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Abstract
In this paper we investigate the computational complexity of a combinatorial problem that arises
in the reverse engineering of protein and gene networks. Our contributions are as follows:

• We abstract a combinatorial version of the problem and observe that this is “equivalent”
to the set multicover problem when the “coverage” factor k is a function of the number
of elements n of the universe. An important special case for our application is the case in
which k = n − 1.

• We observe that the standard greedy algorithm produces an approximation ratio of Ω(log n)
even if k is “large” i.e. k = n − c for some constant c > 0.

• Let 1 < a < n denote the maximum number of elements in any given set in our set
multicover problem. Then, we show that a non-trivial analysis of a simple randomized
polynomial-time approximation algorithm for this problem yields an expected approxima-
tion ratio E[r(a, k)] that is an increasing function of a/k. The behavior of E[r(a, k)] is
roughly as follows: it is about ln(a/k) when a/k is at least about e2 ≈ 7.39, and for smaller
values of a/k it decreases towards 1 as a linear function of

√
a/k with lima/k→0 E[r(a, k)] =

1. Our randomized algorithm is a cascade of a deterministic and a randomized rounding
step parameterized by a quantity β followed by a greedy solution for the remaining prob-
lem. We also comment about the impossibility of a significantly faster convergence of
E[r(a, k)] towards 1 for any polynomial-time approximation algorithm.

Keywords: Set multicover, randomized approximation algorithms, reverse engineering, biological
networks.

1 Introduction

Let [x, y] be the set {x, x + 1, x + 2, . . . , y} for integers x and y. The set multicover problem is a
well-known combinatorial problem that can be defined as follows.
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Problem name: SCk.

Instance <n, m, k>: An universe U = [1, n], sets S1, S2, . . . , Sm ⊆ U with ∪m
j=1Sj = U

and a “coverage factor” (positive integer) k.

Valid Solutions: A subset of indices I ⊆ [1, m] such that, for every element x ∈ U,
|j ∈ I : x ∈ Sj| ≥ k.

Objective: Minimize |I|.

SC1 is simply called the Set Cover problem and denoted by SC; we will denote an instance of
SC simply by <n, m> instead of <n, m, 1>.

Both SC and SCk are already well-known in the realm of design and analysis of combinatorial
algorithms (e.g., see [18]). Let 3 ≤ a < n denote the maximum number of elements in any set, i.e.,
a = maxi∈[1,m]{|Si|}. We summarize some of the known relevant results for them below.

Fact 11

(a) [6] Assuming NP �⊆ DTIME(nlog log n), instances < n, m > of the SC problem cannot be ap-
proximated to within a factor of (1 − ε) lnn for any constant 0 < ε < 1 in polynomial time.
(b) [18] An instance < n, m, k > of the SCk problem can be (1 + lna)-approximated in O(nmk)

time by a simple greedy heuristic that, at every step, selects a new set that covers the maximum
number of those elements that has not been covered at least k times yet. It is also possible to design
randomized approximation algorithms with similar expected approximation ratios.

1.1 Summary of Results

The combinatorial problems investigated in this paper that arise out of reverse engineering of gene
and protein networks can be shown to be equivalent to SCk when k is a function of n. One case
that is of significant interest is when k is “large”, i.e., k = n − c for some constant c > 0, but
the case of non-constant c is also interesting (cf. Questions (Q1) and (Q2) in Section 2). Our
contributions in this paper are as follows:

• In Section 2 we discuss the combinatorial problems (Questions (Q1) and (Q2)) with their
biological motivations that are of relevance to the reverse engineering of protein and gene
networks. We then observe, in Section 2.3, using a standard duality that these problems are
indeed equivalent to SCk for appropriate values of k.

• In Lemma 2 in Section 3.1, we observe that the standard greedy algorithm SCk produces an
approximation ratio of Ω(log n) even if k is “large”, i.e. k = n − c for some constant c > 0.

• Let 1 < a < n denotes the maximum number of elements in any given set in our set multi-
cover problem. In Theorem 3 in Section 3.2, we show that a non-trivial analysis of a simple
randomized polynomial-time approximation algorithm for this problem yields an expected ap-
proximation ratio E[r(a, k)] that is an increasing function of a/k. The behavior of E[r(a, k)] is
“roughly” as follows: it is about ln(a/k) when a/k is at least about e2 ≈ 7.39, and for smaller
values of a/k it decreases towards 1 as a linear function of

√
a/k with lima/k→0E[r(a, k)] = 1.

1A slightly weaker lower bound under the more standard complexity-theoretic assumption of P �=NP was obtained
by Raz and Safra [13] who showed that there is a constant c such that it is NP-hard to approximate instances <n, m>

of the SC problem to within a factor of c ln n.
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More precisely, E[r(a, k)] is at most2

1 + lna, if k = 1

(
1 + e−(k−1)/5

)
ln(a/(k − 1)), if a/(k − 1) ≥ e2 ≈ 7.39 and k > 1

min{ 2 + 2 · e−(k−1)/5, 2 +
(
e−2 + e−9/8

) · a
k }

≈ min{ 2 + 2 · e−(k−1)/5, 2 + 0.46 · a
k } if 1

4 < a/(k − 1) < e2 and k > 1

1 + 2
√

a
k if a/(k − 1) ≤ 1

4 and k > 1

1.2 Summary of Analysis Techniques

• To prove Lemma 2, we generalize the approach in Johnson’s paper [8]. A straightforward
replication of the sets will not work because of the dependence of k on n, but allowing the
“misleading” sets to be somewhat larger than the “correct” sets allows a similar approach to
go through at the expense of a diminished constant.

• Our randomized algorithm in Theorem 3 is a cascade of a deterministic and a randomized
rounding step parameterized by a quantity β followed by a greedy solution for the remaining
problem.

• Our analysis of the randomized algorithm in Theorem 3 uses an amortized analysis of the
interaction between the deterministic and randomized rounding steps with the greedy step.
For tight analysis, we found that the standard Chernoff bounds such as in [1, 3, 12, 18] were not
always sufficient and hence we had to devise more appropriate bounds for certain parameter
ranges.

1.3 Impossibility of Significantly Faster Convergence of E[r(a, k)] Towards 1

It is certainly tempting to investigate the possibility of designing randomized or deterministic
approximation algorithms for which E[r(a, k)] or r(a, k) converges to 1 at a significantly faster
rate as a function of a/k. However, this may be difficult to achieve and, in particular, E[r(a, k)]

or r(a, k) cannot be 1 + o(1) for a ≥ k since the set multicover problem is APX-hard for this
case. To illustrate the last assertion, consider the special case of k = a = n − 1. Then, the set
multicover problem is still APX-hard as shown in the following. One could have n − 1 sets of the
form V\{i} that cover every element, except one, exactly n − 2 times (the last element is covered
n − 1 times). Moreover, we can have a family of sets of size exactly 3 that form an instance of the
set cover problem restricted to a = 3. This restricted problem is APX-hard, and a solution of size
m for that instance gives solution of size n + m − 1 for our instance. Because m ≥ n/3, this is an
approximation-preserving reduction. However, we will not investigate designing tight lower bounds
further in this paper.

2 Motivations

In this section we define a computational problem that arises in the context of experimental design
for reverse engineering of protein and gene networks. We will first pose the problem in linear algebra

2Note that, for k > 1, the bound on E[r(a, k)] is defined over three regions of values of a/(k − 1), namely [a, e2),
[e2 , 1

4
) and [ 1

4
, 0). The boundaries between the regions can be shifted slightly by exact tedious calculations. We omit

such straightforward but tedious exact calculations for simplicity.
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terms, and then recast it as a combinatorial question. After that, we will discuss its motivations
from systems biology. Finally, we will provide a precise definition of the combinatorial problems
and point out its equivalence to the set multicover problem via a standard duality.

Our problem is described in terms of two matrices A ∈ R
n×n and B ∈ R

n×m such that:

• A is unknown;

• B is initially unknown, but each of its columns, denoted as B1, B2, . . . , Bm, can be retrieved
with a unit-cost query;

• the columns of B are in general position, i.e., each subset of � ≤ n columns of B is linearly
independent;

• the zero structure of the matrix C = AB = (cij) is known, i.e., a binary matrix C0 =
(
c0

ij

)
∈

{0, 1}n×m is given, and it is known that cij = 0 for each i, j for which c0
ij = 0.

The objective is to obtain as much information as possible about A (which, in the motivating
application, describes regulatory interactions among genes and/or proteins), while performing “few”
queries (each of which may represent the measuring of a complete pattern of gene expression, done
under a different set of experimental conditions). For each query that we perform, we obtain a
column Bi, and then the matrix C0 tells us that certain rows of A have zero inner product with Bi.

As a concrete example, let us take n = 3, m = 5, and suppose that the known information is
given by the matrix:

C0 =




0 1 0 1 1

1 1 1 0 0

0 0 1 0 1




and the two unknown matrices are:

A =




−1 1 3

2 −1 4

0 0 −1


 , B =




4 3 37 1 10

4 5 52 2 16

0 0 −5 0 −1




(the matrix C0 has zero entries wherever AB has a zero entry). Considering the structure of C0,
we choose to perform four queries, corresponding to the four columns 1,3,4,5 of B, thus obtaining
the following data: 


4 37 1 10

4 52 2 16

0 −5 0 −1


 . (1)

What can we say about the unknown matrix A? Let us first attempt to identify its first row, which
we call A1. The first row of the matrix C0 tells us that the vector A1 is orthogonal to the first
and second columns of (1) (which are the same as the first and third columns of B). This is the
only information about A that we have available, and it is not enough information to uniquely
determine A1, because there is an entire line that is orthogonal to the plane spanned by these two
columns, However, we can still find some nonzero vector in this line, and conclude that A1 is an
unknown multiple of this vector. This nonzero vector may be obtained by simple linear algebra
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manipulations. For example, we might add a linearly independent column to the two that we had,
obtaining a matrix

B1 =




4 37 0

4 52 0

0 −5 1


 ,

then pick an arbitrary vector v whose first two entries are zero (to reflect the known orthogonality),
let us say v = [0, 0, 1], and finally solve A1B = v, thus estimating A1 as vB−1:

Â1 = [0, 0, 1] B−1 = [0, 0, 1]




13/15 −37/60 0

−1/15 1/15 0

−1/3 1/3 1


 = [−1/3, 1/3, 1] .

Notice that this differs from the unknown A1 only by a scaling. Similarly, we may employ the last
two columns of (1) to estimate the second row A2 of A, again only up to a multiplication by a
constant, and we may use the first and third columns of (1) (which are the same as the first and
fourth columns of B) to estimate the last row, A3.

Notice that there are always intrinsic limits to what can be accomplished: if we multiply each row
of A by some nonzero number, then the zero structure of C is unchanged. Thus, as in the example,
the best that we can hope for is to identify the rows of A up to scalings (in abstract mathematical
terms, as elements of the projective space P

n−1). To better understand these geometric constraints,
let us reformulate the problem as follows. Let Ai denote the ith row of A. Then the specification
of C0 amounts to the specification of orthogonality relations Ai · Bj = 0 for each pair i, j for which
c0

ij = 0. Suppose that we decide to query the columns of B indexed by J = {j1, . . . , j�} . Then, the
information obtained about A may be summarized as Ai ∈ H⊥

J,i, where “⊥” indicates orthogonal
complement, and

HJ,i = span {Bj, j ∈ Ji} ,

Ji = {j | j ∈ J and c0
ij = 0} . (2)

Suppose now that the set of indices of selected queries J has the property:

each set Ji, i = 1, . . . , n, has cardinality ≥ n − k, (3)

for some given integer k. Then, because of the general position assumption, the space HJ,i has
dimension ≥ n − k, and hence the space H⊥

J,i has dimension at most k.

The case k = 1

The most desirable special case (and the one illustrated with the concrete example given above)
is that in which k = 1. Then dimH⊥

J,i ≤ 1, hence each Ai is uniquely determined up to a scalar
multiple, which is the best that could be theoretically achieved. Often, in fact, finding the sign
pattern (such as “(+, +, −, 0, 0,−, . . .)”) for each row of A is the main experimental goal (this would
correspond, in our motivating application, to determining if the regulatory interactions affecting
each given gene or protein are inhibitory or catalytic). Assuming that the degenerate case H⊥

J,i = {0}

does not hold (which would determine Ai = 0), once that an arbitrary nonzero element v in the
line H⊥

J,i has been picked, there are only two sign patterns possible for Ai (the pattern of v and
that of −v). If, in addition, one knows at least one nonzero sign in Ai, then the sign structure of
the whole row has been uniquely determined (in the motivating biological question, typically one
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such sign is indeed known; for example, the diagonal elements aii, i.e. the ith element of each Ai,
is known to be negative, as it represents a degradation rate). Thus, we will be interested in this
question:

find J of minimal cardinality such that |Ji| ≥ n − 1, i = 1, . . . , n. (Q1)

If queries have variable unit costs (different experiments have a different associated cost), this
problem must be modified to that of minimizing a suitable linear combination of costs, instead of
the number of queries.

The general case k > 1

More generally, suppose that the queries that we performed satisfy (3), with k > 1 but small k. It
is not true anymore that there are only two possible sign patterns for any given Ai, but the number
of possibilities is still very small. For simplicity, let us assume that we know that no entry of Ai

is zero (if this is not the case, the number of possibilities may increase, but the argument is very
similar). We wish to prove that the possible number of signs is much smaller than 2n. Indeed,
suppose that the queries have been performed, and that we then calculate, based on the obtained
Bj’s, a basis {v1, . . . , vk} of H⊥

J,i (assume dimH⊥
J,i = k; otherwise pick a smaller k). Thus, the vector

Ai is known to have the form
∑k

r=1 λrvr for some (unknown) real numbers λ1, . . . , λk. We may
assume that λ1 �= 0 (since, if Ai =

∑k
r=2 λrvr, the vector εv1 +

∑k
r=2 λrvr, with small enough ε,

has the same sign pattern as Ai, and we are counting the possible sign patterns). If λ1 > 0, we
may divide by λ1 and simply count how many sign patterns there are when λ1 = 1; we then double
this estimate to include the case λ1 < 0. Let vr = col (v1r, . . . , vnr), for each r = 1, . . . , k. Since no
coordinate of Ai is zero, we know that Ai belongs to the set C = R

k−1 \ (L1

⋃
. . .

⋃
Ln) where,

for each 1 ≤ s ≤ n, Ls is the hyperplane in R
k−1 consisting of all those vectors (λ2, . . . , λk) such

that
∑k

r=2 λrvsr = −vs1. On each connected component of C, signs patterns are constant. Thus the
possible number of sign patterns is upper bounded by the maximum possible number of connected
regions determined by n hyperplanes in dimension k − 1. A result of L. Schläfli (see [4, 14], and
also [15] for a discussion, proof, and relations to Vapnik-Chervonenkis dimension) states that this
number is bounded above by Φ(n, k − 1), provided that k − 1 ≤ n, where Φ(n, d) is the number of
possible subsets of an n-element set with at most d elements, that is,

Φ(n, d) =

d∑
i=0

(
n

i

)
≤ 2

nd

d!
≤

(en

d

)d
.

Doubling the estimate to include λ1 < 0, we have the upper bound 2Φ(n, k − 1). For example,
Φ(n, 0) = 1, Φ(n, 1) = n + 1, and Φ(n, 2) = 1

2(n2 + n + 2). Thus we have an estimate of 2 sign
patterns when k = 1 (as obtained earlier), 2n+ 2 when k = 2, n2+n+ 2 when k = 3, and so forth.
In general, the number grows only polynomially in n (for fixed k).

These considerations lead us to formulating the generalized problem, for each fixed k: find J

of minimal cardinality such that |Ji| ≥ n − k for all i = 1, . . . , n. Recalling the definition (2) of
Ji, we see that Ji = J

⋂
Ti, where Ti = {j | c0

ij = 0}. Thus, we can reformulate our question purely
combinatorially, as a more general version of Question (Q1) as follows. Given sets

Ti ⊆ {1, . . . , m} , i = 1, . . . , n.

and an integer k < n, the problem is:

find J ⊆ {1, . . . , m} of minimal cardinality such that |J
⋂

Ti| ≥ n − k, 1 ≤ i ≤ n. (Q2)
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For example, suppose that k = 1, and pick the matrix C0 ∈ {0, 1}n×n in such a way that the columns
of C0 are the binary vectors representing all the (n−1)-element subsets of {1, . . . , n} (so m = n);
in this case, the set J must equal {1, . . . , m} and hence has cardinality n. On the other hand, also
with k = 1, if we pick the matrix C0 in such a way that the columns of C0 are the binary vectors
representing all the 2-element subsets of {1, . . . , n} (so m = n(n − 1)/2), then J must again be the
set of all columns (because, since there are only two zeros in each column, there can only be a total
of 2� zeros, � = |J|, in the submatrix indexed by J, but we also have that 2� ≥ n(n − 1), since each
of the n rows must have ≥ n − 1 zeros); thus in this case the minimal cardinality is n(n − 1)/2.

2.1 Motivations from Systems Biology

This work was motivated by a central concern of contemporary cell biology, that of unraveling
(or “reverse engineering”) the web of interactions among the components of complex protein and
genetic regulatory networks. Notwithstanding the remarkable progress in genetics and molecular
biology in the sequencing of the genomes of a number of species, the inference and quantification
of interconnections in signaling and genetic networks that are critical to cell function is still a chal-
lenging practical and theoretical problem. High-throughput technologies allow the monitoring the
expression levels of sets of genes, and the activity states of signaling proteins, providing snapshots
of the transcriptional and signaling behavior of living cells. Statistical and machine learning tech-
niques, such as clustering, are often used in order to group genes into co-expression patterns, but
they are less able to explain functional interactions. An intrinsic difficulty in capturing such inter-
actions in intact cells by traditional genetic experiments or pharmacological interventions is that
any perturbation to a particular gene or signaling component may rapidly propagate throughout
the network, causing global changes. The question thus arises of how to use the observed global
changes to derive interactions between individual nodes.

This problem has generated an effort by many research groups whose goal is to infer mechanis-
tic relationships underlying the observed behavior of complex molecular networks. We focus our
attention here solely on one such approach, originally described in [10, 11], further elaborated upon
in [2, 16], and reviewed in [5, 17]. In this approach, the architecture of the network is inferred on
the basis of observed global responses (namely, the steady-state concentrations in changes in the
phosphorylation states or activities of proteins, mRNA levels, or transcription rates) in response to
experimental perturbations (representing the effect of hormones, growth factors, neurotransmitters,
or of pharmacological interventions).

In the setup in [10, 11, 16], one assumes that the time evolution of a vector of state variables
x(t) = (x1(t), . . . , xn(t)) is described by a system of differential equations:

ẋ1 = f1(x1, . . . , xn, p1, . . . , pm)

ẋ2 = f2(x1, . . . , xn, p1, . . . , pm)

...
ẋn = fn(x1, . . . , xn, p1, . . . , pm)

(in vector form, “ẋ = f(x, p)”, and the dot indicates time derivative), where p = (p1, . . . , pm) is a
vector of parameters, which can be manipulated but remain constant during any given experiment.
The components xi(t) of the state vector represent quantities that can be in principle measured,
such as levels of activity of selected proteins or transcription rates of certain genes. The parameters
pi represent quantities that can be manipulated, perhaps indirectly, such as levels of hormones or
of enzymes whose half-lives are long compared to the rate at which the variables evolve. A basic
assumption (but see [16] for a time-dependent analysis) is that states converge to steady state
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values, and these are the values used for network identification. There is a reference value p̄ of
p, which represents “wild type” (that is, normal) conditions, and a corresponding steady state x̄.
Mathematically, f(x̄, p̄) = 0. We are interested in obtaining information about the Jacobian of the
vector field f evaluated at (x̄, p̄), or at least about the signs of the derivatives ∂fi/∂xj(x̄, p̄). For
example, if ∂fi/∂xj > 0, this means that xj has a positive (catalytic) effect upon the rate of formation
of xi. The critical assumption, indeed the main point of [10, 11, 16], is that, while we may not know
the form of f, we often do know that certain parameters pj do not directly affect certain variables
xi. This amounts to a priori biological knowledge of specificity of enzymes and similar data. In the
current paper, this knowledge is summarized by the binary matrix C0 =

(
c0

ij

)
∈ {0, 1}n×m, where

“c0
ij = 0” means that pj does not appear in the equation for ẋi, that is, ∂fi/∂pj ≡ 0.
The experimental protocol allows one to perturb any one of the parameters, let us say the kth

one, while leaving the remaining ones constant. (A generalization, to allow for the simultaneous
perturbation of more than one parameter, is of course possible.) For the perturbed vector p ≈
p̄, one then measures the resulting steady state vector x = ξ(p). Experimentally, this may for
instance mean that the concentration of a certain chemical represented by pk is kept are a slightly
altered level, compared to the default value p̄k; then, the system is allowed to relax to steady
state, after which the complete state x is measured, for example by means of a suitable biological
reporting mechanism, such as a microarray used to measure the expression profile of the variables
xi. (Mathematically, we suppose that for each vector of parameters p in a neighborhood of p̄ there
is a unique steady state ξ(p) of the system, where ξ is a differentiable function.

For each of the possible m experiments, in which a given pj is perturbed, we may estimate the
n “sensitivities”

bij =
∂ξi

∂pj
(p̄) ≈ 1

p̄j − pj
(ξi(p̄ + pjej) − ξi(p̄)) , i = 1, . . . , n

(where ej ∈ R
m is the jth canonical basis vector). We let B denote the matrix consisting of the bij’s.

(See [10, 11] for a discussion of the fact that division by p̄j − pj, which is undesirable numerically,
is not in fact necessary.) Finally, we let A be the Jacobian matrix ∂f/∂x and let C be the negative
of the Jacobian matrix ∂f/∂p. From f(ξ(p), p) ≡ 0, taking derivatives with respect to p, and using
the chain rule, we get that C = AB. This brings us to the problem stated in this paper. (The
general position assumption is reasonable, since we are dealing with experimental data.)

2.2 Combinatorial Formulation of Questions (Q1) and (Q2)

Problem name: CPk (the k-Covering problem that captures Question (Q1) and (Q2))3

Instance <m, n, k>: U = [1, m] and sets T1, T2, . . . , Tn ⊆ U with ∪n
i=1Ti = U.

Valid Solutions: A subset U ′ ⊆ U such that |U ′ ∩ Ti| ≥ n − k for each i ∈ [1, n].

Objective: Minimize |U ′|.

2.3 Equivalence of CPk and SCn−k

We can establish a 1-1 correspondence between an instance < m, n, k > of CPk and an instance
<n, m, n − k> of SCn−k by defining Si = { j | i ∈ Tj} for each i ∈ [1, m]. It is easy to verify that
U ′ is a solution to the instance of CPk if and only if the collection of sets Su for each u ∈ U ′ is a
solution to the instance of SCn−k.

3CPn−1 is known as the hitting set problem [7, p. 222].
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3 Approximation Algorithms for SCk

An ε-approximate solution (or simply an ε-approximation) of a minimization problem is defined
to be a solution with an objective value no larger than ε times the value of the optimum. It is not
difficult to see that SCk is NP-complete even when k = n − c for some constant c > 0.

3.1 Analysis of Greedy Heuristic for SCk for Large k

Johnson [8] provides an example in which the greedy heuristic for some instance of SC over n

elements has an approximation ratio of at least log2 n. This approach can be generalized to show
the following result.

Lemma 2 For any fixed c > 0, the greedy heuristic (as described in Fact 1(b)) has an approxi-
mation ratio of at least

(
1
2 − o(1)

) (
n−c
8n−2

)
log2 n = Ω(log n) for some instance < n, m, n − c > of

SCn−c.

Proof. We will create an instance of SCn−c with n = 2α + γ � c where α � c is a sufficiently
large positive integer that is also a power of 4 and γ = 3 + log2 α � c is the least positive integer
such that 2γ−1 ≥ 2α + γ − c. Notice that by our choice of parameters 2n

5 < α < n
2 ≡ α = Θ(n)

and 1 + log2 n < γ < 2 + log2 n ≡ γ = Θ(log n). Let S = {S1, S2, . . . , S2γ−1} be the collection of
all distinct non-empty subsets of [2α + 1, 2α + γ]. Notice that every x ∈ [2α + 1, 2α + γ] occurs in
exactly 2γ−1 ≥ n − c sets in the collection S.

A collection of our sets corresponding to an optimal cover of our instance of SCn−c will consist
of the 2γ+1 − 2 sets [1, α] ∪ Si and [α + 1, 2α] ∪ Si for each set Si ∈ S. Any x ∈ [2α + 1, 2α + γ]

occurs in exactly 2γ > 2α + γ − c = n − c of these sets. Also, each x ∈ [1, 2α] occurs in exactly
2γ−1 ≥ 2α + γ − c = n − c of these sets. Hence, an optimal solution of this instance of SCn−c

uses at most 2γ+1 − 2 < 8n − 2 sets. Notice that each set in this optimal cover contains at most
α + γ < n

2 + 2 + log2 n elements.
Now we specify another collection of sets which will force the greedy heuristic to use at least

(n−c)
(

1
2 − o(1)

)
log2 n sets. Partition [1, α] into p = 1+log4 α disjoint sets P1, P2, . . . , Pp such that

|Pi| =
⌈

3
4i α

⌉
for i ∈ [1, p]. Observe that p > log4 n. Similarly, partition [α+1, 2α] into p = 1+log4 α

disjoint sets Q1, Q2, . . . , Qp such that |Qi| =
⌈

3
4i α

⌉
for i ∈ [1, p]. Let S ′ = {S1, S2, . . . , Sn−c} ⊆ S.

Now, for each Pi∪Qi and each distinct Sj ∈ S ′, create a set Ti,j = Pi∪Qi∪Sj. We claim that greedy
will pick the sets T1,1, . . . , T1,n−c, T2,1, . . . , T2,n−c, . . . , Tq,1, . . . , Tq,n−c with q =

(
1
2 − o(1)

)
log2 n <

p. This can be shown by induction as follows:

• The greedy must start by picking the sets T1,1, . . . , T1,n−c in some arbitrary order. Until all
these sets have been picked, the unpicked ones have at least 3

42α = 3
2α elements that have not

been covered n−c times, whereas each set in the optimal cover has at most α+γ = α+3+log2 α

elements and α is sufficiently large.

• Inductively, suppose that the greedy has picked all sets Ti,j with i < q when it considers a
Tq,r for possible consideration. Obviously Tq,r contains at least 3

4q 2α = 6
4q α elements that

are not yet covered n − c times. On the other hand, the number of elements that are not yet
covered n − c times in any set from our optimal cover is at most

γ +

(
1 −

q−1∑
i=1

3

4i

)
α = γ +

1

4q−1
α = γ +

4

4q
α

9



and 6
4q α > γ + 4

4q α provided q < log4

(
2α
γ

)
. Since log4

(
2α
γ

)
> log4

(
4n

5(2+log2 n)

)
>

log4

(
4n

10 log2 n

)
=

(
1
2 − o(1)

)
log2 n, the inequality 6

4q α > γ+ 4
4q α holds for q ∈ [

1,
(

1
2 − o(1)

)
log2 n

]
.

❑

3.2 Randomized Approximation Algorithm for SCk

As stated before, an instance <n, m, k> of SCk can be (1 + lna)-approximated in O(mnk) time
for any k where a = maxS∈S {|S|}. In this section, we provide a randomized algorithm with an
expected performance ratio better than (1 + lna) for larger k. Let S = {S1, S2, . . . , Sm}.

Our algorithm presented below as well as our subsequent discussions and proofs are formulated
with the help of the following vector notations:

• All our vectors have m coordinates with the ith coordinate indexed with the ith set Si of S.

• if V ⊂ S, then v ∈ {0, 1}m is the characteristic vector of V, i.e., vSi
=

{
1 if Si ∈ V

0 if Si �∈ V

• 1 is the vector of all 1’s, i.e. 1 = s;

• si = {A ∈ S : i ∈ A} denotes the sets in S that contains a specific element i.

Consider the standard integer programming (IP) formulation of an instance <n, m, k> of SCk [18]:

minimize 1x subject to
six ≥ k for each i ∈ U

xA ∈ {0, 1} for each A ∈ S

A linear programming (LP) relaxation of the above formulation is obtained by replacing each
constraint xA ∈ {0, 1} by 0 ≤ xA ≤ 1. The following randomized approximation algorithm for SCk

can then be designed:

1. Select an appropriate positive constant β > 1 in the following manner:

β =




lna if k = 1

ln(a/(k − 1)) if a/(k − 1) ≥ e2 and k > 1

2 if 1
4 < a/(k − 1) < e2 and k > 1

1 +
√

a
k otherwise

2. Find a solution x to the LP relaxation via any polynomial-time algorithm for solving
linear programs (e.g. [9]).

3. (deterministic rounding) Form a family of sets C0 = {A ∈ S : βxA ≥ 1}.
4. (randomized rounding) Form a family of sets C1 ⊂ S − C0 by independent

random choices such that Pr[A ∈ C1] = βxA.
5. (greedy selection) Form a family of sets C2 as:

while si(c0 + c1 + c2) < k for some i ∈ U, insert to C2 any A ∈ Si − C0 − C1 − C2.
6. Return C = C0 ∪ C1 ∪ C2 as our solution.

Let r(a, k) denote the performance ratio of the above algorithm.
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Theorem 34

E[r(a, k)] ≤




1 + lna, if k = 1

(
1 + e−(k−1)/5

)
ln(a/(k − 1)), if a/(k − 1) ≥ e2 ≈ 7.39 and k > 1

min{ 2 + 2 · e−(k−1)/5, 2 +
(
e−2 + e−9/8

) · a
k }

≈ min{ 2 + 2 · e−(k−1)/5, 2 + 0.46 · a
k } if 1

4 < a/(k − 1) < e2 and k > 1

1 + 2
√

a
k if a/(k − 1) ≤ 1

4 and k > 1

Let OPT denote the minimum number of sets used by an optimal solution. Obviously, OPT≥ 1x

and OPT≥ nk
a . A proof of Theorem 3 follows by showing the following upper bounds on E[r(a, k)]

and taking the best of these bounds for each value of a/(k − 1):

1 + lna, if k = 1(
1 + e−(k−1)/5

)
ln(a/(k − 1)), if a/(k − 1) ≥ e2 and k > 1

2 + 2 · e−(k−1)/5, if a/(k − 1) < e2 and k > 1

2 +
(
e−2 + e−9/8

) · a
k, if a/(k − 1) < e2 and k > 1

1 + 2
√

a
k, if a/k ≤ 1

2

3.2.1 Proof of E[r(a, k)] ≤ 1 + ln a if k = 1,
E[r(a, k)] ≤ (

1 + e−(k−1)/5
)
ln(a/(k − 1)) if a/(k − 1) ≥ e2 and k > 1, and

E[r(a, k)] ≤ 2 + 2 · e−(k−1)/5 if a/(k − 1) < e2 and k > 1

For our analysis, we use the following notations:

x0
A =

{
xA if βxA ≥ 1

0 otherwise
x1

A =

{
0 if βxA ≥ 1

xA otherwise

Note that c0
A = �x0

A� ≤ βx0
A. Thus 1x0 ≤ 1c0 ≤ β1x0. Define bonus = β1x0 − 1c0. It is easy to

see that E[1(c0 + c1)] = β1x − bonus.
The contribution of set A to bonus is βx0

A−c0
A. This contribution to bonus can be distributed

equally to the elements in A. Since |A| ≤ a, an element i ∈ [1, n] receives a total of at least bi/a

of bonus, where bi = si(βx0 − c0). The random process that forms set C1 has the following goal
from the point of view of element i: pick at least gi sets that contain i, where gi = k − sic0.
These sets are obtained as successes in Poisson trials whose probabilities of success add to at least
pi = β(k−six0). Let yi be random function denoting the number that element i contributes to the
size of C2; thus, if in the random trials in Step 4 we found h sets from Si then yi = max{0, k − h}.
Thus, E[r(a, k)] = E[1(c0 + c1 + c2)] ≤ β1x +

∑n
i=1E[yi − bi

a ]. Let qi = β
β−1s

i(c0 − x0). We
can parameterize the random process that forms the set C2 from the point of view of element i as
follows:

• gi is the goal for the number of sets to be picked;

• pi = β(k − six0) = βgi + (β − 1)qi is the sum of probabilities with which sets are picked;

• bi/a is the bonus of i, where bi = si(βx0 − c0) ≥ (β − 1)(k − gi − qi);
4The case of k = 1 was known before and included for the sake of completeness only.
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• qi ≥ 0, gi ≥ 0 and gi + qi ≤ k;

• yi measures how much the goal is missed;

• to bound E[r(a, k)] we need to bound E[yi − bi

a ].

3.2.1.1 g-shortage Functions

In this section we prove some inequalities needed to estimate E[yi − bi

a ] tightly. Assume that
we have a random function X that is a sum of N independent 0-1 random variables Xi. Let
E[X] =

∑
iPr[Xi = 1] = µ and g < µ be a positive integer. We define g-shortage function as

Y
µ
g = max{g − X, 0}. Our goal is to estimate E[Y

µ
g].

Lemma 4 E[Y
µ
g] < e−µ

∑g−1
i=0

g−i
i! µi.

Proof. Suppose that for some positive numbers p, q and some Xi we have Pr[Xi = 1] = p + q.
Consider replacing Xi with two independent random functions Xi,0 and Xi,1 such that Pr[Xi,0 =

1] = p and Pr[Xi,1 = 1] = q. We can show that after this replacement E[Y
µ
g] increases as follows.

In terms of our random functions before the replacement we define rj = Pr[X − Xi = g − j]. Let X ′

be the sum of our random functions after the replacement and Y ′
g be defined in terms of X ′. Let

a =
∑g−1

j=1 jrj, b =
∑g−1

j=2 (j − 1)rj, and c =
∑g−1

j=3 (j − 2)rj. Then,

E[Y ′
g] = (1 − p)(1 − q)a + p(1 − q)b + (1 − p)qb + pqc

= (1 − p − q + pq)a + (p + q − 2pq)b + pqc

E[Yg] = (1 − p − q)a + (p + q)b

E[Y ′
g] − E[Yg] = (a − 2b + c)pq = r1pq ≥ 0

Therefore, we increase E[Y
µ
g] if we replace the original independent random function by N

Bernoulli trials with probability of success µ/N, and take the limit for N → ∞. If rj = Pr[Xg = j]

then it now follows that

lim
N→∞ rj = lim

N→∞
N!

(N − j)!j!

(
1 −

µ

N

)N−j ( µ

N

)j
=

µj

eµj!

where the last equality follows from standard estimates in probability theory. ❑

From now on we will assume the worst-case distribution of Y
µ
g, so we will assume that the

above inequality in Lemma 4 is actually an equality (as it becomes so in the limit), i.e., we assume
E[Y

µ
g] = e−µ

∑g−1
i=0

g−i
i! µi. For a fixed β, we will need to estimate the growth of E[Y

gβ
g ] as a function

of g. Let ρg(β) = egβE[Y
gβ
g ].

Lemma 5 ρg(1) =
∑g−1

i=0
g−i
i! gi = gg

(g−1)!

Proof.

ρg(1) =

g−1∑
i=0

gi(g − i)

i!
=

g−1∑
i=0

gi+1

i!
−

g−1∑
i=0

gii

i!

=

g−1∑
i=0

gi+1

i!
−

g−1∑
i=1

gi

(i − 1)!

12



=

g−1∑
i=0

gi+1

i!
−

g−2∑
i=0

gi+1

i!

=

g−1∑
i=0

gi+1

i!
−

(
g−1∑
i=0

gi+1

i!
−

gg

(g − 1)!

)

=
gg

(g − 1)!

❑

Lemma 6 For β > 1, ρg+1(β)
βρg(β) is a decreasing function of β.

Proof. By definition, ρg(β) =
∑g−1

i=0
ai
i! βi where ai = gi(g − i). Let f(β) = ρg+1(β) and

t(β) = βρg(β). We need to show that, for a given fixed g, f(β)/t(β) is a decreasing function of β.
The derivative of f(β)/t(β) is f′(β)t(β)−t′(β)f(β)

(t(β))2
. We claim that the numerator f ′(β)t(β)−t ′(β)f(β)

is a polynomial whose coefficients are always negative, which then proves that the derivative is
negative (for all β > 0). To prove this, it suffices to show that if p(β) = f ′(β)t(β) − t ′(β)f(β) then
p(k)(0) < 0 for all k.

Note that t(k)(0) = kρ
(k−1)
g (0) for all k, hence

f(k)(0) =

{
(g + 1)k(g + 1 − k), if 0 ≤ k ≤ g

0, if k > g
t(k)(0) =

{
kgk−1(g + 1 − k), if 0 ≤ k ≤ g

0, if k > g

On the other hand,
p ′ = f ′t − t ′f,

p ′′ = f ′′t − t ′′f,

p ′′′ = f ′′′t − t ′′′f + f ′′t ′ − t ′′f ′

etc, so it will be enough to prove that

a(k, h) = f(k)t(h)(0) − t(k)f(h)(0) < 0

whenever g ≥ k > h. (By induction, if we have that a derivative of p is a sum of terms of the form
t(k)f(h) − f(k)t(h), then taking another derivative of any such term, we get 4 terms, then rearrange
to see that the same is true for one more derivative of p).

Let κ = h + d with d > 0. Then a(h + d, h) = (−gdh − gdd + (g + 1)dh)(g + 1)hg(h−1),
so we need to show that (g + 1)dh < gd(h + d) when g ≥ h + d and d > 0. Let q(h) =

−gd(h + d) + (g + 1)dh for fixed g and d. We need to show that q(h) < 0 for h ≤ g − d. Since
q ′(h) = (g + 1)d − gd > 0 it is enough to check at the maximum value h = g − d. Thus, we
need to show that (g + 1)d(g − d) < gd+1 always holds for any 1 ≤ d ≤ g. For d = g this is
clear, so we assume from now on that d < g. Taking logarithms of both sides, we must show that
r(d) = d ln(g + 1) + ln(g − d) − (d + 1) lng < 0. We claim that r ′(d) = ln

(
g+1
g

)
− 1

g−d < 0. Once
that this is shown, it will follow from r(d) < r(1) = ln(g+ 1)+ ln(g− 1)− 2 lng and concavity of ln
(which says that r(1) < 0) that r(d) < 0 as wanted. To show r ′(d) < 0, we note that − 1

g−d < − 1
g−1

(because d ≥ 1), so all we need to show is that ln
(

g+1
g

)
< 1

g−1, or, equivalently, 1 + 1
g < e

1
g−1 .

But, obviously, 1 + 1
g < 1 + 1

g−1 < e
1

g−1 . ❑

The next lemma characterizes the growth of E[Y
gx
g ] as a function of g.
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Lemma 7 If g > 1 and β > 1 then E[Ygβ
g ]

E[Y
(g−1)β
g−1 ]

≤ e−β
(

g
g−1

)g

Proof. Using Lemma 5 and Lemma 6, we get E[Ygβ
g ]

E[Y
(g−1)β
g−1 ]

= e−ββ
ρg(β)

βρg−1(β) ≤ e−ββ
ρg(1)

ρg−1(1) =

e−ββ
(

g
g−1

)g
. ❑

The last lemma characterizes the impact of “extra probabilities” on the expected value.

Lemma 8 E[Ygβ+q
g ]

E[Ygβ
g ]

< e−q(1−1/β)

Proof. The ratio is e−q times the ratio of two polynomials. The terms of the upper polynomial

are larger than the terms of the lower by a factor at most
(

gβ+q
gβ

)g−1
=

(
1 + q

gβ

)g−1
< eq/β. ❑

3.2.1.2 Putting All the Pieces Together

In this section we put all the pieces together from the previous two subsections to prove our
claim on E[r(a, k)]. We assume that β ≥ 2 if k > 1. Because we perform analysis from the point
of view of a fixed element i, we will skip i as a superscript as appropriate. As we observed in
Section 3.2.1, we need to estimate E[y − b

a] and b ≥ (β − 1)(k − g − q). We will also use the
notations p and q as defined there.

Obviously if g = 0 then y = 0. First, we consider the case of k = 1 separately. Then, g ≤ 1

and hence E[y − b
a] ≤ e−β = 1

a. Thus, when k = 1,

E[r(a, k)] = E[1(c0 + c1 + c2)]

≤ β1x +

n∑
i=1

E[yi −
bi

a
]

≤ β1x +
n

a
≤ βOPT + OPT = (1 + lna)OPT

Otherwise, for the rest of this proof, assume that k > 1. We first consider the “base” case of
g = 1 and q = 0. Since q = 0, c0 = x0. Thus, b = si(βc0 − c0) = (β − 1)sic0 = (β − 1)(k − 1).
Next, we compute E[y]. Since p = βg = β, E[y] = E[Y

β
1 ] = e−β.

We postulate that

E[y −
b

a
] ≤ 0 ≡ e−β ≤ (β − 1)(k − 1)

a

≡ e−β

β − 1
≤ k − 1

a

≡ eβ(β − 1) ≥ a

k − 1

≡ β + ln(β − 1) ≥ ln
a

k − 1
(4)

Now we observe the following:

• If a/(k − 1) ≥ e2, then β + ln(β − 1) ≥ 2, or equivalently, β ≥ 2 as is the assumption in this
section. Moreover, β = ln(a/(k − 1)) obviously satisfies inequality 4.
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• If a/(k − 1) < e2, then obviously β ≥ 2 by our choice of β = 2. Moreover, β = 2 obviously
also satisfies inequality 4 as well.

Thus, for the base case, E[1(c0 + c1 + c2)] ≤ β1x ≤ ln(a/(k − 1))OPT.
Now we consider the “non-base” case when either g > 1 or q > 0. Compared to the base

case, in a non-base case we have bonus b
a decreased by at least (β − 1)(g + q − 1)/a. Also,

E[y] = E[Y
p
g] = E[Y

βg+(β−1)q
g ]. We need to calculate how this compares with the base value of

E[Y
β
1 ] using Lemma 7 and Lemma 8.

Lemma 9 E[Y
βg+(β−1)q
g ]

E[Yβ
1 ]

≤ e−(g+q−1)/5.

Proof. Firstly, if q > 0, then

E[Y
βg+(β−1)q
g ]

E[Yβg
g ]

< e−(β−1)q
(
1−1

β

)
(by Lemma 8)

≤ e−(β−1)q(1−1
2 ) (since β ≥ 2)

≤ e−q/2 (since β ≥ 2)
< e−q/5

Now we need to bound E[Y
βg
g ]/E[Y

β
1 ].

Obviously, E[Yβg
g ]

E[Yβ
1 ]

= Π
g
i=2

E[Yβi
i ]

E[Y
β(i−1)
i−1 ]

. We now observe the following:

• If i = 2, then E[Y2β
2 ]

E[Yβ
1 ]

= e−βρ2(β)
ρ1(β) = e−β(2 + 2β). Since e−β(2 + 2β) is a decreasing function of

β and 2 + β > 2, it follows that e−β(2 + 2β) < 4e−2 < e−1/5.

• Similarly, if i = 3, then E[Y3β
3 ]

E[Yβ
1 ]

= e−2βρ3(β)
ρ1(β) = e−2β

(
3 + 6β + 9

2β2
)

< 33e−4 < e−2/5.

• Similarly, if i = 4, then E[Y4β
4 ]

E[Yβ
1 ]

= e−3βρ4(β)
ρ1(β) = e−3β

(
4 + 12β + 16β2 + 32

3 β3
)

< 532
3 e−6 <

e−3/5.

• Similarly, if i = 5, then E[Y5β
5 ]

E[Yβ
1 ]

= e−4βρ5(β)
ρ1(β) = e−4β

(
5 + 20β + 75

2 β2 + 125
3 β3 + 625

24 β4
)

<

945e−8 < e−4/5.

• Finally, suppose that i ≥ 6. Then,

E[Yβi
i ]

E[Y
β(i−1)
i−1 ]

≤ e−ββ
(

i
i−1

)i
(by Lemma 7)

< e−ββ
(

6
5

)6
(since

(
i

i−1

)i
is a decreasing function of i)

≤ e−22
(

6
5

)6
(since e−ββ is a decreasing function of β)

< e−1/5

• Thus, E[Yβg
g ]

E[Yβ
1 ]

≤ e−(g−1)/5.

• Thus, E[Y
βg+(β−1)q
g ]

E[Yβ
1 ]

≤ e−(g+q−1)/5.
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❑

Summarizing, when bonus is decreased by at most (β−1)(g+q−1)/a = (β−1)t/a, we decrease
the estimate of E[y] by multiplying it with at least e−t/5. As a function of t = g + q − 1 we have

E[y] − b/a ≤ e−β−t/5−
β − 1

a
(k − 1 − t) ≤ (β − 1)(k − 1)

a

(
e−t/5 − 1 +

t

k − 1

)

This is a convex function of t, so its maximal value must occur at one of the ends of its range.
When t = 0 we have 0, and when t = k − 1 we have (β−1)(k−1)

a e−(k−1)/5. As a result, our expected
performance ratio for k > 1 is given by

E[r(a, k)] ≤ β1x +
∑n

i=1E[yi − bi

a ]

≤ βOPT + βnk
a e−(k−1)/5

≤ β(1 + e−(k−1)/5)OPT

≤
{ (

1 + e−(k−1)/5) ln(a/(k − 1)
)
OPT if a/(k − 1) ≥ e2

2 · (1 + e−(k−1)/5
)
OPT if a/(k − 1) < e2

3.2.2 Proof of E[r(a, k)] ≤ 2 +
(
e−2 + e−9/8

) · a
k if a/(k − 1) < e2

Each set in A ∈ C0∪C1 is selected with probability min{βxA, 1}. Thus E[|C0∪C1|] ≤ β1x ≤ β ·OPT.
Next we estimate an upper bound on E[|C2|]. For each element i ∈ [1, n] let the random variable νi

be max{k − di, 0} where di is the number of sets in C0 ∪ C1 that contain i. Clearly, |C2| ≤
∑s

i=1 νi.
Thus it suffices to estimate E[νi]. Because our estimate will not depend on i, we will drop this
index i from νi for notational simplifications. Assume that i ∈ [1, n] is contained in k− f sets from
C0 for some f < k. Then, 1 ≤ ν ≤ f and

E[ν] ≤
∞∑
j=1

Pr[ν ≥ j] =

f∑
j=1

Pr[ν ≥ j] =

f−1∑
j=0

Pr[ν ≥ f − j] (5)

Let the random variable y denote the number of sets in C1 that contain i. Considering the constraint
six ≥ k and the fact that we select a set A ∈ S\C0 with probability βxA, it follows that E[y] ≥ βf.
Now,

Pr[ν ≥ f − j] = Pr[y < (1 − δj)βf] (6)

where
(1 − δj)βf = j ≡ βfδj = βf − j ≡ δj =

βf − j

βf
(7)

By using standard Chernoff’s bound [1, 3, 12], we have

Pr[y < (1 − δj)βf] ≤ Pr[y < (1 − δj)E[y]] < e−E[y]δ2
j /2 ≤ e−βfδ2

j /2 (8)

where
βfδ2

j

2
=

(βf − j)2

2βf
=

f

2
β − j +

j2

2βf
= ζ(β, f, j) (9)

Combining Equations (5), (6), (8) and (9) we get E[ν] <
∑f−1

j=0 e−ζ(β,f,j).
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Lemma 10 Let X(β, f) =
∑f−1

j=0 e−ζ(β,f,j). Then X(2, f) is maximized for f = 2 and this maximum
value is e−2 + e−9/8.

Proof. X(2, 1) = e−1 < e−2+e−9/8. The following series of arguments shows that X(2, f) ≤ X(2, 2)

for all f > 2:

• ζ(2, f, j) = f − j + j2

4f. Also, ζ(2, f, f − 1) = 1 +
(f−1)2

4f =
f+2+1/f

4 is an increasing function of f.

• ζ(2, p + 1, j) − ζ(2, p, j) = 1 + j2

4

(
1

p+1 − 1
p

)
= 1 − j2

4p(p+1) > 3
4 for all p ≥ 1.

• Clearly,

X(2, f) =
(∑f−2

j=0 e−ζ(2,f−1,j) · eζ(2,f−1,j)−ζ(2,f,j)
)

+ e−ζ(2,f,f−1)

< e−3/4X(2, f − 1) + e−ζ(2,f,f−1) < 1
2X(2, f − 1) + e−ζ(2,f,f−1)

Hence

X(2, f − 1) ≤ X(2, 2)
∧

e−ζ(2,f,f−1) < 1
2X(2, 2) =⇒ X(2, f) < X(2, 2)

≡
X(2, f − 1) ≤ X(2, 2)

∧
ζ(2, f, f − 1) > − lnX(2, 2) + ln 2 =⇒ X(2, f) < X(2, 2)

• X(2, 3) < 0.44 < X(2, 2).

• ζ(2, 4, 3) > 1.56 > 0.78 + 0.694 > − lnX(2, 2) + ln 2. Moreover, since ζ(2, f, f − 1) increases
with f, this implies ζ(2, f, f − 1) > − lnX(2, 2) + ln 2 for all f ≥ 4. Thus, X(2, f) < X(2, 2) for
all f ≥ 4. ❑

Now we are able to complete the proof on our claimed expected performance ratios as follows.
If a/(k − 1) ≤ e2 then with β = 2 we get E[[|C0 ∪ C1|] ≤ 2 · OPT and E[[|C2|] ≤

(
e−2 + e−9/8

) · a ≤(
e−2 + e−9/8

) · a
k · OPT by Lemma 10.

3.2.3 Proof of E[r(a, k)] ≤ 1 + 2
√

a
k if a/k ≤ 1

2

For notational simplification, let α =
√

k
a ≥ 2. Thus, in our notation, β = 1 + α−1 and we

need to show that E[r(a, k)] ≤ 1 + 2α−1 + α−2. As we observed immediately after the statement of
Theorem 3, OPT≥ 1x (where x was the solution vector to the LP relaxation) and OPT≥ nk

a = nα2.
We will also reuse, if necessary, the notations introduced in Section 3.2.1.

We first focus our attention on a single element, say i. For notational convenience, we will drop
i from the superscript when possible. Let Ci

0 and Ci
1 be the sets in C0 and C1, respectively, that

contained i. We will relate the following quantities:

• p = pi = β(k − six0) is the sum of probabilities used in Step 4 for the sets that contain i;

• y = yi = |Ci
2| is the shortage of sets that contain i after Step 4.

Suppose that y > 0 and that |Ci
0| = k − f for some 0 < f ≤ k. Suppose that element i is contained

in k − f + ρ sets, say the sets S1, S2, . . . , Sk−f+ρ, for some ρ > 0, out of which k − f sets, say the
sets S1, S2, . . . , Sk−f, were selected to be in Ci

0. From the inequality

xS1
+ xS2

+ · · · + xSk−f+ρ
≥ k
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and the fact that xj ≤ 1 for all j, it follows that ρ ≥ xSk−f+1
+ xSk−f+2

+ · · · + xSk−f+ρ
≥ f. Let

ρ = f + µ for some µ ≥ 0. Obviously, E[ |Ci
1| ] = p = βρ = (1 + α−1)f + (1 + α−1)µ. Now,

|Ci
1| = f − y

=
[
(1 + α−1)f + (1 + α−1)µ

]
− α−1f − (1 + α−1)µ − y

=
[
1 −

(
α−1f+(1+α−1)µ

(1+α−1)f+(1+α−1)µ

)
− y

(1+α−1)f+(1+α−1)µ

]
p

<
[
1 −

(
α−1f

(1+α−1)f

)
− y

(1+α−1)f+(1+α−1)µ

]
p

=
[
1 − (1 + α)−1 − y

p

]
E[ |Ci

1| ]

By using standard Chernoff’s bound [1, 3, 12], we have

E[|Ci
2|] =

∑∞
j=1Pr[y ≥ j]

<
∑∞

j=1Pr[ |Ci
1| ≤

(
1 −

(
(1 + α)−1 + j

p

))
E[ |Ci

1| ] ]

≤ ∑∞
j=1e−1

2 ((1+α)−1+j/p)
2
p

<
∑∞

j=1e−1
2 (4j(1+α)−1/p)p since (x + y)2 ≥ 4xy for all x and y

=
∑∞

j=1e−1
2 (4j(1+α)−1)

=
∑∞

j=1

[
e2(1+α)−1

]−j

= 1

e2(1+α)−1
−1

≤ 1
2(1+α)−1 since ex > 1 + x for x > 0

= 1+α
2

Therefore on behalf of i we will select, on average, (1 + α)/2 sets in Step 5; thus the total average
number of elements selected in Step 5 over all elements is at most nα/2. Summarizing,

E[|C0 + C1 + C2|] ≤ 1x(1 + α−1) +
nα2

2α
+

nα2

2α2
≤

(
1 +

3

2α
+

1

α2

)
OPT ≤

(
1 +

2

α

)
OPT

where the last inequality follows since α ≥ 2.
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