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Abstract

Let M be an m-sided simple polygon and N be an n-sided polygon with holes. In this paper we
consider the problem of computing the feasible region i.e., the set of all placements by translation
of M so that M lies inside N without intersecting any hole. First we propose an O(mn?) time
algorithm for computing the feasible region for the case when M is a monotone polygon. Then we
consider the general case when M is a simple polygon and propose an O(m?n?) time algorithm for
computing the feasible region. Both algorithms are optimal upto a constant factor.
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1 Introduction

Let M be a simple polygon and N be a polygon with holes. In this paper we consider the problem
of computing the feasible region i.e., the set of all placements by translation of M so that M
lies within N without intersecting any hole. Computing the feasible region has applications in
planning translational motion of M inside N [8]. By checking whether the feasible region is empty,
it is possible to decide whether M can be translated to fit within N (i.e. M can be contained in
N). This has applications in stockcutting and inspection problems [2,5], and in VLSIL.

Computing the feasible region of an m-sided polygon M inside an n-sided polygon N with holes,
is a well studied problem. Baker et al. [2], proposed an O((mn + n?)logmn) time algorithm for
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computing the feasible region for the case where M is a convex polygon. Fortune [5] improved the
time bound to O(mnlogmn). Avnaim and Boissonnat [1] considered the case where M is a simple
polygon and showed how to compute the feasible region in O(m?n%logmn) time.

In this paper we first propose an O(mn?) time algorithm for computing the feasible region
for the case where M is a monotone polygon. Then we consider the general case where M is a
simple polygon and propose an O(m?n?) time algorithm for computing the feasible region. Both
algorithms are shown to be optimal up to a constant factor. The results in this paper have been
presented in the Second Canadian Conference on Computational Geometry [9].

Earlier approaches [1,2] to computing the feasible region involve solving several subproblems on
convex polygons by partitioning the holes in N, and the concavities of N (i.e. polygons outside
N and inside the convex hull of N) into convex pieces. Avnaim and Boissonnat [1] follow the same
approach in computing the feasible region for the general case where M is a simple polygon. They
partition even M into convex pieces. In our algorithms only the holes and concavities of N are
partitioned into triangles and M is left as it is. In both our algorithms we first solve subproblems
involving M and triangles using the algorithm in [5]. Finally we combine the solutions to these
subproblems to compute the feasible region. The optimality of our algorithm for the case where
M is a monotone polygon depends crucially on an interesting intersection property of monotone
polygons and the fact that M is not decomposed into convex polygons.

Now we introduce a few definitions and notations. A simple polygon P is represented by a
sequence of distinct points in the plane vy, v, ..., vy, called vertices such that the edges of P, viz.
V1V2, V2U3, ..., Up—1Up, Unv1, do not intersect internally. The edges of P define the boundary bd(P),
which divides the plane into two parts, the bounded interior Int(P), and the unbounded exterior
Ext(P). If we traverse bd(P) such that Int(P) is to the right (respectively, left), then we say that
bd(P) is traversed in clockwise (respectively, counterclockwise) order. We assume that the vertices
are numbered in counterclockwise order along the boundary of P. We also use the symbol P to
denote the set of all points in bd(P) and int(P). A multiply connected polygon is a simple polygon
with possibly a number of disjoint simple polygonal holes in its interior. The boundary of such a
polygon is given as a set of cycles of edges: one cycle giving the counterclockwise sequence of edges
of the outer boundary of the polygon and one cycle for each hole, giving the clockwise sequence
of edges bounding the hole. From now onwards we refer to a multiply connected polygon as a
polygon. A polygonal region is the union of a finite number of polygons, segments and points.
The boundary of the polygonal region P is denoted by bd(P). We consider the placements of a
polygon P obtained by only translations. Note that a placement of P is uniquely determined by a
placement of an arbitrary fixed point in P called the reference point. Given polygons P and @, the
set of all placements of P such that P does not intersect Ext(Q)) is called the feasible region and
is denoted I(P, Q). Note that I(P, Q) is a closed set. The set of all placements of P such that P
intersects Int(Q) is denoted by E(P, Q). Note that E(P, Q) is an open set. E(P, () is the same as
the configuration space of P and Q [7,8]. Let E'(P,Q) denote the complement of F(P, Q). Given
a polygon P, we call the exterior Ezt(P) as the complement polygon P’ of P. It can be seen that
E'(P,Q") = I(P,Q). If M and N are polygons then it is easy to see that I(M, N) is a polygonal
region. Given two polygonal regions P and () we denote their set difference by P\Q. Note that
P\Q is a polygonal region. A polygon P is said to be monotone with respect to a line [ if the
intersection of any line perpendicular to [ with P is a connected segment, possibly empty.

This paper is organized as follows. In Section 2 we propose an optimal algorithm for computing
the set of all placements by translation of a monotone polygon inside an arbitrary polygon with



holes. In Section 3 we propose an optimal algorithm for computing the set of all placements by
translation of a simple polygon. In Section 4 we conclude with some remarks.

2 Placement of a Monotone Polygon

In this section we present an optimal O(mn?) time algorithm for computing the feasible region
I(M,N), where M is a monotone polygon having m edges and N is a multiply connected polygon
having a total of n edges. Let NH and M H denote the convex hulls of N and M respectively.
Consider NH\N. The polygons in NH\N are the concavities and holes of N. Let T" denote the set
of triangles obtained by triangulating the polygons in NH\N (Figure 1). So N = NH\(UperD).
In order to place M so that it does not intersect Ext(NN) it is enough to place M inside NH and
outside each D, DeT. Thus I(M,N) = I(M, NH)\(Uper E(M,D)). Since NH is convex it is easy
to see that I(M,NH) =I(MH,NH) [3]. Thus we have the following proposition.
Proposition 2.1. I(M,N) = I(MH, NH)\(UpcrE(M, D)).

Now we present an outline of the algorithm for computing (M, N).
Algorithm 2.2.

Input: A monotone polygon M (we assume without loss of generality that
M is monotone with respect to the X-axis), and a multiply connected
polygon N.

Output: The boundary bd(I(M, N)), of the set of all placements by trans-
lation of M inside N.

Step 1: Compute the convex hulls M H and NH of M and N respectively.

Step 2: Determine I(M H, NH), the set of all placements by translation of
MH so that M H lies inside NH.

Step 3: Compute the set T' of triangles by triangulating the polygons in
NH\N.

Step 4: Determine E(M, D), the set of all placements by translation of M
so that M intersects Int(D), for each D € T (See Figure 2).

Step 5: Compute I(M,N) = I(MH, NH)\(UpecrE(M, D)).

Details of Algorithm 2.2. In Step 1, MH and NH can be computed in O(m) and O(n) time
respectively, using the linear time algorithm to compute the convex hull of a simple polygon [10].
In Step 2, I(M H, NH) can be computed in O(m + n) time [3]. In Step 3, the triangulations of the
polygons in NH\N can be computed in O(nlogn) time using the algorithm in [6].

Now we show that Step 4 can be executed in O(mnlogm) time. This is based on the following
lemma.
Lemma 2.3. If M is an m-sided polygon, monotone with respect to the X-axis and D is a convex
polygon with the number of edges bounded by a constant k, then bd(E(M, D)) defines a simple
polygon with O(m) edges, monotone with respect to the X-axis. Further, bd(E(M, D)) can be
computed in O(mlogm) time.



Proof. Assume that M is monotone with respect to the X-axis. We first show that bd(E(M, D))
defines a simple polygon monotone with respect to the X-axis. The polygon D is convex and thus
monotone with respect to the X-axis. Let Dy and D3 be the lower and upper monotone chains of
D, respectively. From the definition of E(M, D) it follows that for any placement by translation of
M, bd(M) intersects bd(D) but does not intersect Int(D), if and only if the reference point r in M
is on bd(E (M, D)) (Figure 2). Suppose we translate M in such a way around D that the reference
point in M traverses the whole of bd(E(M, D)) in counterclockwise order, starting from the leftmost
vertex of bd(E(M,D)). Due to the monotonicity of D and M, when M translates against D, it
can be moved vertically upwards indefinitely without intersecting D. Similarly, when M translates
against Dy, M can be moved vertically downwards indefinitely without intersecting D. Therefore
bd(FE (M, D)) defines a simple polygon, monotone with respect to the X-axis.

Now we show that E(M, D) has O(m) edges. Each edge of bd(E(M, D)) is either parallel to
an edge of M or an edge of D. The polygon D has a constant number of edges and M has m edges.
Therefore bd(E (M, D)) has O(m) edges.

Now we show that E(M,D) can be computed in O(mlogm) time. Fortune [5], proposed an
O(cqlogeg) time algorithm for computing I(C, Q) where C'is a convex polygon with ¢ edges and
@ is an arbitrary polygon with ¢ edges. The polygon () may have holes. In particular, let C be
the convex polygon D, with a constant number of edges, and let @ be a polygon with the whole
plane as its interior except for a hole M, which is a monotone polygon. We can compute I(D, Q)
in O(qlogg) time using Fortune’s algorithm [5]. But bd(I(D,Q)) = bd(E(D, Q")) = bd(E(D, M)).
Having constructed bd(E(D,M)), we construct bd(F (M, D)) from bd(E(D,M)) by reflection at
the origin and an appropriate translation. Thus FE(M, D) can be computed in O(mlogm) time.
Q.E.D.

Since there are O(n) elements in T, by Lemma 2.3, Step 4 requires O(mnlogm) time.

Now we show that Step 5 can be executed in O(mn?) time. I(M,N) is the region inside
I(MH,NH) and outside each E(M,D), D € T. I(M,N) is a polygonal region: it is the union
of a finite number of polygons, isolated segments and isolated points. We compute bd(I(M, N))
by determining the boundaries of each of these polygons, and each of these isolated segments
and points. Note that I(M,N) contains bd(I(M,N)). We intend to compute bd(I(M,N)) from
bd(I(MH,NH)),and bd(E(M, D)), forall D € T. Let X denote the set of polygons {I(M H, NH)}U
{E(M,D),D € T} and S denote the set of segments that are the edges of the polygons in X. A
vertex of I(M,N) may be an endpoint of a segment in S or the intersection point of two segments
in S. An edge of I(M,N) may be a segment in S or an intersection free portion of a segment in
S. So, in order to compute bd(I(M,N)) we compute all intersections between segments in S and
the intersection free portions of segments in S. Before we state how to do these computations, we
show in the following two lemmas that the number of segments R, in S is O(mn) and the number
of intersections ¢, between segments is O(mn?).

Lemma 2.4. Let P and @Q be two polygons, monotone with respect to the same line. Let p and q
be the number of edges of P and Q, respectively. There are at most O(p + q) intersections between
the edges of P and Q).

Proof. Let P and @ be polygons, monotone with respect to the X-axis with p and ¢ edges,
respectively. Let P; and P» be the lower and upper monotone chains of P, respectively. Similarly,
let ()1 and Q)2 be the lower and upper monotone chains of @), respectively. Both P; and P, may
intersect @1 and Q2. It is enough to show that there are at most O(p + ¢) intersections between
the edges of P; and ;. In order to count the intersections we assign intersections to the edges



of P, and ), as follows. Let the leftmost and rightmost edges of (), that intersect an edge e of
Py, be ey and e respectively. The edge e may intersect all edges ey, es,..., ex of Q1. Assign the
intersection between e; and e to the edge e;, 1 < ¢ < k. Due to the monotonicity of P; and Q1,
e;, 1 <1 < k, intersects only the edge e of P;. However, e; and e, may intersect edges of of P;
other than e. Assign these intersections to the respective edges of P; that intersect e; or eg. Since
e intersects both e; and ey, e is assigned two intersections. The edges e;, 1 < 4 < k, are assigned
one intersection each. In this manner all intersections are assigned to edges of P; and Q1. Since
each edge is assigned atmost two intersections and the total number of edges is O(p + ¢), the total
number of intersections between edges in P; and @ is O(p + ¢). Q.E.D.

Lemma 2.5. The number R of segments in S is O(mn) and the number t of intersections between
the segments in S is O(mn?).

Proof. First we show that R=0O(mn). I(M H, N H) has O(n) edges [3]. From Lemma 2.3 we know
that each E(M, D), D € T has O(m) edges. Since T has at most O(n) triangles, the total number
N of line-segments in S is O(mn).

Now we show that t=0(mn?). I(MH,NH) is a convex polygon and thus monotone with
respect the X-axis. We know from Lemma 2.3 that E(M, D), for all D € T is monotone with
respect to the X-axis. Therefore, by Lemma 2.4 the number of intersections between the edges of
I(MH,NH) and E(M,D) is O(m + n). Thus the total number of intersections between the edges
of [[MH,NH) and bd(E(M, D)), for all D € T is O(mn + n?). From Lemma 2.4 it follows that
for D, D' € T, D # D', the number of intersections between the edges of (M, D) and E(M,D’) is
O(m). Considering all O(n?) pairs of elements in T, we find that the total number of intersections
between the edges of E(M, D), for all D € T is O(mn?). Therefore t=0(mn?). Q.E.D.

It is easy to compute the O(mn?) intersections as well as intersection free portions of the
O(mn) segments of S in two steps. First we compute pairwise intersections of the monotone
polygons E(M, D), D € T; the intersections in each of the O(n?) pairs of monotone polygons can
be computed in O(m) time (see Lemma 2.4). Hence, this step requires O(mn?) time and space.
Then we intersect the segments resulting from the first step with the convex polygons I(M H, NH).
This last step also requires O(mn?) time. After computing all the intersections as above we can
easily construct a planar subdivision which is represented as a planar graph G(V, E) where (1) V
is the set of endpoints of all the segments in S and the intersection points of segments in § and (2)
E is the set of edges {v;,v;} where v;,v; € V and v;v; is an intersection free portion of a segment
in S.

Once we have computed the planar subdivision G, we traverse G to mark edges of G that
comprise bd(I(M,N)). If an edge is marked in the traversal, then the direction of traversal is
assigned to the edge. These directions are so assigned that if we traverse the marked edges in the
assigned directions, then Int(I(M, N)) lies to the left and Fxzt(I(M, N)) lies to the right (Figure 3).
Note that bd(I(M, N)) can have several cycles of edges. Since I(M, N) lies inside I(M H, NH) (see
Proposition 2.1), in the marking process we traverse bd(I(MH, NH)) keeping Int(I(MH,NH))
to the left and assign the direction of traversal to the edges being marked. The marking process
also traverses bd(E(M, D)), for all D € T. Since I(M, N) lies outside E(M, D), for all D € T (see
Proposition 2.1), we traverse bd(E(M, D)), for each D € T, keeping Int(E(M, D)) to the right and
Ext(E(M, D)) to the left and assign the direction of traversal to the edges being marked.

Now we state the details of the scan of bd(I(MH,NH)). In the initial step, we consider any
vertex v of I(MH,NH) and determine the number of polygons F(M,D), D € T, such that v
lies inside E/(M, D). This number is stored in a counter. Then we move edge by edge in G along



bd(I(MH,NH)), keeping Int(I(MH, NH)) to the left. Whenever we enter (respectively, leave) a
polygon E(M, D), D € T, we increment (respectively, decrement) the counter. The edges traversed
when the counter is zero are marked as edges of bd(I(M, N)) (Figure 3). Now we analyze the time
complexity of the traversal. In the subdivision G we can move from an edge to the next edge along
bd(I(MH,NH)) in O(1) time. Each edge is traversed at most once. Now consider the initial step
that determines the membership of v in E(M, D), for each D € T. Since E(M, D) has O(m) edges,
this requires O(m) time for each D € T'. Since T has O(n) elements, the initial step requires O(mn)
time.

Now we consider the traversal of bd(FE(M, D)), for any D € T. In the initial step, we consider
any vertex v of bd(E(M, D)) and determine the number of polygons E(M,D"), D' € T, D' # D,
such that v lies inside E(M, D'). This number is stored in a counter. Then we move edge by edge in
G along bd(E(M, D)), keeping Int(E(M, D)) to the right. Whenever we enter (respectively, leave)
a polygon E(M,D")), D' € T, we increment (respectively, decrement) the counter. We also keep
track whether we are inside I(M H, NH). The edges of bd(E(M, D)) that are inside I(M H, NH)
and outside E(M, D'), for all D' € T, are marked as edges of bd(I(M,N)) (Figure 3). Now we
analyze the time complexity of the traversal. In the subdivision G we can move from an edge to the
next edge along bd(I(MH,NH)) in O(1) time. Each edge is traversed at most once. Now consider
the initial step that determines the membership of v in E(M, D’), for all D' € T, D" # D. Since
E(M,D") has O(m) edges, this requires O(m) time for each D’. Since T has O(n) elements, the
initial step requires O(mn) time.

We repeat the above mentioned traversal for each E(M, D), D € T. The size of G is O(mn?)
and each edge is traversed at most once. So the total time required is O(mn?). This completes the
traversal of G and the marking of edges.

Once the markings are done we scan the marked edges to find the isolated segments of I(M, N).
The edges that have been marked in both directions are isolated segments. The remaining edges
form cycles enclosing unconnected regions of I(M, N). In Figure 3 there are seven such regions and
two isolated segments in I(M, N). This completes the computation of I(M, N) in Step 5.

We summarize our result in the following theorem.

Theorem 2.6. Let M be a monotone polygon with m edges and N be a multiply connected
polygon with n edges. I(M,N), the set of all placements of M by translation inside N, can be
computed in O(mn?) time.

In Figure 4, M is a monotone polygon and I(M, N) has Q(mn?) vertices. So our algorithm is
asymptotically optimal.

3 Placement of a Simple Polygon

In this section we present an O(m?n?) time algorithm for computing I(M, N) where M is a simple
polygon with m edges and N is a multiply connected polygon with n edges. The main steps of the
algorithm are the same as those of Algorithm 2.2 of the previous section. It is sufficient to consider
Steps 4 and 5. First we show that Step 4 can be computed in O(mnlogm) time using the following
lemma.

Lemma 3.1. If M is an m-sided simple polygon and D is a convex polygon with the number of
edges bounded by a constant k, then bd(E(M, D)) defines a multiply connected polygon with O(m,)
cycles of edges and a total of O(m) edges. Further, bd(E(M,D)) can be computed in O(mlogm)
time.



Proof: The proof that bd(E (M, D)) has O(m) edges and that bd(E(M,D)) can be computed in
O(mlogm) time follows from [5] along the lines similar to proof of Lemma 2.3. From [5] it is clear
that E(M, D) defines a multiply connected polygon with atmost O(m) cycles of edges. Q.E.D.

Since T has O(n) elements, computing F(M, D) for all D € T requires O(mnlogm) time. This
completes the analysis of the time complexity of Step 4.

Now consider Step 5. As in Section 2, let X denote the set of polygons {I(MH,NH)} U
{E(M,D),D € T} and S denote the set of segments that are the edges of the polygons in X.
Consider the planar subdivision G, induced by the segments in S as defined in Section 2. Here,
we compute the planar subdivision G using the algorithm in [4]. Since M is a simple polygon,
bd(E(M,D)), D € T is an m-sided multiply connected polygon (Lemma 3.1). Observe that
bd(E, D)) and bd(E(M, D")), (D,D' € T, D # D'), have O(m?) intersections. Since T has O(n) ele-
ments, there are O(n?) pairs (D, D'). So, G has O(m?n?) vertices and edges. As in Section 2, Step 5
involves a scan of bd(I(M H, NH)), and bd(E (M, D)) for each D € T. The scan of bd(I(M H, NH))
is similar to that in the previous section. So we consider only the scan of bd(E(M, D)), D € T.
Observe that E(M, D) is a multiply connected polygon and hence bd(E (M, D)) has O(m) cycles of
edges (Lemma 3.1). We consider each cycle of bd(E(M, D)) separately. Let v be a vertex of G on a
cycle C of bd(E(M, D)). We consider the time complexity of only the initial step for cycle C. The
analysis of the time complexity of the remaining steps is similar to that in the previous section. In
the initial step we determine the number of polygons E(M,D'), D' € T, D' # D, such that v lies
inside F(M, D'). This is done by determining whether v lies inside the region enclosed by a cycle
of bd(E(M,D'")), for each D’ € T Since there are O(n) elements in T' and each E(M,D"), D' € T
has O(m) edges, the initial step for the cycle C requires O(mn) steps. Since there are O(m) cycles
in bd(E(M, D)), the total time required for the initial step for bd(E(M, D)) is O(m?n). Repeating
the initial step for bd(E(M, D)), D € T for all the O(n) elements D of T, requires O(m?n?) time.
Thus Step 5 requires O(m?n?) time.

We summarize our result in the following theorem.

Theorem 3.2. Let M be a simple polygon with m edges and N be a multiply connected polygon
of n edges. I(M,N), the set of all placements of M by translation inside N can be computed in
O(m?n?) time.

In Figure 5 it is evident that I(M, N) has Q(m?n?) vertices. So our algorithm is optimal up to

a constant factor.

4 Conclusion

Let M be an m-sided polygon, monotone with respect to two mutually perpendicular lines. We
call such polygons rectilinearly convexr. Let N be an m-sided polygon with holes. Since M is a
monotone polygon we can compute the feasible region using the algorithm in Section 2 in O(mn?)
time. However, the best known lower bound on the size of the feasible region is Q(mn +n?) (Figure
6). So, designing an optimal algorithm for computing the feasible region for a rectilinearly convex
polygon remains an open question. Another future direction is to consider the placement of other
classes of polygons viz., star, spiral and unimodal polygons.
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Figure 1. Triangulation of polygonsin NH-N
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