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With improved tools for collecting genetic data from natural and experimental populations, new opportu-
nities arise to study fundamental biological processes, including behavior, mating systems, adaptive trait
evolution, and dispersal patterns. Full use of the newly available genetic data often depends upon reconstruct-
ing genealogical relationships of individual organisms, such as sibling reconstruction. This paper presents a
new optimization framework for sibling reconstruction from single generation microsatellite genetic data. Our
framework is based on assumptions of parsimony and combinatorial concepts of Mendel’s inheritance rules.
Here, we develop a novel optimization model for sibling reconstruction as a large-scale mixed-integer program
(MIP), shown to be a generalization of the set covering problem. We propose a new heuristic approach to effi-
ciently solve this large-scale optimization problem. We test our approach on real biological data as presented in
other studies as well as simulated data, and compare our results with other state-of-the-art sibling reconstruction
methods. The empirical results show that our approaches are very efficient and outperform other methods while
providing the most accurate solutions for two benchmark data sets. The results suggest that our framework
can be used as an analytical and computational tool for biologists to better study ecological and evolutionary
processes involving knowledge of familial relationships in a wide variety of biological systems.
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1. Introduction

As more and more highly variable molecular markers
become available for a wider range of species, investi-
gators can increasingly characterize evolutionary, eco-
logical, population, and demographic parameters in
diverse species of plants, animals, and microbes. To
effectively extract ecological and evolutionary infor-
mation from these emerging genotypic data sets, com-
putational approaches for accurate reconstruction of
familial relationships need to keep pace with our abil-
ity to sample organisms and obtain their genotypes.
Therefore, improved methods for reconstruction of
genealogical relationships from genetic data will be
extremely useful for biologists working on a wide
range of such questions. For wild species, kinship and
pedigrees cannot be inferred from field observations
alone. Several modern tools, like codominant molecu-
lar markers such as DNA microsatellites, provide new

possibilities to develop novel computational meth-
ods of establishing pedigree relationship. In studies
where organisms are sampled and genotyped without
information about their parents, it may be possible
to identify cohorts of siblings based on microsatellite
data. The sibling group identification allows inference
of many interesting biological parameters, including
the number of reproducing adults, their fecundity,
and the average size of litters. For threatened species,
knowledge of sibship relationships can be important
for conservation and aid in management strategies.
For studies of evolutionary genetics, sibling recon-
struction can be used for assessing the heritabilities of
adaptive traits and how they will respond to natural
selection.

Although several methods for sibling reconstruc-
tion from microsatellite data have been previously
proposed (Almudevar and Field 1999, Almudevar
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2003, Beyer and May 2003, Konovalov et al. 2004,
Painter 1997, Smith et al. 2001, Thomas and Hill 2002,
Wang 2004), most techniques have offered very limited
applications and have not been very practical (Butler
et al. 2004). The main reason is that most sibling recon-
struction methods use statistical likelihood models to
infer genealogical relationships and are based on the
knowledge of typical allele distribution and frequency,
family sizes, and other information about the species
(Blouin 2003). For this reason, previous techniques are
often constrained by the availability of thorough pop-
ulation sampling. They are also heavily biased toward
parentage assignment because parentage is more eas-
ily resolved.

In this study, we focus on a combinatorial approach
that does not require prior genetic information about
the species such as population allele frequencies.
Our approach is based on combinatorial concepts
of the Mendelian laws of inheritance, and for now,
we are limiting our methods to diploid organisms
(Berger-Wolf et al. 2005, Chaovalitwongse et al. 2007).
Similar combinatorial methods have also been suc-
cessful previously for closely related molecular genet-
ics questions, such as haplotype reconstruction (Eskin
et al. 2003, Li and Jiang 2003). Generally speaking,
our sibling reconstruction approach uses the simple
Mendelian inheritance rules to impose combinato-
rial constraints (referred as 4-allele and 2-allele con-
straints) to allow only genetically possible sibling
groups to be reconstructed. Note that the main chal-
lenge of combinatorial approaches is that the actual
number of sibling sets is not known a priori. We there-
fore employ parsimony assumptions and aim to find
the smallest number of sibling groups, each satisfy-
ing the Mendelian constraints. In our previous study,
we proposed an algorithm to (1) reconstruct all pos-
sible sibsets satisfying the 4-allele constraint, which is
a looser version of 2-allele constraint; and (2) assign
individuals to sibsets by solving a set covering prob-
lem. This algorithm was able to reconstruct sib-
sets with some degree of success (Chaovalitwongse
et al. 2007). Most recently, we developed a heuris-
tic approach to generate all maximal sibsets that sat-
isfy the 2-allele constraint, which can be theoretically
proven to provide only the lower bound of the real
number of sibsets (Berger-Wolf et al. 2007).

In this paper we present the first integrated math-
ematical programming model to construct and assign
individuals into sibsets that satisfy the 2-allele con-
straint. This model is provably a true presentation of
the sibling reconstruction problem under parsimony
assumption. Specifically, the objective of this model is
to minimize the number of reconstructed sibsets with
provably true constraints equivalent to the Mendelian
rules. This model is a very large-scale mixed-integer
program (MIP), which is very difficult to solve. Since

the model has a set covering structure, we propose
a new heuristic approach based on a well-known
approximation algorithm of the set covering problem
to solve this large-scale optimization problem.

The rest of the paper is organized as follows. In §2,
some basic background in genetics and population
biology and a brief description of combinatorial con-
cepts of the Mendelian inheritance laws are given.
In §3, the complexity issues of the sibling reconstruc-
tion problem, the proposed optimization model, and
the algorithmic framework of our solution approach
are presented. Section 4 describes our computational
experience including the characteristics of real biolog-
ical data, the random data generator, a measure of
solution accuracy, and the comparison of performance
characteristics of our framework with those obtained
by some related computational approaches in the lit-
erature. The concluding remarks and discussion are
given in §5.

2. Background

In this section, we give some basic definitions of some
biological terms related to the sibling reconstruction
that will be used frequently in this paper. We also give
some background of microsatellite data and combina-
torial concepts of Mendel’s inheritance laws.

2.1. Microsatellite Data

Although there are several molecular markers used
in population genetics, microsatellites are the most
commonly used in kinship and population studies.
Microsatellites are polymorphic loci present in nuclear
genomes, usually noncoding, consisting of repeating
units of nucleotides. Microsatellites are short (one
to six base pairs) simple repeats such as (CA/GT),
or (AGC/TCG),, that are scattered around eukaryotic
genomes. They are also known as simple sequence
repeats (SSRs). Microsatellites are especially useful for
studying population demographics and reproductive
patterns because they are neutral and co-dominant
markers, and the inference of genotypes at each locus
is straightforward. More importantly, microsatellites
are preferred because of high numbers of alleles and
heterozygosities, providing the highest resolution for
identifying related individuals (Queller et al. 1993).
Because of these advantages and their widespread
use, we focus our development of sibling relation-
ship (sibship) reconstruction methods to unlinked,
multi-allelic, codominantly inherited markers such as
microsatellites. Figure 1 shows a schematic example
of microsatellites sampled at two loci and their result-
ing genotypes (alleles). Note that in reality the allele
codings of tandem repeats at different loci may be dif-
ferent. This makes alleles at different loci independent
of each other. For example, allele 1 at locus 1 will have
a different sequence (i.e., number of tandem repeats)
from that of allele 1 at locus 2.
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Chromosome pair

Locus 1:

Allele #1 = CACA

Allele #2 =CACACA
Allele #3 = CACACACA

m=){oacacacd

Locus 2:

Allele #1 = GAGA

Allele #2 = GAGAGA
Allele #3 = GAGAGAGA

Microsatellites
Loci (1) )

23

Figure 1 A Schematic Example of a Microsatellite Marker

Notes. Given a chromosome pair of an individual, two loci were sampled.
At each locus, genotypes were extracted and allele encoded. In this exam-
ple, the microsatellite data of this individual are (1/2), (2/3) for loci 1 and 2,
respectively.

2.2. Basic Definitions

Sibset is a group of individuals that share at least one
parent. When they share both parents they are called
full siblings, and when they share exactly one of the
parents they are called half siblings. Here, when we
refer to sibling groups or sibsets we mean full sib-
lings. Microsatellites are short, tandem repeats of a
DNA sequence that vary in length. In the genome,
microsatellites occur at a specific location on a chro-
mosome, which is called a locus. In other words,
a locus is a particular chromosomal location of a DNA
sequence in the genome—in this case, a microsatel-
lite DNA sequence. An allele is a distinct pattern
of variable DNA sequences in microsatellites, which
is determined by the length of the tandem repeat
that occupies a given locus (position) on a chromo-
some. Usually, numerous alleles occur at a locus, with
each allele differing in the number of repeat motifs.
In diploid organisms like humans, two homologous
copies of each chromosome and two alleles make up
the genotype. The alleles for each locus were inherited
from each parent (one from the mother and one from
the father). A homozygous individual has two identical
alleles at a particular genetic locus, whereas a heterozy-
gous individual has two different alleles at a particular
genetic locus.

2.3. Combinatorial Concepts of Mendelian
Inheritance Laws

Our basic framework for sibling reconstruction is
built around the combinatorial concepts of Mendel’s
laws (Mendel 1866, Bowler 1989). The law of seg-
regation, known as Mendel’s first law, essentially
concludes that the two alleles for each characteris-
tic segregate during gamete production to preserve

the population variation. In other words, offsprings
inherit two alleles (one from the mother and one from
the father) on each of the chromosome pairs. The law
of independent assortment, known as the inheritance
law or Mendel’s second law, states that the inheri-
tance pattern of one trait will not affect the inheri-
tance pattern of another. This implies that alleles of
different loci assort independently of one another dur-
ing gamete formation so that there are no correlations
across different loci. In short, these laws lay down
a very simple rule for gene inheritance: An offspring
inherits one allele from each of its parents independently
for each locus.

Based on this simple rule, we introduce two
Mendelian constraints to ensure genetically consistent
sibling groups (called full siblings). These constraints
can be mathematically defined as follows. Given a set
U of |U| =n individuals from the same generation,
each individual 1 <i < is represented by a genetic
marker of [ loci ((a;;, b;j))1<j<;- The numbers a; and b;,
represent a specific allele pair, denoted by front and
back alleles, respectively, of individual i at locus I. The
above-mentioned Mendelian laws impose the follow-
ing conditions on a group of individuals S € U to be
full siblings (Berger-Wolf et al. 2005):

DErFINITION 1. A set S € U of I[-locus individ-
uals is said to satisfy the 4-allele condition if
|Uies{aij, by}l <4 atlocus j for 1<j<1I;

DEFINITION 2. Assuming there is no mutation
(allele swapping) in the gene, a set S € U of I-locus
individuals is said to satisfy the 2-allele condition if
|Uies a3l =2 and |Ujes byl =2 for 1<j <.

Clearly, the 4-allele and 2-allele conditions are nec-
essary (but not sufficient) combinatorial constraints
of Mendelian inheritance laws. In other words, if one
knows the maternal and paternal alleles, the off-
springs’ alleles in the sibset must satisfy these two con-
ditions. However, for a group of individuals whose
alleles satisfy these two conditions, they are not nec-
essarily siblings. It is easy to see that the 2-allele con-
dition is stronger (tighter) than the 4-allele condition.

Based on the 4-allele and 2-allele conditions, we
can mathematically derive combinatorial constraints
of sibsets used for sibset reconstruction (Berger-Wolf
et al. 2005, Chaovalitwongse et al. 2007). It is impor-
tant to note that for the 2-allele condition to hold,
we need to assume that there is no front- and back-
allele swapping (i.e., the order of the parental alle-
les is always the same side). In real life, the allele
order is unknown and results in swapping alleles at
a single locus. Nevertheless, we can derive combi-
natorial constraints, which are theoretically equiva-
lent to the 2-allele condition, even in the case where
there is allele swapping. The combinatorial 4-allele
and 2-allele constraints can be defined as follows.
Given a set of individuals S, we let A be a collection
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of distinct alleles presented at a given locus and let R
be a collection of distinct homozygous alleles (appears
with itself) present at a given locus.

DEerFINITION 3. A set of individuals satisfies the
4-allele condition if |A| <4.

DErFINITION 4. A set of individuals satisfies the
2-allele condition if the following two conditions hold:
(1) |A]l 4+ |R| <4, and (2) each and every allele can-
not appear together with more than two other alleles
(excluding itself).

2.4. Sibling Reconstruction Challenges

For field biologists, familial relationships are needed
to learn about a species’ evolutionary potential, their
mating systems and reproductive patterns, dispersal,
and inbreeding. Sibling reconstruction is thus needed
when wild samples consist primarily of offspring
cohorts, in cases where parental samples are lacking.
The real objective of sibling reconstruction is to iden-
tify a set of individuals that are siblings. Based on
genetic samples of offspring cohorts alone, there is no
real objective (function) of the sibling reconstruction
problem since the actual pedigree and sibgroups were
not known. There are two common frameworks pro-
posed to tackle this sibling reconstruction problem.
The first one is to use statistical estimates of relat-
edness among individuals and try to reconstruct a
group containing individuals with very similar allele
patterns. The second one is to use the combinato-
rial concepts of Mendelian rules, as mentioned in the
previous section. The real challenge of the combina-
torial approach is that it only imposes a rule of bio-
logically consistent sibset but does not have a real
objective function. For example, any set of two indi-
viduals can be siblings. One can simply group a pair
of offspring cohorts and say that they are siblings,
and all the reconstructed sibling groups always sat-
isfy the Mendelian rules. To explain the population
and its sibling groups when using the Mendelian
rules, our approach uses parsimony assumptions to
the smallest number of sibling groups, each satisfy-
ing the Mendelian rules. Specifically, one can, in turn,
formulate the sibling reconstruction problem as a
problem of minimizing the number of sibsets that
contain all individuals and satisfy the Mendelian rules
(i.e., 2-allele constraint). This problem is very difficult,
and the complexity of enumerating all possible sibsets
satisfying the 2-allele constraint is exponential. These
computational challenges are addressed in this paper.

3. Sibling Reconstruction Problem
Under Parsimony Assumptions

We present a new optimization model for the sib-

ling relationship reconstruction problem based on

microsatellite data acquired from individuals from a

single generation. The reconstruction will be based on
the 2-allele constraint while we apply a parsimony-
driven explanation of the sibsets. In other words, we
model the objective of this optimization by assigning
individuals parsimoniously into the smallest number
of (possibly overlapping) groups that satisfy the nec-
essary 2-allele constraint.

3.1. Complexity and Approximation Issues

First, we discuss the complexity and approximation
issues of the sibling reconstruction problem based
on the 4-allele constraint and the 2-allele constraint.
We consider a set U of n different individuals, each
with [ loci. The 2-allele problem with parameters n
and [ is denoted by 2-ALLELE, ;,, and the 4-allele
problem is denoted by 4-ALLELE, ;. Let ¢ be the
parameter denoting the maximum number of indi-
viduals that can be full siblings in an instance of
4-ALLELE, ; or 2-ALLELE,, ,. Since no two individu-
als are the same (i.e., their alleles must differ at some
locus), 2 < g < ((})+2-(3))' = 16' for &-ALLELE, ,. Sim-
ilarly, we can derive 2 < g <8' for 2-ALLELE,, ,. Either
problem has a trivial optimal solution if g=2. Fur-
thermore, if ¢ is a constant, both 4-ALLELE, ; and
2-ALLELE,, ; can be posed as a set cover problem with
n elements and (;) = O(n3) sets, with the maximum set
size being g, and thus has a (1 + In g)-approximation
by using standard algorithms for the set cover prob-
lem (Vazirani 2001). For general g, since any two indi-
viduals can be put in the same sibling group, either
problem has a trivial g/2-approximation. Next, we dis-
cuss the approximability results of 2-ALLELE, ; and
4-ALLELE,, , for ¢ =3 and any arbitrary g.

THEOREM 1 (ASHLEY ET AL. 2009). Both 4-ALLELE,, ,
and 2-ALLELE, ; are ((153/152) — e)-inapproximable
even if ¢ =3 assuming RP # NP.

This theorem can be proved by providing an
approximation preserving reduction from the triangle
packing problem to our allele problems. The trian-
gle packing problem requires one to find a maxi-
mum number of node disjoint triangles (3-cycles) in
a graph. Conceptually, we provide a reduction from
an instance of the triangle packing problem to an
instance of our allele problems such that three nodes
for a 3-cycle in the graph if and only if the individuals
corresponding to those triangles can be covered by a
sibling group. For more details, please refer to Ashley
et al. (2009).

THEOREM 2 (ASHLEY ET AL. 2009). For any two con-
stants 0 < € < 8 <1 with g = n®, 2-ALLELE, , and
4-ALLELE,, |, cannot be approximated to within a ratio
of n¢ unless NP C ZPP.

This theorem can be proved by providing a reduc-
tion from the well-known graph coloring problem to
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our allele problems such that there is an individual
corresponding to each node in the graph, and a color-
ing of the graph translates to a cover by sibling groups
with a constant factor blowup in the approximation.
For more details, please refer to Ashley et al. (2009).

3.2. 2-Allele Optimization Model
For the sake of simplicity, we shall call the opti-
mization model for the sibling reconstruction problem
based on the 2-allele constraint 2-allele optimization
model (2AOM). The objective function of 2AOM is
to minimize the total number of sibsets while assign-
ing every individual into groups satisfying the 2-allele
constraint. The 2AOM problem can be mathematically
formulated as follows. First, we define the following
sets that will be used throughout this paper: i e[ is a
set of individuals, j € | is a set of reconstructed sib-
sets, k € K is a set of alleles, and [ € L is a set of loci.
In general, from biological data, we are given a set of
|L|-locus |I| individuals. Figure 2 illustrates an exam-
ple of microsatellite genotypes for seven individuals
scored at two loci each. We can subsequently present
the data into a multidimensional 0-1 matrix format.
From the input matrix, f;, is defined as an indicator
if the front allele at locus [ of individual i is k, b/, is
an indicator if the back allele at locus ! of individ-
ual i is k, @, = max{f}, b} is an indicator if allele k
appears at locus I of individual i, and a, = f} = b},
is an indicator if individual i is homozygous (allele k
appears twice) at locus /. On the right, Figure 2 also
shows how the markers are converted into a multi-
dimensional 0-1 matrix representing the input vari-
ables @),. In this example, there are a total of four
distinct alleles at locus 1; therefore, we have a 7 x 4
matrix at locus 1. The matrix of input variables (d,)
can be constructed similarly.

Next we define the following decision variables:

* z; € {0, 1}: indicates if any individual is selected
to be a member of sibset j;

Locus 2
Locus 1
1 0 1 0
Individual| Locus1 | Locus2 / 1 0 0 1
1 173 1 /
2 1/4 212
3 0 B l—71T 0000 0]
4 2/4 12
5 /1 7t ] o| 1] o] 1
6 12 2/3 \
7 13 1/4 \ 1 [0l o] o
1 1 0 0
1 0 1 0
Allele #1 #2 #3 #4
Figure 2 An Example of an Input Data Matrix (a),) from

Microsatellite Markers

* x; € {0, 1}: indicates if individual i is selected to
be a member of sibset j;

. y]l.k € {0, 1}: indicates if any members in sibset j
has allele k at locus I;

o ojl-k € {0,1}: indicates if there is at least one
homozygous individual in sibset j with allele k
appearing twice at locus [; and

* 04, € {0,1}): indicates if allele k appears with
allele k" in sibset j at locus /.

The mathematical programming formulation of the
2AOM problem is given by the following.

Objective Function. The overall objective function
in Equation (1) is to minimize the total number of
sibsets:

min ) z;. )
vjel

(1) Cover and Logical Constraints. Equation (2)
represents the cover constraints ensuring that every
individual is assigned to at least one sibset. Equa-
tion (3) ensures that the binary sibset variables must
be activated for the assignment of any individual i to
sibset j.

vije]
x;<z; Viel, Vje]. (3)

(2) 2-Allele Constraints. Equation (4) ensures that
the binary variable for allele indication yj, must be
activated for the assignment of any individual i to
sibset j. Equation (5) ensures that the binary variable
for homozygous indication o]lk must be activated for
the existence of homozygous individual with allele k
appearing twice at locus ! in sibset j. Equation (7)
restricts that the binary variable for allele pair indica-
tion v]lkk, must be activated for any assignment of indi-
vidual 7 to sibset j. Note that M;, M,, and M; are large
constants, which can be defined as M; =2x|I|+1 and
M, = M; =|I| + 1. Equation (6) ensures that the num-
ber of distinct alleles and the number of homozygous
alleles is less or equal to 4. Equation (8) ensures that
every allele in the set does not appear with more than
two other alleles (excluding itself).

Yoayx; <My, Vje], VkeK,VieLl; (4)

Viel
Y dyx; <My, Vje],VkeK,VleL; (5)
Viel
Y (yptoy)<4 Vje], VieL; (6)
VkeK

p— !
D Tyl Xy < M0
Viel

Vie],VkeK, VK eK\k, ¥leL; (7)

> v}kk,gz Vie],VkeK,Viel. (8)
Vk'eK\k
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(3) Binary and Nonnegativity Constraints.
2, %, Yy, 05, €{0,1} Viel, Vje], VkeK, VieL.

The total number of discrete variables is
O(max(|J| * |K| = [L|, [I| * |]])), and the total number
of constraints is O(|]| * |K|** |L|). It is easy to see that
the 2AOM problem is a very large-scale MIP problem
and may not be easy to solve in large instances.
Next, we will prove the correctness of our model
and show that the 2AOM problem is NP-hard in the
strong sense. The 2AOM problem is considered to
be a generalization of the well-known set covering
problem with additional constraints to satisfy the
2-allele condition.

ProrosITION 1. The constraints in Equations (4)—(8)
are equivalent to the 2-allele constraint.

Proor. By Equation (4), yjl.k =1 indicates that there
exists at least one member in sibset j with allele k
at locus I. Therefore, in sibset j, the total number of
distinct alleles at locus [ is equal to Y vk y]’.k, which
is equivalent to |A| in the 2-allele theorem. By Equa-
tion (5), o}k =1 indicates that there exists at least one
homozygous member in sibset j with allele k appear-
ing twice at locus I. Therefore, in sibset j, the total
number of distinct homozygous alleles at locus ! is
equal to Y yiex O;k, which is equivalent to |R| in the
2-allele theorem. This will make |A|+ |R| <4 equiv-
alent to Y yiex (¥}, + 0j) < 4. By Equation (5), v}, =1
indicates that allele K appears together with allele k'
at locus [ in sibset j. By Equation (8), we guarantee
that every allele does not appear with two other allele
at every locus. This completes the proof. [

PrOPOSITION 2. If we introduce a weight or cost c; to
each set z; V j € | in Equation (1), the set covering problem
can be reduced to the 2AOM problem.

Proor. Consider a standard set covering problem:
Y vies €;z; subject to Yy a;z; = 1, z; € {0,1}. We
can reduce this set covering problem to the 2AOM
problem as follows. First, relax the constraints
in Equations (5)-(8) in the 2AOM problem, and let
|K|=|L|=1. If a; = 0 in the set covering prob-
lem, define @, = M, + 1; otherwise, ), = 1, where
M, = |I| + 1. Equation (4) can then be expressed by
> viel 3;X;; < Myy;, which allows x; =1 only if individ-
ual i can be covered by set j (a;; = 1). Multiplying both
sides of Equation (3) by x;;, we obtain (xl-j)2 =X < X;Z;
(because x;; € {0, 1}, xfj = x;;). Summing the expression
over ], we obtain }_yc; X;; < 3y X;;z;. Combining this
expression with Equation (2), we can derive the fol-
lowing expression: } yc; X;z; > > vje X;; = 1, which is
equivalent to the constraints 3 y;c; 4;z; > 1 in the set
covering problem. This completes the proof. [

ProrosITION 3. The 2AOM problem is
NP-hard.

strongly

ProoF. According to Ashley et al. (2009), the
2-ALLELE, ; problem is NP-complete. The 2AOM is
an optimization version of 2-ALLELE, ; and a gener-
alization of the set covering problem. Therefore, the
2AOM problem is NP-hard. O

It is very important to note that the 2AOM problem
requires an initialization of the number of sibsets.
If the initial number of sibsets is too small, the problem
will become infeasible. If the initial number of sibsets
is too large, we will have to introduce many more
binary variables than needed. The proposed heuristic
approach discussed next can also be used to initial-
ize the number of sibsets as its solution can be theo-
retically shown to be an upper bound of the 2AOM
problem.

In general, the objective and covering constraints
of the 2AOM problem is rather artificial to the sib-
ling reconstruction problem as they are built upon
parsimony assumptions. In addition, the proposed
heuristic approach (to be discussed in the next sec-
tion) provides a sibset reconstruction solution that is
in a form of set partitioning. We should therefore
investigate a variant of the 2AOM problem with set
partitioning constraints. Specifically, we will test this
modified 2AOM problem (ZXO\M) by replacing the
set covering constraints in Equation (2) with set par-
titioning constraints given by

Vije]

3.3. Heuristic Approach: Iterative Maximum
Covering Set

As mentioned earlier, the 2AOM problem is a very
large-scale MIP problem. In addition, based on the
parsimony assumptions, the minimum number of
sibsets may not give the most accurate sibling recon-
struction, which is the real objective of our sibling
reconstruction problem. In addition, we can only say
that the optimal solution to 2AOM (the number of sib-
sets) is biologically a true lower bound of the real sib-
sets. Therefore, to solve our problem more efficiently,
we herein propose a heuristic approach—namely, an
iterative maximum covering set (IMCS)—which is an
iterative optimization approach motivated by a widely
known approximation algorithm for the set covering
problem, i.e., a maximum coverage approach. The idea
behind this approach is to construct one sibset maxi-
mizing the individual cover in each iteration. Essen-
tially, in each iteration, we solve a reduced problem of
2AOM. The objective of IMCS is to maximize the total
number of individuals to be covered by a sibset, which
satisfies the 2-allele property. The IMCS problem can
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be formally defined as follows. First, we define the fol-
lowing decision variables:

e x; € {0, 1}: indicates if individual i is selected to
be a member of the current sibset;

* y; €{0,1}: indicates if any members in the cur-
rent sibset has allele k at locus [;

e ol € {0,1}: indicates if there is at least one
homozygous member in the current sibset with allele
k appearing twice at locus [; and

e vl € {0,1}: indicates if allele k appears with
allele k¥’ in the current sibset at locus /.

We mathematically formulate the IMCS problem at
each iteration as follows.

Objective Function. The overall objective function
in Equation (10) is to maximize the total number of
individuals to be selected as members of the current
sibset:

max »_ x;. (10)
Viel

(1) 2-Allele Constraints. Equation (11) ensures that
the binary variables for allele indication must be acti-
vated for the assignment of individual 7 to the current
sibset. Equation (12) ensures that the binary variables
for homozygous indication must be activated for the
existence of homozygous individual, with allele k
appearing twice at locus [ in the current sibset. Equa-
tion (13) restricts that the binary variables for allele
pair indication v!,, must be activated for the selection
of individual i. Note that M;, M,, and M, are large
constants, which can be defined as M; =2 % |I| + 1
and M, = M; = |I| + 1. Equation (14) ensures that the
combination of the number of distinct alleles and the
number of homozygous alleles in the current sibset
is less or equal to 4. Equation (15) ensures that every
allele of each individual does not appear together
with more than two other alleles (excluding itself).

M ax; <My, YkeK,VieL; (11)
Viel
Sdlx Mol VkeK,Viel;  (12)
Viel

M aahx; < Msvy, VYkeK,Vk eK\k,VieL; (13)

Viel

> (yi+o) <4 VieL; (14)
VkeK

> v, <2 VkeK,Viel. (15)
Vk'eK\k

(2) Binary and Nonnegativity Constraints.
xi,y,’(, o,l( €{0,1} Viel,VkeK,Viel.

It is easy to see that the IMCS problem is much
more compact than the 2AOM problem and it does
not require an initialization in terms of the total num-
ber of sibsets. The total number of discrete variables
in the IMCS problem is O(max(|K]|* |L]|, |I])), and the
total number of constraints is O(|K|**|L|).

Iterative Procedure. The idea of iterative proce-
dure of the proposed heuristic approach is motivated
by Khuller et al. (1999). This heuristic approach is
required to solve the IMCS problem in multiple iter-
ations (m), where m is the final number of sibsets at
the termination of our approach. In each iteration, the
solution to the IMCS problem gives a list of individ-
uals to be assigned to the current sibset. Then we
remove the assigned individuals from the set I and
repeat this procedure until there are no individuals
in set I. The procedure of the iterative maximum cov-
ering set approach is given in Figure 3. The overall
approach is viewed as solving an assignment problem
rather than solving the set covering problem, because
an individual belongs to only one set. We note that
this approach is very fast and scalable and can be
used for very large-scale sibset reconstruction prob-
lems. This is because after every subsequent itera-
tion, the IMCS problem becomes significantly smaller
as we remove the largest possible group of assigned
individuals and alleles that do not appear in the
remaining individuals.

3.4. Solution Perturbation of Iterative
Maximum Covering Set

Because the mathematical programming formulation
of IMCS has a combinatorial objective function, it is
very likely that multiple or alternate optimal solu-
tions exist (called degeneracy). It might be worth-
while investigating the accuracy of alternate optimal
and second-best solutions. We note that the IMCS
approach is greedy-based; the reconstructed sibsets
are very much dictated by the sibset constructed in
the first (and possibly second) iteration. Here, we can
perturb the reconstructed sibsets by exploring alter-
nate optimal or second-best solutions in the first iter-
ation only, and in both first and second iterations.

To obtain alternate optimal and/or second-best
solutions, we first optimally solve the IMCS problem
in the first (or second) iteration, use a cut constraint
to delete the optimal solution from the feasible space,
and resolve the IMCS problem with the additional
cut constraint. We subsequently repeat the steps of

Iterative Maximum Covering Set approach

Input: Set I of unassigned individuals
Output: The number of sibsets and sibset assignment
for individual set I, allele set K, locus set L

WHILE I # @ DO
—Solve the IMCS problem
IF optimal solution shows x; =1 THEN
—Remove individual i from set I
IF there is no individual in set I having
allele k at any loci in L THEN
—Remove allele k from set K

Figure 3 Pseudo-Code of the IMCS Approach
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Use assigned individuals
(x*) to construct a cut
constraint

Remove assigned
individuals (x*) and put
them into a new sibset.

IMCS with additional cut
constraint

Output solution to sibling
reconstruction

Flowchart of Solution Perturbation of IMCS by Applying a Cut
Constraint

Note. t is the number of iterations where the cut constraint is applied
(t=1,2).

Figure 4

IMCS approach in other iterations as usual. Figure 4
illustrates the flowchart of the alternate optimal and
second best solution procedure. Here, we use two
types of cut constraints. The first cut constraint, called
Opt Cut, is a simple constraint to ensure that the opti-
mal solution is deleted from the feasible space, which
is given by > ;.xx; < |K| —1, where K is a subset
of I whose x} =1 in the previous optimal solution.
It may be possible that this cut will only delete one
individual from the sibset in the first iteration, and
the reconstructed sibsets might be very similar to the
ones without the cut. The second cut constraint, called
Complementary Cut, is proposed to ensure that the
selected individuals in the first sibset will be some-
what different from the previous optimal solution.
In other words, we want to ensure that at least one
of the individuals that was not selected in the pre-
vious optimal solution must be selected in the per-
turbed solution. The second cut constraint, in fact,
ensures that the set of complements is covered, which
is given by 3", ;¢ Xy > 1. Although adding the second
cut constraint cannot guarantee that the new solution
is an alternate optimal or second-best solution, the
constraint gives more diversification to the solutions;
also note that the second cut constraint is tighter than
the first cut constraint.

4. Computational Experience

This section describes the characteristics of our data
set (both real biological and simulated data) used
in this study to evaluate the performance of the

proposed 2A0M, 2A0M, and IMCS approaches.
2A0OM and IMCS approaches are made available
at http://kinalyzer.cs.uic.edu. The performance was
assessed by the accuracy of reconstructed sibsets with
respect to the real (known) sibling groups.

4.1. Data Set

We used both real biological data and randomly gen-
erated data to assess the performance of our opti-
mization model and algorithm. Some of the real data
used in this study have been previously used for
sibling reconstruction (Almudevar and Field 1999).
These data were considered benchmark data because
the true sibling relationships were known. However,
because of the limitations of the real data, including
scoring errors and missing alleles, we developed a
random population (problem) generator used to con-
trol the characteristics of the data set to validate our
approaches.

4.1.1. Real Biological Data. In this study, we used
four real biological data sets of microsatellite geno-
types scored from individuals whose true sibling
groups were known. Although the data sets were
obtained from wild species (animals and plants), they
came from controlled crosses because true sibling
groups are typically not known in wild populations.
Most data sets analyzed in this study were imper-
fect because of the technical errors in acquiring and
scoring microsatellite data, which resulted in missing
alleles and/or genotyping errors. There are several
possible and relatively common causes of imperfect
data, including allelic dropout and null alleles. In this
study, any missing alleles or detected genotyping
error was replaced by a wildcard (x) to indicate the
missing information. When checking for genetic fea-
sibility of membership of a new individual in a sib-
ling group, a wildcard could correspond to any allele.
Generally speaking, if the data sets were complete
and the sample sizes were large enough, one should
be able to reconstruct very accurate sibsets (although
one cannot guarantee a perfect reconstruction). Given
that we had almost complete allele information for the
salmon and shrimp data sets, we expected to obtain
more reliable and accurate sibset results than those
obtained in the radish and fly data sets. The charac-
teristics of the data sets are shown in Table 1.

Table 1 Characteristics of Real Biological Data Sets

No. of No.of  No.of Avg. no. of Percentage of
Species individuals sibsets  loci  alleles/locus  missing alleles
Salmon* 351 6 4 7.8 0.00
Radish* 531 2 5 3.0 3.99
Shrimp 59 13 7 14.9 0.06
Fly 190 6 2 7.0 37.89

*Some known sibsets in the data set are biologically inconsistent because
of genotyping errors during the data collection.
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Salmon. The Atlantic salmon Salmo salar data set
was acquired from the genetic improvement program
of the Atlantic Salmon Federation (Herbinger et al.
1999). We used a truncated sample of microsatellite
genotypes of 250 individuals from five families with
four loci per individual. The data did not have miss-
ing alleles at any locus. This data set was a subset of
one used by Almudevar and Field (1999) to illustrate
their technique.

Radish. The wild radish Raphanus raphanistrum
data set (Conner 2005) consisted of samples from 150
radishes from two families with five loci and five alle-
les per locus. There were 37 missing alleles among all
the loci. The parent genotypes were available.

Shrimp. The tiger shrimp Penaeus monodon data
set (Jerry et al. 2006) consisted of 59 individuals from
13 families with seven loci. There were 16 missing
alleles among all the loci. The parent genotypes were
available.

Fly. The Scaptodrosophila hibisci data set (Wilson
et al. 2002) consisted of 190 same generation individ-
uals (flies) from six families sampled at various num-
ber of loci with up to eight alleles per locus. Parent
genotypes were known. All individuals shared two
sampled loci that were chosen for our study. A sub-
stantial proportion of alleles were missing for some
individuals.

4.1.2. Random Data. To create a set of simulation
data, we developed a random population generator
that works as follows. The generator first constructed
a group of adults (parents) with the full genetic infor-
mation. Based on this information, a single generation
of sibling data were generated and the parentage
information was retained so that the true sibling
groups were known. The sibling population generator
requires the following parameters: M is the number of
adult males, F is the number of adult females, I is the
number of sampled loci, a is the number of alleles per
locus, j is the number of juveniles in the population
per one adult female, and o is the maximum num-
ber of offsprings per parent couple. The procedure of
our random generator can be described in detail as
follows:

Step 1. First, we generated the parent population of
M males and F females with parents with / loci, each
having a distinct alleles per locus.

Step 2. After the parents were generated, we cre-
ated a population of their offsprings by randomly
selecting j pairs of parents. A male and a female were
chosen independently and uniformly at random from
the parent population.

Step 3. For each of the chosen parent pairs, we gen-
erated a specified number of offsprings, o, each ran-
domly receiving one allele from its mother and one
from its father at each locus.

This population generator is a rather simplistic
approach; however, it is consistent with the genetics
of known parents and provides a baseline for testing
the accuracy of the algorithm. To produce a simulated
data set used in this study, we varied the parameters
of the population generator as follows:

¢ The number of adult females (F) and the number
of adult males (M) are set to 10;

e The number of sampled loci (/) is set to 2, 4, 6,
and 10;

* The number of alleles per locus (a) is set to 2, 5,
10, and 20;

* The number of families () is 1, 2, 5, and 10; and

¢ The maximum number of offsprings per cou-
ple (o) is set to 2, 5, and 10.

For each parameter setting, we obtained a set of off-
spring population with known parent pairs. In each
population, there were o x j individuals with j known
sibling groups. Random data are made available at
http://kinalyzer.cs.uic.edu.

4.2. Evaluation and Assessment

We evaluated the effectiveness of our approaches by
comparing the reconstructed sibling groups with the
actual known sibling groups. The error measurement
was obtained by calculating the minimum partition
distance (Gusfield 2002). The error rate (1 —accuracy)
was defined as the ratio of the partition distance to
the total number of individuals. In other words, the
accuracy used in this study is the percentage of indi-
viduals correctly assigned to sibling groups.

The minimum partition distance is known to be
equivalent to the maximum linear assignment prob-
lem (MLAP) that can be solved in polynomial time.
This problem is also known as the maximum bipartite
weighted matching problem. The MLAP for sibling
reconstruction problem can be defined as follows:
Given two collections of sibsets {A;,..., A,} and
{Bi,...,B,}, let C be the n x m cost matrix where c;
is the cost of the assigning sibset A; to sibset B;. Then
the MLAP is to find an assignment of all sibsets in A
to all sibsets in B at the maximum cost (individual
matchings) such that each sibset in A is assigned to
at most one sibset in B, and vice versa. The MLAP
can be formulated as a MIP problem given by

max ) Y cix; (16)
i=1j=1
m
s.t. Zx,-jfl fori=1,...,n; (17)
=1
n
injfl forj=1,...,m; (18)

i=1

x;; €10, 1}.
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We note that the solution to MLAP, |U| — (maximum
assignment), can be represented as the minimum
number of individuals to be deleted so that these
two sibset collections are identical. This distance
is the errors (misassignments) and is used to calcu-
late the accuracy of our approaches. However, note
that the relationships among parents are not necessar-
ily monogamous; i.e., some sibsets in A (or B) may not
be disjoint. As our MIP model is a covering model,
the solution (set of full sibling groups) does not induce
a partition on the individuals. Thus, to make this
accuracy measure more appropriate, we propose the
following modification of the MLAP: given two collec-
tions of non-disjoint sets {P,, ..., P,} and {Q;, ..., Q,}
of elements in U and a solution (maximum assign-
ment of |[UP;NQ;|) to the MLAP over the matrix ¢; =
|P; N Qjl, the minimum distance between two sibling
sets is |U| — (maximum assignment).

4.3. Empirical Results

We used the 2AOM, 2AOM, and IMCS approaches
described above to reconstruct the sibling groups from
real and simulated data. We subsequently measured
the accuracies of the reconstructed sibling sets in
reference to the true sibling groups by solving the
MLAP for every data set. In addition, we compared
the performance characteristics (solution accuracies)
of our approaches to the ones obtained by our pre-
vious approach (Berger-Wolf et al. 2007) and three
other well-known sibship reconstruction methods in
the literature (Almudevar and Field 1999, Beyer and
May 2003, Konovalov et al. 2004). All tests of our
new approaches were run on Intel Xeon Quad Core
3.0 GHz processor workstation with 8 GB RAM mem-
ory. Computational times reported in this section were
obtained from the desktop’s internal timing calcula-
tions, which included time used for preprocessing,
perturbation, and postprocessing. All the mathemat-
ical modeling and algorithms were implemented in
MATLAB and solved using a callable General Alge-
braic Modeling System (GAMS) library with CPLEX
version 10.0 (default setting). The tests of our previ-
ous and other methods were run on a single proces-
sor with 4 GB RAM memory on the 64-node cluster
running RedHat Linux 9.0. The difference in platforms

and operating systems was dictated by the available
software licenses and provided binary codes.

4.3.1. Results from Real Biological Data. We
used the 2AO0M, 2AOM, and IMCS approaches
described in §3 to reconstruct the sibling sets on all
four real biological data sets. As mentioned, CPLEX
was used to solve the optimization models in all
approaches and the stopping criterion was set to be
either less than 0.01% of solution gap or 20 hours
(72,000 seconds) of running time. We note that the
IMCS approach obtained the optimal solutions in all
instances, whereas the 2AOM and 2A0M approaches
obtained the optimal solution only in the radish
data set. Specifically, in the salmon, shrimp, and fly
data sets, when using 2AOM and 2A0M approaches,
CPLEX failed to obtain the optimal solution under
the 72-hour time limit, and the reported results were
based on the best integer-feasible solutions. The qual-
ity of sibset solutions was assessed in terms of sibset
accuracy as explained in §4.2. Table 2 gives the per-
formance characteristics and solution quality of the
2A0M, 2A0M, and IMCS approaches. The computa-
tional times reported in Table 2 are in seconds. We
note that the objective functions of both approaches
are to minimize the number of sibsets.

Although both the set covering (2AOM) and set
partitioning (2AOM) models only obtained the opti-
mal solution within the time limit for the radish data
set, it provided quite good integer-feasible solutions
of sibling reconstruction in all other data sets. In terms
of the validity of the parsimony assumption, sibset
solution gaps were computed with respect to the true
numbers of sibling sets in the biological data sets. The
set covering 2AOM approach yielded 33% (2/6), 50%
(1/2), 8% (1/13), and 16% (1/6) relative gaps to the
real number of sibsets, respectively. The set partition-
ing 2AOM approach yielded 133% (8/6), 50% (1/2),
8% (1/13), and 16% (1/6) relative gaps to the real
number of sibsets, respectively. The optimal heuris-
tic solutions of IMCS approach yielded relative gaps
for the salmon, radish, and fly data sets of about
17% (1/6), 50% (1/2), and 33% (2/6), respectively.
Nevertheless, we note that the objective function val-
ues were rather artificial because the real solution of

Table 2 Performance Characteristics of the Proposed 2A0M, 2-Allele Optimization Model with Set Partitioning Constraints (2,4/5M), and IMCS

Approaches on Real Biological Data Sets

2A0M 2A0M IMCS

Real no.
Species  of sibsets  No. of sibsets  Accuracy (%) CPU time No. of sibsets Accuracy (%) CPUtime No. of sibsets Accuracy (%) CPU time
Salmon 6 8 94.02 >72,000 14 76.07 >72,000 7 98.30 149.19
Radish 2 3 51.98 75.17 3 49.15 363.23 3 52.54 26.31
Shrimp 13 14 94.92 >72,000 13 100.00 >72,000 13 100.00 184.72
Fly 6 7 66.84 >72,000 7 55.26 >72,000 8 47.37 22.78
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interest was the sibset assignments provided by these
approaches. More importantly, the data sets were not
perfect; i.e., there were missing alleles and genotyp-
ing errors. These errors would have made the true
known sibset assignments violate the Mendelian con-
straints. Thus, the optimal solutions to both 2AOM
and 2A0M models, if obtained, would have provided
solution gaps in terms of the number of sibsets.

We observed that all methods provided relatively
accurate reconstructed sibset results. In particular, the
IMCS and 2A0M approaches provided a perfect sib-
set reconstruction for the shrimp data set with 100%
accuracy. All approaches provided accurate recon-
structed sibling relationships for the salmon data set,
and the reason that we did not obtain 100% accu-
racy is because there were genotyping errors and an
inaccurate known sibset assignment in the data set.
For the fly data set, the 2AOM approach obtained
a slightly more accurate sibset solution than that
obtained by IMCS approach. On the other hand, the
IMCS approach was more accurate in three other
data sets. In all data sets except shrimp, the set cov-
ering 2AOM approach consistently provided better
reconstruction results than the set partitioning 2A0M
approach.

It is worth noting that none of the approaches per-
formed well on the radish and fly data sets because
there were a lot of missing data and genotyping
errors. For the radish data set, we investigated the
input genotypes and observed that the true sibsets
(given solutions) violated the 2-allele property, which
was biologically impossible. We did not cleanse or
correct the data because this data set was used in
the literature before and we wanted to compare our
solution with the previous ones. It is important to
note that although the IMCS approach was required
to solve optimization problems iteratively, the com-
putational times required by the IMCS approach were
significantly less than those required by the 2AOM
and 2A0M approaches.

Solution Perturbation. We investigated and com-
pared the accuracy of reconstructed sibsets by
perturbing the solutions in the first and second iter-
ations of IMCS approach. Table 3 presents the per-
formance characteristics of IMCS with Opt Cut and

IMCS with Complementary Cut applied in the first
iteration only. For the shrimp data set, all approaches
performed very well and were able to perfectly recon-
struct the true sibsets. In fact, all approaches recon-
structed the same sibsets, but the only difference was
the order of reconstructed sibsets because of alternate
optimal solutions in the first iterations. For the salmon
data set, the Complementary Cut also provided an
alternate best sibset reconstruction while the Opt Cut
provided a slightly less accurate solution. For other
data sets, the perturbed solutions did not perform as
well as the optimal solution to IMCS, although the
accuracies are very close. Table 4 presents the perfor-
mance characteristics of IMCS with Opt Cut and IMCS
with Complementary Cut applied in the first and sec-
ond iterations. For both shrimp and salmon data sets,
the Complementary Cuts again provided an alternate
best sibset reconstruction. Nevertheless, the Opt Cut
was able to obtain slightly more accurate solutions in
other data sets. Based on these results, we concluded
that if the data had a good separation among sibsets
like the shrimp data set, any of these techniques would
have been able to accurately reconstruct the true sib-
sets. However, for imperfect data, these results sug-
gested that the greedy approach that used only the
optimal solution may be a better option in practice.

Performance Comparison. Next, we compared the
accuracies of sibset solutions obtained by 2AO0M,
2A0M, and IMCS approaches to four current state-of-
the-art methods for sibling reconstruction in Table 5.
These methods are based on very diverse approaches
with different mechanisms and solution behaviors.
The BWG algorithm, proposed previously by our
group in Berger-Wolf et al. (2007), is based on 2-allele
set construction version of the set covering method
proposed in Chaovalitwongse et al. (2007). The A&F
algorithm, proposed in Almudevar and Field (1999),
is based on a completely combinatorial approach to
exhaustively enumerate all possible sibling sets sat-
isfying the 2-allele property (although the authors
do not explicitly state the property) and obtain a
maximal, not necessarily optimal, collection of sib-
ling sets. The B&M algorithm, proposed in Beyer and
May (2003), is based on a mixture of likelihood and
combinatorial techniques used to construct a graph

Table 3 Performance Characteristics of the IMCS Approaches with Opt Cut and Complementary Cut

Constraints Applied in the First Iteration

IMCS with Opt Cut IMCS with Complementary Cut

Real no.
Species  of sibsets  No. of sibsets ~ Accuracy (%)  CPUtime  No. of sibsets  Accuracy (%)  CPU time
Salmon 6 7 98.01 133.59 7 98.30 124.78
Radish 2 3 52.35 23.34 3 51.41 19.94
Shrimp 13 13 100.00 159.30 13 100.00 154.31
Fly 6 8 4474 23.16 8 36.84 18.67
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Table 4 Performance Characteristics of the IMCS Approaches with Opt Cut and Complementary Cut

Constraints Applied in the First and Second lterations

IMCS with Opt Cut IMCS with Complementary Cut

Real no.
Species  of sibsets  No. of sibsets ~ Accuracy (%)  CPUtime  No. of sibsets  Accuracy (%)  CPU time
Salmon 6 8 97.72 161.50 7 98.30 134.08
Radish 2 3 52.17 28.58 4 42.94 30.92
Shrimp 13 13 100.00 154.28 13 100.00 165.75
Fly 6 8 46.84 20.84 7 44.21 17.91

with individuals as nodes and the edges weighted by
the pairwise likelihood (relatedness) ratio, and iden-
tify potential sibling sets by the connected compo-
nents in the graph. The KG or KinGroup algorithm,
proposed in Konovalov et al. (2004), is based on the
likelihood estimates of partitions of individuals into
sibling groups by comparing, for every individual, the
likelihood of being part of any existing sibling group
with the likelihood of starting its own group.

From the results in Table 5, we observed that the
proposed 2AOM and IMCS approaches outperformed
other methods on the shrimp data set. The main rea-
son that our approaches performed very effectively
was that this data set was almost complete in allele
information and the average number of distinct alle-
les per locus was very high compared to other data
sets, intuitively making the distinction among differ-
ent sibsets easier. Nevertheless, our approaches were
also competitive in the data sets with missing allele
information. We observed that the radish data set
presented a problem for all methods except BWG,
since it had partial self-reproduction and offsprings
of a selfed individual were hard to separate from
their half-siblings produced by that and any other
individual. Our approaches did not take this species-
dependent constraint into account.

4.3.2. Results from Simulated Data. We also val-
idated the proposed 2AOM and IMCS approaches on
simulated data set and compared the results to the
actual known sibling groups in the data to assess
the accuracy of our constructed sibling sets. In addi-
tion, we compared the accuracy of our approaches to
that of the M4SCP proposed in our previous paper
(Chaovalitwongse et al. 2007). The reason that we did

not compare the 2A0M approach was that it was
almost always outperformed by the 2AOM approach.

Because there were several parameter combinations
in this simulation, we limited the running time of
CPLEX to two hours (7,200 seconds) for the 2AOM
and IMCS approaches. The comparison of the three
approaches on randomly simulated data is shown
in Table 6. Because there were four-dimensional
parameter settings (i.e., four parameters to a set), we
reported the results by fixing one parameter at a time.
The accuracies and computational time were calcu-
lated based on the average of all other varying param-
eters. From the results in Table 6, we observed that
the proposed 2AOM and IMCS approaches outper-
formed the M4SCP on average with all the fixed
parameters. Note that this was not always the case for
all parameter settings. The reconstruction based on
the IMCS approach was consistently better than that
based on the 2AOM approach so was the computa-
tional time. We observed that the computational time
of IMCS drastically increased when =10, a=10, j=
10, and 0 = 10 because there was an instance when
the IMCS approach failed to solve the simulated data
with that setting to optimality. Therefore, the running
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Table 5  Accuracies of the Sibling Sets Constructed by Our Approaches
and Other Approaches from Real Biological Data Sets

2A0M  2A0M  IMCS BWG A&F B&M KG
Species (%) (%) (%) (%) (%) (%) (%)
Salmon 94.02  76.07 9830 9830 N/A* 99.71 96.02
Radish 5198 49.15 5254 7590 N/A* 5330 29.95
Shrimp 9492 100.00 100.00 7797 6780 77.97 77.97
Fly 66.84 5526  47.37 100.00 31.05 27.89 54.73

Table 6 Accuracies of the Sibling Sets Constructed by Our Approaches

and the M4SCP Approach (Chaovalitwongse et al. 2007) from

Simulated Data Set

2A0M IMCS M4SCP

Parameter  Accuracy CPU Accuracy CPU  Accuracy CPU
settings (%) time (%) time (%) time
=2 59.25 2,273.04  57.61 228 5418 026
/=4 63.94 2,754.80  66.53 8.28  52.71 0.21
=6 64.28 3,00549 7144 2896 5478 0.19
=10 60.56 3,078.93 7189  239.21 55.28  0.19
a=2 26.67 0.56  26.67 0.21 36.98 0.16
a=>5 69.42 3,679.45 7219 30.54 5834 0.16
a=10 71.81 3,699.62 81.83 22517  60.71 0.39
a=20 80.14 3,732.64  86.78 22.81 60.91 0.19
j=2 76.67 150 78.13 0.72 6288 0.02
j=5 64.63 3,079.56  64.58 3.65 4956 0.1
j=10 44.73 5,253.14 5790 20468 34.00 0.75
0=2 49.48 1,711.83  54.38 267 1819 0.22
0=5 69.46 3,250.27  69.83 14.41 36.66 0.27
0=10 67.08 3,372.10  76.40  191.97 5398 0.22

*A&F ran out of 4 GB memory as it enumerates all possible sibling sets.

Note. The CPU time is reported in seconds.
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time went up to 7,200 seconds. In all other cases, the
IMCS approach always obtained optimal solutions in
very reasonable time. In most cases, except when a =
2 and j =2, the 2AOM approach failed to solve the
sibling reconstruction problems to optimality.

Figure 5 illustrates the performance trend for all
three approaches when varying the number of alle-
les per locus (a) and the number of sampled loci (/)
and fixing the number of families (j) and the num-
ber of offsprings per family (0) to 10. Intuitively, the
sibling reconstruction problem should be easier to
solve when the number of alleles per locus increases
because there is a greater variation in allele frequency
distribution, which should help us to distinct one
sibling group to another. In Figure 5, the accuracy
increases as [ increases for both 2AOM and IMCS
approaches. However, we did not see the same behav-
ior in the M4SCP approach, which was not robust to
the goodness and completeness of the data. Similarly,
the reconstructed sibling sets should be more accurate
if there are more sampled loci (more combinatorial
constraints). We observed a very nice accuracy trend
in the IMCS approach. However, the accuracies of the
M4SCP and 2AOM approaches did not improve with
the allelic information from additional loci. We spec-
ulated that this happened with the 2AOM approach
because it failed to efficiently and effectively solve the
optimization problems as the problem size increased.
Thus, the reconstructed sibling sets were from the
best feasible integer (not optimal) solutions. It is easy
to see that the proposed IMCS approach is a more
robust, efficient, and accurate approach.

Figure 6 illustrates the performance trend for
2A0M, IMCS, BWG, B&M, and KG approaches
when varying the number of alleles per locus (a)
and the number of sampled loci (I). We observed an
increasing accuracy as a increases with all approaches
except the 2AOM approach. Although the 2AOM
model was a complete mathematical formulation of

Solution accuracies (I=2,j=10, 0 =10)
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Figure 5

the sibling reconstruction problem, it failed to obtain
the optimal solutions in most cases because of the
time limit. Compared with all other approaches, the
IMCS approach was the best in terms of the trade-
off between solution quality and computational time.
Our previous BWG approach outperformed the IMCS
approach when the number of alleles per locus was
small; however, the computational time required by
the BWG approach was much larger. In conclusion,
the proposed 2AOM and IMCS approaches gave accu-
rate and reliable sibset solutions when there was
enough separation in the data (e.g.,, number of loci
and number of alleles per locus). Note that although
the 2AOM approach would require more computation
time (e.g., days or weeks) to solve the MIP problem
to optimality, it should deliver the best possible solu-
tion. The choice of use would solely be application
dependent.

5. Conclusion and Discussion

This paper presents a novel optimization model
and solution approach for the problem of sibling
reconstruction from single generation microsatellite
genetic data. The sibling reconstruction problem is an
extremely difficult problem that has been shown to
be NP-complete and cannot be approximated to the
ratio of n¢, where n is the number of individual and
0 < € <1. A new optimization model for this problem
2A0M, was herein developed and shown to be a gen-
eralization of the well-known NP-hard set covering
problem. A heuristic approach, IMCS, was developed
to efficiently solve the 2AOM model based on a well-
known approximation algorithm of the set covering
problem to iteratively solve the decomposed problems
of 2AOM. The IMCS approach is able to accurately
reconstruct sibling groups without the knowledge
of underlying population allele frequencies, which
is required by other likelihood-based sibling recon-
struction approaches. This has made our work very

Solution accuracies (a =5, j = 10, o = 10)
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Accuracies of the Sibling Sets Constructed by the 2A0M, IMCS, and M4SCP Approaches on Randomly Generated Data

Notes. The y-axis shows the accuracy of reconstruction as a function of the number of alleles per locus (left) and the number of sampled loci (right). The title

shows the value of the fixed parameters.
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Figure 6 Accuracies of the Sibling Sets Constructed by 2A0M, ICMS, BWG, B&M, and KG Approaches from Simulated Data Sets with the Parameter

Settings M =F =10, /=10,0=10,/=2,4,and a=5,10,15

practical because it may be difficult to obtain accurate
estimates of underlying population allele frequencies
independently of the sample of potential siblings.

We implemented and tested our approaches on
both real biological and simulated data, and then
compared the solution quality of our approaches with
other state-of-the-art sibling reconstruction methods
in the literature. For biological data, our approaches
performed as well or better than other methods.
Most importantly, our approaches were able to per-
fectly reconstruct the true sibling sets in the shrimp
data set—a result not obtained by our previously
published methods. The results suggested that our
combinatorial-based approaches gave accurate and
reliable sibset solutions for clean and well-separated
data sets. On the other hand, our approaches did
not perform well for the radish and fly data sets
because of missing alleles and biologically inconsis-
tent sibset solutions. These are errors typically present
in microsatellite data. For example, allelic dropout
occurs when one or both alleles are not amplified dur-
ing polymerase chain reaction (PCR). Heterozygous
mistyping occurs when two alleles are amplified by
PCR, but one or both of them, for a variety of reasons,
are not recorded as present. Homozygous mistyping
occurs when only one allele is amplified by PCR,
and it is not any of the parental alleles. Allele com-
bination error occurs when one or both alleles at a
locus are present in the parents (or sibling group)
but Mendelian inheritance rules are still violated. To
reasonably assess our approaches on error-free data,
the experiments on simulated data allowed us to esti-
mate the accuracy of our approaches. In all cases
except a =2, the proposed IMCS approach success-
fully reconstructed the sibling sets with an accuracy
greater than 50%.

In parallel with this work, we have addressed the
possibilities of errors in data or missing allele infor-
mation by using the concept of consensus methods

(Sheikh et al. 2008). We have developed an error-
tolerant method for reconstructing sibling relation-
ships to tolerate genotyping errors and mutations
in data. The key idea of this method is to remove
microsatellite data from one locus at a time, assuming
it to be erroneous, and obtain a sibling reconstruction
solution based on the remaining loci. We consider an
individual pair to be siblings if there is a consensus
among (almost) all the reconstructed solutions. Its pre-
liminary results are presented in Sheikh et al. (2008).
In the future, we plan to validate our approaches
on other biological data sets and more realistic sim-
ulated populations (e.g., non-uniform allele distribu-
tions). In addition, we will also modify our approaches
for populations that contain partial self-reproduction
and half-siblings by incorporating species-dependent
constraints (field knowledge) into our models.

Acknowledgments

This research is supported by the following grants: National
Science Foundation (NSF) IIS-0611998 and NSF CCF-
0546574 (to the first author), NSF 1I5-0612044 (to the third,
fourth, and sixth authors), DBI-0543365 and 11S-0346973
(to the fourth author), Fullbright Scholarship (to the fifth
author), and DIMACS special focus on Computational and
Mathematical Epidemiology (to the fourth author). The
authors are grateful to the people who have shared their
data: Jeff Connor, Atlantic Salmon Federation, Dean Jerry,
and Stuart Barker. The authors would also like to thank
Anthony Almudevar, Bernie May, and Dmitri Konovalov for
sharing their software.

References

Almudevar, A. 2003. A simulated annealing algorithm for max-
imum likelihood pedigree reconstruction. Theoret. Population
Biol. 63(2) 63-75.

Almudevar, A., C. Field. 1999. Estimation of single-generation sib-
ling relationships based on DNA markers. |. Agricultural, Biol.,
Environment. Statist. 4(2) 136-165.



—_~
&,
.

o
s
S

5 E
© o
Re)
o c
9
©
=
>
el
23
> 2
O +
o <
",
@ @©
nQ
o
b
&
O ®©
_9.9
£y
32
S
QQ_
T c
@ 9
S 3
52
2 E
c O
02
o2
T ©
T
i)
<
c 2
=

o
2c
- O
£ >

o) O
T S
E -
c
o
8 e
S =
o O
<E
‘n_

[
= C
e o

=

Q35
z-o
= <

Chaovalitwongse et al.: Optimization Methods for Sibling Reconstruction from Genetic Markers

INFORMS Journal on Computing, Articles in Advance, pp. 1-15, ©2009 INFORMS

15

Ashley, M. V,, T. Y. Berger-Wolf, P. Berman, W. Chaovalitwongse, B.
DasGupta, M.-Y. Kao. 2009. On approximating four covering
and packing problems. . Comput. System Sci. 75(5) 287-302.

Berger-Wolf, T. Y., B. DasGupta, W. Chaovalitwongse, M. V. Ashley.
2005. Combinatorial reconstruction of sibling relationships.
Proc. 6th Internat. Sympos. Computational Biol. Genome Informatics
(CBGI 05), Salt Lake City, UT, 1252-1255.

Berger-Wolf, T. Y., S. Sheikh, B. DasGupta, M. V. Ashley,
I. C. Caballero, W. Chaovalitwongse, S. L. Putrevu. 2007.
Reconstructing sibling relationships in wild populations.
Bioinformatics 23(13) i49-i56.

Beyer, ]., B. May. 2003. A graph-theoretic approach to the parti-
tion of individuals into full-sib families. Molecular Ecology 12(8)
2243-2250.

Blouin, M. S. 2003. DNA-based methods for pedigree reconstruc-
tion and kinship analysis in natural populations. Trends Ecology
Evolution 18(10) 503-511.

Bowler, P. J. 1989. The Mendelian Revolution: The Emergence of
Hereditarian Concepts in Modern Science and Society. The Johns
Hopkins University Press, Baltimore.

Butler, K., C. Field, C. M. Herbinger, B. R. Smith. 2004. Accuracy,
efficiency and robustness of four algorithms allowing full sib-
ship reconstruction from DNA marker data. Molecular Ecology
13(6) 1589-1600.

Chaovalitwongse, W., T. Y. Berger-Wolf, B. DasGupta, M. V. Ashley.
2007. Set covering approach for reconstruction of sibling rela-
tionships. Optim. Methods Software 22(1) 11-24.

Conner, J. K. 2005. Personal communication (December 8).

Eskin, E., E. Haleprin, R. M. Karp. 2003. Efficient reconstruction of
haplotype structure via perfect phylogeny. J. Bioinformatics and
Comput. Biol. 1(1) 1-20.

Gusfield, D. 2002. Partition-distance: A problem and class of per-
fect graphs arising in clustering. Inform. Processing Lett. 82(3)
159-164.

Herbinger, C., P. T. O'Reilly, R. W. Doyle, J. M. Wright, E. O’Flynn.
1999. Early growth performance of Atlantic salmon full-sib
families reared in single family tanks or in mixed family tanks.
Aquaculture 173(1-4) 105-116.

Jerry, D. R, B. S. Evans, M. Kenway, K. Wilson. 2006. Development
of a microsatellite DNA parentage marker suite for black tiger
shrimp Penaeus monodon. Aquaculture 255(1—4) 542-547.

Khuller, S., A. Moss, J. Naor. 1999. The budgeted maximum cover-
age problem. Inform. Processing Lett. 70(1) 39—45.

Konovalov, D. A., C. Manning, M. T. Henshaw. 2004. KINGROUP:
A program for pedigree relationship reconstruction and kin
group assignments using genetic markers. Molecular Ecology
Notes 4(4) 779-782.

Li, J., T. Jiang. 2003. Efficient inference of haplotypes from genotype
on a pedigree. J. Bioinformatics Comput. Biol. 1(1) 41-69.

Mendel, G. 1866. Versuche iiber Pflanzen-Hybriden. Verhandlungen
des Naturforscheden Vereins in Briinn, Bd. IV fur das Jahr 1865,
3-47. [Translated as Experiments in plant hybridisation (J. Roy
Horticultural Soc. 26 1-32, 1901)].

Painter, 1. 1997. Sibship reconstruction without parental informa-
tion. J. Agricultural, Biol., Environment. Statist. 2 212-229.

Queller, D. C,, J. E. Strassman, C. R. Hughes. 1993. Microsatellites
and kinship. Trends Ecology Evolution 8 285-288.

Sheikh, S. I, T. Y. Berger-Wolf, M. V. Ashley, I. C. Caballero,
W. Chaovalitwongse, B. DasGupta. 2008. Error-tolerant sib-
ship reconstruction in wild populations. Proc. 7th Ann. Inter-
nat. Conf. Computational Systems Bioinformatics, Stanford, CA,
273-284.

Smith, B. R., C. M. Herbinger, H. R. Merry. 2001. Accurate partition
of individuals into full-sib families from genetic data without
parental information. Genetics 158(3) 1329-1338.

Thomas, S. C., W. G. Hill. 2002. Sibship reconstruction in hierar-
chical population structures using Markov Chain Monte carlo
techniques. Genetic Res. 79(3) 227-234.

Vazirani, V. V. 2001. Approximation Algorithms. Springer-Verlag,
New York.

Wang, J. 2004. Sibship reconstruction from genetic data with typing
errors. Genetics 166(4) 1968-1979.

Wilson, A. C. C., P. Sunnucks, J. S. E Barker. 2002. Isola-
tion and characterization of 20 polymorphic microsatellite
loci for Scaptodrosophila hibisci. Molecular Ecology Notes 2(3)
242-244.



