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Abstract. Protein structural alignment is an indispensable tool used for many differ-

ent studies in bioinformatics. Most structural alignment algorithms assume that the

structural units of two similar proteins will align sequentially. This assumption may

not be true for all similar proteins and as a result, proteins with similar structure but

with permuted sequence arrangement are often missed. We present a solution to the

problem based on an approximation algorithm that finds a sequence-order independent

structural alignment that is close to optimal. We first exhaustively fragment two pro-

teins and calculate a novel similarity score between all possible aligned fragment pairs.

We treat each aligned fragment pair as a vertex on a graph. Vertices are connected

by an edge if there are intra residue sequence conflicts. We regard the realignment of

the fragment pairs as a special case of the maximum-weight independent set problem

and solve this computationally intensive problem approximately by iteratively solving

relaxations of an appropriate integer programming formulation. The resulting struc-

tural alignment is sequence order independent. Our method is insensitive to gaps,

insertions/deletions, and circular permutations.

1 Introduction

The classification of protein structures often depend on the topology of sec-
ondary structural elements. For example, Structural Classification of Proteins
(SCOP) classifies proteins structures into common folds using the topological ar-
rangement of secondary structural units [16]. Most protein structural alignment
methods can reliably classify proteins into similar folds given the structural units
from each protein are in the same sequential order. However, the evolutionary
possibility of proteins with different structural topology but with similar spatial
arrangement of their secondary structures pose a problem. One such possibility
is the circular permutation.

A circular permutation is an evolutionary event that results in the N and
C terminus transferring to a different position on a protein. Figure 1 shows a
simplified example of circular permutation. There are three proteins, all consist
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of three domains (A,B, and C). Although the spatial arrangement of the three
domains are very similar, the ordering of the domains in the primary sequence
has been circularly permuted.

N C

c)

C

BA

N CCN

b)

A B

C

a)

A

C

B

Fig. 1. The cartoon illustration of three protein struc-
tures whose domains are similarly arranged in space
but appear in different order in primary sequences. The
location of domains A,B,C in primary sequences are
shown in a layout below each structure. Their order-
ings are related by circular permutation.

Lindqvist et al. (1997)
observed the first natu-
ral occurence of a circu-
lar permutation between
jackbean concanavalin A
and favin. Although the
jackbean-favin permuta-
tion was the result of
post-translational ligation
of the N and C terminus
and cleavage elsewhere in
the chain, a circular per-
mutation can arise from events at the gene level through gene duplication and
exon shuffling. Permutation by duplication [18] is a widely accepted model where
a gene first duplicates and fuses. After fusion, a new start codon is inserted into
one gene copy while a new stop codon is inserted into the second copy. Peisajovich
et al. demonstrated the evolutionary feasibility of permutation via duplication by
creating functional intermediates at each step of the permutation by duplication

model for DNA methyltransferases [17]. Identifying structurally similar proteins
with different chain topologies, including circular permutation, can aid studies in
homology modeling, protein folding, and protein design. An algorithm that can
structurally align two proteins independent of their backbone topologies would
be an important tool.

The biological implications of thermodynamically stable and biologically
functional circular permutations, both natural and artificial, has resulted in much
interest in detecting circular permutations in proteins [6, 10, 12, 20]. The more
general problem of detecting non-topological structural similarities beyond cir-
cular permutation has received less attention. We refer to these as non-cyclic

permutations from now on. Tabtiang et al. were able to create a thermodynam-
ically stable and biologically functional non-cyclic permutation, indicating that
non-cyclic permutations may be as important as circular permutations [21]. In
this study, we present a novel method that detects spatially similar structures
that can identify structures related by circular and more complex non-cyclic per-
mutations. Detection of non-cyclic permutation is possible by our algorithm by
virtue of a recursive combination of a local-ratio approach with a global linear-
programming formulation. This paper is organized as follows. We first show that
our algorithm is capable of finding known circular permutations with sensitivity
and specificity. We then report the discovery of three new circular permutations
and one example of a non-cyclic permutation that to our knowledge have not
been reported in literature. We conclude with remarks and discussions.



This work has incorporated several major improvements and new results over
the short paper in [5]. First, the algorithm has been improved so the number of
aligned residues in an alignment is significantly increased, without compromise
in RMSD values. Second, we have developed a new similarity score for a pair
of aligned structures. It incorporates correction of the alignment length, and
gives more reliable results. Third, we have developed a method to estimate the
statistical significance of a structural alignment by calculating the p-value of a
similarity score. Finally, the overall running time is significantly improved and
we are able to report results of a large scale exhaustive search of circularly
permuted proteins in the PDB database. This includes the discovery of three
previously unknown circularly permuted proteins. In addition, we also report
the discovery of a new non-cyclicly permuted protein. To our knowledge, this
is the first reported naturally occurring non-cyclic permutation between two
structures.

The rest of the paper is organized as follows. We first show that our algorithm
is capable of finding known circular permutations with sensitivity and specificity.
We then report the discovery of three new circular permutations and one example
of a non-cyclic permutation that to our knowledge have not been reported in
literature. We conclude with remarks and discussions.

2 Method

In this study, we describe a new algorithm that can align two protein structures
or substructures independent of the connectivity of their secondary structure
elements. We first exhaustively fragment the two proteins seperately. An ap-
proximation algorithm based on a fractional version of the local-ratio approach
for scheduling split-interval graphs [3] is then used to search for the combina-
tion of peptide fragments from both structures that will optimize the global
alignment of the two structures.

2.1 Basic Definitions and Notations

The following definitions/notations are used uniformly throughout the paper
unless otherwise stated. Protein structures are denoted by Sa, Sb, . . .. A sub-
structure λa

i,k of a protein structure Sa is a continuous fragment λa
i,k, where i is

the residue index of the beginning of the substructure and k is the length (num-
ber of residues) of the substructure. We will denote such a substructure simply
by λa if i and k are clear from the context or irrelevant. A residue at ∈ Sa is a
part of a substructure λa

i,k if i ≤ t ≤ i + k − 1. Λa is the set of all continuous
substructures or fragments of protein structure Sa that is under consideration
in our algorithm. χi,j,k (or simply χ when the other parameters are understood
from the context) denotes an ordered pair (λa

i,k, λb
j,k) of equal length substruc-

tures of two protein structures Sa and Sb. Two ordered pairs of substructures
(λa

i,k, λb
j,k) and (λa

i′,k′ , λb
j′,k′) are called inconsistent if and only if at least one of

the pairs of substructures {λa
i,k, λa

i′,k′} and {λa
j,k, λa

j′,k′} are not disjoint. We can



now formalize our substructure similarity identification problem as follows. We
call it the Basic Substructure Similarity Identification (BSSIΛ,σ) problem. An in-
stance of the problem is a set Λ = {χi,j,k | i, j, k ∈ N} ⊂ Λa ×Λb of ordered pairs
of equal length substructures of Sa and Sb and a similarity function σ : Λ 7→ R

+

mapping each pair of substructures to a positive similarity value. The goal is to
find a set of substructure pairs {χi1,j1,k1

, χi2,j2,k2
, ...χit,jt,kt

} that are mutually

consistent and maximizes the total similarity of the selection
∑t

ℓ=1 σ(χiℓ,jℓ,kℓ
).

2.2 An Algorithm Based on the Local-Ratio Approach

The BSSIΛ,σ problem is a special case of the well-known maximum weight
independent set problem in graph theory. In fact, BSSIΛ,σ itself is MAX-SNP-
hardeven when all the substructures are restricted to have lengths at most 2 [3,
Theorem 2.1]. Our approach is to adopt the approximation algorithm for schedul-
ing split-interval graphs [3] which itself is based on a fractional version of the
local-ratio approach.

Definition 1 The closed neighborhood Nbr∆[χ] of a vertex χ of G∆ is {χ′ |
{χ, χ′} ∈ E∆} ⋃{χ}. For any subset ∆ ⊆ Λ, the conflict graph G∆ = (V∆, E∆) is

the graph in which V∆ = {χ |χ ∈ ∆} and E∆ = { {χ, χ′ } |χ, χ′ ∈ ∆ and the pair

{χ, χ′} is not consistent}

For an instance of BSSI∆,σ with ∆ ⊆ Λ we introduce three types of indicator
variables as follows. For every χ = (λa, λb) ∈ ∆, we introduce three indicator
variables xχ, yχλa

and yχλb
∈ {0, 1}. xχ indicates whether the substructure pair

should be used (xχ = 1) or not (xχ = 0) in the final alignment. yχλa
and yχλb

are
artificial selection variables for λa and λb that allows us to encode consistency in
the selected substructures in a way that guarantees good approximation bounds.
We initialize ∆ = Λ. Then, the following algorithm is executed:

1. Solve the following LP relaxation of a corresponding integer programming
formulation of BSSI∆,σ:

maximize
∑

χ∈∆

σ(χ) · xχ (1)

subject to
∑

at∈λa
∈Λa

yχλa
≤ 1 ∀at ∈ Sa (2)

∑

at∈λb
∈Λb

yχλb
≤ 1 ∀at ∈ Sb (3)

yχλa
− xχ ≥ 0 ∀χ ∈ ∆ (4)

yχλb
− xχ ≥ 0 ∀χ ∈ ∆ (5)

xχ, yχλa
, yχλb

≥ 0 ∀χ ∈ ∆ (6)



2. For every vertex χ ∈ V∆ of G∆, compute its local conflict number αχ =
∑

χ′∈Nbr∆[χ] xχ′ . Let χmin be the vertex with the minimum local conflict
number. Define a new similarity function

σnew(χ) =

{

σ(χ) if χ /∈ Nbr∆[χmin]
σ(χ) − σ(χmin) otherwise

3. Create ∆new ⊆ ∆ by removing from ∆ every substructure pair χ such that
σnew (χ) ≤ 0. Push each removed substructure to a stack in arbitrary order.

4. If ∆new 6= ∅ then set ∆ = ∆new, σ = σnew and go to Step 1. Otherwise, go
to Step 5.

5. Repeatedly pop the stack, adding the substructure pair to the alignment as
long as the following conditions are met:

– The substructure pair is consistent with all other substructure pairs that
already exist in the selection.

– The cRMSD of the alignment does not change by a threshold. This
condition bridges the gap between optimizing a local similarity between
substructures and optimizing the tertiary similarity of the alignment by
guaranteeing that each substructure from a substructure pair is in the
same spatial arrangement in the global alignment.

In implementation, the graph G∆ is considered implicitly via intersecting
intervals. The interval clique inequalities can be generated via a sweepline ap-
proach. The running time depends on the number of iterations needed to solve
the LP formulations. Let LP(n,m) denote the time taken to solve a linear pro-
gramming problem on n variables and m inequalities. Then the worst case run-
ning time of the above algorithm is O(|Λ|·LP(3|Λ|, 5|Λ|+ |Λa|+ |Λb|)). However,
the worst-case time complexity happens under the excessive pessimistic assump-
tion that each iteration removes exactly one vertex of GΛ, namely χmin only,
from consideration, which is unlikely to occur in practice as our computational
results show. A theoretical pessimistic estimate of the performance ratio of our
algorithm can be obtained as follows. Let α be the maximum of all the αχmin

’s
over all iterations. Proofs in [3] translate to the fact that the algorithm returns
a solution whose total similarity is at least 1

α
times that of the optimum and, if

Step 5(b) is omitted from the algorithm, then α ≤ 4. The value of α even with
Step 5(b) is much smaller than 4 in practice (e.g. α = 2.89).

Due to lack of space we provide the implementation details of our algorith-
mic approach in a full version of the paper. We just note here that the linear
programming problem is solved using the BPMPD package [14] and to improve
computational efficiency, only the top-scoring 1200 substructure pairs are ini-
tially used in our algorithm.

3 Similarity Score σ

The similarity score σ(χi,j,k) between two aligned substructures λa
i,k and λb

j,k is
a weighted sum of a shape similarity measure derived from the cRMSD value,
which is then modified for the secondary structure content of the aligned sub-
structure pairs, and a sequence composition score (SCS). Here cRMSD values



are the coordinate root mean square distance, which are the square root of the
mean of squares of Euclidean distances of coordinates of corresponding Cα atoms.

cRMSD scaling by secondary structure content. We scale the cRMSD accord-
ing to the secondary structure composition of the two substructures (λa and λb)
that compose the substructure pair χ. We extracted 1,000 α-helices of length
4-7 (250 of each length) at random from protein structures contained in PDB-
SELECT 25% [8]. We exhaustively aligned helices of equal length and obtained
the cRMSD distributions shown in Figure 2(a-d). We then exhaustively aligned
equal length β-strands (length 4-7) from a set of 1,000 (250 of each length)
strands randomly extracted from protein structures in PDBSELECT 25% [8]
and obtained the distributions shown in Figure 2(e-h). For each length, the mean
cRMSD value of the strands is approximately two times larger than the mean
RMSD of the helices. Therefore, we introduce the following empirical scaling fac-

tor s(λa, λb) =
∑ N

i=1
δ(Aa,i,Ab,i)

N
, to modify the cRMSD of the aligned substruc-

ture pairs, where δ(Aa,i, Ab,i) =

{

2, if residues Aa,i and Ab,i are both helix

1, otherwise
,

to remove bias due to different secondary structure content. We use DSSP [11]
to assign secondary structure to the residues of each protein.

Sequence composition. The score for sequence composition SCS is defined as
SCS =

∑k
i=1 B(Aa,i, Ab,i) where Aa,i and Ab,i are the amino acid residue types

at aligned position i. B(Aa,i, Ab,i) is the similarity score between Aa,i and Ab,i

based on a modified BLOSUM50 matrix, in which a constant is added to all
entries such that the smallest entry is 1.0.

Combined similarity score. The combined similarity score σ(χ) of two aligned
substructures is calculated as follows:

σ(χi,j,k) = α[C − s(λa, λb) ·
cRMSD

k2
] + SCS, (7)

In current implementation, α and C are empirically set to 100 and 2, respectively.

Similarity score for aligned molecules. The output of the above algorithm is a set
of aligned substructure pairs X = {χ1, χ2, . . . χm} that maximize Equation (1).
The alignment X of two structures is scored following Equation (7) by treating
X as a single discontinuous fragment pair:

σ(X) = α

[

C − s(X) · cRMSD

N2
X

]

+ SCS. (8)

In this case k = NX , where NX is the total number of aligned residues.

3.1 Statistical Significance

To investigate the effect that the size of each the proteins being aligned has on our
similarity score, we randomly aligned 200,000 protein pairs from PDBSELECT
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Fig. 3. a) Linear fit between raw similarity score σ(X) (equation 8) as a function
of the geometric mean

√
Na · Nb of the length of the two aligned proteins (Na

and Nb are the number of residues in the two protein structures Sa and Sb). The
linear regression line (grey line) has a slope of 0.314. b) Linear fit of the normalized
similarity score σ̃(X) (equation 9) as a function of the geometric mean of the
length of the two aligned proteins. The linear regression line (grey line) has a slope
of −0.0004.

25% [8]. Figure 3a shows the similarity scores σ(X (equation 8)) as a function of
the geometric mean of two aligned structure lengths

√
Na · Nb. Where Na and Nb

are the number of residues in Sa and Sb, respectively. The regression line (grey
line) has a slope of 0.314, indicating that σ(X) is not ideal for determining the
significance of the alignment because larger proteins produce higher similarity
scores. This is corrected by a simple normalization scheme:

σ̃(X) =
σ(X)

NX

, (9)

where N is the number of equivalent residues in the alignment is used. Figure 3b
shows the normalized similarity score as a function of the geometric mean of the
aligned protein lengths. The regression line (grey line) has a negligible slope of
−4.0 × 10−4. In addition, the distribution of the normalized score σ̃(X) can be



approximated by an extreme value distribution (EVD) (Figure 4). This allows
us to compute the statistical significance given the score of an alignment [1, 4].

4 Results

4.1 Discovery of novel circular permutation and novel non-cyclic

permutation

In Appendix, we demonstrate the ability of our algorithm to detect circular per-
mutations by examining known examples of circular permutations. The effective-
ness of our method is also demonstrated by the discovery of previously unknown
circular permutations. In an attempt to test our algorithm’s ability to discover
new circular permutations, we structurally aligned a subset of 3,336 structures
from PDBSELECT 90% [8]. We first selected proteins from PDBSELECT90 (se-
quences have less than 90% identities) whose N and C termini were no further
than 30 Å apart. From this subset of 3,336 proteins, we aligned two proteins if
they met the following conditions: the difference in their lengths was no more
than 75 residues, and they had approximately the same secondary structure
content. To compare secondary structure content, we determined the percent-
age of the residues labelled as helix, strand, and other for each structure. Two
structures were considered to have the same secondary structure content if the
difference between each secondary structure label was less than 10%. Within the

Similarity Score

D
e
n
s
it
y

Similarity Score Distribtuion

Fig. 4. The distribution of the nor-
malized similarity scores obtained
by aligning 200,000 pairs of pro-
teins randomly selected from PDB-
SELECT 25% [8]. The distribution
can be fit to an Extreme Value
Distribution, with parameters α =
14.98 and β = 3.89.

approximately 200,000 alignments, we found
426 candidate circular permutations. Of
these circular permutations, 312 were sym-
metric proteins that can be aligned with or
without a circular permutation. Of the 114
non-symmetric circular permutations, 112
were already known in literature, and 3 are
novel. We describe one novel circular per-
mutations as well as one novel non-cyclic
permutation in some details. The newly dis-
covered circular permutation between migra-
tion inhibition factor and arginine repressor,
which involves an additional strand-swappng
is described in Appendix.

Nucleoplasmin-core and auxin bind-

ing protein The first novel circular
permutation we found was between the
nucleoplasmin-core protein in Xenopu laevis

(PDB ID 1k5j, chain E) and the auxin bind-
ing protein in maize (PDB ID 1lrh, chain A,
residues 37 through 127). The overall struc-
tural alignment between 1k5jE (Figure 5a,
top) and 1lrhA(Figure 5a, bottom) has an



RMSD value of 1.36Å with an alignment
length of 68 residues and a significant p-value of 2.7 × 10−5 after Bonferroni
correction. These proteins are related by a circular permutation. The short loop
connecting two antiparallel strands in nucleoplasmin-core protein (in ellipse, top
of Fig 5b) becomes disconnected in auxin binding protein 1 (in ellipse, bottom
of Fig 5b), and the N- and C- termini of the nucleoplasmin-core protein (in
square, top of Fig 5b) are connected in auxin binding protein 1 (square, bottom
of Fig 5b). The novel circular permutation between aspartate racemase and type
II 3-dehydrogenate dehyrdalase is described in detail in Appendix.

Fig. 5. A new circular permutation discovered between nucleoplasmin-core (1k5j,
chain E, top panel), and the fragment of residues 37-127 of auxin binding protein 1
(1lrh, chain A, bottom panel). a) These two proteins superimpose well spatially, with
an RMSD value of 1.36Å for an alignment length of 68 residues and a significant
p-value of 2.7 × 10−5 after Bonferroni correction. b) These proteins are related
by a circular permutation. The short loop connecting strand 4 and strand 5 of
nucleoplasmin-core (in rectangle, top) becomes disconnected in auxin binding protein
1. The N- and C- termini of nucleoplasmin-core (in ellipse, top) become connected
in auxin binding protein 1 (in ellipse, bottom). For visualization, residues in the
N-to-C direction before the cut in the nucleoplasmin-core protein are colored red,
and residues after the cut are colored blue. c) The topology diagram of these two
proteins. In the original structure of nucleoplasmin-core, the electron density of the
loop connecting strand 4 and strand 5 is missing.

Beyond circular permutation The information that naturally occurring cir-
cular permutations contain about the folding mechanism of proteins has led to a
lot of interest in their detection. However, there has been little work on the de-
tection of non-cyclic permuted proteins. As an example of this important class of
topologically permuted proteins, Tabtiang et al (2004) were able to artificially
create a noncyclic permutation of the Arc repressor that was thermodynami-



cally stable, refolds on the sub-millisecond time scale, and binds operator DNA
with nanomolar affinity [21]. This raises the question of whether or not these
non-cyclic permutations can arise naturally.

Here we report the discovery of a naturally occurring non-cyclic permutation
between chain F of AML1/Core Binding Factor (AML1/CBF, PDB ID 1e50,
Figure 6, top) and chain A of riboflavin synthase (PDB ID 1pkv, Figure 6a,
bottom). The two structures align well with a RMSD of 1.23 Å with an alignment
length of 42 residues, and a significant p-value of 2.8 × 10−4 after Bonferroni
correction. The topology diagram of AML1/CBF (Figure 6b) can be transformed
into the topology diagram of riboflavin synthase (Figure 6f) by the following
steps: Remove the the loops connecting strand 1 to helix 2, strand 4 to strand
5, and strand 5 to strand 6 (Figure 6c). Connect the C-terminal end of strand
4 to the original N-termini (Figure 6d). Connect the C-terminal end of strand
5 to the N-terminal end of helix 2 (Figure 6e). Connect the original C-termini
to the N-terminal end of strand 5. The N-terminal end of strand 6 becomes the
new N-termini and the C-terminal end of strand 1 becomes the new C-termini
(Figure 6f).
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Fig. 6. A novel non-cyclic permutation discovered between AML1/Core Binding
Factor (AML1/CBF, PDB ID 1e50, Chain F, top) and riboflavin synthase (PDBID
1pkv, chain A, bottom) a) These two proteins superimpose well spatially, with an
RMSD of 1.23 Å and an alignment length of 42 residues, with a significant p-value
of 2.8×10−4 after Bonferroni correction. Aligned residues are colored blue. b) These
proteins are related by multiple permutations. The steps to transform the topology
of AML1/CBF (top) to riboflavin (bottom) are as follows: c) Remove the the loops
connecting strand 1 to helix 2, strand 4 to strand 5, and strand 5 to helix 6; d)
Connect the C-terminal end of strand 4 to the original N-termini; e) Connect the
C-terminal end of strand 5 to the N-terminal end of helix 2; f) Connect the original
C-termini to the N-terminal end of strand 5. The N-terminal end of strand 6 becomes
the new N-termini and the C-terminal end of strand 1 becomes the new C-termini.
We now have the topology diagram of riboflavin synthase.



5 Conclusion

The approximation algorithm introduced in this work can find good solutions
for the problem of protein structure alignment. Furthermore, this algorithm can
detect topological differences between two spatially similar protein structures.
The alignment between MIF and the arginine repressor demonstrates our algo-
rithm’s ability to detect structural similarities even when spatial rearrangement
of structural units has occurred. In addition, we report in this study the first ex-
ample of a naturally occurring non-cyclic permuted protein between AML1/Core
Binding Factor chain F and riboflavin synthase chain A.

In our method, the scoring function plays a pivotal role in detecting sub-
structure similarity of proteins. We expect future experimentation on optimizing
the parameters used in our similarity scoring system can improve detection of
topologically independent structural alignment. In this study, we were able to
fit our scoring system to an Extreme Value Distribution (EVD), which allowed
us to perform an automated search for circular permuted proteins. Although
the p-value obtained from our EVD fit is sufficient for determining the biolog-
ical significance of a structural alignment, the structural change between the
microphage migration inhibition factor and the C-terminal domain of arginine
repressor indicates a need for a similarity score that does not bias heavily towards
cRMSD measure for scoring circular permutations.

Whether naturally occurring circular permutations are frequent events in the
evolution of protein genes is currently an open question. Lindqvist et al, (1997)
pointed out that when the primary sequences have diverged beyond recognition,
circular permutations may still be found using structural methods [12]. In this
study, we discovered three examples of novel circularly permuted protein struc-
tures and a non-cyclic permutation among 200,000 protein structural alignments
for a set of non-redundant 3,336 proteins. This is an incomplete study, as we re-
stricted our studies to proteins whose N- and C- termini distance were less than
30Å. We plan to relax the N to C distance and include more proteins in future
work to expand the scope of the investigation.
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