Stability of Marriage and Vehicular Parking

Daniel Ayala, Ouri Wolfson, Bo Xu,
Bhaskar DasGupta, and Jie Lin

University of Illinois at Chicago

Abstract. The proliferation of mobile devices, location-based services
and embedded wireless sensors has given rise to applications that seek to
improve the efficiency of the transportation system. In particular, new
applications are arising that help travelers find parking in urban set-
tings. They convey the parking slot availability around users on their
mobile devices. Nevertheless, while engaged in driving, travelers are bet-
ter suited being guided to an ideal parking slot, than looking at a map
and deciding which open slot to visit. Then the question of how an ap-
plication should choose this ideal parking slot to guide the user towards
it becomes relevant.

Vehicular parking can be viewed as vehicles (players) competing for park-
ing slots (resources with different costs). Based on this competition, we
present a game-theoretic framework to analyze parking situations. We
introduce and analyze parking slot assignment games and present algo-
rithms that choose parking slots ideally in competitive parking simula-
tions. We also present algorithms for incomplete information contexts
and show how these algorithms outperform greedy algorithms in most
situations.

Keywords: Stable Marriage, Spatio-temporal resources, Vehicular Park-
ing

1 Introduction

Finding parking can be a major hassle for drivers in some urban environments.
The advent of wireless sensors that can be embedded on parking slots has enabled
the development of applications that help mobile device users find available
parking slots around their locations. A prime example of this type of application
is SFPark [1]. It uses sensors embedded in the streets of the city of San Francisco,
that can tell if a slot is available. When a user wants to find a parking slot in
some area of the city, the application shows a map with marked locations of the
open parking slots in the area.

While this type of application is useful for finding the open parking slots
around you, it does raise some safety concerns for travelers. The drivers have to
shift their focus from the road, to the mobile device they are using. Then they
have to look at the map and make a choice about which parking slot to choose
from all the available slots that are shown on the map. It would be better (safer)
if the app just guided the driver to an exact location where they are most likely

2 Ayala et. al.

to find an open parking slot. Then the question arises, which algorithm should
the mobile app use to choose such an ideal parking location?

Our main concern in this work is to answer the preceding question. Regardless
of the safety concerns stated in the previous paragraph, the question still remains
relevant. What is the optimal way of moving towards spatially located resources,
to obtain a resource, when there is competition for the resource?

Parking can be viewed as a continuous query submitted by mobile devices to
obtain information about spatial resources (parking slots). A mobile user wants
to know which is the parking slot to visit in order to minimize various possible
utilities like: distance traveled, walking distance to their destination, or monetary
price of the parking slot. However, parking is also competitive in nature because
after making a choice to visit a particular slot, the success in obtaining that slot
will depend on if any other vehicles closer to that slot also made the same choice.
This competition for resources (slots) lends itself for modeling this situation in
a game-theoretic framework. We then present parking slot assignment games
(Psac) for studying competitive parking situations.

Two categories of PSAG will be considered in this work, complete and in-
complete information PSAG. For the complete information PSAG, we relate the
problem of finding the Nash equilibrium to the Stable Marriage problem [2]. We
show the equivalency of Nash equilibria and Stable Marriage assignments for
instances of PSAG.

For the incomplete information PSAG, the model that is most realistic and
directly applicable to real-life application of parking slot choice, we present a
gravitational approach for choosing parking. The Gravity-based Parking algo-
rithm (GPA) is presented for this model. We also present an adaptation for GPA
to road networks and show its merits through simulation.

2 General Setup and Notation

The general setup of the parking problem is as follows:

— There are two types of objects as follows.
e A set of n vehicles V = {vy,vq,...,0,}.
e A set of m open parking slots S = {s1,82,...,8m}-

— dist: (VUS) xS — R is a distance function. It denotes the distance between
a vehicle and a slot, or the distance between two slots.

— cost : V x § — R is a cost function. It denotes the cost of a slot s; € S to
a vehicle v; € V. This cost is a general cost. It could include the distance
from the vehicle to the slot, dist(v;, s;), the walking distance from s; to v;’s
destination, and/or other utilities that v; cares about when choosing a slot.

— Each vehicle is assumed to be moving independently of all other vehicles at
a fixed velocity. Without loss of generality, we assume that the speeds of all

vehicles are the same?.

! Otherwise, we simply need to rescale the distances for each vehicle in our algorithmic
strategies.

Stability of Marriage and Vehicular Parking 3

— A valid assignment of vehicles to slots is one where each vehicle is assigned
to exactly one slot. It can be defined as a function g : V' — S, where g(v) is
the assigned slot for vehicle v € V.2

— The cost of an assignment g for a player v € V, Cy(v), is defined as cost(v, g(v))
if of all players assigned to slot g(v), v is the closest to it; i.e.

v=argmin {dist(v’,g(v))}. (1)
v'€Vig(v)=g(v)

Here the argmin function returns the parameter that minimizes the given
function. If some other vehicle assigned to g(v) is closer to it than v, then
v’s cost based on g is Cy(v) = cost(v, g(v)) + «, where « is a penalty for not
obtaining a parking slot.

— The total cost of an assignment g, Cy, is defined as:

Cy=_ Cylv) (2)

veV

It should be noted that this type of model could be generalized to considering
mobile agents (vehicles) that are looking to obtain one of a set of static resources
(parking slots) on a map. Besides parking, another application that could con-
form to this model is one where taxicabs (mobile agents) are competing to obtain
clients (static resources) that have a location on a map.

3 Parking Slot Assignment Games

One could define a model in which a centralized authority was in charge of
assigning the vehicles to slots. This authority would be looking to minimize
some system-wide objectives (optimizing social welfare). In the transportation
literature this is usually called a system optimal assignment. In [3], we show
how this system optimal assignment can be computed in polynomial time. Even
though this centralized model shows good computational properties, it is difficult
to justify in real life to distributed mobile users that make their own choices.
This is because optimizing social welfare may imply that some travelers will
incur a greater cost for the good of others.

We then model parking as a competitive game in which individual, selfish
players are competing for the available slots. Any game has three essential com-
ponents: a set of players, a set of possible strategies for the players and a payoff
function (cost function) [4]. The payoff function determines what is the cost to
each player based on a given strategy profile. If there are n players in the game
then a strategy profile is an n-tuple in which the ith coordinate represents the
strategy choice of the ith player. It basically represents the choices made by the
n players.

2 Based on this definition, there is a difference between where a vehicle is assigned and
where a vehicle parks. If more than one vehicle is assigned to the same slot, then
the closest one to it will park there. The others are left without parking. This will
always happen when n > m.

4 Ayala et. al.

In our case for the parking problem, we can define the parking slot assignment
game (PSAG) as follows:

— The set of players in PSAG is V' (the vehicles).

— The set of available strategies to each player is S (the slots).

— The payoffs (costs) for each player in this game can be defined by the Cy
function introduced in section 2. Let A = (Sy,, Suy, - - - Sv,,) be the strategy
profile chosen by the players, i.e. slot s,, is the chosen slot by vehicle v;,
1 <i < n. Let g(v;) = sy,, then the cost for any player v; will be C,(v;).

— For this game, the penalty of not finding a parking slot, «, will be defined
as a large constant quantity.

4 Nash Equilibrium for Psac

In this section we introduce the Nash equilibrium for PSAG and establish its
relationship with the Stable Marriage problem.

The Nash equilibrium [5] is the standard desired strategy that is used to
model the individual choices of players in a game. It defines a situation in which
no player can decrease its cost by changing strategy unilaterally. The standard
definition of Nash equilibrium translates to the following definition for PSAG:

Definition 1 (Nash Equilibrium for PSAG). Let A = (sy,, Suy,-- -5 5v,) be a
strategy profile for the PSAG. Let A7 = (Su,,5u5, -+ Sv;_15 S5 Svigrr > Svm_13 v)5
for s}, # su,. Let g be the assignment function obtained from strategy profile A
and g} be the assignment function obtained from strategy profile Af. Then strat-
egy profile A is a Nash equilibrium strategy for the players if Cg(v;) < Cyx(v;)

for alli and any s}, # sy,

A7 is the strategy profile obtained by only player v; changing strategy from
sy, to any sy # s, for any 1 < ¢ < n. If the condition in the definition
holds then it means that no player can improve by him alone deviating from the
Nash equilibrium strategy. For the remainder of the paper, equilibrium and Nash
equilibrium will be used interchangeably.

4.1 Stability of Marriage in Psac

A vehicle’s preference in PSAG is to minimize its cost. Then a vehicle v’s pref-
erence is to obtain the slot s that minimizes the function cost(v, s). Then, we
say v prefers slot s over slot s’ if cost(v, s) < cost(v, s'). Suppose that the slots
had a similar preference order in which a slot s prefers a vehicle v over v’ if v is
closer to it than v', i.e. dist(v, s) < dist(v’, s).

Definition 2 (Unstable Marriage [2] in PSAG). An assignment of vehicles
to slots is called unstable if there are vehicles v; and vy, assigned to slots s; and
sj respectively, but vy prefers s; over sj and s; prefers vy over v;.

In the following sections, we will show the relationship between the Nash
equilibrium for PSAG and stable marriage assignments.

Stability of Marriage and Vehicular Parking 5

4.2 Computing the Psac Nash Equilibrium

Now we show that we can compute the Nash Equilibrium for PSAG by computing
stable marriages between the vehicles and the slots.

Theorem 1. Suppose that the vehicles’ preference order is determined by the
cost function and the slots’ preference order is determined by dist function. Then
an assignment g is a Nash equilibrium if and only if g is a stable marriage
between the vehicles and slots.

Proof. (—) Let g be an assignment that is a Nash Equilibrium. Then for any
v € V, if v deviates strategy unilaterally from g(v), v’s cost will increase.

Suppose to the contrary that g is not a stable marriage between vehicles and
slots. Then there exist v,v’ € V and s,s’ € S such that g(v) = s and g(v') = ¢’
but v prefers s’ over s and s’ prefers v over v'. Then the following inequalities
hold:

cost(v, s") < cost(v, s)
dist(v, s") < dist(v’, s")

But then if v deviates to strategy s’ his cost will improve because v is closer
to s’ than v/, and choosing s’ has a lesser cost to him than his current choice s.
This violates the Nash equilibrium assumption. Contradiction.

(«) Now let g be an assignment that is a stable marriage between vehicles
and slots according to their preferences.

Suppose to the contrary that g is not a Nash equilibrium. Then there exists
a vehicle that can deviate from the strategy given by g and improve its obtained
cost. Let v € V' be such a vehicle and let g(v) = s, where s € S. Then v can
choose a strategy s’ # s and improve its obtained cost. Suppose that slot s’ was
assigned to vehicle v/, i.e. g(v') = 5.

There are two cases to consider.

Case 1: Cy(v) = cost(v, s)
If Cy(v) = cost(v, s) then by definition v was the closest vehicle to s amongst
those that chose s. Now suppose that v can improve its obtained cost by deviating
to another strategy s’. If v improves its obtained cost it means that he will obtain
his new chosen slot s, otherwise he would pay a penalty « that is larger than
his previous cost. Then,

dist(v, s") < dist(v’, s') (3)

If v improves its obtained cost then it also means that his obtained cost on
the new slot is better than the one he was paying with his previous slot. Then,

cost(v, s') < cost(v, s) (4)

6 Ayala et. al.

Condition (3) implies that slot s’ preferred v over v’. Condition (4) implies
that vehicle v preferred s’ over s. These two conditions together are a violation
of marriage stability. Therefore, g is not a stable marriage. Contradiction.

Case 2: Cy(v) = cost(v, s) + «

This is a case where n > m and v chooses s but does not obtain it. We assume
that for vehicles that will not obtain a slot, the stable marriage algorithm will
simply assign the vehicle to its smallest cost slot. Suppose v can deviate to s’
and improve its cost.

This means that it would definitely obtain the new slot and improve its cost
that way (if the slot is not obtained then there’s no way of improving). Then,

dist(v, s") < dist(v’, s") (5)

For this case, condition (5) is sufficient to show that g is not a stable marriage.
v will not obtain any slot according to assignment g, and by (5), s’ prefers v
over v'. Then v should have been assigned to s’ in the first place by the stable
marriage algorithm since v really has no partner. Therefore, ¢ is not a stable
marriage. Contradiction.

Then by the contradictions obtained in both cases it follows that no vehicle
could have improved by deviating strategies from those defined by the assignment
g. Therefore, g is a Nash Equilibrium assignment.

By the equivalency obtained between the Nash equilibrium for PSAG and
stable assignments in PSAG, one can compute an equilibrium by finding a stable
assignment between the vehicles and slots. Then we found the equilibrium for
this two-sided matching problem between agents (vehicles) and spatially located
items (parking slots) by assigning preference orders (based on distance to agent)
to the items.

5 Gravitational Strategies for Incomplete Information
Context

5.1 Incomplete Information Psac

We’ve shown how one can compute the Nash Equilibrium for PSAG by computing
a stable marriage assignment between the vehicles and the slots. But this equi-
librium is applicable only in a complete information setting. This is one where
the vehicles are aware of what their payoffs will be based on their decisions and
the decisions of others. For PSAG, this means that each vehicle is aware of the
locations of all the other vehicles and are aware of their cost functions.

This complete information model is hard to justify in practice because of
privacy and security concerns. Not all vehicles will be willing to share the location
information at all times. Furthermore, tracking the locations of vehicles at all
times, and sharing the locations of all of them with all the users of a system so
that they can have up-to-the-second location data on all other potential parking
competitors seems infeasible.

Stability of Marriage and Vehicular Parking 7

Then we wish to analyze PSAG in an incomplete information context. In this
context, the players have no knowledge about the locations of the other players.
Since they do not have complete access to the distance function, dist, then they
have no way of knowing the payoff function for this game; i.e. given a strategy
profile, none of the players have a way of knowing what its payoff will be.

In the incomplete information PSAG, players make some prior probabilistic
assumptions about the locations of the other vehicles in the game and the analy-
sis is performed based on the expectations given by the prior distributions. One
can compute the expected costs based on the distribution that is used to denote
the location of a vehicle. Then a player will be looking to minimize its expected
cost. In this context, the analysis will compute the Nash equilibrium strategies
for the players but considering expected costs. This equilibrium is analogous to
the Nash equilibrium for PSAG (Definition 1) but instead of using cost given by
the cost functions (Cy), it uses expected cost.

For this work, each player will assume that other players are distributed
uniformly across the map. Unfortunately, computing the equilibrium for this
incomplete information context is very complicated in general, even for sim-
ple cases in the number line [3]. Then heuristics are needed to compute ideal
strategies for players in this more realistic model.

5.2 Gravity for Parking

The heuristic we want to introduce is one that pushes vehicles towards areas
where they are most likely to find a parking slot. Since all other vehicles are as-
sumed to be distributed uniformly across space, this will increase the probability
of finding a parking slot upon arrival to the area with a larger amount of avail-
able slots. Also, we want the algorithm to take into account the vehicle’s location
and its proximity to the surrounding slots. In [3], we proposed the Gravity-based
Parking Algorithm (GPA), which encompasses these desired properties by using
vector addition of force vectors.

In the GPA, slots are said to have a gravitational pull on the vehicles. At any
point in time, each slot has a gravitational force on the vehicle that will depend
on the distance from the vehicle (magnitude) and location of the slot (direction).
So then for each slot, a force vector is generated around the vehicle. Then, all of
these vectors are added and the vehicle moves in the direction of the resultant
vector (total gravitational force) for a specified time step. Then the process is
repeated at the beginning of each time interval.

The classical formula for gravitational force is F' = % where G is the
gravitational constant, m, and mo are the masses of the respective objects and
d is the distance between the objects. But for our purposes we can assume
that the masses of the objects are constant. We want to compute the vector
that represents total gravitational force generated by all the available slots to a
vehicle and use the direction of that vector to move the vehicle in that direction.
Then we consider a more simplified formula for gravitational force, since all the
masses are constant, represented by:

F(v,s) = 1/dist(v, 5)* (6)

8 Ayala et. al.

F(v, s) is the gravitational force generated by slot s towards vehicle v.
To consider general costs, this formula can be generalized to:

F(v,s) = 1/cost(v, s)? (7)

With formula (7), one will compute gravitational pull by considering the
general cost as the distance between the vehicle and the slot.

5.3 Gravity-based Parking Algorithm (GPA)

Let z denote the velocity of each vehicle (in units/s), which is constant for all
vehicles. Each time step for the algorithm will be 1 second. Each vehicle v will
perform the following steps in order to move one time-step at a time towards a
parking slot:

— Let S’ be the set of currently available slots (updated at every time step).
Then for each s € S’ generate vector of magnitude F(v, s) that starts at v’s
location in direction of s.

— Add the computed force vectors and the result will be the total gravitational
force generated by all the available slots on v.

— Move z units (velocity) in the direction given by the total force vector. If the
closest slot to v is at a distance less than z then move straight to the closest
slot.

These steps define the proposed heuristic for vehicles to use in the incomplete
information PSAG. The intuition behind the algorithm is that a vehicle is better
served moving towards areas of higher density of parking slots when the force to
closer slots (determined by distance to them) is not strong enough.

Figure 1 shows what a gravitational force field generated by five sample slots
would look like. The arrows represent the direction at which a vehicle will move
when it is located at the start point of the arrow and the small dots represent the
slots. This diagram gives us an idea of how vehicles move across the map when
using GPA and it shows that they will eventually converge to a slot. The GPA
was evaluated and performed well in simulations against a greedy approach [3].

6 GPA on a Road Network

On a real-world road network, vehicles are constrained to move only on roads.
In this setting we will still use a gravitational approach. It will also be based on
the gravity equation defined by equation (6), but now the distance between a
vehicle and slot is computed by using the travel distance across the network.

A vehicle can only make a routing choice upon arrival to an intersection,
whereas before (in free-space) a vehicle could change direction at any point in
time. Therefore, the GPA algorithm will only be used at each intersection by
each vehicle. The road network is modeled as a graph G = (NN, E) where the
vertices (N) represent intersections and the edges (E) are the road segments
that connect the intersections.

Stability of Marriage and Vehicular Parking 9

1 T T
conbined force
\ | | | |par¥ing"slo,t O
4 ‘\ ‘ 1 t PR 4
| | /
1 v
0.8 o
8.6
8.4
8.2
]
] a.2 8.4 8.6 a.8 1

Fig. 1. Force field generated by 5 slots

Instead of adding up all the gravity vectors for all slots (as in Euclidean
space), the vehicle will aggregate the gravity information for all slots into spe-
cial direction vectors (one for each possible direction out of the intersection).
Suppose that the intersection where vehicle v is located has k outgoing edges
€1, €3, ...,ex € E. Then there will be k direction vectors g1, gs, ..., g Where each
vector will have a direction according to its respective embedded edge. The mag-
nitudes of these vectors will start at 0.

Then for each slot s, the shortest path is computed from v to s and the
gravity force g is computed using equation (6). Let e; be the first edge to be taken
according to the computed shortest path. Then g; is updated to be ¢g; = g; + g.

After repeating this procedure for each slot, the vehicle will use the computed
direction vectors g1, g2, ..., g to make its route choice. From this point, we will
introduce two variants of the GPA algorithm that will be evaluated as candidate
algorithms for using a gravity-based approach for parking on embedded road
networks. The two variants will only differ in how the eventual edge to be taken
is computed based on the direction vectors.

6.1 Deterministic Angular GPA (DA-GPA)

In the Deterministic Angular GPA (DA-GPA) the direction vectors g1, ga, -..gk
will be added to produce a resultant vector r. This resultant vector will be located
between two of the directions to choose from, say e; € E and e; € E. Let 0; be
the angle distance between 7 and e; and 6; be the angle distance between r and

10 Ayala et. al.

ej. Then, if §; < 6;, v will choose e; as the next edge to travel, otherwise it will
choose e; as the next edge to travel through.

6.2 Randomized Magnitude GPA (RM-GPA)

In the Randomized Magnitude GPA (RM-GPA) the direction vectors g1, go, ..., gk
will be used as part of a probabilistic scheme. Let T = |g1| + |g2| + ... + |gk], i.e.
the addition of the magnitudes of the k direction vectors. Then let p; = |g:|/T
for 1 <4 < k. Then each edge e; € F which is an outgoing edge of v’s current
intersection will be chosen with probability p;.

6.3 Deterministic Magnitude GPA (DM-GPA)

In the Deterministic Magnitude GPA (DM-GPA) the direction vectors gy, g2, .-, gk
will be used to choose the next direction to move towards. The direction with
the vector with the largest magnitude will be chosen.

The efficiency of these three methods will be evaluated through simulation.

7 Simulation and Results

In this section we will evaluate DA-GPA, RM-GPA, and DM-GPA against the
greedy parking algorithm. The greedy algorithm simply moves each vehicle to-
wards its current closest slot.

7.1 Simulation Environment

The simulation tests the three GPA variants with varying number of values of
n and m for the embedded road network in Euclidean space. The simulation
is run on a one mile by one mile map where roads are generated that either
run from east to west or north to south. Locations for slots on these roads are
pre-generated as well.

The map is then partitioned into 16 equal-sized square regions. A random
permutation of the regions is generated (uniform distribution) and is used as
the ranking of the popularity of each region for available slots. To choose each
of the m open slots, first a random number is generated to determine which
region to choose a slot from. The Zipf distribution with its skew parameter and
the regional popularity previously generated are used to generate this random
number. Then a random slot (uniform) is chosen from the region denoted by the
Zipf number. The n vehicles’ initial positions are generated using the uniform
distribution on the grid.

After generating the vehicles and slots, the algorithms are tested. The GPA
algorithms were tested against the greedy parking algorithm, which simply moves
each vehicle towards its current closest slot. For the GPA algorithms, the vehicles
will move as described in the procedures on section 6.

Stability of Marriage and Vehicular Parking 11

When a vehicle reaches an open parking slot, the time it took for it to find
that slot is saved. Then a new slot is chosen randomly (uniform) on a randomly
chosen region (Zipf). Also a new vehicle is generated at a random location on
the grid (uniform). The simulation run stops when a given time horizon of 3,600
seconds is surpassed.

The parameters for the simulation are:

— n - the number of vehicles.
— m - the number of slots.
— k - the regional skew of the Zipf distribution.

The values that were tested for each parameter are detailed in table 1. For
each configuration of the parameters, 20 different simulation runs were generated
and tested.

lParameter[Symbol[Range ‘
Vehicles n {40,80}
Slots m {20,30,40}
Zipf Skew k {0, 1, 2, 3}
Table 1. Parameters tested on Simulation

7.2 Simulation Results

Figure 2 shows the improvement of the DM-GPA algorithm over the greedy park-
ing algorithm. In the best case, the highest improvement that was attained was
one of 40% (n = 40, m = 40, skew = 1). We can see that the lowest improvement
is seen when the skew is 0 (uniformly distributed). Higher improvements are seen
in highly skewed situations (skew of 1 or above), although as the regional skew
increases past 1, the performance decreases. The RM-GPA and DA-GPA also
showed positive improvements over the greedy algorithm but were not better
in performance than the DM-GPA. The results for RM-GPA and DA-GPA are
thus omitted for space considerations.

8 Conclusions

In this paper our main goal was to analyze vehicular parking. We presented
two models that can be used to study the parking problem in a game-theoretic
framework.

For the complete information model, in which vehicles are aware of the lo-
cation and cost information of other players, we presented an algorithm for
computing the Nash equilibrium for parking slot assignment games (PsaAG). We

12 Ayala et. al.

established the relationship between the parking problem and the stable mar-
riage problem. We also showed that the Nash equilibrium was actually equivalent
to a stable marriage between vehicles and slots.

For the incomplete information model, vehicles are not aware of the locations
of the other mobile users that are also looking for parking. For this model we
presented the Gravity-based Parking Algorithm (GPA). For the adapted GPA to
road networks we presented the DA-GPA, RM-GPA and DM-GPA. The merits
of the GPA’s were tested using simulations.

45
40
35
30

25

=-m =40
20 —#-m =30
15 m =20

10

% Improvement of DM-GPA over Greedy Algorithm

o
=
N
w

regional skew

Fig. 2. % improvement of DM-GPA over greedy algorithm (n = 40, varying m)

References

1. http://sfpark.org/

2. Gale, D., Shapley, L.: College admissions and the stability of marriage. The Amer-
ican Mathematical Monthly 69(1) (1962) 9-15

3. Ayala, D., Wolfson, O., Xu, B., Dasgupta, B., Lin, J.: Parking slot assignment
games. In: Proc. of the 19th Intl. Conf. on Advances in Geographic Information
Systems (ACM SIGSPATIAL GIS 2011), Chicago, IL (November 2011)

4. Rasmusen, E.: Games and Information. 4th edn. Blackwell Publishing (2006)

5. Nash, J.: Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences 36(1) (1950) 48-49

