
Analog versus Discrete Neural Networks�

Bhaskar DasGupta Georg Schnitger

Department of Computer Science Fachbereich ��� Informatik

University of Waterloo Universit�at Frankfurt

Waterloo� Ontario N�L �G� ����� Frankfurt

Canada Germany

Email	 bdasgupt�daisy�uwaterloo�ca Email	 georg�thi�informatik�uni�frankfurt�de

Abstract

We show that neural networks with three
times continuously di�erentiable activation functions are

capable of computing a certain family of n
bit Boolean functions with two gates� whereas networks

composed of binary threshold functions require at least �
logn� gates�

Thus� for a large class of activation functions� analog neural networks can be more powerful

than discrete neural networks� even when computing Boolean functions�

� Introduction�

Arti�cial neural networks have become a popular model for machine learning and many results have

been obtained regarding their application to practical problems� Typically� the network is trained to

encode complex associations between inputs and outputs during supervised training cycles� where

the associations are encoded by the weights of the network� Once trained� the network will compute

an input�output mapping which
hopefully� is a good approximation of the original mapping�

�Partially supported by NSF Grant CCR��������

�

In this paper we are mostly interested in feedforward neural networks� i�e�� neural networks

whose underlying graph is acyclic� We concentrate on computing Boolean functions to allow a

comparison of the computing power of analog and discrete neural networks� We start by formally

introducing feedforward neural networks
with binary inputs and a single output neuron��

De�nition ��� Let � 	 R� R be given�

�a� The architecture of a ��net C is given by a directed graph G with a single sink �i�e� a single

vertex with no outgoing edge�� C is obtained� if we additionally specify a labeling of the edges and

vertices of G by real numbers� The real number assigned to an edge �resp� vertex� is called its

weight �resp� its threshold��

�b� C computes a function fC 	 f�� �gn � R as follows� The components of the input vector

x �
x�� � � � � xn� are assigned to the sources of G �i�e�� to the vertices of G with no incoming edge��

Let v�� � � � � vr be the immediate predecessors of vertex v� The input for v is then

sv
x� �
rX

i��

wiyi � tv �

where wi is the weight of the edge
vi� v�� tv is the threshold of v and yi is the value assigned to vi�

If v is not the sink� then we assign the value �
sv
x�� to v� Otherwise� we assign sv
x� to v�

�b� The size of C is the number of vertices of its architecture G �excluding the sources�� The the

depth of C is the number of edges on a longest directed path from the sources to the sink�

Since the output of a �
net is a real value� an appropriate convention has to be adopted when

computing a Boolean function� We employ the same convention as in
Maass et al� ������

De�nition ��� Let � be a positive real number and let C be a ��net� Then C computes the Boolean

function F 	 f�� �gn � f�� �g with separation � provided there exists a real number tC � such that for

all
x�� � � � � xn� � f�� �gn

F
x�� � � � � xn� � � � fC
x�� � � �xn� � tC � �

F
x�� � � � � xn� � � � fC
x�� � � �xn� � tC � �

�

�
nets
for various activation functions � and real
valued domain� have been investigated for

their approximation power and other related complexity
theoretic properties in
DasGupta and

Schnitger ����� H�o�gen ����� Macintyre and Sontag ����� Maass ����� Zhang ������

In this paper� however� we consider the computation of Boolean functions only� Our goal is a

comparison of the computational power of a large class of �
nets and of binary threshold networks�

i�e�� H
nets with the binary threshold function H de�ned by

H
x� �

���
��

� if x � �

� otherwise�

Since we will consider H
nets for the computation of Boolean functions� the binary threshold

function will also be used for the output gates��

Threshold networks have been extensively studied in the literature� In
Reif ����� it is shown�

that binary threshold networks of bounded depth
and size polynomial in n� can compute the sum

and the product of n n
bit numbers� In
Hajnal et� al� ����� and
Goldmann and Hastad �����

lower bounds on the size of depth
two
resp� depth
�� binary threshold networks are given� Thus

binary threshold networks are known to be powerful and lower bounds
when computing Boolean

functions� are correspondingly rather weak�

Moreover� the binary threshold function also plays an important role when considering the

approximation power of neural networks with real inputs and outputs� In
DasGupta and Schnitger

������ activations functions are considered which are capable of tightly approximating polynomials

and the binary threshold function H with neural nets of bounded depth and small size� These

activation functions have therefore at least the approximation power of spline
networks and thus

have considerable approximation power� This fact is used in
DasGupta and Schnitger ����� to

show the �equivalence� of various activation functions including the standard sigmoid �
x� � �
��e�x �

rational functions and roots
which are not polynomials��

The following question� originally posed in
Sontag ������ is the main topic of this paper	

� Does there exist a family of Boolean functions fn 	 f�� �gn � f�� �g which can be computed

�

by �
nets with a constant number of gates� but which requires binary threshold networks

with more than a constant number of gates�

Thus� our goal is a comparison of the computational power of analog and discrete neural net

works with binary inputs�

If the number of inputs is counted when determining network size� then binary threshold net

works are equivalent to �
nets for the case of bounded depth and small weights even if we don�t

allow depth to increase
but allow a polynomial increase in size� see Maass et� al� ������ The

simulation results in
DasGupta and Schnitger ����� imply that binary threshold networks and

�
nets are equivalent when computing Boolean functions even for unbounded depth and even with

large weights provided depth of the simulating binary threshold network is allowed to increase by a

constant factor and size is allowed to increase polynomially�

But� the above equivalence does not hold anymore if we do not count the number of inputs

when determining network size and analog computation may indeed turn out to be more powerful�

This was �rst demonstrated in
Maass et al� ������ who construct a family fn of Boolean functions

which can be computed by a �
nets
for a large class of functions �� of constant size in depth two�

It is then shown� that binary threshold networks of depth two require non
constant size� On the

other hand� each function fn can be computed by binary threshold networks in depth three and

constant size�

This separation result is therefore depth
dependent� In this paper� we give a separation which

holds for arbitrary depth� In particular� we consider the problem of �unary squaring�� i�e�� the

family of languages SQn with

SQn � f
x� y� 	 x � f�� �gn� y � f�� �gn
�

and �x�� � �y�g�

�z� denotes the bit sum of the binary string z� i�e� �z� �
P

i zi�� We obtain the following result�

Theorem ��� A binary threshold network accepting SQn must have size at least �
logn�� But

SQn can be computed by a ��net with two gates�

�

In fact� we give a generalized upper bound in Theorem ���� where �
nets with two gates are

constructed for a large class of functions ��

The lower bound of Theorem ��� is �almost� tight� since it is possible to design a binary

threshold net of size O
logn � log logn � log log logn� which accepts SQn�

The proof of ��� uses techniques of circuit theory� We refer the reader to
Wegener �����

Boppana and Sipser ����� for a detailed account of circuit theory and restrict ourselves to a few

comments� A circuit corresponds
using the notation of this paper� to a �
net� where � is a class

of Boolean functions and where functions in � are assigned to the vertices of the net
architecture�

f AND� OR� NOTg
circuits are perhaps the most prominent circuit class�

One of the main tasks of circuit theory is to derive lower bounds for the size and�or depth

of circuits computing speci�c Boolean functions� Little progress has been made in deriving lower

bounds for f AND� OR� NOTg
circuits of bounded fan
in�
The fan
in of a circuit is the maximum�

over all vertices� of the number of immediate predecessors of a vertex�� For instance� no speci�c

function is known which requires super
linear size� The situation improves considerably if fAND�

OR� NOTg
circuits of unbounded fan
in
and small depth� are considered	 Razborov
Razborov

����� gives exponential lower bounds for the size of circuits computing the parity of n bits in

bounded depth� However� as already mentioned above� threshold
circuits
or threshold networks in

our notation� of bounded depth have an impressive computing power and� perhaps not surprisingly�

not even superlinear lower bounds on the size are known�

In
Wegener ����� sublinear lower bounds on the size of threshold circuits are given� There the

notion of sensitivity is introduced	 a Boolean function f of n variables is called k
sensitive� if no

setting of n� k variables to arbitrary
zero or one� values transforms f into a constant function of

the remaining k free variables�
For example� the parity function of n variables is k
sensitive for

any k with � � k � n��

We face the problem that SQn is not k
sensitive even for large values of k� for instance� if we

set all x
bits to � and one y
bit to �� then SQn becomes a constant function of the remaining free

variables� Also� intermediate forms of sensitivity
i�e� k
sensitivity in which at least a constant

�

fraction of both the x
bits and the y
bits are set� have to be ruled out	 setting half of the x
bits to

� and setting half of the y
bits to � again reduces SQn to a constant function of the remaining free

variables� Therefore� Wegener�s lower bound for sensitive functions
Wegener ����� does not apply�

Our lower bound proof does proceed by trying to examine the given circuit gate by gate� But

we were not successful in trivializing each gate
i�e�� by setting input bits to appropriate zero�one

values� we were unable to guarantee that a considered gate gate computes a constant function of

the remaining free input bits�� Instead we construct a subdomain of the input space which allows

to trivialize threshold gates while not trivializing SQn�

The rest of the paper is organized as follows� In section � we show that SQn can be computed

by �
nets with two gates� where � is any real
valued activation function at least three times contin

uously di�erentiable in some small neighborhood� In section � we prove that any binary threshold

network accepting SQn must have size at least �
logn��

A preliminary version of this result appeared in
DasGupta and Schnitger ������

� Computing SQn by ��nets

We say� that a function � 	 R � R has the Q
property� if and only if there exist real numbers a

and � � � such that

�a� �
x� is at least � times continuously di�erentiable in the interval �a� �� a � �� and

�b� ���
a� �� ��

Notice that the standard sigmoid �
x� � �
��e�x has the Q
property� Next we show that SQn

can be computed with relatively large separation by small �
nets with small weights� provided �

has the Q
property�

Theorem ��� Assume that � has the Q�property� Then there is a ��net with two gates which

accepts SQn with separation �
���

Moreover� all weights are bounded in absolute value by a polynomial in n�

�

The proof of Theorem ��� utilizes the Q
property to extract square polynomials from �� In

particular� we approximate the quadratic polynomial �x�� � �y� with small error� Finally� the

function SQn is computed with �
��
separation by comparing the approximated polynomial with

a suitable threshold value�

Proof of Theorem ���� Since � is at least �
times continuously di�erentiable in I � �a� �� a� ���

we obtain

�
a� z� � �
a� � ��
a� � z �
���
a�

�
� z� � r
z��

where r
z� � ������z�
� � z�
for z � ���� �� and some 	z � I�� Moreover� by continuity� there is a

constant Max with j ����
u� j �Max for all u � I � We set

L � maxf

�
� �Max � n�

� � ���
a�

�
�

�
n

�

�
g�

Since � � �x� � n� we obtain
��� �x	
L

��� � ��n
L

�� � � and thus

L� � �
a�
�x�

L
� � L� � �
a� � L � ��
a� � �x� �

���
a�

�
� �x�� �

����
	�x	�

�L
� �x��

or� equivalently�	
�L�

���
a�
� �
a�

�x�

L
��

�L� � �
a�

���
a�
�

�L � ��
a�

���
a�
� �x�

� �x�� �

� � ����
	�x	�

�L � ���
a�
� �x���
��

Also� since j� ���
	�x	�j �Max� we obtain the bound����� �����
	�x	�

�L � ���
a�
� �x��

����� � �

�
�

The �
net accepting SQn consists of a �rst neuron computing u
x� � �
a� �x	
L

�� The second neuron�

the output neuron� computes the weighted sum

v
x� y� �
�L�

� ��
a�
� u�

�L� � �
a�

���
a�
� �L �

��
a�

���
a�
� �x�� �y��

As a consequence of equation
��� the output neuron approximates �x��� �y� with error at most �

 �

Thus� �
�x�� � �y� � v
x� y� � �

�

�

�
and

�
�x�� � �y� � v
x� y� � �

�

�

�
�

Thus� setting tC � ��
� in De�nition ���� it follows that our �
net C accepts SQn with separation

at least �

 � The weight bound follows� since L � O
n��� 	

�

� A Lower Bound for �Unary Squaring�

We have to show the following result�

Theorem ��� Any binary threshold network accepting SQn must have size at least �
logn��

Let SQ�
n denote the language

SQ�
n � f
x� y� 	 x � f�� �gn� y � f�� �gn

�

and �x�� � �y�g�

Proposition ��� Assume that there exists a binary threshold network of size tn accepting SQn�

Then there exists a binary threshold network of size tn � tn�� � � accepting SQ�
n �

Proof� Since there exists a binary threshold network of size tn accepting SQn� there also exists

a binary threshold network of size tn accepting SQn� the complement of SQn�

We show how to compute the language

SQ�
n � f
x� y� 	 x � f�� �gn� y � f�� �gn

�

and �x�� � �y�g�

Consider the binary threshold network for SQn��� with binary inputs x�� � � � � xn�� and y�� � � � � y�n�����

We set xn�� � �� yn��� � � and yn��� � � � � � y�n���� � �� With those bits �xed� the threshold

network for SQn�� accepts the input
x�� x�� � � � � xn� y�� y�� � � � � yn�� if and only if

Pn�

i�� xi�
� �

Pn�

j�� yj � �� But this is equivalent to

Pn�

i�� xi�
� �

Pn�

j�� yj � Hence� size tn�� threshold circuits

can compute SQ�
n �

But note that SQ�
n
 SQn � SQ�

n � Hence� SQ�
n can be computed with tn � tn�� � � threshold

gates� 	

Thus it su�ces to show that any binary threshold network accepting SQ�
n must have size at

least �
logn�� Let us assume that Cs is a binary threshold network with s gates accepting SQ�
n �

Our approach will be to successively trivialize
i�e� partially �x the outcomes of� the gates of

Cs by �xing appropriate bits of the input
x� y�� The process of trivialization starts with source

�

gates� continues with gates all of whose immediate predecessors have been trivialized and �nally

terminates with the sink gate of Cs�

Let us assume that the process of trivilization has reached gate g� Moreover assume that the

bits xk��� � � � � xn and yl��� � � � � yn� have been �xed with
xk��� � � � � xn� �
 and
yl��� � � � � yn�� � ��

Determine � with l � ��k � k� and set

domain
k� l�
� �� � f
x�
� y� �� 	 x � f�� �gk� y � f�� �gl and ���x� � �y� � ���x� � �x��g

as well as

SQ�
n
k� l�
� �� � f
x�
� y� ��� domain
k� l�
� �� 	
� � �x��� � �� � �y�g�

� will coincide with the number of x
bits that are set to one� Therefore� � � � and � will

only increase during the trivialization process�� We demand that the following invariant holds for

domain
k� l�
� ��	

a� l � ��k � k�� where � is a non�negative integer�

b� Each already processed gate is constant over domain
k� l�
� ���

c� For every u � domain
k� l�
� ��	 Cs accepts u if and only if u � SQ�
n
k� l�
� ���

In other words� all previously processed gates have been trivialized over domain
k� l�
� ���

whereas the network Cs still accepts the non
trivial language SQ�
n
k� l�
� ��� Thus� if g
x� y�

denotes the function computed by gate g for
x�
� y� �� � domain
k� l�
� ��� then we obtain the

representation

g
x� y�

kX

i��

aixi �
lX

i��

biyi � t��

This follows� since g only depends on the free inputs of Cs and a constant threshold
value t
t is

completely determined by the old threshold
value of g in the given circuit and the constant outputs

of the already processed and therefore trivialized gates�� Next we make a few basic observations

concerning the trivialization process	

�

Proposition ��� �a� Before the process of trivialization starts� the invariant holds with k � n� l �

n� and �consequently� � � ��

�b� Assume that the sink of Cs has been processed� Then� the processed network cannot accept

SQ�
n
k� l�
� ��� unless k � ��

�c� Assume that k decreases by at most a factor of �
�� for each processed gate� Then� Cs must

have at least �
logn� gates in order to correctly accept SQ�
n �

Proof� �a� is immediate and �c� is a direct consequence of �b�� It remains to verify part �b��

Assume that the sink of Cs has been processed and domain
k� l�
� �� is obtained� Then the sink

and thus the network� is constant for all elements of domain
k� l�
� ��� but accepts SQ�
n
k� l�
� ���

This language� however� is not constant for k � �	 we have
�k�
� �l� �� � SQ�
n
k� l�
� ��� whereas

�k�
� ��l��� �� �� SQ�
n
k� l�
� ��
observe that l � ��k � k� � ��� 	

We will assume from now on that n is a power ��� If this is not the case� then it su�ces to

set an appropriate number of x
 and y
bits to zero such the number of free x
bits equals the next

lower power of ��
and the number of free y
bits is a square of the number of free x
bits��

Assume that the invariant holds for domain
k� l�
� ��
with l � ��k�k�� and that we �x additional

bits leaving K x
bits and L y
bits free� Assume that� among those additionally �xed bits� r x
bits

are set to one and s y
bits are set to one� Let
�
resp� ��� be the set of �xed x
bits
resp� y
bits�

including the additionally �xed bits� When does the invariant hold for domain
K�L�
�� ����

Proposition ��� The invariant holds for domain�K�L�
�� ���� provided

� s � ��r � r� and

� L � �
� � r�K � K� �and hence � is replaced by � � r��

Proof� We �rst show that domain
K�L�
�� ��� � domain
k� l�
� ��� Let u �
x�� x��
� y�� y�� �� be

an arbitrary element of domain
K�L�
�� ���� where the bits in x�
resp� y�� have been freshly �xed�

Consequently�

�
� � r��x�� � �y�� � �
� � r��x�� � �x��
�

��

and therefore

���
x�� x��� � ���x�� � ��r � �
� � r��x�� � ��r

� �y�� � ��r

� �y�� � ��r � r� � �
y�� y���

� �
� � r��x�� � �x��
� � ��r � r�

�
���
x�� x���� ��r � �r�x��� � �x��
� � ��r � r�

� ���
x�� x��� � �r�x�� � �x��
� � r�

� ���
x�� x��� � �
x�� x���
�

Condition
a� of the invariant is satis�ed because of the assumed relationships between K and

L� Since constant gates remain constant if the domain is further restricted� condition
b� of the

invariant is satis�ed as well�

Now we consider condition
c��

u � SQ�
n
K�L�
�� ��� �
� � r � �x���

� �
� � r�� � �y��

�
� � �
x�� x����
� � �� � ��r � r� � �y��

�
� � �
x�� x����
� � �� � �
y�� y���

� u � SQ�
n
k� l�
� ��

� Cs accepts u� 	

Hence� to complete the proof of Theorem ���� we have to perform the trivialization process such

that

� k� the number of free bits� decreases by at most a factor of �
�� for each processed gate and

� the invariant is maintained whenever a gate is processed
by setting ��r � r� new y
bits to

one� if r new x
bits are set to one��

��

We have to describe the trivialization of gate g� Observe that l � ��k � k� holds� Moreover�

remember that g computes the function g
x� y�

Pk

i�� aixi �
Pl

i�� biyi � t
�
�

Throughout the trivialization process we will assume that k � ��i for some positive integer i�

First we will reduce k by a factor of at most �
�� after one step of the trivilization process� If

we are left with k� � ��i�� free bits� then an additional k� � ��i�� bits can be set to zero without

violating the invariant�

Our �rst goal is to enforce that all ai�s have the same sign and that all bi�s have the same sign�

To achieve identical sign for the ai�s� we set an appropriate collection of k
� x
bits to zero� We repeat

this procedure for the y
bits by setting l
� y
bits to zero� but we also set an additional number of k�

y
bits to zero� Thus� with

k� �
k

�
and l� �

l

�
�
k�

�
�

we have l� �
�k � k�

� � � k�

 and therefore l� � ��k� � k��� Proposition ��� guarantees� that the

invariant holds for domain
k�� l��
� ���
where

resp� �� consists of all �xed x
bits
resp� y
bits��

We now face� after appropriate renumbering positions if necessary� the following situation�

a� Bits x�� � � � � xk� and y�� � � � � yl� are free and

b� ja�j � � � � � jak� j as well as jb�j � � � � � jbl�j�

Case �� The x
 and y
weights are both nonnegative�

Set r � k�
� and s � ��r � r�� Let �� �

Pk�
i�k��r�� ai and �� �

Pl�
i�l��s�� bi�

Case ���� �� � �� � t�

We set the last r bits of x and the last s bits of y to one
i�e�� xk��r�� � � � � � xk� � � and

yl��s�� � � � � � yl� � ��� Since the x
 and y
weights are nonnegative� gate g has been trivialized	

its output will always be one� Thus k� � r � r free x
bits and l� � s free y
bits remain� Observe

that

l� � s � l� �
��r � r�� � ��k� � k�� �
��r � r�� � ��r � �r� � �
�� r�r � r�

and the invariant is satis�ed with Proposition ���� We are left with r � k
� � k
�� free x
bits�

��

Case ���� �� � �� � t�

This time we set the last r bits of x as well as the last s � �r� bits of y to zero� Observe �rst that

r bits of x and l� � s� �r� � ��r � r� bits of y remain free�

Next observe that�
Pr

i�� ai � �� and
Pl��s��r�

i�� bi � ��
since l��s��r� � ��r�r� � s � s��r��

Hence� gate g will always output zero and thus has been trivialized�

The invariant is guaranteed with Proposition ���� since � is unchanged� Again� r � k
� � k
��

free x
bits remain�

Case �� The x
 and y
weights are both nonpositive�

The construction is analogous to Case ��

Case �� The x
weights are nonnegative and the y
weights are nonpositive�

Let � � k�
�� Observe that l� � ��
��� �
���� � ���� ���� First we partition the indices for the

free x
bits into the three classes Sx � f�� � � � � �g� Mx � f�� �� � � � � ��g and Lx � f��� �� � � � � ��g�

Analogously� we three
partition the indices for the free y
bits into the sets Sy
of the �rst

��� � ��� y
positions�� My
of the second ��� � ��� y
positions� and Ly
of the last ��� � ���

y
positions��

Let r be an integer� We say� that r is legal� provided �
�� � r � �
and thus r � k

���� We will

make two attempts at trivializing gate g� In both attempts r bits of x
and ��r� r� bits of y� will

be �xed to one� Also� r � k
�� bits of x
and �
� � r�r � r� � ��r � �r� bits of y� will remain free�

Thus� by Proposition ���� the invariant still holds and we have to only ensure� that gate g will be

additionally trivialized�

In the �rst
second� attempt� we try to force g to be constantly zero
one�� Then we show� that

one of the two attempts has to be successful� In both attempts we only set x
bits with positions

in Mx and y
bits with positions in My to one� Let
 � �
jMxj

P
i�Mx

ai� � � �
jMyj

P
i�My

bi and

� �
 � ���� Observe that � is non
positive�

Attempt �� Trying to set gate g to be constantly zero�

��

To keep the weighted sum of gate g as small as possible� we leave only the r bits of x corre

sponding to the �rst r positions of Sx free� Also� only the ��r� �r� bits of y� corresponding to the

�rst ��r � �r� positions of Ly � are left free as well�

We then set xi
for the �rst r positions i � Mx� as well as yi
for the last ��r � r� positions

i �My� to one� The remaining bits to be �xed are all set to zero�

Assume for the moment that all free bits are set to �� Then the weighted sum of gate g will be

upper�bounded by

r �
 �
��r � r��� � r �

 � ���� � r� � � � r � � � r� � ��

This follows� since the x
weights are in increasing order and hence the average of the �rst r weights

of Mx is not bigger than the overall average� Moreover� the y
weights are in decreasing order and

hence the average of the last ��r � r� weights of My is not bigger than the overall average�

How large can the contribution of the free bits be� when
say� r� free bits of x are set to one�

Since the condition �
�� r��x� � �y� �
��� r��x� � �x�� has to be satis�ed and since we are trying

to maximize the weighted sum of gate g� as few y
bits as possible
namely �
�� r�r� bits� will be

set to one� Thus the contribution of the free bits is at most

r�
 � �
� � r�r�� � r� �

 � ��� � �r � �� � r� �
� � �r � ���

This follows� since the x
weights are in increasing order and hence the average of any r� weights of

Sx is not bigger than the average of the weights in Mx� Moreover� the y
weights are in decreasing

order and hence the average of any �
� � r�r� weights of Ly is not bigger than the average of the

weights in My �

Summarizing� the value of g is either upper
bounded by

� r � � � r��� if � � �r� � �� or by

� �r � � � �r�� otherwise�

Consequently we are done� if we can �nd a legal value for r such that the respective upper bound

is less than t� the threshold value of gate g� But let us assume� that our �rst attempt fails for all

��

legal values of r�

Attempt �� Trying to set gate g to be constantly one�

To make the weighted sum of gate g as large as possible� we leave only the r bits of x corre

sponding to the �rst r positions of Lx free� Also� the ��r� �r� bits of y� corresponding to the �rst

��r � �r� positions of Sy� are left free as well�

We set xi
for the last r positions i �Mx� as well as yi
for the �rst ��r�r� positions i �My�

to one� The remaining bits to be �xed are all set to zero�

Assume for the moment that all free bits are set to �� Then the weighted sum of gate g will be

lower�bounded by

r �
 �
��r � r��� � r � � � r� � �

How small can the contribution of the free bits be� when
say� r� free bits of x are set to one�

Since the condition �
�� r��x� � �y� � �
�� r��x� � �x�� has to be satis�ed and since the weighted

sum of gate g should be minimized� as many y
bits as possible
namely �
�� r�r� �
r��� bits� will

be set to one� And we obtain a contribution of at least

r� �
 �
�
�� r�r� �
r���� � � � r� �

 � �
� � r�� � r� � �� � r� �

 � ��� � �r�� � r� �
� � �r���

Summarizing� the value of g is either lower
bounded by

� �r � � � �r��� if � � �r� � �� or by

� r � � � r�� otherwise�

Consequently we are done� if we can �nd a legal value for r such that the respective lower bound is

greater than or equal to t� the threshold value of gate g� But let us assume� that also this second

attempt fails�

Failure of both attempts� Let

I� � fr 	 � � �r� � �g� I� � fr 	 � � �r� � �� � � �r� � �g and I� � fr 	 � � �r� � �g�

��

Case ���� � � ��

� � ��

Set r� � �
� and observe that r� and �r� are legal values for r� As a consequence of the case

assumption� we obtain � � �r�� � � � ��

� � � and hence �r��
� � I�� Since both attempts fail�

t �
�r��� �
�r��
�� and �r�� � �r��� � t�

But this is impossible and one of the two attempts has to succeed for a legal value of r�

Case ���� � � ��

� � ��

Let r� � �

 and observe that r� and r�

 are legal values of r� Moreover ��
� r�� � I�� Since both

attempts fail�

r�� � r��� � t � �r�� � �r��� and r�� � r��� � t � �

r�
�

�� � �

r�
�

����

As a consequence

��r�� � � and � � �
��

�
r���

We again arrive at a contradiction and one of the two attempts has to succeed for a legal value of

r�

Case �� The x
weights are nonpositive and the y
weights are nonnegative�

Analogous to Case � and the proof of Theorem ��� is complete�	

Remark ��� �a� The lower bound of Theorem ��� is �almost	 tight� It is quite easy to construct

a binary threshold network of O
logn� gates that computes the binary representation of �x�� Now

we apply the Sch
onhage�Strassen multiplication algorithm to obtain a binary threshold network of

size O
logn � log logn � log log logn� which computes all the bits of �x��� Hence SQn can be computed

with O
logn � log logn � log log logn� threshold gates �with a �nal gate comparing �x�� and �y���

�b� A better separation of binary threshold networks and ��nets might be possible by considering

the language L of binary squaring� i�e�

L � f
x� y� 	 x � f�� �gn� y � f�� �g�n such that

nX
i��

�i��xi�
� �

�nX
i��

�i��yig�

��

The problem of deriving a superlogarithmic lower bound for networks with weights of unbounded

size seems to be di�cult however�

� References

BOPPANA R�� and SIPSER M� ����� The complexity of �nite functions� in Handbook of theoretical

computer science	 algorithms and complexity� J� van Leeuwen
ed�� MIT Press�

DASGUPTA B�� and SCHNITGER G� ����� The Power of Approximating	 A Comparison of

Activation Functions� in �Advances in Neural Information Processing Systems ��
Giles� C�L��

Hanson� S�J�� and Cowan� J�D�� eds�� Morgan Kaufmann� San Mateo� CA� pp� ���
����

HAJNAL A�� MAASS W�� PUDLAK P�� SZEGEDY M� and TURAN G� ����� Threshold circuits

of bounded depth� in �Proc� of the ��th IEEE Symp� on Foundations of Computer Science�� pp�

��
����

GOLDMANN M� and HASTAD J� ����� On the power of small
depth threshold circuits� Compu�

tational Complexity� �
��� pp� ���
����

H�OFFGEN K
U� ����� Computational limitations on training sigmoidal neural networks� Infor�

mation Processing Letters� ��� pp� ���
����

MAASS W� ����� Bounds for the computational power and learning complexity of analog neural

nets� in �Proc� of the ��th ACM Symp� Theory of Computing�� pp� ���
��� �

MACINTYRE A�� and SONTAG E� D� ����� Finiteness results for sigmoidal neural� networks� in

�Proc� ��th Annual Symp� on Theory Computing� pp� ���
����

MAASS W�� SCHNITGER G�� and SONTAG E� D� ����� On the computational power of sigmoid

versus boolean threshold circuits�in �Proc� of the ��nd Annual Symp� on Foundations of Computer

Science�� pp� ���
����

RAZBOROV A� A� ����� Lower bounds on the size of bounded depth networks over a complete

basis with logical addition� Math� Notes of the Academy of Science of the USSR ��
��� pp� ���
����

REIF J� H� ����� On threshold circuits and polynomial computation� in �Proceedings of the �nd

��

Annual Structure in Complexity theory�� pp� ���
����

SONTAG E� D� ����� Comparing Sigmoids and Heavisides� in �Proc� Conf� Info� Sci� and

Systems�� pp� ���
����

WEGENER I� ����� The complexity of Boolean functions� Wiley�Teubner Series in Computer

Science�

WEGENER I� ����� The complexity of the parity function in unbounded fan
in� unbounded depth

circuits� Theo� Comp� Sci� ��� pp� ���
����

ZHANG X
D� ����� Complexity of neural network learning in the real number model� preprint�

Comp� Sci� Dept�� U� Mass�

��

