and ri as a surplus variable. The linearized SMP is given by

(SMP-L) max
∑

i∈I

si (15)

s.t.
∑

i′∈I\i

q̄ii′xi′ − ri − si = 0 ∀ i ∈ I, (16)

si ≤ M̄xi ∀ i ∈ I, (17)

ri, si ≥ 0 ∀ i ∈ I, (18)

(6)− (9).

In the above formulation, M̄ is a large positive number, which can be set to M̄ =
∑
i∈I

∑
i′∈I

||q̄ii′ ||.

From our preliminary study, we had shown it took only seconds to minutes to solve the

SMP-L optimally using CPLEX. Interested readers are referred to the literature that discuss

linearization approaches in detail (Chaovalitwongse et al., 2004; Adams and Forrester, 2007).

3.2.3 Hybrid Subproblem Solution Approach

In every column generation iteration, the reduced costs of new columns are checked to

examine if the optimality is met. Although SMP can generate high-quality columns, the

quadratic objective function in Equation (14) is not directly derived from the reduced cost

in Equation (4) and not intuitively associated with the master problem. Therefore, SMP

does not have the same optimality condition at termination as WMP. Hence, we propose

a hybrid approach consisting of SMP and WMP. In every iteration, SMP is first solved to

generate high-quality columns. If the reduced costs of all the sibling groups generated by

SMP are not positive, we then solve WMP with the same dual variables one more time to

ensure optimality of the solution.
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3.2.4 Multi-Group Generation

In column generation it is not necessary to solve the subproblem optimally in every iteration,

and, in fact, any columns with positive reduced costs can improve the current master problem

(Vanderbeck, 1994; Barnhart et al., 1998). To accelerate the column generation procedure,

one of the most widely used strategies is to generate multiple columns with positive reduced

cost in an iteration, so that the total number of column generation iterations is reduced.

In this paper, we propose two iterative approaches to generate multiple columns, which are

described below.

Greedy set partitioning procedure (GSPP) The GSPP iteratively generates disjoint

sibling groups by solving the WMP (or SMP). In each GSPP iteration, individuals

that already assigned to the generated groups are removed. The procedure continues

until all individuals are assigned.

Greedy set covering procedure (GSCP) The GSCP iteratively generates possibly non-

disjoint sibling groups by solving WMP (or SMP). In each GSCP iteration, individuals

with positive dual variables are in turn selected as a base individual (i.e., the individual

that must be included in the sibling group), and a group is generated to cover the base

individual in every iteration. The procedure continues until all individuals with non-

zero dual variables are visited.

The difference between the two procedures is that in GSPP, the number of individuals

assigned to a group decreases with the GSPP iterations, and the sibling group size generated

in the latter iterations are usually small. In contrast, GSCP does not remove any individuals

in any iteration, and the group size is not effected by the number of iterations. From our

experiments, GSCP required more iterations and computational time than GSPP generally

because the number of GSCP iterations is fixed to the number of individuals with positive

dual variables, and the population size in most GSCP iterations is larger.

It is worth noting that we used GSPP and GSCP, respectively, to generate a set of sibling

groups as the initial variables for the column generation.

3.3 Branch-and-Price

A branch-and-price approach is further introduced to obtain optimal IP solution to the

Min-SCP. The branch-and-price is a branch-and-bound algorithm in which we employ a
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branch-on-follow-on rule in the search procedure and carry out a column generation at each

node (Ryan and Foster, 1981; Barnhart et al., 1998). Specifically, in the left branch, we

ensure that both individuals i and i′ appear together within any selected sibling groups,

whereas on the right branch, individuals i or i′ do not appear together within any selected

sibling groups. Therefore, when searching in the branch-and-bound tree, we need to select

individuals i and i′ at each node, and to enforce the branching rules in the master problem

and subproblem. Next, we present a node selection rule and branching constraints at each

node.

3.3.1 Node Selection

Given a fractional solution, we select a pair of individuals i and i′ with the highest chance

of being together. A function p(i, i′) is introduced to quantify how likely individuals i and i′

belong to the same sibling group as follows:

p(i, i′) =

∑
j:i and i′∈Ij

zj

∑
j:i or i′∈ Ij

zj
∀i, i′ ∈ I. (19)

The pair with the highest p value will be selected as the branching node:

{i, i′} = arg max
(i,i′)∈I

p(i, i′). (20)

For instance, consider three generated sibling groups: j1 = {a, b, c, d}, j2 = {a, b, c} and

j3 = {c, d}. Their LP solutions are z1 = 0.5, z2 = 0.5, and z3 = 0.5. From Equations (19),

we know that p(a, b) = (0.5 + 0.5) / (0.5 + 0.5) = 1, whereas for other pairs p(a, c) = p(b, c)

= p(c, d) = 2/3 and p(a, d) = p(b, d) = 1/3. Therefore, we branch on the pair (a, b) as it

provides the highest p value. If a pair has already been selected at previous nodes, we select

the pair with the next highest value of p.

3.3.2 Branching Constraints

After deciding the branching node with the two individuals i and i′, we enforce the branch-on

follow-on rule by adding a set of constraints to the master problem and the subproblem. The

additional constraints for the left branch are:

for Min-SCP zj = 0 ∀j : i ∈ Ij, i′ ∈ Ij, {i, i′} (⊆ Ij, (21)

for WMP or SMP xi − x′
i = 0. (22)
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The constraints in Equation (21)-(22) ensure that both individuals i and i′ appear together

in the solutions of the master problem and the subproblem, respectively. The additional

constraints for the right branch are:

for Min-SCP zj = 0 ∀j : {i, i′} ⊆ Ij, (23)

for WMP or SMP xi + x′
i ≤ 1. (24)

The constraints in Equation (23)-(24) ensure that both individuals i and i′ do not appear

together in a sibling group.

Note that in the branch-and-bound tree, we perform a depth-first search; the left branch

is always searched first so that a feasible solution can be found in the shortest time.

4. Computational Experiments

In this section, we discuss the implementation of our approaches on real biological datasets,

and compare the solution quantity and the computational time with other state-of-the-art

combinatorial and statistical approaches.

4.1 Biological Datasets

We tested the performance of the proposed approaches on five real biological datasets. These

benchmark data have been previously used in the literature because the true sibling groups

(“ground truth”) are known. The characteristics of the datasets are summarized in Table

1. There are some missing values and the percentages of missing alleles are reported in the

last column. Also, it is interesting to note that there are violations of Mendel’s laws in the

salmon and turtle datasets, which might be due to genotyping errors. The background of

the datasets is briefly described below.

Salmon: The Atlantic salmon Salmo salar dataset comes from the genetic improvement

program of the Atlantic Salmon Federation (Herbinger et al., 1999). We use a truncated

sample of microsatellite genotypes of 250 individuals from 5 families with 4 loci per

individual. This dataset is a subset of one of the samples of genotyped individuals used

in Almudevar and Field (1999).

Shrimp: The tiger shrimp Penaeus monodon dataset (Jerry et al., 2006) consists of 59

individuals from 13 families with 7 loci. This dataset has 2.66% missing alleles.
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Table 1: Characteristics of the biological datasets
No. of No. of No. of No. of types of Missing

Dataset individuals groups loci alleles per locus alleles (%)
Salmon 351 6 4 (9, 11, 9, 7) 0.00
Shrimp 59 13 7 (20, 18, 12, 7, 23, 9, 16) 2.66
Fly 190 6 2 (7, 7) 37.89
Ant 377 10 6 (22, 16, 15, 3, 5, 8) 9.00
Turtle 175 26 3 (5, 13, 10) 16.38
Turtle-ma 55 9 3 (5, 9, 8) 12.12
a

Turtle-m is a subset of turtle dataset by removing most indefinite sibling groups.

Fly: The Scaptodrosophila hibisci dataset (Wilson et al., 2002) consists of 190 individuals

in the same generation from 6 families sampled at various number of loci with up to

8 alleles per locus. All individuals shared 2 sampled loci which were chosen for our

study. This dataset has 37.89% missing alleles.

Ant: The Leptothorax acervorum dataset (Hammond et al., 2001) are from a haplodiploid

species. This is a subset of a sample used in Wang (2004), which consists of 377 worker

diploid ants. This dataset has 9% missing alleles.

Turtle: Kemp’s ridleys sea turtle dataset, Lepidochelys kempi, is polyandrous species and

was sampled from 26 mothers and offspring groups at 3 loci (Kickler et al., 1999).

There are 16.38% missing alleles. The other dataset we used (Turtle-m) is a subset

obtained by eliminating most violated and indefinite sibling groups. There are 12.12%

missing alleles.

4.2 Performance Assessment

In the sibling reconstruction studies, the true sibling groups are used for assessing the per-

formance of the tested algorithms. The reconstruction accuracy measures the percentage

of individuals correctly assigned to sibling groups compared with the true sibling groups

(Gusfield, 2002). The problem can be modeled as a maximum linear assignment problem

(MLAP) as follows. Denote a set of true sibling groups (ground truth) by JA, indexed by

ja. Denote a set of our reconstructed sibling groups by JB, indexed by jb. For every sibling

group pair ja and jb, cjajb denotes the number of individuals appearing in both groups, i.e.,

cjajb = |Ija ∩ Ijb |. We define a binary decision variable: xjajb = 1 if group ja is assigned to
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group jb, and 0 otherwise. The mathematical programming formulation is given as follows:

(MLAP) max
∑

ja∈JA

∑

jb∈JB

cjajbxjajb (25)

s.t.
∑

ja∈JA

xjajb ≤ 1 ∀ jb ∈ JB, (26)

∑

jb∈JB

xjajb ≤ 1 ∀ ja ∈ JA, (27)

xjajb ∈ {0, 1} ∀ ja ∈ JA, jb ∈ JB. (28)

The objective in Equation (25) maximizes the total number of individuals in the group

assignment from set JB to set JA. The constraints in Equations (26) and (27) ensure that

each group in JB (JA, respectively) is assigned to at most one group in JA (JB, respectively).

Here the reconstruction accuracy is reported as the percentage of individuals whose sibling

groups are correctly reconstructed, that is,
∑

ja∈JA

∑
jb∈JB

cjajb
xjajb

|I| × 100%.

4.3 Implementation Settings

In our study, all programs were coded in MATLAB with synchronization of CPLEX version

10.0 in GAMS on the platform of an Intel Xeon Quad Core 3.0 GHz processor worksta-

tion with 8 GB RAM memory. The computational times reported were obtained from the

desktop’s internal timing calculations, which include time used for preprocessing and post-

processing. The LP relaxation solution to the master problem in each column generation

iteration was obtained using CPLEX barrier LP solver in order to reduce the heading-in

and the tailing-off effects. There are six different configurations for the subproblem solution

approach as shown in Table 2.

Table 2: Configurations for the subproblem solution approach.
Approach in subproblem

Subproblem GSPP GSCP
WMP GSPP-WMP GSCP-WMP
SMP GSPP-SMP GSCP-SMP
HYBRID GSPP-HYBRID GSCP-HYBRID

In our experiments, we first employed the proposed column generation approach to obtain

the optimal LP solution of Min-SCP, and then we solved an integer programming formulation

of Min-SCP containing all the generated columns. If the IP solution was shown to be optimal
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(with respect to the optimal LP solution), the final reconstruction results were reported.

Otherwise, we further performed a branch-and-price to obtain the optimal integral solution.

In column generation, to prevent the degeneracy, we perturb the coefficients of the ob-

jective function in the master problem of Min-SCP. We rewrite the objective function in

Equation (1) as
∑

j∈J σjzj, where σj is a random variable uniformly distributed between

[1 − ε, 1 + ε] and ε is a small positive number. The perturbation is only executed when

there is no improvement on the objective function of the master problem after a consecutive

number of iterations. The stopping criteria are set as follows: (1) an LP solution is optimal

if the optimality condition is met and (2) there is no improvement in the objective value

after 50 iterations, including 10 perturbation iterations.

In the branch-and-price framework, we set the computational time T (L) limited at nodes,

where L is the level of a node in the search tree. T (0) = 5 hours at the root node, and

T (L) = max{0.25, T (0)/2(L−1)} at level L. The total computational time is limited to 20

hours.

4.4 Reconstruction Results

Table 3 presents the results of the proposed approaches tested for all instances. The LP

and IP solutions and reconstruction accuracies are reported. It is obvious from the table

that there were a relatively small number of columns generated for the Min-SCP. Note that

those columns that were repeatedly generated were not taken into account. When solving

the LP relaxation of the Min-SCP, the column generation algorithms were terminated for

almost all instances by the degeneracy condition, i.e., no improvement in the objective value

after 50 iterations. There are 31 out of 36 instances in which the optimal IP solutions were

found after the column generation was finished within 5 hours. For the remaining instances,

the optimality condition was not proved and the branch-and-price approach was applied.

Finally, our approaches were shown to result in very high reconstruction accuracies in most

instances. Particularly, the best accuracies for all instances were obtained using GSCP-SMP.

This shows that the effectiveness of incorporating the similarity measure was very prominent,

and the overall reconstruction accuracies were increased, especially for the turtle dataset. In

fact, 100% accuracies were obtained for the shrimp and ant datasets. It is noted that for the

fly and turtle datasets, unstable results of IP solutions and accuracies obtained may result

from the large percentages of missing values in these data.
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It is interesting to note that although the LP and IP objective values provided by the

hybrid approach are as good as the objective values provided by SMP approach, the accuracy

of the hybrid solutions was worse than the SMP solutions in a few experiments. The reason

is that the hybrid method could generate some columns with low similarities using WMP

that does not include the similarity measure in the model. It is possible to select such groups

in the final IP solution when multiple optimal solutions exist. This is because the Min-SCP

model only accounts for the number of the selected groups, but not the similarity scores

of the selected groups. Since sibling groups with low similarities are likely to reduce the

accuracy of a final solution, the hybrid approach could generate less accurate solutions than

the SMP approach.

Table 3: The results of our proposed approaches on real biological datasets. The results of the
solution information of the LP relaxation are in the columns under ‘Column Generation’. The IP
solutions obtained from the best node in the brand-and-price are under ‘Branch-and-Price’. The
accuracy measures of the IP solution is given in the last column (‘Assessment Accuracy’).

Column Generation Branch-and-Price Solution Assessment
Subproblem No. of new LP IP Time No. of IP Time True No. Accuracy

Dataset method columns val val (Sec.) nodes val (Sec.) of groups (%)
Salmon GSCP-WMP 140 7.00 7 807 6 98.29

GSPP-WMP 79 7.00 7 366 6 98.29
GSCP-SMP 3 7.00 7 2,091 6 98.29
GSPP-SMP 19 7.00 7 11,860 6 98.01
GSCP-HYBRID 13 7.00 7 3,477 6 98.01
GSPP-HYBRID 26 7.00 7 11,565 6 98.29

Shrimp GSCP-WMP 392 13.00 13 3,539 13 100.00
GSPP-WMP 163 13.00 13 3,147 13 100.00
GSCP-SMP 2 13.00 13 1,262 13 100.00
GSPP-SMP 1 13.00 13 4,420 13 100.00
GSCP-HYBRID 15 13.00 13 1,549 13 100.00
GSPP-HYBRID 12 13.00 13 6,275 13 100.00

Fly GSCP-WMP 2,638 5.77 7 10,739 19 6 30,964 6 62.63
GSPP-WMP 64 7.50 8 94 6 82.11
GSCP-SMP 93 7.00 7 649 6 84.74
GSPP-SMP 66 6.40 7 890 6 69.47
GSCP-HYBRID 83 7.00 7 650 6 75.26
GSPP-HYBRID 63 6.40 7 1,125 6 66.84

Ant GSCP-WMP 543 10.00 10 3,890 10 99.73
GSPP-WMP 109 11.00 11 1,496 10 93.10
GSCP-SMP 12 10.00 10 2,998 10 100.00
GSPP-SMP 58 10.00 10 15,558 10 97.61
GSCP-HYBRID 23 10.00 10 4,849 10 100.00
GSPP-HYBRID 56 10.00 10 15,999 10 98.41

Turtle GSCP-WMP 2,716 15.61 17 18,079 43 17 >72,000 26 53.71
GSPP-WMP 1,150 15.55 18 18,026 43 18 >72,000 26 48.57
GSCP-SMP 245 30.00 30 5,212 26 70.29
GSPP-SMP 185 16.19 18 18,728 32 18 >72,000 26 55.43
GSCP-HYBRID 236 30.00 30 5,475 26 70.29
GSPP-HYBRID 185 16.19 18 18,739 32 18 >72,000 26 55.43

Turtle-m GSCP-WMP 615 6.75 7 602 9 67.27
GSPP-WMP 123 7.14 8 293 9 74.55
GSCP-SMP 36 10.00 10 689 9 83.64
GSPP-SMP 43 6.80 7 357 9 69.09
GSCP-HYBRID 30 10.00 10 369 9 81.82
GSPP-HYBRID 57 6.80 7 781 9 67.27
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In Figure 3, we illustrate the behaviors of IP/LP solutions and accuracies. The ant

dataset is used as an example with implementing GSCP-WMP and GSCP-SMP. Compared

to GSCP-WMP, GSCP-SMP integrating the similarity measure, resulted in more stable and

better solutions in a small number of iterations.
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Figure 3: Objective function values and accuracies throughout the column generation iterations
from (a) GSCP-WMP and (b) GSCP-SMP for the ant dataset.

The reconstruction of siblings is negatively affected by missing allele data as mentioned

before. In this study, the missing alleles were treated as a wild card, which can represent

any alleles when compared to the other alleles in a group. Therefore, the reconstruction of

siblings in a group would not be overestimated and the worst-case reconstruction was then

promised. Surprisingly, for the fly dataset, a reconstruction with high accuracy was obtained

although there were many missing alleles. In addition, note that there were violations of the

2-allele constraints in the salmon dataset. After correcting these violations, we obtained the

reconstruction result with 100% accuracy.
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4.5 Comparison with Existing Approaches

In this section, we compare the reconstruction results obtained by the proposed approaches

with other existing methods for the SRP. In Table 4, we report the comparison of the ac-

curacies of GSCP-SMP (chosen from the best results among our experiments) to existing

methods. The 2-allele optimization model (2AOM) is a mixed integer programming (MIP)

model of the SRP based on the 2-allele constraints, without considering the similarity mea-

sure (Chaovalitwongse et al., 2010). The 2AOM construction results were obtained by using

CPLEX to directly solve the MIP of 2AOM. The iterative maximum covering set (IMCS) is

an iterative greedy algorithm that our group proposed to efficiently find good solutions to

the 2AOM (Chaovalitwongse et al., 2010). The BWG algorithm is a brute-force approach

that enumerates all possible maximal sibling groups that satisfy the 2-allele condition, and

subsequently to solve a set covering problem to find the minimum set of sibling groups

(Berger-Wolf et al., 2007). The A&F algorithm is a combinatorial approach that exhaus-

tively enumerates all possible sibling groups satisfying the 2-allele condition (although the

authors did not explicitly state the condition) and to obtain a maximal, not necessarily opti-

mal, collection of sibling groups (Almudevar and Field, 1999). The B&M approach is based

on a mixture of likelihood and combinatorial techniques, in which the SRP is presented as a

graph problem; individuals as nodes and edges weighted by the pairwise likelihood (related-

ness) ratio. The KINGROUP (KG) algorithm is an approach that estimates the likelihood

of partitions of individuals into sibling groups by comparing, for every individual, the likeli-

hood of being part of any existing sibling group with the likelihood of starting its own group

(Konovalov et al., 2004). The COLONY approach uses the maximum likelihood method to

assign sibling groups and parentage jointly (Wang, 2004). As shown in Table 4, our approach

achieved better and more robust reconstruction solutions than all other existing methods,

especially for the datasets with many missing alleles (e.g., fly and turtle). Although the

BWG approach can provide reconstruction results as good as GSCP-SMP for some datasets,

it required more than 48 hours of computational time.

Furthermore, in Table 5, we present the comparison of the computational times of GSCP-

SMP to the combinatorial approaches (based on the 2-allele condition) such as 2AOM,

IMCS, BWG, and A&F. It is prominent in the table that our approach was far more efficient

because it only generated highly accurate sibling groups. Our GSCP-SMP approach was

able to find the optimal IP solutions in much shorter time whereas solving the 2AOM model
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Table 4: Recovery values of true full sibling groups (accuracy) when comparing our method with
other existing approaches in five different species. The best accuracies are marked in boldface.

Combinatorial Approach Statistical Approach
Dataset GSCP-SMPa 2AOM IMCS BWG A&F B&M KG COLONY
Salmon 98.29 94.02 98.29 98.29 –d 98.29 94.60 56.70
Shrimp 100.00 96.61 100.00 100.00 67.80 100.00 77.97 100.00
Fly 84.74 66.84 47.37 –c 31.05 19.62 54.73 –c

Ant 100.00 –b 93.10 100.00 –d 97.61 97.10 100.00
Turtle 70.29 –b 40.00 48.00 –d 38.18 39.40 40.00
Turtle-m 83.64 47.27 61.82 –c –d –c –c –c
a The best configuration was chosen from Table 3.
b There are no results acquired within the time limit of 72,000 seconds.
c There are no results available.
d A&F ran out of 8GB memory as it enumerates all possible sibling groups.

Table 5: Comparison of computational time (in second) of the proposed approach to the previous
combinatorial approaches based on the time limit of 20 hours.

Dataset GSCP-SMPa 2AOMb IMCS BWGc A&Fd

Salmon 8,382 >72,000 130 >72,000 -
Shrimp 4,367 >72,000 150 >72,000 2
Fly 2,648 >72,000 20 >72,000 >72,000
Ant 14,667 >72,000 505 >72,000 -
Turtle 16,105 >72,000 78 >72,000 -
Turtle-m 2,111 >72,000 12 >72,000 -
a The best configuration was chosen from Table 3.
b The gaps between IP and LP solutions are 63%, 67%, 55%, -, -, and 60%,
respectively, when time limit is reached.
c BWG ran over the time limit of 72,000 seconds for all datasets.
d A&F ran over the time limit of 72,000 seconds for the fly dataset and ran
out of 8GB memory for most datasets.

directly by CPLEX resulted in large solution gaps between the IP and LP solutions after

the 20-hour time limit. The IMCS approach was very fast but the quality of reconstruction

solutions were not as accurate and robust as the ones by our approach. The BWG approach

provided reconstruction results as accurate as those by our GSCP-SMP approach because it

is based on a brute-force enumeration of maximal sibling groups. However, it required more

than 48 hours of computational time. The A&F approach, which is based on sibling group

enumeration, ran out of memory in most cases, except the easy shrimp dataset.

It is also important to note that the main goal of this study to present an approach

that is both efficient and accurate. On one hand, we proposed an approach to efficiently

solve an optimization model of SRP. Our approach is far more efficient than all but one
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(i.e., IMCS) combinatorial approaches. On the other hand, we proposed an approach to

accurately provide reconstruction results that are more accurate than those of statistical

approaches. In the literature, it is not common to compare the computational efficiency be-

tween combinatorial approaches and statistical approaches. This is because some statistical

approaches use simplistic statistical models, making them very fast to solve but inaccurate.

In our computational experiments, it was consistently observed that both the B&M and

KG approaches provided reconstruction results very fast but the results were inaccurate.

COLONY, on the other hand, used a very sophisticated statistical model to provide rela-

tively accurate solutions but required more than 3 days of CPU time (far exceeding that

required by our approach). In addition, it is difficult to fairly compare exact computational

times of statistical approaches because some run solely on Windows and some run solely on

Linux.

5. Conclusion

When solving the SRP using microsatellite genotype data, existing combinatorial and statis-

tical methods in the literature face challenges of computational complexity and reconstruc-

tion accuracy. In this study, an exact, integrated framework was successfully developed to

overcome this challenge. Specifically, this study presented an optimization model for the SRP

that integrates the combinatorial constraints of Mendel’s laws with the statistical likelihood

of the genetic data. We proposed a new column generation approach with a branch-and-

price method to solve the SRP, in which the master problem finds the minimum set of sibling

groups and three variants of the subproblem solution approach were proposed to efficiently

generate high-quality sibling groups with high similarity scores. The proposed approaches

were tested on real biological datasets, and their performances were compared with other

recent SRP approaches in the literature. The results demonstrated that our approaches

outperformed the alternative approaches and were be more robust.

In addition to full-sibling reconstruction, there are various related questions in pedigree

reconstruction that also encounter the common challenges of accuracy and efficiency, such

as half-sibling reconstruction (where only one parent is shared) (Sheikh et al., 2010) and

multi-generational relationship reconstructions (Won et al., 2012). We plan to extend our

approach to meet the challenges of related pedigree problems in our future work.
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