Chapter 1

A SIMPLE APPROXIMATION ALGORITHM
FOR NONOVERLAPPING LOCAL ALIGNMENTS
(WEIGHTED INDEPENDENT SETS OF AXIS
PARALLEL RECTANGLES)

Piotr Berman

Department of Computer Science & Engineering
Pennsylvania State University

University Park, PA 16802

berman@cse.psu.edu

Bhaskar DasGupta*
Department of Computer Science
Rutgers University

Camden, NJ 08102
bhaskar@crab.rutgers.edu

Abstract = We consider the following problem motivated by applications to nonover-
lapping local alignment problems in computational molecular biology:
we are a given a set of n positively weighted axis parallel rectangles
such that, for each axis, the projection of a rectangle on this axis does
not enclose that of another, and our goal is to select a subset of inde-
pendent rectangles from the given set of rectangles of total maximum
weight, where two rectangles are independent provided for each axis,
the projection of one rectangle does not overlap that of another. We
use the two-phase technique of [3] to provide a simple approximation
algorithm for this problem that runs in O(nlogn) time with a worst-
case performance ratio of 3. We also discuss extension and analysis of
the algorithm in d dimensions.

*Supported in part by NSF grant CCR-9800086.

2

Keywords: Computational Biology, Nonoverlapping Local Alignments, Approxima-
tion Algorithms.

1. INTRODUCTION

A fundamental problem that arises in the comparison of genomic se-
quences in computational molecular biology for similarity or dissimilar-
ity is to select fragments of high local similarity between two strings [6].
Motivated by this application, Bafna et al. [1], considered the following
maximization problem, termed as the Independent subset of Rectangles
(IR) problem. We are a given a set S of n positively weighted axis par-
allel rectangles such that, for each axis, the projection of a rectangle on
this axis does not enclose that of another. Define two rectangles to be
independent if for each axis, the projection of one rectangle does not
overlap that of another. The goal of the IR problem is to select a subset
S" C S of independent rectangles from the given set of rectangles of total
maximum weight. The unweighted version of the IR problem is the one
in which the weights of all rectangles are identical. See Figure 1.1 for an
pictorial illustration of the problem. The reader is referred to Section 2
of [1] for a detailed description of the relationship of this problem to the
local alignment methods; Figure 1.2 shows a pictorial illustration of the
relationship of a rectangle to local similarity between two fragments of
two sequences.

2 —» |10
10
3
15] | |
_ an optimal solution
Input of total weight 11.5

Figure 1.1. An illustration of the IR problem

A summary of previous results on this problem is as follows.
Halldérsson [5] provided a polynomial time approximation algorithm
with a performance ratio of 2 + ¢ (for any constant € > 0) for the un-

Approximation Algorithm for Nonoverlapping Local Alignments 3

a

b

Figure 1.2. The rectangle R captures the local similarity (match) between the
fragments aac and bbc of the two sequences; weight of R is the strength of the match.

weighted version of the IR problem!. Bafna et al. [1] showed that an
approach similar to that in [5] yields a polynomial time approximation
algorithm with a performance ratio of % for the IR problem. The current
best approximation algorithm for the IR problem is due to Berman [2]
which has a performance ratio of g + ¢ (for any constant € > 0).
Consider the graph G formed from the given rectangles in which there
is a node for every rectangle with its weight being the same as that of
the rectangle and two nodes are connected by an edge if and only if
their rectangles are not independent. It is not difficult to see that G is
a b-claw free graph [1] and the IR problem is tantamount to finding a
maximum-weight independent set in GG. Previous approaches have used
this connection of the IR problem to the 5-claw free graphs to provide
better approximation algorithms by giving improved approximation al-
gorithms for d-claw free graphs. Most of these algorithms essentially
start with an arbitrary solution and then allows small improvements to
enhance the approximation quality of the solution. In contrast, we con-
sider the IR problem directly and use the simple greedy two-phase tech-
nique of [3] to provide an approximation algorithm for the IR problem
that runs in O(nlogn) time with a performance ratio of 3. Although our
approximation algorithm does not improve the worst-case performance
ratios of previously best algorithms, it is simple to implement (involving

1For this and other previous approximation algorithms with an e in the performance ratio,
the running time increases with decreasing €, thereby rendering these algorithms impractical
if € is small. Also, a straightforward implementation of these algorithms will run in at least
Q(n?) time.

4

standard simple data structures such as stacks and binary trees) and
runs faster than the algorithms in [1, 2, 5].

The following notations and terminologies are used for the rest of this
paper. An interval [a,b] is the set [a,b] = {x e R: a <z < b}. A
rectangle R is [a, b] X [c, d] for some two intervals [a, b] and [c, d], where
x denotes the Cartesian product. The weight of a rectangle R is denoted
by w(R). The performance ratio of an approximation algorithm for the
IR problem is the ratio of the total weights of rectangles in an optimal
solution to that in the solution provided by the approximation algorithm.
We assume that the reader with familiar with standard techniques and
data structures for the design and analysis of algorithms such as in [4].

2. APPLICATION OF THE TWO-PHASE
TECHNIQUE TO THE IR PROBLEM

Let R, Ro, ..., R, be the n input rectangles in our collection, where
R; = X; x Y; for some two intervals X; = [d;, ¢;] and Y; = [fi, g;]. Con-
sider the intervals X7, Xo,..., X, formed by projecting the rectangles
on one axis and call two intervals X; and X; independent if and only if
the corresponding rectangles R; and R; are independent. The notation
X; ~ X, (respectively, X; 2 X;) is used to denote if two intervals X;
and X; are independent (respectively, not independent).

To simplify implementation, we first sort the set of numbers {d;, e; | 1 <
i < n} (respectively, the set of numbers {f;,¢; | 1 <i < n}) and replace
each number in the set by its rank in the sorted list. This does not change
any feasible solution to the given problem; however, after this O(nlogn)
time preprocessing we can assume that d;, e;, fi,g; € {1,2,...,2n} for
all 7. This assumption simplifies the design of data structures for the IR
problem.

Now, we adopt the two-phase technique of [3] on the intervals
X1, Xo,...,X,. The precise algorithm is shown below in Figure 1.3.
The solution to the IR problem consists of those rectangles whose pro-
jections are returned in the solution at the end of the selection phase.

The main theorem of this section is as follows.

Theorem 1 Algorithm TPA-IR provides a correct solution to the IR
problem in O(nlogn) time with a performance ratio of 3.

Before proving the performance guarantees of Theorem 1, we will first
prove the correctness and running time of Algorithm TPA-IR.

Lemma 2 Algorithm TPA-IR returns a correct solution to the IR prob-
lem in O(nlogn) time.

Approximation Algorithm for Nonoverlapping Local Alignments 5}

(* definitions *)
a triplet (c, 3,7y) is an ordered sequence of
three values «, 8 and ~;
L is sequence that contains a triplet (w(R;), d;, e;)
for every R; = X; x Y; with X; = [d;, e;];
L is sorted so the values of e;’s are in non-decreasing order;
S is an initially empty stack that stores triplets;
TOTAL(X}) returns the sum of v’s of those triplets (v, a,b) €S
such that [a,b] % X;;

(* evaluation phase *)
for (each (w(R;),d;, e;) from L)

UV — ’U)(Rz) — TOTAL([di, ei]);
if (v>0)
} puSh((’U, dia ei)vs);

(* selection phase *)
while (S is not empty)

(’U, di7 ei) N pop(s)7
if ([d;, e;] =~ X for every interval X in our solution)
insert [d;, e;] to our solution;

Figure 1.3. Algorithm TPA-IR: Adoption of the two-phase technique for the IR
problem.

Proof. To show that the algorithm is correct we just need to show
that the selected rectangles are mutually independent. This is obviously
ensured by the final selection phase.

It takes O(nlogn) time to create the list L by sorting the endpoints of
the n rectangles. It is easy to see that, for each interval X; = [d;, e;] (1 <
i < n), the algorithm performs only a constant number of operations,
which are elementary except for the computation of TOTAL(X;) in the
evaluation phase. We need to show how this function can be computed in
O(logn) time for each X;. Note that X; % X; = (X;NX; # 0)V(YiNY; #
(). Since the intervals are considered in non-decreasing order of their
endpoints, there is no interval in S with an endpoint to the right of e;

6

when TOTAL(X;) is computed. As a result, when the computation of
TOTAL(Xj;) is needed, X; % X for an X currently in stack provided
ezactly one of the following two conditions is satisfied:

(a) ¢; > d;,
(b) (ej < dz) AN (Y; ﬂY}' =+ @)

Since for any two intervals Y; = [f;, g;] and Y; = [fj, g;], such that
neither interval encloses the other, [f;, gi] A [fj, gj] # 0 is equivalent to
either f; < f; < g; or f; < g; < g; but not both, it follows that for
the purpose of computing TOTAL(Xj;) it suffices to maintain a a data
structure D for a set of points in the plane with coordinates from the set
{1,2,...,2n} such that the following two operations can be performed:

Insert(v, z,y): Insert the point with coordinates (z,y) (with z,y €
{1,2,...,2n}) and value v in D. Moreover, if Insert(v, z,y) pre-
cedes Insert(v', ', '), then y' > y.

Query(a, b, c): Given a query range (a, b, ¢) (witha,b,c€ {1,2,...,2n}U
{—00, 00}), find the sum of the values of all points (z,y) in D with
a<zr<bandy>c.

For example, finding all X;’s currently in stack with e; > d; is equivalent
to doing Query(—o0, 00, d;).

For notational simplicity, assume that n = 2* for some positive integer
k. We start with a skeleton rooted balanced binary tree 7" with 2n
leaves (and of height O(logn)) in which each node will store a number
in {1,2,...,2n}. The i*h leaf of T (for 1 < i < 2n) will store the point
(i,y), if such a point was inserted. With each node v of T', we also
maintain the following:

m a list L, of the points stored in the leaves of the subtree rooted
at v, sorted by their second coordinate. Additionally, each entry
(x,y) in the list also has an additional field sum,, , storing the sum
of all values of all points in the list to the left of (z,y) including
itself, that is, the sum of values of all points (2/,y') in L, with

¥ <.
m a value s, equal to the sum of values of all points in L.

Initially L, = 0 and s, = 0 for all v € T and building the skeleton tree
thus obviously takes O(n) time.

To implement Insert(v, x, %), we insert the point (z,y) at the z*" leaf
of T' and update L, and s, for every node v on the unique path from the
root to the 2" leaf. Since Insert(v, x, %) precedes Insert(v’, 2/, y') implies

Approximation Algorithm for Nonoverlapping Local Alignments 7

y' >y, we simply append (z,y) to the existing L, for every such v. It is
also trivial to update sumg, (from the value of sum, ,, where (2, y’)
was the previous last entry of the list) and s, in constant time. Since
there are O(logn) nodes on the above unique path, we spend O(logn)
time.

To implement Query(a, b, c), we search for a and b in T (based on
the first coordinates of the points only) as in a binary search tree and
let v be the lowest common ancestor of the two search paths. Then L,
contains all points (z,y) with a < x < b. We do a binary search on L,
in O(log|Ly|) = O(logn) time based on the second coordinate of points
to find a point (2, y’) with 3 being the largest possible value satisfying
1y’ < c. Then, the answer to our query is the quantity s, — SUM (g1 4yry. U

Now, we prove the performance ratio of Algorithm TPA-IR as promised
in Theorem 1. Let B be a solution returned by Algorithm TPA-IR and
A be any optimal solution. For a rectangle R € A, let Sr denote the
number of those rectangles in B that were notindependent of R and were
examined no earlier than R by the evaluation phase of Algorithm TPA-
IR and let ﬂ = IMaXpRecA ﬂR.

Theorem 3 Algorithm TPA-IR has a performance ratio of 3.

Proof. Consider the set of intervals S in the stack at the end of the
evaluation phase. Let W(A) = > 5 cyw(Rs) and V(S) =3, 4. c.yes V-
It was shown in Lemma 3 of [3] that the the sum of the weights of the
rectangles selected during the selection phase is at least V' (S). Hence, it
suffices to show that SV (S) > W(A).

Consider a rectangle R; = X; x Y; € A and the time when the eval-
uation phase starts the processing of X; = [d;, e;]. Let TOTAL'([d;, e;])
and TOTAL"([d;, e;]) be the values of TOTAL([d;, e;]) before and after
the processing of X;, respectively.

If w(R;) < TOTAL/([d;, €i]), then X; is not pushed to the stack and
TOTAL"([d;, e;]) = TOTAL'([d;, €;]). On the other hand, if w(R;) >
TOTAL'([d;, e;]), then X; is pushed to the stack with a value of w(R;) —
TOTAL'([d;, e;]), as a result of which TOTAL"([d;, ¢;]) becomes at least
TOTAL/([d;, e;]) + (w(R;) — TOTAL'([d;, e;])) = w(R;). Hence, in either
case TOTAL"([d;, e;]) > w(R;).

Now, summing up over all R;’s and using the definition of § and
TOTAL"([d;, e;]) gives

W (A)

IN

> TOTAL"([d;, es])
Rzi[dz ,ei] xXY;€A

IN

v (by definition of TOTAL"([d;, €;])
((v,a,b)€S)A(b<e;)A([a,b]#[di,ei])

< g Z v (by definition of [3)
(v,a,b)€S
— ()
ad
The proof of Theorem 1 can now be completed by proving the follow-
ing Lemma.
Lemma 4 For the IR problem, 6 = 3.
Proof. First note that 8 = 3 is possible; see Figure 1.4.

L 3 optimal rectangles

our rectangle
Figure 1.4. A tight example for Algorithm TPA-IR showing 3 = 3 is possible.

Now we show that § > 3 is impossible. Refer to Figure 1.4. Remem-
ber that rectangles in an optimal solution contributing to § must not be

REFERENCES 9

independent of our rectangle R and must have their right vertical right
on or to the right of the vertical line L. Since rectangles in an optimal
solution must be independent of each other, there can be at most one
optimal rectangle crossing L (and, thereby conflicting with R in its pro-
jections on the z-axis). Any other optimal rectangle must lie completely
to the right of L and therefore may conflict with R in their projections
on the y-axis only; hence there can be at most two such rectangles. [

3. CONCLUDING REMARKS

Algorithm TPA-IR makes a pass on the projections of the rectangles
on the x-axis in a nondecreasing order of the endpoints of the projections.
Can we improve the performance ratio if we run TPA-IR separately on
the projections on the z-axis in left-to-right and in right-to-left order of
endpoints and take the better of the two solutions? Or, even further, we
may try running Algorithm TPA-IR two more times separately on the
projections on the y-axis in top-to-bottom and in bottom-to-top order
and take the best of the four solutions. Figure 1.5 shows that even then
the worst case performance ratio will be 3. We already exploited the
planar geometry induced by the rectangles for the IR problem to show
that 8 < 3. Further research may be necessary to see whether we can
exploit the geometry of rectangles more to design simple approximation
algorithms with performance ratios better than 2.5 in the weighted case
or better than 2 in the unweighted case.

In practice, the d-dimensional variation of the IR problem, motivated
by the selection of fragments of high local similarity between d strings,
is more important. In this version, we are given a set S of n positively
weighted axis parallel d-dimensional hyper-rectangles? such that, for ev-
ery axis, the projection of a hyper-rectangle on this axis does not enclose
that of another. Defining two hyper-rectangles to be independent if for
every axis, the projection of one hyper-rectangle does not overlap that of
another, the goal of the d-dimensional IR problem is to select a subset
S" C S of independent hyper-rectangles from the given set of rectan-
gles of total maximum weight. Algorithm TPA-IR can be applied in an
obvious way to this extended version by considering the projections of
these hyper-rectangles on a particular axis. It is not difficult to see that
B < 2% — 1 for this case, thus giving a worst-case performance ratio of
2¢ — 1. Whether one can design an algorithm with a performance ratio
that increases less drastically (e.g., linearly) with d is still open.

2A d-dimensional hyper-rectangle is a Cartesian product of d intervals.

10

@

— (b)

Figure 1.5. (a) The basic block of 9 rectangles such that the four runs of TPA-IR
will always select R, whereas an optimal solution will select 3 of the remaining 8
rectangles. (b) The basic block repeated § times such that different copies do not
interfere in their projections on either axis, resulting in a performance ratio of 3 even
for the best of the 4 runs.

References

[1] V. Bafna, B. Narayanan and R. Ravi, Nonoverlapping local align-
ments (Weighted independent sets of azis-parallel rectangles, Discrete
Applied Mathematics, 71, pp. 41-53, 1996.

[2] P. Berman, A d/2 approximation for mazimum weight independent
set in d-claw free graphs, proceedings of the 7th Scandinavian Work-
shop on Algorithmic Theory, Lecture Notes in Computer Science,
1851, Springer-Verlag, July 2000, pp. 214-219.

[3] P. Berman and B. DasGupta, Improvements in Throughput Maxi-
mization for Real-Time Scheduling, proceedings of the 32nd Annual
ACM Symposium on Theory of Computing, May 2000, pp. 680-687.

REFERENCES 11

[4] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to
Algorithms, The MIT Press, 1990.

[5] M. M. Halldérsson, Approzimating discrete collections via local im-
provements, proceedings of the 6th ACM-SIAM Symposium on Dis-
crete Algorithms, January 1995, pp. 160-169.

[6] T. F. Smith and M. S. Waterman, The identification of common
molecular sequences, Journal of Molecular Biology, 147, 1981, pp.
195-197.

