
Highlights

On computing Discretized Ricci curvatures of graphs: local algo-
rithms and (localized) fine-grained reductions

Bhaskar DasGupta, Elena Grigorescu, Tamalika Mukherjee

• We relate our curvature computation problem to minimum weight per-
fect matching problem on complete bipartite graphs via fine-grained
reduction.

• We formalize the computational aspects of the curvature computation
problems in suitable frameworks so that they can be studied by re-
searchers in local algorithms.

• We provide the first known lower and upper bounds on queries for
query-based algorithms for the curvature computation problems in our
local algorithms framework. En route, we also illustrate a localized
version of our fine-grained reduction.

On computing Discretized Ricci curvatures of graphs:

local algorithms and (localized) fine-grained reductions

Bhaskar DasGuptaa,1,∗, Elena Grigorescub,2, Tamalika Mukherjeeb,2

aDepartment of Computer Science, University of Illinois
Chicago, Chicago, 60607, IL, USA

bDepartment of Computer Science, Purdue University, West Lafayette, 47907, IN, USA

Abstract

Characterizing shapes of high-dimensional objects via Ricci curvatures plays
a critical role in many research areas in mathematics and physics. However,
even though several discretizations of Ricci curvatures for discrete combina-
torial objects such as networks have been proposed and studied by mathe-
maticians, the computational complexity aspects of these discretizations have
escaped the attention of theoretical computer scientists to a large extent. In
this paper, we study one such discretization, namely the Ollivier-Ricci curva-
ture, from the perspective of efficient computation by fine-grained reductions
and local query-based algorithms. Our main contributions are the following.

▷ We relate our curvature computation problem to minimum weight per-
fect matching problem on complete bipartite graphs via fine-grained
reduction.

▷ We formalize the computational aspects of the curvature computation
problems in suitable frameworks so that they can be studied by re-
searchers in local algorithms.

▷ We provide the first known lower and upper bounds on queries for
query-based algorithms for the curvature computation problems in our

∗Corresponding author.
Email addresses: bdasgup@uic.edu (Bhaskar DasGupta), elena-g@purdue.edu

(Elena Grigorescu), tmukherj@purdue.edu (Tamalika Mukherjee)
1Supported by NSF grant IIS-1814931.
2Supported in part by NSF grants CCF-1910659 and CCF-1910411.

Preprint submitted to Theoretical Computer Science August 10, 2023

local algorithms framework. En route, we also illustrate a localized
version of our fine-grained reduction.

We believe that our results bring forth an intriguing set of research ques-
tions, motivated both in theory and practice, regarding designing efficient
algorithms for curvatures of geometrical objects.

Keywords: Network shape, discrete Ricci curvature, query-based local
algorithms
2000 MSC: 68Q25, 68Q17, 68W25, 68W20, 68W40

1. Introduction

A suitable notion of “shape” plays a critical role in investigating objects in
mathematics, mathematical physics and other research areas. Various kinds
of curvatures are very natural measures of shapes of higher dimensional ob-
jects in mainstream physics and mathematics [1, 2]. To quantify the shape of
a higher-dimensional geometric object, one often fixes shapes of objects with
specific properties as the “baseline shape” and then quantifies the shape of a
given object with respect to these baseline shapes. For example, consider the
case of the two-dimensional metric space. For this space, a baseline could
be selected as the standard Euclidean plane in which the three angles of a
triangle sum up to exactly 180◦, and then one can quantify the shape of the
given two-dimensional space by the deviations of the sum of the three angles
of triangles in this space from the baseline of 180◦. An alternative approach is
to avoid selecting baseline shapes explicitly and instead directly quantify the
shape of a given geometric object. Quantification of shape is often referred
to as the curvature of the corresponding object. Quantification of shapes
can be either local or global. A local shape of the object is usually computed
for a specific local neighborhood of the object (e.g., the Ricci curvature). In
contrast, a global shape of the object is usually computed over the entire
object (e.g., the Gromov-hyperbolicity measure). Any attempt to extend
notions of curvature measures from non-network domains to networks3 (and
other discrete combinatorial structures) need to overcome at least three key
challenges, namely that (a) networks are discrete (non-continuous) combina-
torial objects, (b) networks may not necessarily have an associated natural

3In this paper, we will use the two terms “graph” and “network” interchangeably.

2

geometric embedding, and (c) the extension need to be useful and non-trivial,
i.e., a network curvature measure should saliently encode non-trivial higher-
order correlations among nodes and edges that cannot be obtained by other
popular network measures.

1.1. Motivations behind studying shapes of networks

Although studying measures of shapes of networks (and hypergraphs) is
mathematically intriguing, it is natural to ask if there are other valid reasons
for such studies. Network shape measures can encode non-trivial topologi-
cal properties that are not expressed by more established network-theoretic
measures such as degree distributions, clustering coefficients or betweenness
centralities (e.g., see [3, 4]). Moreover, these shape measures can explain
many phenomena one frequently encounters in real network-theoretic appli-
cations, such as (i) paths mediating up- or down-regulation of a target node
starting from the same regulator node in biological regulatory networks of-
ten have many small crosstalk paths [3] and (ii) existence of congestions
in a node that is not a hub in traffic networks [3, 5], that are not easily
explained by other non-shape measures. Recently, shape measures have also
found applications in traditional social networks applications such as com-
munity finding [6], and in neuroscience applications such as comparing brain
networks to study slowly progressing brain diseases such as attention deficit
hyperactivity disorder [4] and autism spectrum disorder [7, 8].

1.2. Brief history of existing notions of shapes for networks

There are several ways previous researchers have attempted to formulate
notions of shapes of networks. Below we discuss three major directions in
this regard. For further details and other approaches, the reader is referred
to papers and books such as [9, 1, 10, 11, 12, 13, 14, 15, 16, 3, 17, 18, 19, 20,
21, 22, 23, 4].

One notion of network shapes, first suggested by Gromov in a non-network
group theoretic context [24], is via the Gromov-hyperbolicity of networks.
First defined for infinite continuous metric space [1], the measure was later
adopted for finite graphs. Usually this measure is defined via properties
of geodesic triangles or equivalently via 4-node conditions, though Gromov
originally defined the measure using Gromov-product nodes in [24]. Infor-
mally, any infinite metric space has a finite Gromov-hyperbolicity measure
if it behaves metrically in the large scale as a negatively curved Riemannian
manifold, and thus the value of this measure can be correlated to the standard

3

scalar curvature of a hyperbolic manifold. For a finite network the measure
is related to the properties of the set of exact and approximate geodesics of
the network. There is a large body of research works dealing with theoret-
ical and empirical aspects of this measure, e.g., see [14, 15, 17, 16, 18, 25]
for theoretical aspects, and see [3, 5, 26] for applications to real-world net-
works (such as traffic congestions in a road network). Gromov-hyperbolicity
is a global measure in the sense that it assigns one scalar value to the entire
network.

A second notion of shape of a network can be obtained by extending
Forman’s discretization of Ricci curvature for (polyhedral or CW) complexes
(the “Forman-Ricci curvature”) [19] to networks. Informally, the Forman-
Ricci curvature is applied to networks by topologically associating compo-
nents (sub-networks) of a given network with higher-dimensional objects.
The topological association itself can be carried out several ways. Although
formulated relatively recently, there are already a number of papers investi-
gating properties of these measures [20, 21, 22, 14, 23, 4].

In contrast to both of the above approaches, the network curvature con-
sidered in this paper is obtained via a discretization of curvatures from Rie-
mannian manifolds to the network domain to capture metric properties of
the manifold that are different from those captured by the Forman-Ricci
curvature. More concretely, the network curvature studied in this paper is
Ollivier’s earth-mover’s distances based discretization of Ricci curvature (the
“Ollivier-Ricci curvature”) [10, 11, 12, 13]. For some theoretical comparison
between Ollivier-Ricci curvature and Forman-Ricci curvature over graphs,
see [4].

1.3. Basic definitions and notations

Let G = (V,E) be a given undirected unweighted graph. The following
notations related to a graph G will be used subsequently:

▷ NbrG(x) = { y | {x, y} ∈ E} and degG(x) = |NbrG(x) | are the set of
neighbors and the degree, respectively, of a node x.

▷ distG(x, y) is the distance (i.e., number of edges in a shortest path)
between the nodes x and y in G.

The following standard notations and terminologies from the field of approx-
imation algorithms are used to facilitate further discussions:

4

▷ OPT is the value of the objective of an optimal solution of the problem
under discussion.

▷ A (α, ε)-estimate for a minimization problem under discussion is a
polynomial-time algorithm that produces a solution whose objective
value β satisfies OPT ≤ β ≤ αOPT+ ε. A (1, ε)-estimate is also called
an additive ε-approximation.

2. Ollivier-Ricci curvatures: intuition, definitions and simple bounds

To define the Ollivier-Ricci curvatures for the components of a graph,
we first need to use the following standard definition of the earth mover’s
distance (also called the L1 Wasserstein distance) in the specific context of
a edge-weighted complete bipartite graph.

Definition 1 (Earth mover’s distance (Emd) over a edge-weighted
complete bipartite graph). Let H = (VL, VR, w) be an edge-weighted
complete bipartite graph with w : VL × VR 7→ R+ ∪ {0} being the edge-weight
function, and let PL : VL 7→ R+ and PR : VR 7→ R+ be two arbitrary distribu-
tions over the nodes in VL and VR, respectively. The earth mover’s distance
corresponding to the distributions PL and PR, denoted by EmdH(PL,PR) (or
simply Emd), is the value of the objective function of an optimal solution of
the following linear program that has a variable zx,y for every pair of nodes
x ∈ VL and y ∈ VR:

minimize
∑

x∈VL

∑
y∈VR

w(x, y) zx,y

subject to
∑

y∈VR
zx,y = PL(x), for all x ∈ VL∑

x∈VL
zx,y = PR(y), for all y ∈ VR

zx,y ≥ 0, for all x ∈ VL and y ∈ VR

(1)

Let G = (V,E) be an undirected unweighted graph. Consider an edge
e = {u, v} ∈ E. Define the edge-weighted complete bipartite graph
Gu,v = (LG

u,v, R
G
u,v, w

G
u,v) as follows:

▷ LG
u,v = {u} ∪ NbrG(u),

▷ RG
u,v = {v} ∪ NbrG(v), and

5

▷ the edge-weight function wG
u,v is given by wG

u,v(u
′, v′) = distG(u

′, v′) for
all u′ ∈ LG

u,v, v
′ ∈ RG

u,v.

Let PG
u and PG

v denote the two uniform distributions over the nodes in LG
u,v

and RG
u,v, respectively, i.e.,

∀x ∈ LG
u,v : PG

u (x) =
1

1 + degG(u)

∀x ∈ RG
u,v : PG

v (x) =
1

1 + degG(v)

We can now state the precise definitions of the curvatures used in this paper.

▷ The Ollivier-Ricci curvature of the edge e = {u, v}e = {u, v}e = {u, v} of G is defined
as [10]4

CG(e)
def
= CG(u, v) = 1− EmdGu,v(PG

u ,PG
v) (2)

▷ The Ollivier-Ricci curvature of a node vvv is calculated by taking
the average of the Ollivier-Ricci curvatures of all the edges incident on
v, i.e.,

CG(v) =
1

degG(v)

∑
e={u,v}∈E

CG(e) (3)

▷ Finally, the average Ollivier-Ricci curvature of a graph GGG is cal-
culated by taking the average of the Ollivier-Ricci curvatures of all the
edges in G, i.e.,

Cavg(G) =
1

|E|
∑
e∈E

CG(e) (4)

4For this paper, it is crucial to note that the computation of CG(e) requires only the
value of EmdGu,v

(PG
u ,PG

v) and does not require an explicit enumeration of the solution
(variable values) of the linear program (1). This distinction is important in the context
of designing efficient local algorithms. For example, given a graph G with n nodes in
which the maximum degree of any node is O(1) and a constant ε > 0, one can compute
a number that is an additive εn-approximation of the size of maximum matching of G
in O(1) time in expectation [27], but of course if we were required to output an actual
maximum matching we would take at least Ω(n) time.

6

For easy quick reference, we explicitly write below the version of the linear
program in (1) as used in the calculation of CG(u, v):

minimize
∑

x∈{u}∪NbrG(u)

∑
y∈{v}∪NbrG(v) distG(x, y) zx,y

subject to∑
y∈{v}∪NbrG(v) zx,y =

1
1+degG(u)

, for all x ∈ {u} ∪ NbrG(u)∑
x∈{u}∪NbrG(u) zx,y =

1
1+degG(u)

, for all y ∈ {v} ∪ NbrG(v)

zx,y ≥ 0, for all x ∈ {v} ∪ NbrG(v) and y ∈ {u} ∪ NbrG(u)

(LP-CG)

Assuming degG(u) ≤ degG(v), the linear program in (LP-CG) has degG(u)×
degG(v) = O((degG(v))

2) variables and degG(u) + degG(v) ≤ 2 degG(v) con-
straints. The best time-complexity for solving the linear program in (LP-CG)
can be estimated as follows:

▷ Based on the state-of-the-art algorithms for solving linear program
for this situation [28], an exact solution of (LP-CG) can be found in
O((degG(v))

5/2) time.

▷ Based on the results in publications such as [29, 30], an additive ε-
approximation of (LP-CG) can be obtained in Õ

(
1
ε2
degG(u) degG(v)

)
=

Õ
(

1
ε2
(degG(v))

2
)
time5.

The following observation is crucial for this paper.

Observation 1. The values distG(x, y) in the linear program in (LP-CG)
satisfy the property that distG(x, y) ∈ {0, 1, 2, 3}.

It is not difficult to see that Observation 1 implies 0 ≤ EmdGu,v(PG
u ,PG

v) ≤
3 and therefore −2 ≤ CG(e) ≤ 1. For computing CG(u, v) and related quanti-
ties, we assume that degG(u) ≤ degG(v)degG(u) ≤ degG(v)degG(u) ≤ degG(v) without any loss of generality
throughout the rest of the paper. Moreover, we also assume without
loss of generality that degG(v) = ω(1)degG(v) = ω(1)degG(v) = ω(1) since otherwise EmdGu,v(PG

u ,PG
v)EmdGu,v(PG

u ,PG
v)EmdGu,v(PG

u ,PG
v)

can be computed in O(1)O(1)O(1) time.

5The standard Õ notation in algorithmic analysis hides poly-logarithmic terms, e.g.,
terms like log4/3 degG(v).

7

2.1. Intuition behind the discretization resulting in definition of CG(e)

For an intuitive understanding of the definition of CG(e), we recall the
notion of Ricci curvature for a smooth Riemannian manifold. The Ricci
curvature at a point x in the manifold along a direction can be thought of
transporting a small ball centered at x along that direction and measuring
the “distortion” of that ball due to the shape of the surface by comparing
the distance between the two small balls with the distance between their
centers. In the definition of CG(e), the role of the direction is captured by
the edge e = {u, v}, the roles of the balls at the two points are played by
the two closed neighborhoods LG

u,v and RG
u,v, and the role of the distance

between the two balls is captured by the earth mover’s distance between the
two distributions PG

u and PG
v over the nodes in LG

u,v and RG
u,v on the metric

space of shortest paths in G. For further intuition, see publications such
as [10]. The Forman-Ricci curvature also assigns a number to each edge of
the given graph, but the numbers are calculated in quite a different way from
that in the Ollivier-Ricci curvature to capture different metric properties of
the manifold.

2.2. Equivalent reformulation of linear program (LP-CG) when degG(u) =
degG(v)

The following claim holds based on results in prior publications such
as [31, 32]. For the convenience of the reader, we provide a self-contained
proof in the appendix.

Fact 1. [31, 32] If degG(u) = degG(v) then the following claims are true
regarding some optimal solution of the linear program (LP-CG):

(i) The values of the variables zu′,v′ are either 0 or 1
degG(v)

.

(ii) The edges in
{
{u′, v′} | zu′,v′ =

1
degG(v)

}
form a minimum-weight perfect

matching in Gu,v that uses the zero-weight edges {u′, u′} for all u′ ∈
{u, v} ∪

(
NbrG(u) ∩ NbrG(v)

)
.

Based on Fact 1, for the case when when degG(u) = degG(v) an op-
timal solution of the linear program (LP-CG) can be obtained by finding
a minimum-weight perfect matching for a complete edge-weighted bipartite
graph H = (L,R,w) where

▷ L = NbrG(u) \
(
NbrG(v) ∪ {v}

)
,

8

▷ R = NbrG(v) \
(
NbrG(u) ∪ {u}

)
, and

▷ the edge-weight function w : L × R 7→ {1, 2, 3} is given by w(x, y) =
distG(x, y).

Note that |L| = |R| = degG(v)− 1− |NbrG(u) ∩ NbrG(v)|. Letting M(H) ∈
{|R|, |R|+1, . . . , 3 |R|} denote the total weight of a minimum-weight perfect
matching of H, we have

CG(e) = 1− M(H)

1 + degG(v)

Proposition 1. An additive ε|R|-approximation of M(H) implies an addi-
tive ε-approximation of CG(e), and vice versa.

Proof. This follows from the facts that |R| ≤ M(H) ≤ 3 |R| and degG(v) >
|R|.

2.3. Some simple bounds for EmdGu,v(Pu,Pv) and CG(e)

We use a calculation similar to the one used in [31]. Extend the distri-
butions PG

u and PG
v to PG′

u and PG′
v over LG

u,v ∪RG
u,v by letting PG′

u (x) = 0 for

x ∈ Ru,v\Lu,v and PG′
v (x) = 0 for x ∈ Lu,v\Ru,v. For notational simplicity, let

k = NbrG(u) \ NbrG(v), ℓ = NbrG(u) ∩ NbrG(v), and m = NbrG(v) \ NbrG(u),
thus degG(u) = k + ℓ and degG(v) = m+ ℓ. By straightforward calculation,
the total variation distance (TVD) between P′

u and P′
v is

||P′
u − P′

v ||TVD = 1
2
×

(
k−1

k+ℓ+1
+ m−1

m+ℓ+1
+ (ℓ+ 2)×

(
1

k+ℓ+1
− 1

m+ℓ+1

))
= 1− ℓ+2

deg(v)+1

Since 1 ≤ distG(u
′, v′) ≤ 3 for all u′, v′ ∈ LG

u,v ∪ RG
u,v, u

′ ̸= v′, by standard
relationships between Emd and TVD (e.g., see [33]) it follows that ||P′

u −
P′
v ||TVD ≤ EmdGu,v(Pu,Pv) ≤ 3× ||P′

u − P′
v ||TVD, thereby giving

−2 +
3ℓ+ 6

degG(v) + 1
≤ CG(e) ≤

ℓ+ 2

degG(v) + 1

Furthermore, ifG has no cycles of length 5 or less containing e then distG(u
′, v′) =

3 for all u′, v′ ∈ LG
u,v ∪RG

u,v and ℓ = 0 giving CG(e) =
2

degG(v)+1
.

9

3. Synopsis of our results

The main goal of this paper is to study algorithmic complexities of efficient
computation of our network curvature measures. To this effect, our main
contributions are threefold:

▷ We relate various cases of our curvature computation problems via fine-
grained reduction.

▷ We formalize the computational aspects of the curvature computation
problems in suitable frameworks so that they can be studied by re-
searchers in local algorithms.

▷ We provide the first known lower and upper bounds on queries for
query-based algorithms for the curvature computation problems in our
local algorithms framework. En route, we also illustrate a localized
version of our fine-grained reduction.

A summary of our contribution in the rest of this paper is the following.

❑ In Section 4 we relate via Theorem 3 the minimum weight perfect matching
problem on complete bipartite graphs with ternary weights to computing
CG(e) via fine-grained reduction.

❑ In Section 5 we present our results for computing CG(e) in the framework
of local algorithms.

◦ In Sections 5.1 – 5.2 we provide details of the query models relevant to
our case and prior related works on these query models.

◦ In Sections 5.4 – 5.6 Theorem 4, Theorem 5 and Theorem 6 provide
query bounds for exact or approximate calculations of the curvature
using the query models. The bounds are succinctly summarized in
Section 5.3 via Table 1.

❑ In Section 6 Lemma 8 provides our results for computing the Ollivier-Ricci
curvature CG(v) for nodes and for computing the average Ollivier-Ricci
curvature Cavg(G) for graphs using “black box” additive approximation
algorithms for CG(e) and neighbor queries.

❑ We conclude in Section 7 with some possible future research problems.

10

4. Fine-grained reduction: relating minimum weight perfect match-
ing on complete bipartite graphs to computing CG(e)

Frameworks for characterizing polynomial-time solvable problems via fine-
grained reduction have garnered considerable attention in recent years (e.g.,
see [34] for a survey and [35, 36, 37] for a few well-known results in this
direction). Essentially these fine-grained reductions are used to show that,
given two problems A and B and two constants a, b > 0, if an instance IB of
size |IB| of problem B can be solved in O(|IB|b) time then an instance IA of
size |IA| of problem A can be solved in O(|IA|a) time.

To begin, we first formally state the minimum weight perfect matching
problem on complete bipartite graphs with ternary edge weights.

Definition 2 (minimum weight perfect matching on complete bipar-
tite graphs with ternary weights (Mpmct)). Given a complete edge-
weighted bipartite graph H = (A,B,w) where |A| = |B| and w : A × B 7→
{1, 2, 3} is the edge-weight function, find the value of |M|

|A| where |M| is the

value (sum of weights of edges) in a minimum-weight perfect matching M of
H.

For Mpmct, exact solution takes O(|A|5/2) time [28], and an ε-additive
approximation takes Õ

(
1
ε2
|A|2

)
time. The following theorem relatedMpmct

to the problem of computing a solution of the linear program in (LP-CG) via
a fine-grained reduction.

Theorem 3. Suppose that we have an algorithm A that provides (α, ε)-
estimate for Mpmct in O(|A|2+µ) time for some µ ≥ 0 for a given input
instance H = (A,B,w).

Then, there exists an algorithm A< that provides the following estimates
for the linear program in (LP-CG) in O(degG(v)

2+µ) time:

(i) (α, ε)-estimate if degG(v)+1 is an integral multiple of degG(u)+1, and

(ii) (α, ε + δ)-estimate (for δ > 0) provided δ satisfies at least one of the
following conditions:

(a) degG(u) ≤ (δ/3)× degG(v), or

(b) degG(u) ≥ (1− (δ/3))× degG(v).

11

Remark 1. An illustration of the result in Theorem 3 is as follows. Suppose
that we can solve Mpmct exactly in O(|A|2.4) time (implying α = 1 and ε =

0). Then, such an algorithm can be used to obtain a degG(v)
−1/2-additive ap-

proximation of (LP-CG) (i.e., δ = degG(v)
−1/2) in O((degG(v))

2.4) time pro-

vided at least one of the following conditions hold: (a) degG(u) ≤
√

degG(v)

3
,

(b) degG(u) ≥ degG(v)−
√

degG(v)

3
, or (c) degG(v) + 1 is an integral multiple

of degG(u) + 1. Such a result will improve the best possible running time for

a degG(v)
−1/2-additive approximation of (LP-CG).

Proof. Let NbrG(u)∪{u} = {x1, . . . , xdeg(u)+1}, and NbrG(v)∪{v} = {y1, . . . , ydeg(v)+1},
where xdegG(u) = ydegG(v) = u and xdegG(u)+1 = ydegG(v)+1 = v. Let degG(v) +
1 = a (degG(u) + 1) + b for two integers a ≥ 1 and 0 ≤ b < degG(u) + 1.
We construct a new graph G′

u,v = (LG′
u,v, R

G′
u,v, w

G′
u,v) from Gu,v in the following

manner:

▷ We set RG′
u,v = RG

u,v.

▷ Every node xi is replaced by a nodes x1
i , . . . , x

a
i in LG′

u,v. Moreover, we

have b additional “special” nodes r1, . . . , rb in LG′
u,v. Note that after

these modifications |LG′
u,v| = |RG′

u,v| = 1 + degG(v).

▷ We set the new weights wG′
u,v as follows:

wG′

u,v(x
j
i , yℓ) = distG(xi, yℓ) for i ∈ {1, . . . , degG(u) + 1},

j ∈ {1, . . . , a}, and ℓ ∈ {1, . . . , degG(v) + 1}
wG′

u,v(ri, yℓ) = 3 for i ∈ {1, . . . , b}, and ℓ ∈ {1, . . . , degG(v) + 1}

▷ The two new probability distributions Pu
G′

u,v and Pv
G′

u,v over the nodes in
LG′
u,v andRG′

u,v are as follows: Pv
G′

u,v(x) = PG
v (x) for all x ∈ {y1, . . . , ydegG(v)+1},

and Pu
G′

u,v(x) = 1
1+degG(v)

for all x ∈
⋃

i,j{x
j
i} ∪ {r1, . . . , rb}.

Since |LG′
u,v| = |RG′

u,v| = 1 + degG(v), using the reformulations as discussed in
Section 2.2 it follows that G′

u,v is a valid instance H = (A,B,w) of Mpmct

with |A| = degG(v)+1 and w(p, q) = wG′
u,v(p, q). Note that building the graph

G′
u,v takes O((degG(v))

2) time, and algorithm A provides a (α, ε)-estimate

for EmdG′
u,v
(Pu

G′
u,v ,Pv

G′
u,v) in O((degG(v))

2+µ) time. Thus, to complete the
proof it suffices to show that

EmdGu,v(PG
u ,PG

v) ≤ EmdG′
u,v
(Pu

G′
u,v ,Pv

G′
u,v) ≤ EmdGu,v(PG

u ,PG
v) + δ

12

The linear program for EmdG′
u,v
(Pu

G′
u,v ,Pv

G′
u,v) is a straightforward modified

version of (LP-CG) with appropriate change of subscripts of the variables.
We will refer to this modified version by (LP-CG)

′.
We can show EmdG′

u,v
(Pu

G′
u,v ,Pv

G′
u,v) ≤ EmdGu,v(PG

u ,PG
v) + δ as follows.

Consider an optimal solution of the linear program (LP-CG) of value EmdGu,v(PG
u ,PG

v).
From this solution we can create a feasible solution of the linear program (LP-CG)

′

in the following manner.

▷ For i = 1, . . . , degG(u) + 1 and j = 1, . . . , degG(v) + 1, if zxi,yj > 0
then distribute the value of zxi,yj among the corresponding variables
of (LP-CG)

′ as follows:

• Repeatedly select a variable from {x1
i , . . . , x

a
i }, say xℓ

i , such that

xℓ
i < 1

1+degG(v)
. Increase xℓ

i to min
{

1
(1+degG(v))

, zxi,yj

}
, and de-

crease zxi,yj by the amount by which xℓ
i was increased. Note that

wG′
u,v(xi, yj) = distG(xi, yj). Repeat this step until zxi,yj becomes

zero or no such variable xℓ
i exists.

• If zxi,yj > 0 after the previous step ends then execute the following
steps. Repeatedly select a variable from {r1, . . . , rb}, say rℓ, such

that rℓ < 1
1+degG(v)

. Increase rℓ to min
{

1
(1+degG(v))

, zxi,yj

}
, and

decrease zxi,yj by the amount by which rℓ was increased. Note

that wG′
u,v(xi, yj) ≤ distG(xi, yj) + 3. Repeat this step until zxi,yj

becomes zero.

A straightforward calculation show that EmdG′
u,v
(Pu

G′
u,v ,Pv

G′
u,v) ≤ EmdGu,v(PG

u ,PG
v)+

3b
degG(v)+1

. Therefore it suffices if we have 3b
deg(v)+1

≤ δ. If degG(u) + 1 is an

integral multiple of degG(v) + 1 then b = 0 and this proves the claim in (i).
Otherwise, since b < degG(u) + 1 ≤ degG(v) + 1 and b ≤ (degG(v) + 1) −
(degG(u) + 1) = degG(v)− degG(u) we get

degG(u) ≤ (δ/3)× degG(v) ⇒ b < degG(u) + 1 ≤ (δ/3)× degG(v) + 1

⇒ 3b
deg(v)+1

< δ×degG(v)+1
deg(v)+1

≤ δ

degG(u) ≥ (1− (δ/3))×degG(v) ⇒ degG(v)−degG(u) ≤ (δ/3)×degG(v)

⇒ 3b
deg(v)+1

≤ δ×degG(v)
deg(v)+1

< δ

The proof of EmdGu,v(PG
u ,PG

v) ≤ EmdG′
u,v
(Pu

G′
u,v ,Pv

G′
u,v) is similar.

13

5. Computing CG(e) in the framework of local algorithms

By now designing local algorithms for efficient solution of graph-theoretic
problems has become a well-established research area in theoretical computer
science and data mining with a large body of publications (e.g., see [38, 27,
39]). A basic idea behind many of these algorithms is to suitably sample a
small “local” neighborhood of the graph to infer the value of some non-local
property of a graph. Frameworks for graph-theoretic applications of local
algorithms hinges on the following two premises:

▷ We assume that our algorithm has a list of all nodes in the graph
in a suitable format that allows for sampling a node based on some
distribution.

▷ The edges and their weights are not known to our algorithm a priori.
Instead, the algorithm uses a “query” on a node or a pair of nodes
to discover an edge and its weight. Different query models for local
algorithms arise based on what kind of queries are allowed. Later in
Section 5.2 we will provide details of query models that are applicable
to our problems.

▷ The performance of the algorithm is measured by the number of queries
used.

Additional notations and conventions

For the case when degG(u) = degG(v), we will use the reformulations of
the linear program (LP-CG) as discussed in Section 2.2 and the associated
notations contained therein. We will use the following additional notations
and conventions related to the graph H = (L,R,w) mentioned in Section 2.2:

▷ |L| = |R| = n, L = {u1, . . . , un} and R = {v1, . . . , vn}.

▷ For j ∈ {1, 2} degH,j(x) denotes the number of edges of weight j inci-
dent on node x in a graph H.

Note that HHH has 2n2n2n nodes. Moreover, for any edge-weighted graph F =
(V,E,w) with w : E 7→ R, wt- degF (u) =

∑
v:{u,v}∈E w(u, v) denotes the

weighted degree of node u in F , and M(F) denotes the total weight of a
minimum-weight perfect matching of F .

14

5.1. Prior related works

Designing sublinear time and sketching algorithms for the general earth
mover’s distance on the shortest path metric for arbitrary graphs have been
investigated in prior research papers such as [40, 41]. In particular, for an
edge-weighted tree with W being the maximum weight of any edge and for
any two unknown probability distributions on the nodes, the authors in [40]
show that an estimate of the Emd with ε-additive error can be achieved by
using Õ(W

2n2

ε2
) samples from the two distributions and observes that their

algorithm is optimal up to polylog factors. To the best of our knowledge,
local algorithms for computing the Ollivier-Ricci curvatures of a graph have
not been investigated explicitly before.

5.2. Query models for edge-weighted complete bipartite graphs

Two standard query models that appear in the local algorithms literature
for unweighted graphs (e.g., see [38]) are as follows: the node-pair query
model (the query is a pair of nodes and the answer is whether an edge between
them exists or not), and the neighbor query model (the query is a node and
the answer is a random not-yet-explored adjacent node if it exists). Since
our given graph is an edge-weighted complete bipartite graph H = (L,R,w)
via the reformulation described in Section 2.2, natural extensions lead to the
following query models for our case:

▷ weighted node-pair query model: the query is a pair of nodes x, y
and the answer is the weight w(x, y).

▷ neighbor query model: the query is a node x and the answer is a
random “not-yet-explored” node adjacent to x (if no such node exists
then the query returns a special symbol to indicate that). Note that
such a query does not give any useful information (beyond simply pick-
ing a node uniformly at random) for the graph H since it is a complete
graph. We will only use this type of query for the entire given graph G
for computing CG(v) and Cavg(G) in Section 6.

▷ weighted neighbor query model: the query is (x, y) where x is a
node and y is a number, and the answer is a random “not-yet-explored”
node z such that w(x, z) = y (if no such node exists then the query
returns a special symbol to indicate that).

15

▷ weighted selective degree query model: the query is (x, y) where
x is a node and y is a number, and the answer is the number of edges
of weight y that are incident on x.

5.3. Summary of our query bounds on computing CG(e)

For the convenience of the reader, we summarize our query bounds for
computing CG(e) in Table 1. Subsequent sub-sections in this section provide
proofs of these bounds.

query additive expected result(s) additional
types approx. # of queries remark(s)

lower
bounds


weighted node-pair

exact
computation

> (degG(v)−1)2

6
Theorem 4(a)-(i)

①weighted neighbor
exact

computation
> degG(v)−1

2
Theorem 4(a)-(ii)

weighted node-pair 2− ε1 > degG(v)−1
6

Theorem 4(b)

upper
bounds



weighted neighbor 1 + ε2 O(1) Theorem 5(a) ②

weighted neighbor 1
2
+ ε2 O(1) Theorem 5(b) ③

weighted neighbor 1 + ε2 + δ O(1) Corollary 7(i) ④

weighted neighbor 1
2
+ ε2 + δ O(1) Corollary 7(ii) ⑤

① even if degH,1(x) ≤ 1, degH,2(x) = 0 for every node x, and any number of weighted
selective degree queries are allowed.

② if degH,1(x) = O(1) for every node x, and degG(u) = degG(v).

③ if both degH,1(x) = O(1) and degH,2(x) = O(1) for every node x, and degG(u) = degG(v).

④ if degH,1(x) = O(1) for every node x, and degG(u) ≥ (1− (δ/3))× degG(v).

⑤ if both degH,1(x) = O(1) and degH,2(x) = O(1) for every node x, and degG(u) ≥ (1− (δ/3))× degG(v).

Table 1: A summary of query bounds for computing CG(e); ε1, ε2, δ are arbitrary constants
satisfying 0 < ε1 ≤ 2 and ε2, δ > 0.

5.4. Lower bounds on number of queries for computing CG(e)

Note that for query lower bounds it suffices to prove the lower
bound for complete edge-weighted bipartite graph reformulations
of the problem as discussed in Section 2.2. Any complete bipartite
graph H = (L,R,w) used in our lower bound proofs will satisfy L ∩ R = ∅,
thereby implying n = degG(v)− 1n = degG(v)− 1n = degG(v)− 1. Since we provide our inputs in the form

16

of such graphs H, we first need to show that there exists a graph G with the
edge {u, v} such that Gu,v = H in the notations used in Section 2.2.

Proposition 2. Given any complete edge-weighted bipartite graph H = (L,R,w)
where w : L × R 7→ {1, 2, 3} there exists a graph G = (V,E) such that
Gu,v = H.

Proof. Start with the edge {u, v} in G, connect the nodes u1, . . . , un to u, and
connect the nodes v1, . . . , vn to v. For every pair of nodes (ui, vj) ∈ L × R,
if w(uj, vj) = 1 then add the edge {ui, vj} to G. Otherwise if w(uj, vj) = 2
then add a new node xi,j to G and add the two edges {ui, xi,j} and {xi,j, vj}
to G.

A common thread in our lower bound proofs is the following easy but
crucial observation.

Observation 2. Suppose that we have two separate classes of (complete edge-
weighted bipartite, as described in Section 2.2) graphs G1 and G2, two numbers
1 ≤ α < β ≤ 3, and an algorithm A such that the following holds:

▷ Every graph H ∈ G1 satisfies n ≤ M(H) ≤ αn.

▷ Every graph H ∈ G2 satisfies β n ≤ M(H) ≤ 3n.

▷ Given a graph from G1 ∪ G2, algorithm A cannot determine in which
class the given graph belongs.

Then, using Proposition 1, it follows that algorithm A cannot provide an
additive (β − α− ε)-approximation of CG(e) for any constant ε > 0.

Our proofs in Theorem 4 for lower bounds on the number of queries will
use the well-known Yao’s minimax principle for randomized algorithms [42].
Namely, we will construct two separate classes G1 and G2 of graphs and show
that any deterministic algorithm that picks graphs uniformly at random
from these two classes will need at least a certain number of queries, say q,
to be able to decide from which class the graph was selected with at least a
certain probability, say p. Then, the expected number of queries performed
by any deterministic algorithms on inputs drawn from the aforementioned
distribution is at least pq, and thus by the minimax principle the expected
number of queries for any randomized algorithm over all possible inputs is
also at least pq. Note that since our input instances are complete bipartite
graphs, two graphs are differentiated based on the assignments of weights to
all possible edges (see [38] for further elaborations on this point).

17

Theorem 4. Consider any local algorithm that is allowed to make an unlim-
ited number of weighted selective degree queries. Let Q be the expected number
of queries, excluding all weighted selective degree queries, performed by the
algorithm for computing CG(e). Then the following claims hold.

(a) Suppose that we want to compute CG(e) exactly. Then the following
bounds hold.

(i) Q > n2/6 if the queries used are weighted node-pair queries.

(ii) Q > n/6 if the queries used are weighted neighbor queries.

(b) For every 0 < ε < 2, any randomized algorithm computing an additive
(2 − ε)-approximation of CG(e) requires Q > n/6 weighted node-pair
queries.

Proof. All the bipartite graphs H = (L,R,w) in our proofs will satisfy that
degH,1(x) = 1 and degH,2(x) = 0 for every node x ∈ L ∪ R, and therefore
any number of weighted selective degree queries will provide no information
about the value of CG(e).

Proof of (a)

Corresponding to every node pair (ui, vj) with ui ∈ L and vj ∈ R, the
class G1 contains a graph in which w(ui, vj) = 1 and all other edges have
weight 3. The class G2 contains just one graph in which all edge weights are
set to 3. Note that the minimum weight of a perfect matching for each graph
in G1 is 3n − 2, whereas the minimum weight of a perfect matching for the
graph in G2 is 3n.

Proof of (a)-(i)

Suppose that our algorithm has already made t queries (edges) e1, . . . , et
for t < n2 − 1 with w(e1) = · · · = w(et) = 3 and let et+1 be the next
query. Consider a graph G1 ∈ G1 that is consistent with the first t queries
with w(et+1) = 1. Note that there is exactly one such graph in G1. Since
there are at least n2 − (t+ 1) node pairs (edges) that have not been queried
after the (t + 1)th query, we have at least n2 − (t + 1) distinct graphs in G1

with w(et+1) = 3 that is consistent with the first t queries (set the weight of
exactly one of the n2 − (t + 1) edges to 1 and the weight of the remaining
edges to 3). Since graphs are selected uniformly at random from G1 it follows
that Pr[w(et+1) = 1 |w(e1) = · · · = w(et) = 3] ≤ 1

n2−(t+1)
. Summing over all

t, we get

18

Pr[number of queries needed is at least t+ 1]

= 1− Pr[one of the t queries contain an edge of weight 1]

≥ 1− t
n2−(t+1)

Putting t = n2/3, the probability that “the number of queries is at least
1 + n2/3” is at least 1/2.

Proof of (a)-(ii)

Suppose that our algorithm has already made t queries (nodes, weights)
(x1, y1), . . . , (xt, yt) ∈ (L∪R)×{1, 2, 3} for t < n−1. Let e1 = {x1, x

′
1}, . . . , et =

{xt, x
′
t} be the answers (edges) to these queries with w(e1) = · · · = w(et) = 3

and let (xt+1, yt+1) be the next query that reveals the weight of an edge
et+1 = {xt+1, x

′
t+1}. Consider a graph G1 ∈ G1 that is consistent with the

first t queries with w(et+1) = yt+1 = 1. Note that there is exactly one such
graph in G1. Since there are at least n− (t+1) nodes in each of L and R that
have not been queried after the (t+1)th query, we have at least (n− (t+1))2

distinct graphs in G1 with w(et+1) = 3 that is consistent with the first t queries
(set the weight of exactly one edge among these nodes to 1 and the weights
of all remaining edges to 3). Since graphs are selected uniformly at random
from G1 it follows that Pr[w(et+1) = 1 |w(e1) = · · · = w(et) = 3] ≤ 1

(n−(t+1))2
.

Summing over all t, we get

Pr[number of queries needed is at least t+ 1]

= 1− Pr[one of the t queries contain an edge of weight 1]

≥ 1− t
(n−(t+1))2

Putting t = n/2, the probability that “the number of queries is at least 1+n/2”
is at least 1− 2

n
.

Proof of (b)

Corresponding to each of the possible n! perfect matchings, the class G1

contains a graph in which the edges in the matching have weight 1 and all
other non-matching edges have weight 3. The class G2 contains just one
graph in which all edge weights are set to 3. Note that the minimum weight
of a perfect matching for each graph in G1 is n, whereas the minimum weight
of a perfect matching for the graph in G2 is 3n. Suppose that our algorithm
has already made t (edge) queries e1, . . . , et) for t < n−1 with w(e1) = · · · =
w(et) = 3 and let et+1 be the next (edge) query.

19

We first show that as long as t < n there exists at least one graph in G1

that is consistent with the weight assignments of the first t queries. Consider
a random perfect matching M = { {u1, vπ(1)}, . . . , {un, vπ(n)} } given by a
random permutation π of 1, . . . , n. The probability of the event Ej that the jth
query ej is in M is (n−1)!

n!
= 1/n. It follows that Pr[∧t

j=1Ej] = 1−Pr[∨t
j=1Ej] ≥

1 −
∑t

j=1 Pr[Ej] ≥ 1 − t
n
> 0 and therefore G1 contains at least one such

graph.
Assume without loss of generality that et+1 = (un, vn) and let M be a

perfect matching of the nodes in L and R, say M = { {u1, v1}, . . . , {un, vn} },
that is consistent with the first t queries, and includes et+1 as a matched edges
(note that w(u1, v1) = · · · = w(un, vn) = 1). If such a matching M does not
exist then Pr[w(un, vn) = 1 |w(e1) = · · · = w(et) = 3] = 0. Otherwise, note
that there are at least n−t nodes in each of L and R, say u1, . . . , un−t ∈ L and
v1, . . . , vn−t ∈ R, such that the edges (un, vj) and (uj, vn) for j = 1, . . . , n− t
have not been queried yet. For every such perfect matching M , we can then
construct a set SM of at least n−t distinct perfect matchings with w(et+1) = 3
that is consistent with the first t queries as follows: in the ℓth perfect matching
set w(uℓ, vℓ) = w(un, vn) = 3 and set w(un, vℓ) = w(uℓ, vn) = 1. It is also
easy to see that any two matchings from two different sets SM and SM ′ differ
in at least one edge. Since graphs are selected uniformly at random from G1

it follows that Pr[w(un, vn) = 1 |w(e1) = · · · = w(et) = 3] ≤ 1
n−t

. Summing
over all t, we get

Pr[number of queries needed is at least t+ 1]

= 1− Pr[any of the t queries contain an edge of weight 1]

> 1− t
n−(t−1)

Putting t = n/3, the probability that “the number of queries is at least 1+n/3”
is at least 1/2.

5.5. Upper bounds on number of queries for computing CG(e) when deg(u) =
deg(v)

The proofs in Theorem 4 do not use any edge of weight 2 and have at
most one edge of weight 1 incident on any node with the additional restric-
tion that these edges of weight 1 provide a unique matching for the nodes
that are end-points of these edges. In this section we show that if weighted
neighbor queries are allowed then O(1) expected number of queries will suf-
fice for a non-trivial additive approximation for a class of weighted complete

20

bipartite graphs that properly includes the instances generated by the proofs
in Theorem 4 (note that for the instances (graphs) generated by the proofs
in Theorem 4 we have degH,1(x) ≤ 1 and degH,2(x) = 0 for every node x).

Theorem 5. Assume that degG(u) = degG(v), and let d, ε > 0 be two fixed
constants. Then, using O(1) expected number of weighted neighbor queries6

we can obtain the following type of approximations for CG(e):

(a) an additive (1 + ε)-approximation when maxx{degH,1(x)} ≤ d, and

(b) an additive
(
1
2
+ ε

)
-approximation when maxx{degH,1(x)} ≤ d and

maxx{degH,2(x)} ≤ d.

Remark 2. Let m1, m2 and m12 be as defined in the proof of this theorem.
The bounds in Theorem 5 are tight in the sense that no algorithm that knows
only estimates of m1 (resp. estimates of m1,m2,m12) can provide better addi-
tive ratios for parts (a) (resp. (b)); see Fig. 1 (a)–(b). The example in Fig. 1
(c) shows that no algorithm can provide better than additive 2

3
-approximation

for the case in Theorem 5(b) if the estimate for m12 is not used.

mopt = 3nmopt = 3nmopt = 3n mopt = 2nmopt = 2nmopt = 2n

m1 = 0m1 = 0m1 = 0

weight 222 edge
missing edges are of weight 3

LLL RRR LLL RRR

(a)

n/2n/2n/2

n/2n/2n/2

mopt = 2nmopt = 2nmopt = 2n mopt =
3n
2mopt =

3n
2mopt =

3n
2

m1 = n
2 m2 = m12 = nm1 = n
2 m2 = m12 = nm1 = n
2 m2 = m12 = n

weight 111 edge
weight 222 edge

missing edges are of weight 3

LLL RRR LLL RRR

(b)

n/3n/3n/3

n/3n/3n/3

n/3n/3n/3

mopt =
7n
3mopt =

7n
3mopt =

7n
3 mopt =

5n
3mopt =

5n
3mopt =

5n
3

m1 =
n
3 m2 = 2n

3m1 =
n
3 m2 = 2n

3m1 =
n
3 m2 = 2n

3

weight 111 edge
weight 222 edge

missing edges are of weight 3

LLL RRR LLL RRR

(c)

Figure 1: (a) Example showing tightness of bounds in Theorem 5 when only estimate for
m1 is known. (b) Example showing tightness of bounds in Theorem 5 when estimates for
m1,m2,m12 are known; (c) Example showing that better than additive 2

3 -approximation
is not possible if only estimates for m1 and m2 are used for the case in Theorem 5(b).

6The constant in O(1) depends on d and ε.

21

Proof. Since degG(u) = degG(v) we can use the reformulations of the linear
program (LP-CG) outlined in Section 2.2. Let δ > 0 be a constant to be
fixed later. Let H1, H2 and H12 be the subgraphs of H induced by the edges
in H of weight 1, edges in H of weight 2, and edges in H of weights 1 and
2, respectively. Fix maximum-cardinality matchings M1, M2 and M12 of
H1, H2 and H12 having m1 n, m2 n and m12 n edges, respectively. Also, fix a
minimum-weight perfect matching Mopt of H of total weight mopt n, and let
mopt,ℓ n be the number of edges of weight ℓ ∈ {1, 2, 3} in Mopt. The following
inequalities will be useful during the rest of the proof:

mopt,1 ≤ m1, mopt,2 ≤ m2, mopt,3 ≥ 1−m12, m12 ≥ max{m1,m2},

mopt = mopt,1 + 2mopt,2 + 3(1−mopt,1 −mopt,2) = 3− 2mopt,1 −mopt,2

≥ 2− 2mopt,1 ≥ 2− 2m1

Let Ms be a perfect matching of H generated by taking all the edges (of
weight 1) in M1 and pairing the remaining nodes from L and R arbitrarily.
Note that the total weight ms n of the edges in Ms satisfies mopt ≤ ms

and ms ≤ m1 + 3(1 − m1) = 3 − 2m1; thus it follows that 3 − 2m1 ≥
mopt. Similarly, taking Ms to be a perfect matching of H of total weight
ms n generated by taking all the edges (of weight 2) in M2 and pairing the
remaining nodes from L and R arbitrarily we get mopt ≤ ms and ms ≤
2m2 + 3(1−m2) = 3−m2; thus it follows that 3−m2 ≥ mopt.

Our algorithm proceeds in two main steps. The first common step in our
algorithm for both (a) and (b) is to determine the set of nodes in L and
R from NbrG(u) and NbrG(v). This can be done by comparing the list of
nodes in NbrG(u) and NbrG(v) to identify all nodes in NbrG(u)∩NbrG(v) and
setting L = NbrG(u)\

(
NbrG(u)∩NbrG(v)

)
, R = NbrG(v)\

(
NbrG(u)∩NbrG(v)

)
.

Note that this step does not use any query at all. The remaining parts of
our algorithms will only use weighted neighbor queries (x, s) for x ∈ L ∪ R
and s ∈ {1, 2}.

Proof of (a)

Since maxv∈L∪R{degH1
(v)} ≤ d, then using the results of Yoshida et

al. [27] we can compute a number m̃1 using d
O(1/δ2)(1/δ)O(1/δ) = O(1) expected

number of queries such that m1 n− δ n ≤ m̃1 n ≤ m1 n. It is straightforward
to see that each query in Yoshida et al. [27] can be implemented by a weighted

22

neighbor query (x, 1) for some appropriate x ∈ L ∪ R. After using O(1) ex-
pected number of weighted neighbor queries to compute m̃1 n we output the
number ∆ = (3−2 m̃1) as our estimate for mopt. Note that ∆ ≥ (3−2m1) ≥
mopt, and ∆−mopt = (3− 2 m̃1)−mopt ≤ (3− 2m1) + 2 δ −mopt ≤ 1 + 2 δ.
Our proof is completed by taking δ = ε/2.

Proof of (b)

Since maxv∈L∪R{degH1
(v)} ≤ d and maxv∈L∪R{degH2

(v)} ≤ d, using the
results of Yoshida et al. [27] we can compute numbers m̃1, m̃2, and m̃12 using

(2d)O(1/δ2)(1/δ)O(1/δ) = O(1) expected number of queries such that mℓ n −
δ n ≤ m̃ℓ n ≤ mℓ n for ℓ ∈ {1, 2, 12}. It is straightforward to see that each
query in Yoshida et al. [27] can be implemented by a weighted neighbor
query (x, s) for some appropriate x ∈ L ∪R and s ∈ {1, 2}. We perform the
following case analysis to provide our estimate ∆ of mopt.

Case 1: m̃1 ≤ 1/4. Our estimate for mopt is ∆ = 3 − m̃2. Note that ∆ ≥
3−m2 ≥ mopt. For the additive error estimation, we have

∆−mopt = 3− m̃2 −mopt ≤ (3−m2 − 2m1) + 2m1 + δ −mopt

≤ (3−mopt,2 − 2mopt,1) + 2
(
1
4
+ δ

)
+ δ −mopt =

1
2
+ 3 δ

Case 2: m̃2 ≤ 1/2 or m̃1 ≥ 1/2 or m̃12 ≤ 3/4. Our estimate for mopt is ∆ =
3− 2 m̃1. Note that ∆ ≥ 3− 2m1 ≥ mopt. For the additive error bounds,
we have the following:

▷ If m̃2 ≤ 1/2 then ∆ −mopt = 3 − 2 m̃1 −mopt = (3 −m2 − 2m1) +
m2 + 2 δ−mopt ≤ (3−mopt,2 − 2mopt,1) + 1/2+ 3 δ−mopt ≤ 1

2
+ 3 δ.

▷ If m̃1 ≥ 1/2 then since the smallest possible total weight that any
perfect matching of H could have is achieved by taking all the m1 n
edges of weight 1 and the remaining (1−m1)n edges of weight 2 we
get mopt ≥ m1 + 2(1−m1) = 2−m1. Consequently,

∆−mopt ≤ (3− 2 m̃1)− (2−m1) ≤ 1−m1 + 2 δ ≤ 1
2
+ 2 δ

▷ If m̃12 ≤ 3/4 then since mopt,3 ≥ 1 − m12 the smallest possible total
weight that any perfect matching ofH could achieve is by takingm1 n
edges of weight 1, (1 −m12)n edges of weight 3, and the remaining
(m12 − m1)n edges of weight 2 we get mopt ≥ m1 + 2(m12 − m1) +
3(1−m12) = 3−m1 −m12. Consequently,

23

∆−mopt ≤ (3− 2 m̃1)− (3−m1 −m12) ≤ (m12 −m1) + 2 δ

≤ (3
4
+ δ − 1

4
) + 2 δ = 1

2
+ 3 δ

Case 3: when Cases 1 and Case 2 do not apply. For this case the fol-
lowing inequalities hold:

1/4 < m̃1 < 1/2 ⇒ 1/4 < m1 < 1/2 + δ, m̃2 > 1/2 ⇒ m2 > 1/2 + δ

m̃12 > 3/4 ⇒ m12 > 3/4

For this case, we use the following lower bound for mopt. Since mopt,3 ≥
1 − m12 the smallest possible total weight that any perfect matching of
H could have is achieved by taking m1 n edges of weight 1, (1 − m12)n
edges of weight 3, and the remaining (m12−m1)n edges of weight 2. This
implies mopt ≥ m1 + 2(m12 −m1) + 3(1−m12) = 3−m1 −m12.

Let α = max{m12− 2m1, 0}. Suppose that M12 contains m
′
1 ≤ m1 edges

of weight 1. Consider the following process: we start with the edges in
M12, remove m′

1 edges of weight 1 from it, add m1 edges of weight 1 from
M1 to it and finally remove (“knock out”) the edges of weight 2 that
share an end-point with the edges of M1 added to our collection. Since
m1 edges of weight 1 can knock out at most 2m1 edges of weight 2, it
follows that there are at least α “surviving” edges of weight 2 that do not
share any end-point with the edges in M1. We now have the following
two sub-cases.

Case 3.1: m̃1,2 ≤ 2 m̃1 + δ. Note that m̃1,2 ≤ 2 m̃1 + δ implies m1,2 ≤
2m1 + 2 δ. Our estimate for mopt is ∆ = 3 − 2 m̃1. Note that ∆ ≥
3− 2m1 ≥ mopt. For the additive error estimation, note that

∆−mopt ≤ (3− 2 m̃1)− (3−m1 −m12) ≤ m12 −m1 + 2 δ

≤ m1 + 4 δ < 1
2
+ 5 δ

Case 3.2: m̃1,2 > 2 m̃1 + δ. Our estimate for mopt is ∆ = 3− m̃1,2. Note
that m̃1,2 > 2 m̃1 + δ implies m1,2 > 2m1 + δ. Thus, for this case,
α = m12−2m1 > δ > 0. Let M′ be a perfect matching of H generated
by taking all the edges (of weight 1) in M1, the α surviving edges of
weight 2, and pairing the remaining nodes from L and R arbitrarily.
Then, the total weight m′ n of the edges in M′ satisfies m1 + 2(m12 −
2m1) + 3(1 − (m1 + (m12 − 2m1))) = 3 − m12 ≥ m′ ≥ mopt, and it

24

follows that ∆ ≥ 3 − m1,2 ≥ mopt. For the additive error estimation,
note that

∆−mopt ≤ (3− m̃1,2)− (3−m1 −m12) ≤ m1 + δ < 1
2
+ 2 δ

In all cases, setting δ = ε/5 provides an additive
(
1
2
+ ε

)
-approximation.

5.6. Upper bounds on number of queries for computing CG(e) when deg(u) ̸=
deg(v) using “localized” fine-grained reduction

Theorem 5 provides non-trivial approximation of CG(e) when degG(u) =
degG(v). In this section, we show that a “localized” version of the fine-
grained reduction used in Theorem 3 can be applied to extend these local
approximation algorithms to some cases when degG(u) and degG(v) are not
necessarily equal. Such a localized version of the fine-grained reduction is
not allowed to construct the reduction explicitly, but instead the details of
the reduction need to be revealed incrementally to the local algorithm on a
“need-to-know” basis to simulate the queries of the local algorithm on the
graph constructed by the fine-grained reduction. The overall simulation is
summarized in Theorem 6.

Theorem 6 (Computing CG(e)CG(e)CG(e) via localized fine-grained reduction).
Suppose that we have an algorithm B= that provides an (α, ε)-estimate for
CG(e) when degG(u) = degG(v) using t queries q′1, . . . , q

′
t when each query q′i

is either a weighted node-pair query, a weighted neighbor query or a weighted
selective degree query.

Then, letting δ > 0 denote any constant, we can design an algorithm B<

for the case when degG(u) ̸= degG(v) using B= with the following properties:

(a) Corresponding to each query q′i, B< performs at most one weighted
selective degree query and at most one additional query of the same
type as q′i on Gu,v.

(b) B< provides an (α, ε)-estimate for CG(e) if degG(u) + 1 is an integral
multiple of degG(v) + 1.

(c) B< provides an (α, ε+δ)-estimate for CG(e) if either degG(u) ≤ (δ/3)×
degG(v) or degG(u) ≥ (1− (δ/3))× degG(v).

25

Corollary 7. If degG(u) ≥ (1 − (δ/3)) × degG(v) for some constant δ > 0
then maxx{degGu,v ,1(x)} = O(1) (respectively, maxx{degGu,v ,2(x)} = O(1))
implies maxx{degG′

u,v ,1
(x)} = O(1) (respectively, maxx{degG′

u,v ,2
(x)} = O(1)),

and thus each weighted selective degree query for the weight 1 (respectively,
for the weight 2) can be trivially simulated by O(1) weighted neighbor queries
for the weight 1 (respectively, for the weight 2) on G′

u,v. Thus, combining
Theorem 6 with the approximations in Theorem 5 gives us algorithms of the
following types for the case when degG(u) ̸= degG(v):

(i) additive (1 + ε+ δ)-approximation using O(1) weighted neighbor queries7

if maxx{degH,1(x)} = O(1) and degG(u) ≥ (1− (δ/3))× degG(v),

(ii) additive
(
1
2
+ ε+ δ

)
-approximation using O(1) weighted neighbor queries7

if maxx{degH,1(x)} = O(1), maxx{degH,2(x)} = O(1), and degG(u) ≥
(1− (δ/3))× degG(v).

Proof. We will reuse the notations and the reduction used in the proof of
Theorem 3; in particular in those notations the graph H is also the graph
Gu,v. Our algorithm B< has a list of nodes in the graph G′

u,v and also the
numbers a and b. We show next how the value of a query q′i on G′

u,v can be
obtained from the values of a collection Qi of (at most two) queries on Gu,v

by B<.

▷ Case 1: q′iq
′
iq
′
i is a weighted node-pair query. If q′i is of the form (xj

i , yℓ)
then Qi = {(xi, yℓ)} and B< returns the value of the query (xi, yℓ) on Gu,v

as the value of q′i. If q
′
i is of the form (ri, yℓ) then Qi = ∅ and B< returns

3 as the value of q′i.

▷ Case 2: q′iq
′
iq
′
i is a weighted selective degree query. Let s be a number

from the set {1, 2, 3}.

• If q′i is of the form (xj
i , s) thenQi = {(xi, s)} andB< returns the value

of the weighted selective degree query (xi, s) on Gu,v as the value of
q′i.

• If q′i is of the form (ri, s) then Qi = ∅ and B< returns 3 degG(v) + 3
if s = 3 and 0 otherwise as the value of q′i.

7The constant in O(1) depends on the value of 1
1−(δ/3) .

26

• If q′i is of the form (yℓ, s) then Qi = {(yℓ, s)}, and B< returns the
following as the value of q′i:

– the value of the weighted selective degree query (yℓ, s) on Gu,v

times a if s ∈ {1, 2}, and
– the value of the weighted selective degree query (yℓ, s) on Gu,v

times a plus b otherwise.

▷ Case 3: q′iq
′
iq
′
i is a weighted neighbor query. Let s be a number from the

set {1, 2, 3}.

▷ Case 3.1: q′iq
′
iq
′
i is of the form (xj

i , s)(xj
i , s)(xj
i , s). The following example illus-

trates the subtlety of this case. Suppose that x1 is connected to four
nodes y1, y2, y3, y4 via edges of weight s in Gu,v. Then each of the nodes
x1
1, . . . , x

a
1 is connected to y1, y2, y3, y4 via edges of weight s in G′

u,v.

• As a first attempt, one may simulate the answer to the query (xj
1, s)

by performing a query (x1, s) on Gu,v. However, this will not provide
new nodes with the correct probabilities required for random uni-
form selection among not-yet-explored nodes. For example, suppose
that B< already made the query (x1

1, s) giving the node y1. If now
B< makes another query (x2

1, s) then such a simulation will return
a node uniformly randomly from the set of nodes {y2, y3, y4} but
the correct simulation would have been to select a node uniformly
randomly from the set of nodes {y1, y2, y3, y4}. Moreover, if B< has
already made the queries (x1

1, s), (x
2
1, s), (x

3
1, s), (x

4
1, s) using such a

simulation then this simulation of a new query (x5
1, s) will simply

return the special symbol.

• As a second attempt, to simulate the answer to a query (xj
1, s) one

may first check if the answer to a query (xj′

1 , s) for some j′ ̸= j
is already available, and if so simply return that answer. But, in
this case, the answers to the queries (xj

1, s) and (xj′

1 , s) will not be
statistically independent.

To address these and other subtleties we design Algorithm B< to handle
all queries of the form (xj

i , s) for each specific i and s in the following
manner. Let Sxi,s be the set of (not initially known to B<) σi,s = |Sxi,s|
nodes connected to xi in Gu,v via edges of weight s.

(i) If not already done before, we make one new weighted selective
degree query (xi, s) on Gu,v giving us the value of σi,s (if the value

27

of σi,s is already available we simply use it without making a query).

(ii) For each xj
i , we keep a count κxj

i ,s
of how many times the query

(xj
i , s) has been asked involving the node xj

i before the current query
and store the answers to these queries in a set Txj

i ,s
. We also main-

tain Ti,s = ∪a
j=1Txj

i ,s
and κi,s = |Ti,s|. Note the following:

• If κxj
i ,s

< σi,s then performing a new weighted neighbor query

(xj
i , s)(xj
i , s)(xj
i , s) on G′

u,vG′
u,vG′
u,v must return a node uniformly at random from

the set of nodes Λxj
i ,s

= Sxi,s \ Txj
i ,s

with probability 1/λ
x
j
i
,s
where

λxj
i ,s

= |Λxj
i ,s
| = σi,s − κxj

i ,s
.

• If κi,s < σi,s then performing a new weighted neighbor query
(xi, s) on Gu,vGu,vGu,v returns a node uniformly at random from the
set of nodes Λi,s = Sxi,s \ Ti,s with probability 1/λi,s where λi,s =
|Λi,s| = σi,s − κi,s.

• Note that we know all the elements of Ti,s; in particular, this
means that we can sample a node from a subset of Ti,sTi,sTi,s

uniformly at random.

(iii) For a query (xj
i , s), we have the following cases.

▶ Case I: κi,s = σi,sκi,s = σi,sκi,s = σi,s. In this case Ti,s = Sxi,s.

▶ Case I-a: κxj
i ,s

< κi,sκxj
i ,s

< κi,sκxj
i ,s

< κi,s. We select a node uniformly at random

from the set Ti,s\Txj
i ,s

= Sxi,s\Txj
i ,s

and return it as the answer

to the query.

▶ Case I-b: κxj
i ,s

= κi,sκxj
i ,s

= κi,sκxj
i ,s

= κi,s. We return an invalid entry as the

answer to the query.

▶ Case II: κi,s < σi,sκi,s < σi,sκi,s < σi,s. We make a new query (xi, s) on Gu,v giving
us a node yp ∈ Λi,s = Sxi,s \ Ti,s with the property that Pr[yp ∈
Λi,s is returned] = 1

λi,s
.

▶ Case II-a: κxj
i ,s

= κi,sκxj
i ,s

= κi,sκxj
i ,s

= κi,s. For this case, Ti,s = Txj
i ,s

and λi,s =

Λxj
i ,s
. We return the node yp as the answer to the query and

update all relevant sets and counters appropriately.

▶ Case II-b: κxj
i ,s

< κi,sκxj
i ,s

< κi,sκxj
i ,s

< κi,s. For this case Txj
i ,s

⊂ Ti,s ⊂ Sxi,s,

λi,s = |Sxi,s \ Ti,s| > 0, and λxj
i ,s

= |Sxi,s \ Txj
i ,s
| > λi,s. We

sample the nodes in {yp}
⋃(

Ti,s \ Txj
i ,s

)
based on the follow-

ing probability distribution and update all relevant sets and

28

counters appropriately:

Pr[yp is selected] =
λi,s

λ
x
j
i
,s

∀ yℓ ∈ Ti,s \ Txj
i ,s

: Pr[yℓ is selected] = 1
λ
x
j
i
,s

Thus, the answer to the query (xj
i , s) is selected uniformly at

random from the set Λxj
i ,s

= Sxi,s \ Txj
i ,s

since

∀ yℓ ∈ Sxi,s \ Ti,s : Pr[yℓ is selected] = 1
λi,s

× λi,s

λ
x
j
i
,s

== 1
λ
x
j
i
,s

∀ yℓ ∈ Ti,s \ Txj
i ,s

: Pr[yℓ is selected] = 1
λ
x
j
i
,s

▷ Case 3.2: q′iq
′
iq
′
i is of the form (ri, s)(ri, s)(ri, s). We keep a count ν(ri) of how many

times the query (ri, 3) has been asked involving the node ri before the
current query, and store the answers to these queries in the set Sri . If
s ̸= 3 or ν(ri) = degG(v) + 1 we return the special symbol. Otherwise,
we return a node selected uniformly at random from the set of nodes
{y1, . . . , ydegG(v)+1} \ Sri as the answer and update all relevant sets and
counters appropriately.

▷ Case 3.3: q′iq
′
iq
′
i is of the form (yℓ, s)(yℓ, s)(yℓ, s). This case is similar in spirit to

Case 3.1. We show how to handle all queries of the form (yℓ, s) for each
specific ℓ and s.

(i) Assume without loss of generality that yℓ is connected, via edges of
weight s, to (not initially known to B<) a set Sν1 = {x1, . . . , xν1} ⊆
{x1, . . . , xdegG(u)+1} of ν1 = |Sν1| nodes. If not already done before,
we make one new weighted selective degree query (yℓ, s) on Gu,v

giving us the value of ν1 (if ν1 is already known we simply use it
without making a query).

(ii) Define the set Sν2 of ν2 = |Sν2| ∈ {0, b} nodes as Sν2 = {r1, . . . , rb}
if s = 3 and Sν2 = ∅ otherwise. Note that we know the value of ν2
since we know the value of s.

(iii) We keep a count κ of how many times the query (yℓ, s) has been
asked involving the node yℓ before the current query, and let Tκ

be the set of those κ = |Tκ| nodes of G′
u,vG′
u,vG′
u,v that have been re-

turned because of these prior queries. Note that if κ < a ν1 + ν2κ < a ν1 + ν2κ < a ν1 + ν2
then performing a new weighted neighbor query (yℓ, s)(yℓ, s)(yℓ, s) on

29

G′
u,vG′
u,vG′
u,v must return a node uniformly at random from the set

of nodes Λκ =
(
∪ν1

i=1 ∪a
j=1{x

j
i} ∪ Sν2

)
\ TκΛκ =

(
∪ν1

i=1 ∪a
j=1{x

j
i} ∪ Sν2

)
\ TκΛκ =

(
∪ν1

i=1 ∪a
j=1{x

j
i} ∪ Sν2

)
\ Tκ with probability 1/λκ

1/λκ
1/λκ

where λκ = |Λκ| = (a ν1 + ν2)− κλκ = |Λκ| = (a ν1 + ν2)− κλκ = |Λκ| = (a ν1 + ν2)− κ.

(iv) Assume without loss of generality that S ′
ν1

= {x1, x2, . . . , xν′1
} ⊆

Sν1 be the set of ν ′
1 = |S ′

ν1
| ≤ min{κ, ν1}} nodes in Gu,vGu,vGu,v that have

been returned as a result of the queries on Gu,v due to the simulation
of prior κ queries on G′

u,v. Note that if ν ′
1 < ν1ν ′
1 < ν1ν ′
1 < ν1 then perform-

ing a new weighted neighbor query (yℓ, s)(yℓ, s)(yℓ, s) on Gu,vGu,vGu,v returns
a new node uniformly at random from the set of nodes
Φ = Sν1 \ S ′

ν1
Φ = Sν1 \ S ′

ν1Φ = Sν1 \ S ′
ν1

with probability 1/φ1/φ1/φ where φ = |Φ| = ν1 − ν ′
1φ = |Φ| = ν1 − ν ′
1φ = |Φ| = ν1 − ν ′
1.

(v) Define the subset Λ′
κ ⊆ Λκ of nodes of G

′
u,v as Λ

′
κ =

(
∪ν′1

i=1∪a
j=1{x

j
i}∪

Sν2

)
\Tκ. Note that we know all the elements of Λ′

κ and λ′
κ = |Λ′

κ| =
(aν ′

1 + ν2) − κ. In particular, this means that we can sample a
node from Λ′

κΛ
′
κΛ
′
κ uniformly at random.

(vi) For a new query (yℓ, s), we have the following cases.

▶ Case I: κ ≥ ν1κ ≥ ν1κ ≥ ν1. In this case, ν ′
1 = ν1, Λ

′
κ = Λκ and λ′

κ = λκ. We
select as our answer to the query a node uniformly at random
from Λ′

κ, and update all relevant sets and counters appropriately.

▶ Case II: κ < ν1κ < ν1κ < ν1. In this case, ν ′
1 < ν1, and φ > 0. We simulate

the query as follows.

• We make a new query (yℓ, s) on Gu,v giving us a node xp ∈ Φ
for p ∈ {ν ′

1 + 1, . . . , ν1} with probability 1/φ. We select j ∈
{1, . . . , a} uniformly at random giving us a node xj

p.

• We sample a node from {xj
p}∪Λ′

κ based on the following prob-
ability distribution and update all relevant sets and counters
appropriately:

Pr[xj
p is selected] = aφ

λκ

∀xj
i ∈ Λ′

κ : Pr[xj
i is selected] = 1

λκ

Note that Pr[xj
i ∈ Λκ \ Λ′

κ is selected] = 1
aφ

× aφ
λκ

= 1
λκ
, as

desired. To verify that all the probabilities add up to 1, note
that Pr[xj

p is selected] +
∑

xj
i∈Λ′

κ
Pr[xj

i ∈ Λ′
κ is selected] =

a(ν1−ν′1)

aν1+ν2−κ
+ (aν ′

1 + ν2 − κ)× 1
aν1+ν2−κ

= 1.

30

6. Computing CG(v) and Cavg(G) using “black box” additive ap-
proximation algorithms for CG(e)

In this section we provide efficient local algorithms to compute CG(v) and
Cavg(G). The following assumptions are used by our algorithms:

▷ For a fixed r, we have an efficient local algorithm B for an additive
r-approximation, say C r

G(e), of CG(e) for an edge e.

▷ We have access to the neighbor query model mentioned in Section 5.2.

Lemma 8. With probability at least 2/3 the following two claims hold.

(a) We can compute an additive 2r-approximation of CG(v) using O(1/r2)
neighbor queries and O(1/r2) invocations of algorithm B on the edges
incident on v, and

(b) If the degrees of all the nodes of G are know then we can compute an
additive 2r-approximation of Cavg(G) using O(1/r2) neighbor queries
and O(1/r2) invocations of algorithm B over all edges in G.

Proof.

(a) Let k be a parameter to be specified later. We use k′ = min{k, degG(v)}
neighbor queries to get k′ nodes adjacent to v, say u1, . . . , uk′ , compute
C r
G(v, u1), . . . ,C

r
G(v, uk′) using algorithmB, and return C̃G(v) =

1
k′

∑k′

j=1 C
r
G(v, uj)

as our answer.
If k > degG(v) then CG(v) =

1
k′

∑k′

j=1 CG(v, uj) and thus C̃G(v) is in fact
an additive r-approximation of CG(v). Otherwise, assume that k ≤ degG(v)
and therefore k′ = k. For any number x, we use the notation x⊞ρ to indicate
a number y that satisfies x ≤ y ≤ x+ ρ. Observe that

E
[
C̃G(v)

]
=

1

k

k∑
j=1

E [C r
G(v, uj)] =

1

k

k∑
j=1

∑
u∈NbrG(u)

(CG((u, v))⊞ r)× 1

degG(v)

=
1

k

k∑
j=1

(CG(v)⊞ r) = CG(v)⊞ r

Since the 1
k
C r
G(v, uj)’s are mutually independent for j = 1, . . . , k, and each

1
k
C r
G(v, uj) lies in the interval [−2/k, 1/k] (cf. see Section 2.3), applying Ho-

effding’s inequality [43, Theorem 2] we get

Pr[C̃G(v) > CG(v) + 2r] ≤ Pr[C̃G(v) > E[C̃G(v)] + r]

31

< exp
(
− 2r2∑k

i=1(2/k−(−1/k))2

)
= exp

(
−2

9
k2r2

)
Setting k = Θ(r−2) we get Pr[C̃G(v) > CG(v) + 2r] < 1/3.

(b) The algorithm and its proof is very similar to those in (a). For this case,
we need to randomly sample k′ = min{O(1/r2), , |E|} edges e1, . . . , ek′ from

E, compute C r
G(e1), . . . ,C

r
G(ek′) using algorithmB, and return 1

k′

∑k′

j=1 C
r
G(ej)

as our answer. The only remaining part of the proof is to show how to sample
an edge uniformly at random from the set of edges E of G. Since the degrees
of all nodes are known, the following procedure can be used. We first select a
node x ∈ V with probability degG(x)∑

z∈V degG(z)
, then we select a random neighbor

of x, say y, using one neighbor query, and finally we select the edge {x, y}.
The proof is completed by observing that

Pr[{u, v} ∈ E is selected]

= Pr[x ∈ V is selected]× Pr[y ∈ NbrG(x) is selected]

+ Pr[y ∈ V is selected]× Pr[x ∈ NbrG(y) is selected]

= degG(x)∑
z∈V degG(z)

× 1
degG(x)

+ degG(y)∑
z∈V degG(z)

× 1
degG(y)

= 1
|E|

7. Concluding remarks

We hope that this paper will stimulate further attention from computer
scientists concerning the exciting interplay between notions of curvatures
from network and non-network domains. An obvious candidate for future
research is improvement of the query complexities for local algorithms for
computing the Ollivier-Ricci curvature for networks. Another possible fu-
ture research direction is to investigate computational complexity issues of
other discretizations of Ricci curvatures. For example, another discretiza-
tion of Ricci curvature for networks proposed by Ollivier and Villani [44] is
guided by the observation that the infinite-dimensional version of the well-
known Brunn-Minkowski inequality over Rn [45] can be tightened in the
presence of a positive curvature for a smooth Riemannian manifold [46, 47].
To our knowledge, these discretizations have largely escaped computational
complexity considerations.

32

Appendix A. A self-contained proof of Fact 1

Let degG(u) = degG(v) = α. Build a directed single-source single-sink
flow network [48] Gf

u,v from Gu,v in the following manner: add a new source
node s and a new sink node t, add an arc (directed edge) from s to every
node of LG

u,v of weight zero and capacity 1, add an arc from every node of
RG

u,v to t of weight zero and capacity 1, orient every edge {u′, v′} of Gu,v from
u′ to v′ and set its capacity to 1. Since |LG

u,v| = |RG
u,v| = α + 1, we have

PG
u (u

′) = PG
v (v

′) = 1
α+1

for all u′ ∈ NbrG(u) ∪ {u} and v′ ∈ NbrG(v) ∪ {v}.
Thus, since Gu,v is a complete bipartite graph, by a simple scaling it follows
that EmdGu,v(PG

u ,PG
v) = M

α+1
where M is the total weight of a minimum-

weight maximum s-t flow on Gf
u,v. Since the node-arc incidence matrix of

a directed graph is totally unimodular, the flow value of every arc of any
extreme-point optimal solution of the minimum-weight maximum s-t flow
on Gf

u,v is integral and therefore 0 or 1 (see Theorem 13.3 and its corollary
in [48]). This integrality of flow values and the fact that Gu,v is a complete
bipartite graph imply M is also the total weight of a minimum-weight perfect
matching of Gu,v.

We now show that there is such a minimum-weight perfect matching that
uses all the zero-weight edges {u′, u′} for all u′ ∈ {u, v}∪

(
NbrG(u)∩NbrG(v)

)
.

For a contradiction, suppose that the edge {u′, u′} is not used for some u′ ∈
{u, v} ∪ (NbrG(u) ∩ NbrG(v))}. Since our solution is a perfect matching, the
nodes u′ ∈ LG

u,v and u′ ∈ RG
u,v must be matched to some other nodes, say

to nodes v′′ ∈ RG
u,v and u′′ ∈ LG

u,v, respectively. Then, if we instead use the
edges {u′, u′} and {u′′, v′′} then using the triangle inequality it follows that
the total weight of this modified perfect matching is no more than that of
the original perfect matching since:

wG
u,v(u

′, u′)+wG
u,v(u

′′, v′′) = wG
u,v(u

′′, v′′) ≤ wG
u,v(u

′′, u′)+wG
u,v(u

′, u′)+wG
u,v(u

′, v′′)

= wG
u,v(u

′′, u′) + wG
u,v(u

′, v′′)

References

[1] M. R. Bridson, A. Häfliger, Metric Spaces of Non-Positive Curvature,
1st Edition, Springer-Verlag Berlin Heidelberg, 1999. doi:10.1007/978-
3-662-12494-9.

33

[2] M. Berger, A Panoramic View of Riemannian Geometry, 1st Edition,
Springer-Verlag Berlin Heidelberg, 2003. doi:10.1007/978-3-642-18245-
7.

[3] R. Albert, B. DasGupta, N. Mobasheri, Topological implications of neg-
ative curvature for biological and social networks, Physical Review E 89
(2014) 032811. doi:10.1103/PhysRevE.89.032811.
URL https://link.aps.org/doi/10.1103/PhysRevE.89.032811

[4] T. Chatterjee, R. Albert, S. Thapliyal, N. Azarhooshang, B. Das-
Gupta, Detecting network anomalies using forman-ricci curvature and
a case study for human brain networks, Scientific Reports 11 (2021).
doi:10.1038/s41598-021-87587-z.

[5] E. Jonckheere, M. Lou, F. Bonahon, Y. Baryshnikov, Euclidean versus
hyperbolic congestion in idealized versus experimental networks, Inter-
net Mathematics 71 (2011) 1–27. doi:10.1080/15427951.2010.554320.
URL https://doi.org/10.1080/15427951.2010.554320

[6] J. Sia, E. Jonckheere, P. Bogdan, Ollivier-ricci curvature-based method
to community detection in complex networks, Scientific Reports 9 (2019)
9800. doi:10.1038/s41598-019-46079-x.

[7] A. K. Simhal, K. L. H. Carpenter, S. Nadeem, J. Kurtzberg, A. Song,
A. Tannenbaum, G. Sapiro, G. Dawson, Measuring robustness of brain
networks in autism spectrum disorder with Ricci curvature, Scientific
Reports 10 (2020) 10819. doi:10.1038/s41598-020-67474-9.

[8] P. Elumalai, Y. Yadav, N. Williams, E. Saucan, J. Jost, A. Samal, Graph
ricci curvatures reveal atypical functional connectivity in autism spec-
trum disorder, bioRxiv (2021). doi:10.1101/2021.11.28.470231.
URL https://www.biorxiv.org/content/early/2021/12/21/2021.

11.28.470231

[9] B. Chow, F. Luo, Combinatorial ricci flows on surfaces, Journal of Dif-
ferential Geometry 63 (1) (2003) 97–129. doi:10.4310/jdg/1080835659.

[10] Y. Ollivier, A visual introduction to Riemannian curvatures and some
discrete generalizations, in: G. Dafni, R. J. McCann, A. Stancu (Eds.),
Analysis and Geometry of Metric Measure Spaces: Lecture Notes of the

34

50th Séminaire de Mathématiques Supérieures (SMS), Montréal, 2011,
Vol. 56, American Mathematical Society, Providence, RI, USA, 2013,
pp. 197–219. doi:10.1090/crmp/056/08.
URL https://hal.archives-ouvertes.fr/hal-00858008

[11] Y. Ollivier, Ricci curvature of markov chains on metric spaces, Journal of
Functional Analysis 256 (2009) 810–864. doi:10.1016/j.jfa.2008.11.001.

[12] Y. Ollivier, A survey of ricci curvature for metric spaces and markov
chains, in: M. Kotani, M. Hino, T. Kumagai (Eds.), Advanced Studies
in Pure Mathematics, Vol. 57, Mathematical Society of Japan, 2010, pp.
343–381. doi:10.2969/aspm/05710343.

[13] Y. Ollivier, Ricci curvature of metric spaces, Comptes Rendus Mathe-
matique 345 (11) (2007) 643–646. doi:10.1016/j.crma.2007.10.041.
URL https://www.sciencedirect.com/science/article/pii/

S1631073X07004414

[14] B. DasGupta, M. V. Janardhanan, F. Yahyanejad, Why did the shape
of your network change? (on detecting network anomalies via non-local
curvatures), Algorithmica 82 (7) (2020) 1741–1783. doi:10.1007/s00453-
019-00665-7.

[15] B. DasGupta, M. Karpinski, N. Mobasheri, F. Yahyanejad, Effect of
gromov-hyperbolicity parameter on cuts and expansions in graphs and
some algorithmic implications, Algorithmica 80 (2) (2018) 772–800.
doi:10.1007/s00453-017-0291-7.

[16] I. Benjamini, Expanders are not hyperbolic, Israel Journal of Mathe-
matics 108 (1998) 33–36. doi:10.1007/BF02783040.

[17] J. Chalopin, V. Chepoi, F. F. Dragan, G. Ducoffe, A. M. A., Y. Vaxès,
Fast approximation and exact computation of negative curvature pa-
rameters of graphs., Discrete and Computational Geometry 65 (2021)
856–892. doi:10.1007/s00454-019-00107-9.

[18] H. Fournier, A. Ismail, A. Vigneron, Computing the gromov hyperbol-
icity of a discrete metric space, Information Processing Letters 115 (6)
(2015) 576–579. doi:10.1016/j.ipl.2015.02.002.
URL https://doi.org/10.1016/j.ipl.2015.02.002

35

[19] R. Forman, Bochner’s method for cell complexes and combinatorial ricci
curvature, Discrete and Computational Geometry 29 (3) (2003) 323–374.
doi:10.1007/s00454-002-0743-x.

[20] R. P. Sreejith, K. Mohanraj, J. Jost, E. Saucan, A. Samal, For-
man curvature for complex networks, Journal of Statistical Mechan-
ics: Theory and Experiment 2016 (6) (2016) 063206. doi:10.1088/1742-
5468/2016/06/063206.

[21] R. P. Sreejith, J. Jost, E. Saucan, A. Samal, Systematic evaluation of
a new combinatorial curvature for complex networks, Chaos, Solitons
and Fractals 101 (2017) 50–67. doi:10.1016/j.chaos.2017.05.021.
URL https://www.sciencedirect.com/science/article/pii/

S0960077917302102

[22] M. Weber, E. Saucan, J. Jost, Characterizing complex networks with
forman-ricci curvature and associated geometric flows, Journal of Com-
plex Networks 5 (4) (2017) 527–550. doi:10.1093/comnet/cnw030.

[23] A. Samal, R. P. Sreejith, J. Gu, S. Liu, E. Saucan, J. Jost, Comparative
analysis of two discretizations of ricci curvature for complex networks,
Scientific Reports 8 (2018) 8650. doi:10.1038/s41598-018-27001-3.

[24] M. Gromov, Hyperbolic groups, in: S. M. Gersten (Ed.), Essays in
Group Theory, Vol. 8, Springer, New York, NY, 1987, pp. 75–263.
doi:10.1007/978-1-4613-9586-7 3.

[25] V. Chepoi, F. Dragan, B. Estellon, M. Habib, Y. Vaxès, Diam-
eters, centers, and approximating trees of delta-hyperbolicgeodesic
spaces and graphs, in: Proceedings of the Twenty-Fourth An-
nual Symposium on Computational Geometry, SCG ’08, Association
for Computing Machinery, New York, NY, USA, 2008, pp. 59–68.
doi:10.1145/1377676.1377687.
URL https://doi.org/10.1145/1377676.1377687

[26] F. Papadopoulos, D. Krioukov, M. Boguna, A. Vahdat, Greedy for-
warding in dynamic scale-free networks embedded in hyperbolic met-
ric spaces, in: 2010 Proceedings IEEE INFOCOM, 2010, pp. 1–9.
doi:10.1109/INFCOM.2010.5462131.

36

[27] Y. Yoshida, M. Yamamoto, H. Ito, Improved Constant-Time Approx-
imation Algorithms for Maximum Matchings and Other Optimiza-
tion Problems, SIAM Journal on Computing 41 (4) (2012) 1074–1093.
doi:10.1137/110828691.

[28] Y. T. Lee, A. Sidford, Efficient inverse maintenance and faster al-
gorithms for linear programming, in: 2015 IEEE 56th Annual Sym-
posium on Foundations of Computer Science, 2015, pp. 230–249.
doi:10.1109/FOCS.2015.23.

[29] K. Quanrud, Approximating Optimal Transport With Linear Pro-
grams, in: J. T. Fineman, M. Mitzenmacher (Eds.), 2nd Sympo-
sium on Simplicity in Algorithms (SOSA 2019), Vol. 69 of Ope-
nAccess Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2018, pp. 6:1—6:9.
doi:10.4230/OASIcs.SOSA.2019.6.
URL http://drops.dagstuhl.de/opus/volltexte/2018/10032

[30] P. Dvurechensky, A. Gasnikov, A. Kroshnin, Computational optimal
transport: Complexity by accelerated gradient descent is better than by
sinkhorn’s algorithm, in: J. Dy, A. Kraus (Eds.), Proceedings of the 35th
International Conference on Machine Learning, Vol. 80 of Proceedings
of Machine Learning Research, PMLR, 2018, pp. 1367—1376.
URL https://proceedings.mlr.press/v80/dvurechensky18a.html

[31] N. Azarhooshang, P. Sengupta, B. DasGupta, A review of and some
results for ollivier-ricci network curvature, Mathematics 8 (1416) (2020).
doi:10.3390/math8091416.

[32] G. Peyré, M. Cuturi, Computational optimal transport: With appli-
cations to data science, Foundations and Trends in Machine Learning
11 (5–6) (2019) 355–607. doi:10.1561/2200000073.
URL http://dx.doi.org/10.1561/2200000073

[33] A. L. Gibbs, F. E. Su, On choosing and bounding probability metrics,
International Statistical Review / Revue Internationale de Statistique
70 (3) (2002) 419–435. doi:10.2307/1403865.
URL http://www.jstor.org/stable/1403865

37

[34] V. V. Williams, On some fine-grained questions in algorithms and com-
plexity, in: Proceedings of the International Congress of Mathematicians
(ICM 2018), 2019, pp. 3447–3487. doi:10.1142/9789813272880 0188.

[35] A. Abboud, F. Grandoni, V. V. Williams, Subcubic equivalences be-
tween graph centrality problems, apsp and diameter, in: Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’15, Society for Industrial and Applied Mathematics,
USA, 2015, pp. 1681–1697.

[36] M. Patrascu, Towards polynomial lower bounds for dynamic problems,
in: Proceedings of the Forty-Second ACM Symposium on Theory of
Computing, STOC ’10, Association for Computing Machinery, New
York, NY, USA, 2010, pp. 603–610. doi:10.1145/1806689.1806772.
URL https://doi.org/10.1145/1806689.1806772

[37] L. Lee, Fast context-free grammar parsing requires fast boolean
matrix multiplication, Journal of the ACM 49 (1) (2002) 1–15.
doi:10.1145/505241.505242.
URL https://doi.org/10.1145/505241.505242

[38] M. Parnas, D. Ron, Approximating the minimum vertex
cover in sublinear time and a connection to distributed algo-
rithms, Theoretical Computer Science 381 (1) (2007) 183–196.
doi:https://doi.org/10.1016/j.tcs.2007.04.040.
URL https://www.sciencedirect.com/science/article/pii/

S0304397507003696

[39] K. Onak, D. Ron, M. Rosen, R. Rubinfeld, A near-optimal sublinear-
time algorithm for approximating the minimum vertex cover size, in:
Proceedings of the twenty-third annual ACM-SIAM symposium on Dis-
crete Algorithms, SIAM, 2012, pp. 1123–1131.

[40] K. D. Ba, H. L. Nguyen, H. N. Nguyen, R. Rubinfeld, Sublinear time
algorithms for earth mover’s distance, Theory of Computing Systems
48 (2) (2011) 428–442. doi:10.1007/s00224-010-9265-8.

[41] A. McGregor, D. Stubbs, Sketching earth-mover distance on graph
metrics, in: P. Raghavendra, S. Raskhodnikova, K. Jansen, J. D. P.

38

Rolim (Eds.), Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, Lecture Notes in Computer
Science, Vol. 8096, Springer, Berlin, Heidelberg, 2013, pp. 274–286.
doi:10.1007/978-3-642-40328-6 20.

[42] A. C.-C. Yao, Probabilistic computations: Toward a unified measure of
complexity, in: 18th Annual Symposium on Foundations of Computer
Science, 1977, pp. 222–227. doi:10.1109/SFCS.1977.24.

[43] W. Hoeffding, Probability inequalities for sums of bounded random vari-
ables, Journal of the American Statistical Association 58 (301) (1963)
13–30.
URL http://www.jstor.org/stable/2282952

[44] Y. Ollivier, C. Villani, A curved brunn–minkowski inequality on the dis-
crete hypercube, or: What is the ricci curvature of the discrete hyper-
cube?, SIAM Journal on Discrete Mathematics 26 (3) (2012) 983–996.
arXiv:https://doi.org/10.1137/11085966X, doi:10.1137/11085966X.
URL https://doi.org/10.1137/11085966X

[45] R. J. Gardner, The Brunn-Minkowski inequality, Bulletin of American
Mathematical Society 39 (3) (2002) 355–405. doi:10.1090/S0273-0979-
02-00941-2.

[46] D. Cordero-Erausquin, R. J. McCann, M. Schmuckenschläger, A rieman-
nian interpolation inequality à la borell, brascamp and lieb, Inventiones
Mathematicae 146 (2001) 219–257. doi:10.1007/s002220100160.

[47] D. Cordero-Erausquin, R. J. McCann, M. Schmuckenschläger,
Prékopa–leindler type inequalities on Riemannian manifolds, Ja-
cobi fields, and optimal transport, Annales de la Faculté des sci-
ences de Toulouse : Mathématiques Ser. 6, 15 (4) (2006) 613–635.
doi:10.5802/afst.1132.
URL https://afst.centre-mersenne.org/articles/10.5802/

afst.1132/

[48] C. H. Papadimitriou, K. Steiglitz, Combinatorial optimization: algo-
rithms and complexity, Prentice-Hall, Inc., NJ, USA, 1982.

39

