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Abstract An extremely popular model-based graph partitioning approach that is
used for both biological and social networks is the so-called modularity optimiza-
tion approach originally proposed by Newman and its variations. In this chapter,
we review several combinatorial and algebraic methods that have been used
in the literature to study the computational complexities of these optimization
problems.

1 Introduction

For complex systems of interaction in biology and social sciences, modeled as
networks of pairwise interactions of components, many successful approaches
to mathematical analysis of such networks rely upon viewing them as composed
of subnetworks or modules whose behaviors are simpler and easier to under-
stand. Coupled with appropriate interconnections, the goal is to deduce emer-
gent properties of the complete network from the understanding of these simpler
subnetworks. Such modular decomposition of networks appears quite often in
the application domain. For example, in social networks it is a common practice
to partition the nodes of a network into modules called communities such that
nodes within each community are related more closely to each other than to
nodes outside the community [14, 17, 21, 35–37, 42], and similarly in regulatory
networks modular decomposition has been used in studying “monotone” parts
of the dynamics of a biological system [12, 16] and more generally in studying
a network in terms of interconnectivity of smaller parts with well-understood be-
haviors [22, 43]. These problems are also closely connected to many partitioning
problems in graphs based on local densities studied in other computer science
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applications. Simplistic definitions of modules traditionally studied in the com-
puter science literature, such as cliques, unfortunately do not apply well in the
context of biological and social networks and therefore alternate methodologies
are most often used [14, 17, 21, 35–37, 42]. As in virtually all works on network
partitioning and community detection, we consider a static model of interaction
in which the network connections do not evolve over time. In this chapter we fo-
cus on one approach of modular analysis of networks, namely the model-based
approach.

2 Model-based Decomposition

In the context of biological or social interaction networks, an important problem
is to partition the nodes into a set of so-called “communities” or “modules” of
“statistically significant” interactions. Such partitions facilitate studying interest-
ing properties of these graphs in their applications, such as studying the behav-
ioral patterns of a group of individuals in a society, and serve as important steps
towards computational analysis of these networks. The general model-based
decomposition approach can be described in the following manner:

• We have an appropriate “global null model” G of a background random graph
providing, implicitly or explicitly, the probability pu,v of an edge between two
nodes u and v.

• The general goal is to place nodes in the same module if their interaction
patterns are significantly stronger than those inferred by G and in different
modules if their interaction patterns are significantly weaker than those in-
ferred by G. No a priori assumptions are made about the number of modules
as opposed to some other traditional graph clustering approaches.

As an example of applicability of the above framework of model-based clus-
tering framework, consider the following maximization version of the standard
{+,−}-correlation clustering that appears in the computer science literature ex-
tensively [5, 9, 46]:

Input: an undirected graph G = (V,E) with each edge {u,v} ∈ E having
a label ℓu,v ∈ {1,−1}.

Valid solution: a partition V1, . . . ,Vk of V.

Objective: maximize
k

∑

i=1

∑

u,v∈Vi

ℓu,v.

The above problem can be placed in the above model-based clustering frame-
work in the following manner:

• Let H be the graph consisting of all edges labeled 1 in G.

• Let pu,v =

{

0, if ℓu,v = 1
1, otherwise
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• Let the modularity of a partition Vi be M (Vi) =
∑

u,v∈Vi

(

au,v − pu,v

)

where au,v =

{

1, if {u,v} is an edge of H
0. otherwise

• Let the total modularity of the partition V1, . . . ,Vk be defined as
∑k

i=1 M (Vi).

As is well known, every graph decomposition procedure has both pros and cons,
and there exists no universal decomposition procedure that works for every ap-
plication. Any decomposition method that relies on a global null model such as
the one currently discussed suffers from the drawback that each node can get
attached to any other node of the graph; for another possible criticism, see [18].
To design and analyze a model-based decomposition, one faces at least the
following three choices, each being influenced by the appropriateness in the
corresponding applications:

(C1) What should be an appropriate null model G ?
(C2) How should we precisely measure the statistical significance (“fitness”)

of an individual module of the given graph ?
(C3) How should we combine the fitnesses of individual modules to get a total

fitness value for the entire network ?

In this chapter, we begin with a specific choice of (C1)–(C3) that leads us to the
so-called modularity clustering, an extremely popular decomposition method in
practice in the context of both social networks [1, 32, 37, 38] and biological net-
works [22, 43]. Subsequently, we discuss a few other choices for (C1)–(C3). An
algorithm A for a maximization (resp., minimization) problem is said to have
an approximation ratio of ε (or simply an ε-approximation) provided A runs in
polynomial time in the size of the input and produces a solution with an objec-
tive value no smaller than 1/ε times (resp., no larger than ε times) the value of
the optimum. We assume that the reader is familiar with standard concepts in
algorithmic design and analysis such as found in textbooks [13, 19, 48].

3 Basic Modularity Clustering

To simplify discussion, suppose that our input is an undirected unweighted
graph1 G = (V,E) of n nodes and m edges, let A =

[

au,v
]

denote the adjacency

matrix of G, i.e., au,v =

{

1, if (u,v) ∈ E
0, otherwise

and let du denote the degree of node u.

1 The definitions can be easily generalized for directed and weighted graphs; see Section 3.5.
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3.1 Definitions

In the basic version of modularity clustering as proposed by Newman and oth-
ers [21, 32, 35, 36, 38], the following options for (C1)–(C3) were selected.

Choice for (C1): The null model G is dependent on the degree-distribution of
the given graph G and is given by pu,v =

du dv
m with u = v being allowed.

Such a null model preserves the distribution of the degree of each node
in the given graph in expectation, i.e.,

∑

v∈V pu,v = du.
Choice for (C2): If nodes u and v belong to the same partition, then one

would expect au,v to be significantly higher than pu,v. This is captured
by adding the term au,v − pu,v to the objective value of the decom-
position. Thus, for a subset of nodes V′ ⊆ V, its fitness is given by
M(V′) =

∑

u,v∈V′
(

au,v− pu,v
)

.
Choice for (C3): A partition S= {

V1, . . . ,Vk
}

of nodes2 has a total fitness (“mod-
ularity”) of

M(S) =
1

2m

k
∑

i=1

M(Vi) =
1

2m

k
∑

i=1

















∑

u,v∈Vi

(

au,v−
du dv

2m

)

















(1)

and our goal is to maximize M(S) over all possible partitions S of V.
The 1

2m factor is introduced only for a min-max normalization of the
measure [23] so that 0≤maxS

{

M(S)
}

< 1.

Formally, the modularity clustering (Mc) problem is defined as follows:

Problem name: modularity clustering (Mc).
Input: an undirected graph G = (V,E).

Valid solution: a partition S = {

V1, . . . ,Vk
}

of V.

Objective: maximize M(S) =
1

2m

k
∑

i=1

















∑

u,v∈Vi

(

au,v−
du dv

2m

)

















.

In the sequel, we will use OPT to denote the maximum modularity value
maxS

{

M(S)
}

of a given graph G. M(S) can be equivalently represented via sim-
ple algebraic manipulation [8, 15, 37, 38] as

M(S) =
k

∑

i=1

[

mi

m
−

( Di

2m

)2]

(2)

where mi is the number of weights of edges whose both endpoints are in the
cluster Vi and Di =

∑

v∈Vi
dv is the sum of degrees of the nodes in Vi.

Yet another equivalent way to represent M(S), which was found to be quite
useful in proving NP-completeness when inputs are restricted to graphs with the

2 Each Vi is usually called a “cluster”.
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maximum degree of any node bounded by a constant, is the following. Let mi j

denote the number of edges one of whose endpoints is in Vi and the other in V j

and Di =
∑

v∈Vi
dv denote the sum of degrees of nodes in cluster Vi. Then,

M(Vi) =
1

2m

















∑

u∈Vi,v<Vi

(

dudv

2m
−au,v

)

















and this gives us the following third equation of modularity (note that now each
pair of clusters contributes to the sum in Equation (3) exactly once):

M(S) =
∑

Vi,V j : i< j

(

DiD j

2m2
−

mi j

m

)

(3)

An important special case of the Mc problem arises [8, 15] if we restrict the
maximum number of partitions of V to some pre-specified value κ. This special
case, referred to as the modularity κ-clustering (κ-Mc) problem, is thus formally
defined as follows.

Problem name: modularity κ-clustering (κ-Mc).
Input: an undirected graph G = (V,E).

Valid solution: a partition S = {

V1, . . . ,Vk
}

of V with k ≤ κ.

Objective: maximize M(S) =
1

2m

k
∑

i=1

















∑

u,v∈Vi

(

au,v−
du dv

2m

)

















.

In the sequel, we will use OPTκ to denote the maximum modularity value of the
modularity κ-clustering problem for a given graph. The usefulness of the κ-Mc
problem in designing approximation algorithms for the Mc problem is brought
out by the following lemma.

Lemma 1. [15] For any κ ≥ 1, OPTκ ≥
(

1− 1
k

)

OPT.

Thus, in particular, OPT2 ≥ OPT/2 and, for large enough κ, OPTκ approximates
OPT very well.

3.2 Absolute Bounds for OPT and OPTκ

Although it is difficult to specify accurately the range of values that OPT or OPTκ
may take for general graphs, it is possible to derive some bounds when the given
graph G has some specific topologies. For example, bounds of the following
kinds were demonstrated in [8, 15].

• If G is a complete graph then OPT = 0.
• If G is an union of k disjoint cliques each with n/k nodes then OPT = 1− 1

k .
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• If G is a d-regular graph (i.e., a graph in which every node has a degree of
exactly d), then

OPT > 0.26√
d
, if n > 40d9

OPT > 0.86
d −

4
n , otherwise

• If G is a graph in which every node has a degree of at most d and d <
5√n

16lnn ,
then OPT > 1

8d .
• For any graph G and any κ, 0≤ OPTκ ≤ 1− 1

κ
.

3.3 Computational Hardness Results

3.3.1 NP-hardness Results

It was shown in [8] that computing OPT is NP-complete for sufficiently dense
graphs (graphs in which nodes have degrees roughly Ω

(√
n
)

for every node)
and this NP-completeness result for dense graphs holds even if one wishes to
compute just OPT2. A basic idea behind many of these reductions is that large
size cliques of the graph are properly contained within a community. The authors
in [15] show that computing OPT2 is NP-complete even if the given graph is G
sparse and regular, namely even if G is a d-regular graph for any fixed d ≥ 9.
The NP-completeness proof in [15] for sparse graphs, motivated by the proof for
this case in [8], is from the graph bisection problem for 4-regular graphs which
is known to be NP-complete [28]. Intuitively, in this reduction an optimal solution
for the modularity 2-clustering problem is constrained to have exactly the same
number of nodes in each community.

3.3.2 Beyond NP-hardness: APX-hardness Results

A minimization problem is said to be APX-hard if it cannot be approximated
within a factor of 1+ε for some constant ε > 0 under the assumption of P , NP.
The authors in [15] showed that computing OPTκ for any κ > 1 is is APX-hard for
dense regular graphs, namely for d-regular with d = n−4. This approximation gap
is derived from the following approximation gap of the maximum independent set
problem for 3-regular graphs [11]:

Problem name: Maximum Independent Set for 3-regular graphs (3-Mis).
Input: a graph H = (V,E) that is 3-regular, i.e., every node has a de-

gree of exactly 3.
Valid solution: a subset V′ ⊂ V of nodes such that every pair of nodes u and

v in V′ is independent, i.e., {u,v} < E.
Objective: maximize |V′|.
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Approximation gap
as derived in [11]

: NP-hard to decide if max
V′⊆V

{

|V′|
}

≥ 95
194|V | or if max

V′⊆V

{

|V′|
}

≤ 94
194|V |.

The reduction is carried out by providing the edge-complement of the graph H
as the input graph G to the Mc problem, i.e., the input to Mc is G = (V,E) with
E = { {u,v} |u,v ∈ V, {u,v} < F}. The reduction was completed in [15] by proving the
following bounds for any κ:

• If maxV′⊆V

{

|V′|
}

≥ 95
194|V | then OPTκ > 0.9388

|V |−4 .

• If maxV′⊆V

{

|V′|
}

≤ 94
194|V | then OPTκ < 0.9382

|V |−4 .

This provides the desired inapproximability result with ε = 1− 0.9388
0.9382 ≈ 0.0006.

The intuition behind a proof of the above bounds is that, for the type of sparse
graphs H that is considered in the reduction, edge-complements of large-size
independent set of nodes in H must be properly contained within a cluster of G
and that OPTκ ≤ OPT2 for any κ > 2.

3.4 Approximation Algorithms

In this section, we review several combinatorial and algebraic method for de-
signing approximation algorithms for the Mc and κ-Mc problems.

3.4.1 Greedy Heuristics

As a first attempt at designing approximation algorithms for Mc, one may be
tempted to use a greedy approach of the following type that can easily be imple-
mented to run in O

(

n2 logn
)

time [8]:

1. Start with each node being a separate cluster. Let C0
=

{

{

v
} |v ∈ V

}

be
this initial clustering.

2. for i = 1,2, . . . ,n−1 do
• Merge two clusters of Ci−1 that yield a clustering with the largest

increase or the smallest decrease in modularity.
• Let Ci be the new clustering obtained.

endfor
3. Return max

i

{

M
(

Ci
) }

as the solution.

Consider the graph G = (V,E) consisting of the union of two disjoint cliques V1

and V2, each having n/2 nodes, along with n/2 additional edges corresponding
to an arbitrary maximum bipartite matching

{ {u,v} |u ∈ V1, v ∈ V2
}

among nodes
in V1 and V2. Brandes et al. [8] observed that the above greedy approach has
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an unbounded approximation ratio on this graph by showing that the greedy
algorithm obtains a modularity value of 0 even though OPT is very close to 1/2.
Thus, greedy approaches do not seem very promising in designing algorithms
with bounded approximation ratios.

3.4.2 Linear Programming Based Approach

It is possible to formulate the modularity clustering problem with arbitrarily many
clusters as an integer linear program (ILP) in the following manner. For every
two distinct nodes u,v ∈ V, let xu,v be a Boolean variable defined as:

xu,v =

{

0, if u and v belong to the same cluster
1, otherwise

One constraint of partitioning the nodes into clusters is the so-called “triangle
inequality” constraint:

if u,v and v,z belong to the same cluster then u,z must also belongs to the same cluster.

This is easily described by the linear (inequality) constraint xu,z ≤ xu,v+ xv,z. Not-
ing that 1− xu,v is the contribution of a pair of distinct nodes u,v to the modularity
value computed by Equation (1), we arrive as the following equivalent ILP for-
mulation of the Mc problem [1, 8, 15]:

maximize
∑

u,v∈V : u,v















au,v− dudv
2m

2m















(

1− xu,v
) −

∑

v∈V

d2
v

2m

subject to
∀u , v , z : xu,z ≤ xu,v+ xv,z

∀u , v : xu,v ∈ {0,1}

However, solving an ILP exactly is in general an NP-hard problem. A natural ap-
proach is therefore to consider the linear programming (LP) relaxation of the ILP
obtained by replacing the constraints “∀u , v : xu,v ∈ {0,1}” by ∀u , v : 0≤ xu,v ≤ 1,
solving this LP in polynomial time [26] and then use some type of “rounding”
scheme to convert fractional values of variables to Boolean values3. The au-
thors in [1] used such a LP-relaxation with several rounding schemes for empir-
ical evaluations.

Unfortunately, [15] showed that this LP-relaxation based approach, irrespec-
tive of the rounding scheme used, may not be a very good choice for designing
approximation algorithms with good guaranteed approximation ratio in the fol-
lowing manner. Let OPT f denote the optimal objective value of the LP obtained
from the ILP. Then, it was shown in [15] that, for every d > 3 and for all sufficiently

3 See [48, part II] for further details of such an approach.
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large n, there exists a d-regular graph with n nodes such that the integrality gap
OPT f/OPT is Ω(

√
d ), and thus an approximation ratio of o(

√
n ) would be impossi-

ble to achieve irrespective of the rounding scheme used.

3.4.3 Spectral Partitioning Approach

Spectral partitioning methods for graph decomposition problems are well-known [41,
45]. This approach was first suggested by Newman in [37] for the 2-Mc problem
but a theoretical analysis of the approximation ratio of this approach is not yet
known. Consider the n× n symmetric matrix W =

[

wu,v
]

with wu,v = au,v − dudv
2m ,

and suppose that W has an eigenvector ui with a corresponding eigenvalue bi

for i = 1,2, . . . ,n. For every node u ∈ V, let xu be a selection variable defined as:

xu =

{

−1, if u is assigned to cluster 1 (V1)
1, if u is assigned to cluster 2 (V2 = V \V1)

and let X = [xu] be the 1×n column vector of these selection variables such that

X =
∑n

i=1 aiui with ai = uT
i X. Then, it can be shown that M(S ) =

1
4m

n
∑

i=1

(uT
i X)2bi.

Thus, one would like to select X proportional to the eigenvector with the largest
eigenvalue to maximize M(S ). However, such an eigenvector will in general have
entries that are not ±1 but real values. This would therefore require exploring
some non-trivial “rounding scheme” for such an eigenvector to covert the real
values of the components of the eigenvector to ±1 such that the new value of
objective does not decrease too much; currently no such rounding scheme is
known.

This approach can also be applied to the Mc problem by using the same
approach recursively to decompose the clusters V1 and V2 adjusting the objec-
tive function to reflect the fact that certain edges have been deselected by the
partitioning, and continuing in this fashion until the modularity value cannot be
improved further.

3.4.4 Quadratic Programming Based Approach

Using the fact that OPT2 ≥ OPT/2 ≥ OPTκ/2 for any κ > 2, it follows that an algo-
rithm for 2-Mc having an approximation ratio of ε also provides an algorithm for
κ-Mc having an approximation ratio of 2ε. The quadratic programming based ap-
proach discussed in this section provides an approximation algorithm for 2-Mc,
thereby also providing an approximation algorithm for κ-Mc for any κ > 2. As in
the previous section, for every u ∈ V let xu be a selection variable defined as:

xu =

{

−1, if u is assigned to cluster 1 (V1)
1, if u is assigned to cluster 2 (V2 = V \V1)



10 Bhaskar DasGupta

Then, since
∑

u,v∈V

(

au,v−
dudv

2m

)

= 0, Equation (1) can be rewritten for the 2-Mc

problem as

M(S) =
1

4m

















∑

u,v∈V
wu,v (1+ xuxv)

















=

1
4m

∑

u,v∈V
wu,vxuxv = xTWx (4)

where wu,v =
au,v− dudv

2m
4m , W =

[

wu,v
] ∈ Rn×n is the corresponding symmetric matrix

of wu,v’s and x ∈ {−1,1}n is a column vector of the indicator variables. Note that

the wu,v values can be positive or negative, but wu,u = − d2
u

2m is always negative.
Equation (4) describes a quadratic form with arbitrary real coefficients. As a

first attempt, one might be tempted to use an existing semi-definite programming
(SDP) based approximation on quadratic forms to obtain an efficient algorithm.
However, a direct application of many previously known results on SDP based
approximation is not possible. For example, the results in [10] cannot be directly
applied since the diagonal entries wu,u are negative, the results in [40] cannot
be directly applied since the coefficient matrix W is not necessarily positive-
semidefinite, and even the elegant results on Grothendieck’s inequality in [4]
cannot be applied because we do not have a bipartition of the nodes.

However, the authors in [15] was able adopt the techniques in [4, 10] in a
non-trivial manner to provide a randomized approximation algorithm with an ap-
proximation ratio of ρ, where

E
[

ρ
]

=



























8.4lnd =O(logd), if G is a d-regular graph with d < n
2lnn

O
(

logdmax
)

,
if dmax, the maximum degree over all nodes, is at

most
5√n

16lnn

We briefly outline the proof for the O
(

logd
)

bound when G is d-regular with

d < n
2lnn . Consider the matrix W′ =

[

w′u,v
]

where w′u,v =

{

0, if u = v
wu,v, otherwise

. First, it

is shown that if OPT2 = max
x∈{−1,1}n

xTWx and OPT′2 = max
x∈{−1,1}n

xTW′x then OPT′2 >

OPT2− 1
n . Then, the following lower bound on OPT2 is derived:

OPT2 >
0.13/

√
d, if n > 40d9

0.43
d −

2
n , otherwise

This shows that it suffices to approximate OPT′2. Note that the diagonal entries of
the matrix W′ are now zeroes and OPT′2 = Ω (1/d). Next, we utilize the following
algorithmic result on quadratic forms proven in [4, 10]. Consider the following
randomized approximation algorithm:
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Randomized approximation algorithm in [4, 10] for computin g
OPT′2 = max

x∈{−1,1}n
xTW′x = max

∀u : xu∈{−1,1}

∑

u,v∈V
w′u,vxuxv

1. Solve the following maximization problem

maximize
∑

u,v∈V
u,v

w′u,v Xu Xv

subject to
∀u ∈ V : Xu ∈ Rn

∀u ∈ V : Xu is a symmetric positive semi-definite matrix
in polynomial time using the semidefinite programming approach4.
Let the solution vectors be X∗u for u ∈ V.

2. Select a suitable real number T > 1.
3. Let r be a vector selected uniformly over the n-dimensional unit-norm hyper-

sphere.

4. Set xu =

{

1, if Yur > T
−1, if Yur < −T

Otherwise, if −T ≤ Yur ≤ T , set xu =















1 with probability 1
2 +

Yur
2T

−1 with probability 1
2 −

Yur
2T

5. Return { xu |u ∈ V } as the solution.

The bounds in [4, 10] imply that the above algorithm return a solution satisfying

E

















∑

u,v∈V
w′u,vxuxv

















≥
OPT′2

T 2
−8e−T2/2

















∑

u,v∈V

∣

∣

∣w′u,v
∣

∣

∣

















The proof can then be completed by showing that
∑

u,v∈V
∣

∣

∣w′u,v
∣

∣

∣ < 2 and selecting

T =
√

4lnd.

3.4.5 Other Heuristic Approaches

Other approaches for solving the Mc problem include:

• simple heuristics without any guarantee of performance, and
• simulated-annealing type approaches that are exhaustive and slow [22] and

therefore difficult to apply to to large-scale networks with thousands of nodes.

4 See [48, Chapter 26].



12 Bhaskar DasGupta

3.5 Extensions to Directed or Weighted Networks

An extension of the basic modularity clustering to a more general weighted di-
rected network is easy and was done by Leicht and Newman [32] in the follow-
ing manner. Suppose that our input is a directed weighted graph G = (V,E,w)
of n nodes where w : E 7→ + denotes a function giving a positive weight to
every edge in E, and let A =

[

au,v
]

denote the weighted adjacency matrix of

G,

(

i.e., au,v =

{

w(u,v), if (u,v) ∈ E
0, otherwise

)

. Let d in
u =

∑

(v,u)∈E
w(v,u) and dout

u =

∑

(u,v)∈E
w(u,v)

denote the weighted in-degree and the weighted out-degree of node u, respec-
tively, and let m=

∑

(u,v)∈E
wu,v denote the sum of weights of all the edges. Then,

Equation (1) computing the modularity value of a cluster C ⊆ V needs to be
modified as

M(C) =
1
m

















∑

u,v∈C

(

au,v−
dout

u din
v

m

)

















The authors in [15] showed that with some effort almost all our computational
complexity results for modularity clustering on undirected networks can be ex-
tended to directed weighted networks.

4 Other Model-based Graph Decomposition

In this section we discuss a few other choices for the (C1)–(C3) items for model-
based graph decomposition.

4.1 Alternate Null Models (Alternate Choices for ( C1))

A natural objection to the basic modularity clustering is that the background
degree-dependent null model may not be appropriate in all applications. We
discuss a few other choices that have been explored in the literature.

4.1.1 Scale-free Null Model

The choice of the linear preferential attachment model for the class of scale-free
networks [6] may not be an appropriate choice since Karrer and Newman [27]
showed that this may not provide a new null model. However, it is still an open
question as to whether other generative models for scale-free networks, such as
the “copy” model by Kumar et al. [30] in which new nodes choose an existing
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node at random and copy a fraction of the links of this node, provide a new and
useful null model.

4.1.2 Classical Erd ös-Rényi Null Models

A theoretically appealing choice is the classical Erdös-Rényi random graph
model, e.g., the random graph G(n, p) in which each possible edge {u,v} is se-
lected uniformly and randomly with a probability of p. Although the Erdös-Rényi
model has a rich and beautiful theory [7] with significant applications in other
areas of computer science, it is by now agreed upon that such a model may be
inadequate in many social and biological network applications. Nonetheless, a
formal investigation of such a null model is of independent theoretical interest,
and may provide insight regarding the properties that an appropriate null model
must satisfy. If p is selected such that the expected number of edges of the ran-
dom graph is equal to the number of edges of the given graph, then maximizing
modularity with this new null model is precisely the same as maximizing mod-
ularity in an appropriate regular graph [15]; otherwise, however, it is not clear
what the complexity of computing this new modularity value is.

4.1.3 Application Specific Null Models

Sometimes null models motivated by specific applications in biology and social
sciences are used by the researchers. Two such null models are described next.

Null Models for Transcriptional and Signaling Biological Ne tworks

One of the most frequently reported topological characteristics of such networks
is the distribution of in-degrees and out-degrees of nodes, which is close to a
power-law or a mixture of a power law and an exponential distribution [2, 20, 33].
Specifically, in biological applications, metabolic and protein interaction networks
are heterogeneous in terms of node degrees and exhibit a degree distribution
that is a mixture of a power law and an exponential distribution [2, 20, 24, 33, 34],
whereas transcriptional regulatory networks exhibit a power-law out-degree dis-
tribution and an exponential in-degree distribution [31, 44]. Based on these types
of known topological characterizations, Albert et al. [3] suggested some degree
distributions and network parameters for generating random transcriptional and
signaling networks for the null model. Random networks with prescribed degree
distributions can be generated in a variety of ways, e.g., by using the method
suggested by Newman, Strogatz and Watts in [39].
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Markov-chain Null Model

In this method, a random network for the null model is generated by starting with
the given input network G = (V,E) and repeatedly swapping randomly chosen
pairs of connections in the following manner [25]:

repeat
• Select two edges, {a,b} and {c,d} randomly and uniformly among all

edges in E.
• If a = c or b = d or {a,d} ∈ E or {b,c} ∈ E

then discard this pair of edges
else add the edges {a,d} and {b,c} to E

delete the edges {a,b} and {c,d} from E
until a specified percentage of edges of G has been replaced

4.2 Alternate Fitness Measures (Alternate Choices for
(C2)–(C3))

Exact or approximate solutions to the modularity measure as described by (1)
may tend to produce many trivial clusters of single nodes. For example, Das-
Gupta and Desai in [15] showed that if the maximum node degree dmax of G

satisfies dmax <
5√n

16 lnn , then there is a clustering in which every cluster except
one consists of a single node and the modularity value is at least 25% of the
optimal. One reason for such a consequence is due to the fact that the fitness
measure for a modularity clustering is the sum of fitnesses of individual clusters
(i.e., for a clustering S = {V1,V2, . . . ,Vk}, M(S) is the summation of M(Vi)’s), and
one moderately large cluster sometimes over-compensates the negative effects
of many small clusters.

Based on these observations, it is reasonable to investigate other suitable
choices of the function that combines the individual fitness values into a global
fitness measure without sacrificing the quality of the optimal decomposition.
Some reasonable choices include the max-min objective, namely Mmax-min(S) =

minVi∈SM(Vi), and the average objective, namely Maverage(S) =
∑k

i=1 M(Vi)
k . Das-

Gupta and Desai investigated the max-min objective in [15] and showed that the
max-min objective indeed avoids generating small-size trivial clusters and the op-
timal objective value for max-min objective is precisely scaled by a factor of 2
from that of the objective of the basic modularity clustering, thereby keeping the
overall quantitative measure the same



Computational Complexities of Model Based Clustering 15

5 Conclusion and Further Research

There is still a large gap between the 1.0006factor inapproximability result and
logarithmic factor approximation algorithm known for modularity clustering prob-
lems. Designing better scalable algorithms for these problems would enable one
to apply this method to much larger networks than that is currently done. A few
interesting directions for future algorithmic research are as follows:

• Is it possible to do a non-trivial analysis of the spectral partitioning approach
discussed in Section 3.4.3, perhaps by using the techniques presented in
analysis of the spectral method for MAX-CUT such as in [47] ?

• Is it possible to augment the ILP formulation for modularity clustering as dis-
cussed in Section 3.4.2 with additional redundant constraints using the cutting
plane approach [29] to decrease the integrality gap substantially and perhaps
thereby obtaining an improved approximation algorithm ?
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